
Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver

SDK Developer Handbook

AN-21010600-E5

Ver1.1.1

2023.03.17

Keyword
Driver, debug, interrupt, clock, protocol

Brief
This article is the development handbook of Telink Driver SDK. It introduces the structure, mechanism and
details of each module of Telink Driver SDK.

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Published by
Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,
Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor
All Rights Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without
further notice to this document or any products herein. This document may contain technical inaccuracies
or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or
incompleteness contained herein.

Copyright © 2023 Telink Semiconductor (Shanghai) Co., Ltd.

Information

For further information on the technology, product and business term, please contact Telink Semiconductor
Company www.telink-semi.com

For sales or technical support, please send email to the address of:

telinksales@telink-semi.com

telinksupport@telink-semi.com

AN-21010600-E5 2 Ver1.1.1

http://www.telink-semi.com/
telinksales@telink-semi.com
telinksupport@telink-semi.com

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Revision History

Version Change Description

V1.0.0 Initial version.

V1.0.1 Added USB content.

V1.0.2 Added CPU performance test content.

V1.1.0 Updated ADC chapter, added Audio chapter.

V1.1.1 Minor edits and corrections.

AN-21010600-E5 3 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Contents

Revision History 3
1 Driver directory structure . 12

1.1 boot . 12
1.2 common . 12
1.3 drivers . 13
1.4 link . 13
1.5 vendor . 14

2 Boot mechanism . 15
2.1 Telink platform SoC . 15
2.2 Risc-V platform SoC . 15

3 S and link files . 16
3.1 Use of combinations . 16
3.2 Configuration method . 16

3.2.1 Link . 16
3.2.2 S file . 17
3.2.3 objdump.txt . 18

3.3 Link file details . 21
3.3.1 Code detail . 21
3.3.2 Alignment . 23

3.4 S file details . 25
3.4.1 Code detail . 25
3.4.2 Differences between vectors and retention_reset segments 30
3.4.3 Others . 30

3.4.3.1 Notes on the use of .org . 30
3.4.3.2 Compression command . 31
3.4.3.3 FPU enable . 32

4 Debug Demo . 33
4.1 Simulate serial output via GPIO port . 33
4.2 USB printout . 34

5 Interrupt . 36
5.1 Interrupt overview . 36
5.2 Interrupt type . 36
5.3 External interrupt . 36

5.3.1 Interrupt enable . 36
5.3.2 External interrupt handler function in vector mode . 37
5.3.3 Priority in external interrupt . 39
5.3.4 Results observation . 40

6 GPIO . 42
6.1 Interrupt . 42

6.1.1 Mechanism description . 42
6.1.2 Conclusion . 44

6.2 Attentions . 45
7 Clock . 47

7.1 Brief description . 47

AN-21010600-E5 4 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

7.2 clock_init . 47
7.2.1 PLL_CLK . 48
7.2.2 CCLK . 48
7.2.3 HCLK . 48
7.2.4 PCLK . 48
7.2.5 MSPI_CLK . 48

8 AES . 49
9 EMI . 50

9.1 Protocol . 50
9.2 Program description . 50

9.2.1 CarrierOnly mode . 50
9.2.2 Continue mode . 51
9.2.3 Burst mode . 52
9.2.4 RX Mode . 56

10 Timer . 57
10.1 Function description . 57

10.1.1 System Clock Mode . 57
10.1.2 GPIO Trigger Mode . 58
10.1.3 GPIO Pulse Width Mode . 58
10.1.4 Tick Mode . 59
10.1.5 Watchdog Mode . 59

10.2 Demo description . 60
10.2.1 GPIO System Clock Mode . 60
10.2.2 GPIO Trigger Mode . 60
10.2.3 GPIO Pulse Width Mode . 61
10.2.4 Tick Mode . 62
10.2.5 Watchdog Mode . 63

10.2.5.1 Dog-feeding test . 63
10.2.5.2 No dog-feeding test . 63

11 Analog . 65
11.1 Attentions . 65
11.2 Speed Test . 65

12 Flash . 67
12.1 Read operation . 67
12.2 Write operation . 67

13 BQB . 68
13.1 Function description . 68
13.2 Frequency bias value setting . 68
13.3 Communication verification . 68

14 PWM . 69
14.1 PWM introduction . 69

14.1.1 Clock . 69
14.1.2 Duty cycle . 70
14.1.3 Invert/polarity . 72

14.2 Function description . 72
14.2.1 Continuous mode . 72
14.2.2 Counting Mode . 72

AN-21010600-E5 5 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.2.3 IR Mode . 73
14.2.4 IR FIFO mode . 73
14.2.5 IR DMA FIFO mode . 73

14.3 Interrupts . 74
14.4 Continuous mode . 75

14.4.1 Function description . 75
14.4.2 Example results . 75
14.4.3 Other validation results . 75

14.4.3.1 Stop . 75
14.4.3.2 Duty cycle . 76

14.5 Counting mode . 76
14.5.1 COUNT_FRAME_INIT . 77

14.5.1.1 Function description . 77
14.5.1.2 Example results . 77

14.5.2 COUNT_PNUM_INIT . 77
14.5.2.1 Function description . 77
14.5.2.2 Example results . 77

14.5.3 Other validation results . 78
14.5.3.1 Stop . 78
14.5.3.2 Duty cycle . 79

14.6 IR mode . 79
14.6.1 Function description . 79
14.6.2 Example results . 79
14.6.3 Other validation results . 80

14.6.3.1 Stop . 80
14.6.3.2 Duty cycle . 80

14.7 IR FIFO Mode . 81
14.7.1 Function description . 81
14.7.2 Example results . 82
14.7.3 Other validation results . 82

14.7.3.1 Stop . 82
14.8 DMA FIFO mode . 83

14.8.1 PWM_IR_FIFO_DMA . 83
14.8.1.1 Function description . 83
14.8.1.2 Example results . 84

14.8.2 PWM_CHAIN_DMA . 84
14.8.2.1 Function description . 86

14.8.3 Example results . 86
15 I2C . 88

15.1 Introduction . 88
15.2 Interrupt . 89
15.3 I2C mode . 90

15.3.1 I2C no-DMA mode . 90
15.3.1.1 Master . 90
15.3.1.2 Slave . 92

15.3.2 I2C DMA mode . 92
15.3.2.1 Master . 92

AN-21010600-E5 6 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

15.3.2.2 Slave . 93
15.4 I2C demo description . 93

15.4.1 Function description . 94
15.4.2 Example results . 94

16 UART . 96
16.1 Introduction . 96
16.2 Data communication timing . 96
16.3 Communication principle . 97
16.4 Function introduction . 98

16.4.1 Initialization . 98
16.4.2 Baud rate . 99

16.4.2.1 Function calls . 99
16.4.2.2 Tested data . 99

16.4.3 Interrupt . 101
16.4.4 DMA mode . 101

16.4.4.1 Sending data . 101
16.4.4.2 Receiving data . 102

16.4.5 NDMA mode . 105
16.4.5.1 Sending data . 105
16.4.5.2 Receiving data . 105

16.4.6 Flow Control . 106
16.4.6.1 CTS . 106
16.4.6.2 RTS . 106

16.5 DEMO introduction . 106
16.5.1 DMA Mode . 107
16.5.2 NDMA Mode . 108
16.5.3 RTS and CTS . 109

16.6 Chip Differences . 113
16.6.1 UART_RXDONE interrupt . 113
16.6.2 UART_RX_ERR interrupt . 113

17 SPI . 115
17.1 Introduction . 115

17.1.1 Standard SPI interface . 115
17.1.2 SPI communication process . 115
17.1.3 Diversified SPI interface . 116

17.2 Function description . 117
17.2.1 Interface description . 117
17.2.2 HSPI and PSPI . 118

17.2.2.1 Master . 118
17.2.2.2 Slave . 121
17.2.2.3 Clock settings . 123
17.2.2.4 Interrupt . 124
17.2.2.5 DMA mode . 125
17.2.2.6 3Line . 126
17.2.2.7 Multi-SPI Slave architecture . 126
17.2.2.8 XIP mode . 126

17.2.3 SPI Slave . 127

AN-21010600-E5 7 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

17.2.3.1 Communication data frame format . 127
17.2.3.2 Operation commands supported by SPI Slave 128

17.3 Demo description . 129
17.3.1 Demo structure description . 129
17.3.2 Hardware connection . 130
17.3.3 Initial configuration of HSPI/PSPI Master/Slave . 131
17.3.4 HSPI/PSPI Master read/write operations . 131

17.3.4.1 Test example . 132
17.3.5 SPI_XIP_MODE mode . 133

17.3.5.1 Communication format . 133
17.3.5.2 Configure XIP mode . 133
17.3.5.3 Test example . 134

18 PM . 135
18.1 Function description . 135

18.1.1 Suspend . 135
18.1.2 Deep . 136
18.1.3 Deep retention . 136
18.1.4 Low power mode workflow . 136

18.2 Driver description . 139
18.2.1 Reserved information BUF . 139
18.2.2 Status information . 139
18.2.3 Suspend power setting . 140
18.2.4 LPC wake-up . 140
18.2.5 USB wake-up . 140

18.3 Demo description . 140
18.3.1 Process description . 140

18.4 Chip difference . 142
18.4.1 Sleep current value . 142

19 LPC . 143
19.1 Introduction . 143
19.2 Working principle . 143
19.3 Demo description . 143

20 MDEC . 145
20.1 Test environment setup . 145
20.2 Function description . 147

21 RF . 148
21.1 Initialization . 148
21.2 Energy setting . 148
21.3 Frequency setting . 149
21.4 Interrupt . 151
21.5 Packet format . 152

21.5.1 BLE packet format . 152
21.5.1.1 BLE packet sending format . 152
21.5.1.2 BLE packet receiving format . 153
21.5.1.3 BLE packet receiving data parsing . 154
21.5.1.4 Packet parsing example . 155

21.5.2 Zigbee/hybee packet format . 155

AN-21010600-E5 8 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

21.5.2.1 Zigbee/hybee packet sending format . 155
21.5.2.2 Zigbee/hybee packet receiving format . 155
21.5.2.3 Packet data parsing . 156
21.5.2.4 Packet parsing example . 157

21.6 Private packet format . 157
21.6.1 Private TPLL packet sending format . 157
21.6.2 Private TPLL packet receiving format . 158
21.6.3 TPLL receiving packet parsing . 159
21.6.4 Example of TPLL receiving packet parsing . 160
21.6.5 Private SB packet format . 160
21.6.6 Private SB packet receiving format . 160
21.6.7 Example of SB receiving packet parsing . 162

21.7 Manual mode . 162
21.7.1 Manual TX . 162

21.7.1.1 Single-frequency sending . 162
21.7.1.2 Frequency-hopping sending . 163

21.7.2 Manual RX . 163
21.7.2.1 Single frequency receiving . 163
21.7.2.2 Frequency-hopping receiving . 164
21.7.2.3 Send-receive switching . 165

21.8 Auto mode . 165
21.8.1 STX . 165

21.8.1.1 Single-frequency sending . 166
21.8.1.2 Frequency-hopping sending . 167

21.8.2 SRX . 167
21.8.2.1 Single-frequency receiving . 169
21.8.2.2 Frequency-hopping receiving . 171
21.8.2.3 Automatic mode switching . 172

22 ISO-7816 . 173
22.1 Introduction of ISO-7816 protocol . 173
22.2 How to use ISO-7816 . 173

22.2.1 Hardware connection . 173
22.2.2 Initilization . 174
22.2.3 IC card activation and cold reset . 174
22.2.4 Warm reset . 175
22.2.5 Contact release . 176

22.3 Demo introduction . 176
23 ADC . 178

23.1 Introduction . 178
23.2 Working principle . 178

23.2.1 Internal structure . 178
23.2.2 Sampling voltage value calculation . 179

23.3 B91 ADC instructions . 180
23.3.1 Interface description . 180

23.4 Demo description . 180
23.4.1 Demo structure description . 180
23.4.2 ADC initialization configuration . 180

AN-21010600-E5 9 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

23.4.3 ADC sampling and conversion process . 181
23.4.4 Demo test example . 182

23.5 Chip difference . 183
23.5.1 Feature support differences . 183
23.5.2 Calibration configuration description . 183

24 USB introduction . 188
24.1 USB packet format and transfer process . 188

24.1.1 USB packet structure . 189
24.1.1.1 Token packets . 190
24.1.1.2 Data packets . 190
24.1.1.3 Handshake packets . 191

24.1.2 USB transfer process . 191
24.1.2.1 USB transaction . 191
24.1.2.2 Input transaction . 191
24.1.2.3 Output transaction . 192
24.1.2.4 Setup transaction . 193

24.1.3 USB transfer . 194
24.1.3.1 Control transfer . 194
24.1.3.2 Interrupt transfer . 196
24.1.3.3 Isochronous transfer . 197
24.1.3.4 Bulk transfer . 198

24.2 USB applications . 199
24.2.1 Basic concept . 199

24.3 Standard descriptor . 200
24.3.1 Device descriptor . 201
24.3.2 Configuration descriptor . 202
24.3.3 Interface descriptor . 203
24.3.4 Endpoint descriptor . 204
24.3.5 String descriptor . 204

24.4 USB enumeration . 205
24.4.1 USB enumeration sequence . 205
24.4.2 USB enumeration example . 207

24.5 USB hardware introduction . 208
24.6 USB endpoint . 208

24.6.1 Endpoint configuration . 208
24.6.2 Endpoint memory allocation . 209

24.7 Interrupt . 210
24.8 Automatic and manual modes . 211
24.9 USB software fundamental . 212
24.10USB operation flow . 212
24.11Data receiving and sending . 213

24.11.1Data receiving . 213
24.11.2Data sending . 214

24.12USB demo . 215
24.12.1USB mouse . 215

24.12.1.1 Mouse processing flow . 215

AN-21010600-E5 10 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

24.12.1.2Mouse test . 216
24.12.2USB keyboard . 216

24.12.2.1Keyboard processing process . 216
24.12.2.2Keyboard test . 217

24.12.3USB MIC . 217
24.12.3.1MIC processing flow . 217
24.12.3.2Mic demo test . 218

24.12.4USB speaker . 218
24.12.4.1Speaker handling process . 218
24.12.4.2Speaker demo test . 218

24.12.5USB CDC . 219
24.12.5.1CDC processing flow . 219
24.12.5.2CDC demo test . 220

25 CPU performance test . 221
25.1 Dhrystone . 221
25.2 CoreMark . 221
25.3 Testing . 221

26 Audio . 222
26.1 Audio introduction . 222

26.1.1 Sound basic . 222
26.1.2 Basic concepts of sampled audio . 223
26.1.3 I2S protocol . 223

26.1.3.1 I2S signals . 223
26.1.3.2 I2S data format . 224

26.2 Audio structure . 227
26.2.1 CODEC introduction . 227
26.2.2 Audio framework . 228
26.2.3 Audio I2S clock . 228

26.3 Audio driver . 229
26.3.1 DMA transfer . 229

26.3.1.1 DMA transfer mechanism . 229
26.3.1.2 DMA link transfer . 230

26.3.2 Audio buff working mechanism . 231
26.3.2.1 Rx Path . 231
26.3.2.2 Tx Path . 231

26.3.3 Audio_Demo . 232
26.4 Chip difference . 233

26.4.1 Difference between Input Path and Output Path . 233
26.4.1.1 B91 Audio Input Path . 233
26.4.1.2 B91 Audio output Path . 233

26.4.2 Audio Demo difference . 234
26.4.2.1 B91 LINEIN_TO_LINEOUT . 234
26.4.2.2 AMIC_TO_LINEOUT . 234
26.4.2.3 DMIC_TO_LINEOUT . 235
26.4.2.4 BUFFER_TO_LINEOUT . 235
26.4.2.5 EXT_CODEC_LINEIN_LINEOUT . 235
26.4.2.6 FLASH_TO_LINEOUT . 236

AN-21010600-E5 11 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

1 Driver directory structure

The Driver SDK directory structure is as follows:

Figure 1.1: Driver SDK directory

1.1 boot

Under this folder are the boot files.

Figure 1.2: boot folder

1.2 common

Under this folder are some common files that are not related to the driver. Two of the folders are described
in particular:

bt_debug: is the interface function for Bluetooth related modules to set debug GPIO.

compatibility_pack: is to be compatible with the previous driver interface of each SDK, the relevant files
added will not be used in the driver.

AN-21010600-E5 12 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 1.3: common folder

1.3 drivers

This folder is for the driver of relevant module.

1.4 link

This folder is used to store link files and is selected according to different usage needs.

Figure 1.4: link folder

AN-21010600-E5 13 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

1.5 vendor

This folder is for the demo of all modules.

AN-21010600-E5 14 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

2 Boot mechanism

2.1 Telink platform SoC

a) Chip power on or wake up from deep mode: it will move a program from flash to RAM first, and then
boot from RAM.

b) It boots directly from RAM after retention.

As you can see, the boot location here is the same, both are RAM.

2.2 Risc-V platform SoC

a) Chip power on or wake up from deep mode: Instead of moving the code from flash to RAM, it jumps
to the start address of flash (0x20000000) and starts execution. (The reason why it can be handled
in this way is that the chips of this series support taking commands directly from flash for execution.)

b) It will boot from IRAM after wake up from retention.

Note:

• There are two RAMs, one is IRAM and the other is DRAM, IRAM stores programs and data, DRAM
can only store data.

As you can see, the boot location here is different. Two segments are in the link and S files, vectors and
retention_reset segment, where the vector segment is at the flash start address and the retention segment
is at the start of IRAM, which are both the boot code section. The code section will be handled differently,
which will be explained in detail later.

AN-21010600-E5 15 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

3 S and link files

3.1 Use of combinations

According to different usage scenarios, we can choose the corresponding combination.

Usage scenario S file link file

Common boot from flash cstartup_b91_flash.S flash_boot.link

Used when testing performance (coremark and
dhrystone)

cstartup_b91_flash.S flash_boot_ramcode.link

Used to load to ram to start the program, cannot
be loadedto the flash for execution

cstartup_b91_ram.S ram_boot.link

The differences in the S files therein are as follows:

S file Description

cstartup_b91_flash.S It is the S file required to start the program from flash.

cstartup_b91_ram.S It is the S file required to start the program from ram.

The differences in link files are as follows:

link file Description

flash_boot.link Used in normal usage scenarios.

flash_boot_ramcode.link The only difference with the flash_boot.link file is that it puts all the
segments except the vector segment needed for booting into the
ramcode segment, and all the programs run in ram, which makes the
execution time fast.

ram_boot.link This file is used to load to ram to start the program, cannot be loaded to
flash for execution. This link file works with cstartup_b91_ram.S file.

3.2 Configuration method

3.2.1 Link

You can select the link file to be used by the following configuration.

AN-21010600-E5 16 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 3.1: link file configuration

3.2.2 S file

S files are selected differently by the following macro definitions.

AN-21010600-E5 17 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 3.2: Macro definitions for distinguishing S files

Macros can be defined in the following way to decide which S file to choose to use.

Figure 3.3: Selecting macro definitions for S files

3.2.3 objdump.txt

The relevant distributions of VMA and LMA can be seen in the generated objdump.txt file.

AN-21010600-E5 18 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The following figure shows an objdump.txt file generated by compiling with cstartup_b91_flash.S and
flash_boot.link file.

In this file, the VMA and LMA addresses of vectors and text are the same, and these two segments are taken
from the flash for execution.

Figure 3.4: The VMA and LAMA addresses of vectors and text

The VMA and LMA addresses of retention_reset, retention_data, and ram_code are different. The LMA
address is the flash address, and the VMA address is the IRAM address. In the S file, it will move these three
segments from the flash to the IRAM correspondingly.

AN-21010600-E5 19 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 3.5: VMA and LMA addresses of retention_reset, retention_data, and ram_code

The addresses of VMA and LMA of data segment are different, the address of LMA is in flash and the address
of VMA is in DRAM.

In the S file, the data segment will be moved from flash to DRAM correspondingly.

Figure 3.6: The VMA and LMA addresses of data segment

AN-21010600-E5 20 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

3.3 Link file details

3.3.1 Code detail

Take the flash_boot.link file as an example:

// Set the code entry to _RESET_ENTRY

ENTRY(_RESET_ENTRY)

SECTIONS

{

// Define the variable NDS_SAG_LMA_FLASH = 0x20000000

NDS_SAG_LMA_FLASH = 0x20000000 ;

//specify the current address is 0x20000000 (without AT addresses involved are VMA), the point

is to represent the current address↪

//VMA(Virtual Memory Address): is the address where the program is running.

//LMA(Load Memory Address): The load address, here can be simply understood as the address in

flash.↪

. = 0x20000000;

// Define the variable BIN_BEGIN equal to the current address

PROVIDE (BIN_BEGIN = .) .

// Define vectors segment, VMA address and LMA address are 0x2000000, so no AT commands are

added here.↪

// that is, the vectors segment is loaded and run at 0x20000000 (here 0x20000000 is the base

address of the flash, that is, vectors segment is stored in the flash 0x20000000, and also

from this address to take the commands to run)

↪

↪

//keep is equivalent to telling the compiler that this section should not be garbage collected.

The garbage collection is to remove unused sections and not output to the output file, set

with the --gc-sections option. But you can use KEEP to keep it. For example, the following

vectors section is required to be kept.

↪

↪

↪

.vectors : { KEEP(*(.vectors)) }

//Specify the current location as 0x0 (which is the starting address of IRAM)

. = 0x00000000;

//Define the retention_reset segment with VMA address 0x0

//LMA address= ALIGN(LOADADADDR (.vectors) + SIZEOF (.vectors),8)

//LOADADDR (section): Get the address of the LMA of the section.

//SIZEOF (section): Get the size of the section

//AT (addr): Define the address of the LMA of this segment.

// When VMA and LMA do not match, you need to set LMA with AT commands

.retention_reset : AT(ALIGN(LOADADDR (.vectors) + SIZEOF (.vectors),8))

{ KEEP(*(.retention_reset)) }

// some addresses of retention_reset segment of VMA, LMA need to be saved to the variable, S

file will be used.↪

PROVIDE (_RETENTION_RESET_VMA_START = ADDR(.retention_reset));

PROVIDE (_RETENTION_RESET_LMA_START = LOADADADDR(.retention_reset));

PROVIDE (_RETENTION_RESET_VMA_END = .) .

//The aes_data segment can be only in the first 64K addresses of the IRAM, so please do not

modify its location if you are not sure of the usage.↪

AN-21010600-E5 21 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

// Set current address = . Address aligned by 8

// If no value (point) is assigned to the current address, the addresses of all segments will be

listed in order.↪

. = ALIGN(8);

PROVIDE (_AES_VMA_START = .) .

.aes_data (NOLOAD) : { KEEP(*(.aes_data)) }

PROVIDE (_AES_VMA_END = .) .

. = ALIGN(8);

.retention_data : AT(ALIGN(LOADADDR (.retention_reset) + SIZEOF (.retention_reset),8))

{ KEEP(*(.retention_data)) }

PROVIDE (_RETENTION_DATA_VMA_START = ADDR(.retention_data));

PROVIDE (_RETENTION_DATA_LMA_START = LOADADADDR(.retention_data));

PROVIDE (_RETENTION_DATA_VMA_END = .) .

. = ALIGN(8);

.ram_code : AT(ALIGN(LOADADDR (.retention_data) + SIZEOF (.retention_data),8))

{ KEEP(*(.ram_code)) }

PROVIDE (_RAMCODE_VMA_END = .) .

PROVIDE (_RAMCODE_VMA_START = ADDR(.ram_code));

PROVIDE (_RAMCODE_LMA_START = LOADADADDR(.ram_code));

PROVIDE (_RAMCODE_SIZE = SIZEOF (.ram_code));

. = ALIGN(LOADADADDR (.ram_code) + SIZEOF (.ram_code), 8);

.text : AT(ALIGN(LOADADADDR (.ram_code) + SIZEOF (.ram_code), 8))

{ *(.text .stub .text.* .gnu.linkonce.t.*) KEEP(*(.text.*personality*)) *(.gnu.warning

) }↪

. rodata : AT(ALIGN(LOADADADDR (.text) + SIZEOF (.text), ALIGNOF(. rodata)))

{ *(. rodata . rodata.* .gnu.linkonce.r.*)}

//Added allocation of segments of eh_frame/eh_frame_hdr, compile error will occur if there is no

allocation when using puts function↪

.eh_frame_hdr : AT(ALIGN(LOADADADDR (. rodata) + SIZEOF (. rodata),

ALIGNOF(.eh_frame_hdr)))↪

{ *(.eh_frame_hdr) }

. = ALIGN(0x20);

.eh_frame : AT(ALIGN(LOADADDR (.eh_frame_hdr) + SIZEOF (.eh_frame_hdr), 32))

{ KEEP(*(.eh_frame)) }

//allocate memory space for the command compression table.exec.itable

.exec.itable : AT(ALIGN(LOADADDR (.eh_frame) + SIZEOF (.eh_frame), ALIGNOF(.exec.itable)))

{ KEEP(*(.exec.itable)) }

. = 0x00080000;

PROVIDE(__global_pointer$ = . + (4K / 2));

// ALIGNOF(.data): return the alignment requirement of the VMA of data.

// If the section has been allocated, it will return the aligned byte named “section”. The

linker will report an error if the section has not been allocated yet.↪

.data : AT(ALIGN(LOADADADDR (.exec.itable) + SIZEOF (.exec.itable), ALIGNOF(.data)))

{ *(.data .data.* .gnu.linkonce.d.*) KEEP(*(.gnu.linkonce.d.*personality*))

SORT(CONSTRUCTORS)↪

AN-21010600-E5 22 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

*(.srodata.cst16) *(.srodata.cst8) *(.srodata.cst4) *(.srodata.cst2) *(.

srodata . srodata.*) *(. sdata . sdata.* .gnu.linkonce.s.*) *(.sdata2 .sdata2.*

.gnu.linkonce.s.*)

↪

↪

}

PROVIDE (_DATA_VMA_END = .) .

PROVIDE (_DATA_VMA_START = ADDR(.data));

PROVIDE (_DATA_LMA_START = LOADADDR(.data));

//BIN_SIZE = LMA address of data segment + size of data segment - BIN_BEGIN.

//The bin file is actually the LMA of all the segments stitched together and generally arranged

in order (the values in the AT commands are set according to this rule)↪

PROVIDE (BIN_SIZE = LOADADDR(.data) + SIZEOF(.data) - BIN_BEGIN);

//Each output section can have a type, and the type is a keyword enclosed in parentheses.

// NOLOAD, section is marked as a non-loadable type and will not be loaded into memory when the

program runs.↪

//The bss segment does not need to be loaded, the S file will zero out the VMA address space of

the bss segment.↪

. = ALIGN(8);

PROVIDE (_BSS_VMA_START = .) .

. sbss (NOLOAD) : { *(. dynsbss) *(. sbss . sbss.* .gnu.linkonce.sb.*) *(. scommon .

scommon.*) }↪

. bss (NOLOAD) : { *(. dynbss) *(. bss . bss.* .gnu.linkonce.b.*) *(COMMON) . =

ALIGN(8); }↪

PROVIDE (_BSS_VMA_END = .) .

. = ALIGN(8);

//_end is the starting address of the heap, the heap is growing upwards, and generally we set it

in the space not used after bss↪

// functions like sprintf/malloc/free are called, these functions will call the _sbrk function

to allocate heap memory, and _sbrk will determine where to start allocating heap space via

the _end symbol (usually the end of the .bss segment), otherwise a link error will occur.

↪

↪

_end = .

PROVIDE (end = .) .

//Define the start address of the stack, here the end location of DRAM is defined.

PROVIDE (_STACK_TOP = 0x00a0000);

PROVIDE (FLASH_SIZE = 0x0100000);

}

ASSERT((BIN_SIZE)<= FLASH_SIZE, "BIN FILE OVERFLOW");

3.3.2 Alignment

The link file involves some alignment rules. If it involves multiple segments moved together, you need to
pay attention to the alignment of these segments. When the starting address of LMA and VMA are not
consistent, multiple segments moving together is likely to encounter move error.

The following is an example of an error:

AN-21010600-E5 23 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The code in the S file is trying to move the sdata and data segments from the LMA to the VMA. The starting
address of the VMA is 0x00080000 and the starting address of the LMA is related to the previous code and
is aligned according to the alignment rules of the VMA for sdata.

Figure 3.7: Example of error in link file alignment rules

The following figure shows an error-prone lst file compiled with the above link file.

Figure 3.8: The lst file with error

There are several methods of modification:

(1) Move one segment at a time so that you don’t have the problems above.

(2) Merge sdata, data segments.

AN-21010600-E5 24 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

3.4 S file details

Take the cstartup_b91_flash.S file as an example.

3.4.1 Code detail

// Define the vector segment, the code starting after this sentence belongs to the vectors

segment, until the next segment name encountered, or the end of the file↪

// where "ax" means the section is assignable and executable

//`a' section is allocable `x' section is executable

.section .vectors, "ax"

.option push //push saves the current .option configuration

.option norelax //set to norelax

.org 0x0 //The pseudo command .org is telling the compiler the offset address of the

next command. Set the offset address to 0.↪

//The .global pseudo-command is used to define a global symbol that allows the linker to

recognize it globally, that is a symbol defined in a program file can be visible to all

other program files.

↪

↪

.global _RESET_ENTRY

// The .type pseudo-command is used to define the type of the symbol. The following is the

definition of _RESET_ENTRY as a function↪

.type _RESET_ENTRY,@function

// The .align pseudo-command is used to push the current PC address to a location aligned to

"the integer power of 2 bytes". The following is to push the current PC address to 4 bytes

aligned.

↪

↪

.align 2

//The label _RESET_ENTRY is the entry address of the program.

_RESET_ENTRY:

//The entry address of the program must be an executable command, here is a jump command to the

label _START↪

j _START

// Set the offset address to 0x18 to store BIN_SIZE (4 bytes), BIN_SIZE is defined in the link

file.↪

.org 0x18

.word (BIN_SIZE)

// Set the offset address to 0x20 to store the keyword, this location must be this value,

otherwise the program will not run.↪

.org 0x20

.word ('T'<<24 | 'L'<<16 | 'N'<<8 | 'K')

// Set the offset address to 0x26 to store the flash configuration, later the flash fetching

command will decide which protocol to go according to this configuration.↪

//The following 6 are supported and can be selected according to flash model.

.org 0x26

//.short (0x0003) //READ: cmd:1x, addr:1x, data:1x, dummy:0

//.short (0x070B) //FREAD: cmd:1x, addr:1x, data:1x, dummy:8

AN-21010600-E5 25 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

.short (0x173B) //DREAD: cmd:1x, addr:1x, data:2x, dummy:8

//.short (0x53BB) //X2READ: cmd:1x, addr:2x, data:2x, dummy:4

//.short (0x276B) //QREAD: cmd:1x, addr:1x, data:4x, dummy:8

//.short (0x65EB) //X4READ: cmd:1x, addr:4x, data:4x, dummy:6

// Use pop to restore .option configuration

.option pop

//4 byte alignment

.align 2

_START:

//This is for debug use, it will output PB4 high. It is generally used to check the status, the

default is off.↪

#if 0

lui t0,0x80140 //0x8014030a

li t1, 0xef

li t2, 0x10

sb t1 , 0x30a(t0) //0x8014030a PB oen = 0xef

sb t2 , 0x30b(t0) //0x8014030b PB output = 0x10

#endif

//initialize the global pointer gp register, __global_pointer$ is defined in the link file.

.option push

.option norelax

la gp, __global_pointer$

.option pop

//initialize stack pointer sp register, _STACK_TOP is defined in the link file.

la t0, _STACK_TOP

mv sp, t0

#ifdef __nds_execit

// Set the command compression table and address

la t0, _ITB_BASE_

csrw uitb , t0

#endif

// Set FS to 0b11, clear fscsr (is the processing that needs to be done before floating point

operations)↪

#ifdef __riscv_flen

/* Enable FPU */

li t0, 0x00006000

csrrs t0, mstatus , t0

/* Initialize FCSR */

fscsr zero

#endif

// Set the interrupt entry base address

la t0, __vectors

csrw mtvec, t0

// enable interrupt vector mode (need to enable two places, no modification here)

AN-21010600-E5 26 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

/* Enable vectored external plic interrupt */

csrsi mmisc_ctl, 2

/*vector mode enable bit (VECTORED) of the Feature Enable Register */

lui t0, 0xe4000

li t1, 0x02

sw t1, 0x0(t0) //(*(volatile unsigned long*)(0xe4000000))= 0x02

// Enable I/D-Cache

csrr t0, mcache_ctl

ori t0, t0, 1 #/I-Cache

ori t0, t0, 2 #/D-Cache

csrw mcache_ctl, t0

fence.i

//Move the retention_reset segment from flash to ram

_RETENTION_RESET_INIT:

la t1, _RETENTION_RESET_LMA_START

la t2, _RETENTION_RESET_VMA_START

la t3, _RETENTION_RESET_VMA_END

_RETENTION_RESET_BEGIN:

bleu t3, t2, _RETENTION_DATA_INIT

lw t0, 0(t1)

sw t0, 0(t2)

addi t1, t1, 4

addi t2, t2, 4

j _RETENTION_RESET_BEGIN

//Move the retention_data segment from flash to ram

_RETENTION_DATA_INIT:

la t1, _RETENTION_DATA_LMA_START

la t2, _RETENTION_DATA_VMA_START

la t3, _RETENTION_DATA_VMA_END

_RETENTION_DATA_INIT_BEGIN:

bleu t3, t2, _RAMCODE_INIT

lw t0, 0(t1)

sw t0, 0(t2)

addi t1, t1, 4

addi t2, t2, 4

j _RETENTION_DATA_INIT_BEGIN

//Move ram_code segment from flash to ram

_RAMCODE_INIT:

la t1, _RAMCODE_LMA_START

la t2, _RAMCODE_VMA_START

la t3, _RAMCODE_VMA_END

_RAMCODE_INIT_BEGIN:

bleu t3, t2, _DATA_INIT

lw t0, 0(t1)

AN-21010600-E5 27 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

sw t0, 0(t2)

addi t1, t1, 4

addi t2, t2, 4

j _RAMCODE_INIT_BEGIN

//Move data segments from flash to ram

_DATA_INIT:

la t1, _DATA_LMA_START

la t2, _DATA_VMA_START

la t3, _DATA_VMA_END

_DATA_INIT_BEGIN:

bleu t3, t2, _ZERO_BSS

lw t0, 0(t1)

sw t0, 0(t2)

addi t1, t1, 4

addi t2, t2, 4

j _DATA_INIT_BEGIN

//clear the bss segment to zero

_ZERO_BSS:

lui t0, 0

la t2, _BSS_VMA_START

la t3, _BSS_VMA_END

_ZERO_BSS_BEGIN:

bleu t3, t2, _ZERO_AES

sw t0, 0(t2)

addi t2, t2, 4

j _ZERO_BSS_BEGIN

// Clear the AES segment to zero

_ZERO_AES:

lui t0, 0

la t2, _AES_VMA_START

la t3, _AES_VMA_END

_ZERO_AES_BEGIN:

bleu t3, t2, _FILL_STK

sw t0, 0(t2)

addi t2, t2, 4

j _ZERO_AES_BEGIN

//The stack area are initialized to 0x55, the default code is not open, because the ram is

relatively large and will be more time-consuming. If the debug needs, it can be opened to

use.

↪

↪

_FILL_STK:

#if 0

lui t0, 0x55555

addi t0, t0, 0x555

la t2, _BSS_VMA_END

la t3, _STACK_TOP

_FILL_STK_BEGIN:

AN-21010600-E5 28 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

bleu t3, t2, _MAIN_FUNC

sw t0, 0(t2)

addi t2, t2, 4

j _FILL_STK_BEGIN

#endif

//jump to the main function

_MAIN_FUNC:

nop

//Use j or jal can only jump to [-524288,524287], beyond this range we can only use jalr to

achieve, in order to avoid such problems, we uniformly use jalr to jump.↪

la t0, main

jalr t0

nop

nop

nop

nop

nop

_END:

j _END

//Define a macro with the name INTERRUPT, the parameter is num, and the macro ends at .endm

.macro INTERRUPT num

//Weak definition

.weak entry_irq\num

.set entry_irq\num, default_irq_entry

.long entry_irq\num

.endm

//There are a total of 64 interrupt sources

#define VECTOR_NUMINTRS 63

.section .ram_code, "ax"

//Define ram_code segment, all interrupt entry address should be in ram_code, so as to enter

interrupt quickly.↪

.global __vectors

// There are 64 interrupt sources, and the formula for the alignment that needs to be set here

is: 2ceiling(log2(N))+2, and N is 64, so the it should be set to 256 alignment here.↪

.balign 256

__vectors:

.long trap_entry

//Actually here is a for loop that defines the 63 interrupt entry addresses in addition to the

trap interrupt.↪

//after expansion is:

//.weak entry_irq1

//.set entry_irq1, default_irq_entry

//.long entry_irq1

AN-21010600-E5 29 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

//.........

//.weak entry_irq63

//.set entry_irq63, default_irq_entry

//.long entry_irq63

//We use vector mode, after an interrupt occurs, the pc will point to address __vectors

+4*interrupt ID, if the interrupt ID is 2, it will jump to entry_irq2↪

.altmacro

.set irqno, 1

.rept VECTOR_NUMINTRS/* .rept .endr */

INTERRUPT %irqno

.set irqno, irqno+1

.endr

3.4.2 Differences between vectors and retention_reset segments

The retention_reset is the startup code that will run when comes back from retention.

The current retention_reset processing is not to move these segments (retention_reset, retention_data,
ram_code) from flash to ram, because these segments are retained during the retention phase and will not
be lost. The condition for this processing is that the size of the retention ram is larger than these segments,
and if there is more than that, then the move action needs to be done.

The retention_reset boot part requires more processing than the vectors, include: flash wake-up, multi-
address register recovery. which is a must-do processing coming from the retention.

3.4.3 Others

3.4.3.1 Notes on the use of .org

In the current compilation environment, .org and Link Time Optimization (-flto) in the optimization option
cannot be used at the same time. However, (-flto) is definitely selected in order to compile a small bin file,
so if you want to use .org in the S file, you need to use it as follows:

AN-21010600-E5 30 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 3.9: The Link TimeOptimization (-flto) in optimization options

.option push //push saves the current .option configuration

.option norelax // set to norelax

.org 0x0 //set .org

.........

.option pop // Use pop to restore the .option configuration

The description of .option is as follows:

The .option pseudo-command is used to set certain architecture-specific options that enable the assembler
to recognize the option and act according to the definition of the option.

The push, pop are used to temporarily save or restore the options specified by the .option pseudo-
command:

The “.option push” pseudo-command temporarily saves the current option settings, allowing new options
to be specified later using the .option pseudo-command, while the “.option pop” pseudo-command restores
the most recently saved option settings to take effect again.

The combination of “.option push” and “.option pop” makes it possible to set different options specifically
for a section of code embedded in an assembly program without affecting the global option settings.

3.4.3.2 Compression command

The RISC-V’s C Extension, which refers to replacing 32bit commands with 16bit commands, and Andes’
CoDense (Code Dense) technology puts 32bit commands inside the command table and replaces them with
16 EXEC.IT 0xxxxx where the original 32bit commands appear.

AN-21010600-E5 31 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The macro _nds_execit is set to be on by compiler default, while _ITB_BASE will be set to the first address
of .exec.itable.

Set ITB_BASE to register uitb in the S file as the base address of the command table. The compression
instructions are put into the .exec.itable segment.

3.4.3.3 FPU enable

The macro __riscv_flen is set to be on by compiler default.

Before executing a floating-point command, the mstatus<14:13> FS segment needs to be changed to a
non-zero value, otherwise a command exception will occur. So the S file sets FS to 0b11 and initializes the
floating-point control status register FCSR to 0.

AN-21010600-E5 32 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

4 Debug Demo

The driver does not redefine the printf interface, it directly uses the printf interface that comes with
toolchain. However, we redirect it, the driver implements two kinds of redirection, one is to redirect the
data to GPIO (through GPIO to simulate serial timing), the other one is to redirect to USB. You can choose
either one for debug info output.

You can choose whether to use GPIO or USB printing in printf.h.

#define DEBUG_IO 0

#define DEBUG_USB 1

#define DEBUG_BUS DEBUG_IO

4.1 Simulate serial output via GPIO port

GPIO port related configuration is configured in printf.h, including baud rate, and others (only RX and GND
need to be connected). The hardware connections are as follows:

Figure 4.1: The hardware connection of GPIO port

The following figure shows the printout received by the serial assistant tool:

AN-21010600-E5 33 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 4.2: Printout received by the serial assistant tool

4.2 USB printout

Configuring USB printf, you need to use the BDT tool to view the output information. The point to note when
using USB printf is that the USB uses a fixed 48M clock, in the clock initialization it is configured by default.
However, if the PLL clock used cannot be divided to get 48M, then the USB may not work properly.

When using USB printf, you can configure blocking and non-blocking modes, which can be selected through
the relevant macro definitions in printf. The default is non-blocking as follows:

#define BLOCK_MODE 0

The following is the BDT configuring usb_log method and experimental phenomena:

AN-21010600-E5 34 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 4.3: BDT configuring usb_log method

Figure 4.4: Experimental phenomena

AN-21010600-E5 35 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

5 Interrupt

The PLIC (Platform-Level Interrupt Controller) is compatible with RISC-V PLIC and has two major functions:
interrupt vector and interrupt priority.

5.1 Interrupt overview

In the interrupt mechanism, the processor is suddenly interrupted by another request during the sequen-
tial execution of the program command stream and aborts the execution of the current program to deal
with something else. After it has finished processing something else, it then reverts to the point where
the program was interrupted to continue executing the previous program command stream. The “other
request” is called an interrupt request, and the other “request source” is called the interrupt source, which
usually comes from a peripheral device. The processor turns to perform “something else”, which is called
an interrupt processing program.

5.2 Interrupt type

The RISV-V architecture has three modes of operation: Machine Mode, User Mode and Supervisor Mode.
We are using Machine Mode, and there are three types of interrupts in Machine Mode: Software Interrupt,
Timer Interrupt, and External Interrupt. The external interrupt refers to CPU external interrupts, such as
from UART, GPIO, and so on; the timer interrupt refers to interrupts from timers; the software interrupt is
an interrupt triggered by the software itself.

Note:

• There are two modes of interrupt, vector and regular mode, and the driver defaults to vector
mode.

5.3 External interrupt

5.3.1 Interrupt enable

For the use of the driver interrupt interface, if you want to open the interrupt, it has the following three
levels:

The first layer

core_enable_interrupt()

It enables the corresponding BIT in the CSR register of the RISC-V core, which is the general interrupt
switch.

Second layer

plic_interrupt_enable()

AN-21010600-E5 36 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

It enables the BIT of the corresponding module in the plic module, which is the module interrupt control
switch.

Third layer

rf_set_irq_mask(FLD_ZB_RX_IRQ)

It enables the mask of the corresponding module, take the rf module as an example, set which one you
need to use.

5.3.2 External interrupt handler function in vector mode

The corresponding interrupt handler functions have been defined in the plic driver and correspond to the
following:

Interrup vectors Interrupt handler functions

IRQ0_EXCEPTION except_handler

IRQ1_SYSTIMER stimer_irq_handler

IRQ2_ALG analog_irq_handler

IRQ3_TIMER1 timer1_irq_handler

IRQ4_TIMER0 timer0_irq_handler

IRQ5_DMA dma_irq_handler

IRQ6_BMC bmc_irq_handler

IRQ7_USB_CTRL_EP_SETUP usb_ctrl_ep_setup_irq_handler

IRQ8_USB_CTRL_EP_DATA usb_ctrl_ep_data_irq_handler

IRQ9_USB_CTRL_EP_STATUS usb_ctrl_ep_status_irq_handler

IRQ10_USB_CTRL_EP_SETINF usb_ctrl_ep_setinf_irq_handler

IRQ11_USB_ENDPOINT usb_endpoint_irq_handler

IRQ12_ZB_DM rf_dm_irq_handler

IRQ13_ZB_BLE rf_ble_irq_handler

IRQ14_ZB_BT rf_bt_irq_handler

IRQ15_ZB_RT rf_irq_handler

IRQ16_PWM pwm_irq_handler

IRQ17_PKE pke_irq_handler

IRQ18_UART1 uart1_irq_handler

IRQ19_UART0 uart0_irq_handler

AN-21010600-E5 37 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Interrup vectors Interrupt handler functions

IRQ20_DFIFO audio_irq_handler

IRQ21_I2C i2c_irq_handler

IRQ22_SPI_AHB hspi_irq_handler

IRQ23_SPI_APB pspi_irq_handler

IRQ24_USB_PWDN usb_pwdn_irq_handler

IRQ25_GPIO gpio_irq_handler

IRQ26_GPIO2RISC0 gpio_risc0_irq_handler

IRQ27_GPIO2RISC1 gpio_risc1_irq_handler

IRQ28_SOFT soft_irq_handler

IRQ29_NPE_BUS0 npe_bus0_irq_handler

IRQ30_NPE_BUS1 npe_bus1_irq_handler

IRQ31_NPE_BUS2 npe_bus2_irq_handler

IRQ32_NPE_BUS3 npe_bus3_irq_handler

IRQ33_NPE_BUS4 npe_bus4_irq_handler

IRQ35_USB_RESET usb_reset_irq_handler

IRQ36_NPE_BUS7 npe_bus7_irq_handler

IRQ37_NPE_BUS8 npe_bus8_irq_handler

IRQ42_NPE_BUS13 npe_bus13_irq_handler

IRQ43_NPE_BUS14 npe_bus14_irq_handler

IRQ44_NPE_BUS15 npe_bus15_irq_handler

IRQ46_NPE_BUS17 npe_bus17_irq_handler

IRQ50_NPE_BUS21 npe_bus21_irq_handler

IRQ51_NPE_BUS22 npe_bus22_irq_handler

IRQ52_NPE_BUS23 npe_bus23_irq_handler

IRQ53_NPE_BUS24 npe_bus24_irq_handler

IRQ54_NPE_BUS25 npe_bus25_irq_handler

IRQ55_NPE_BUS26 npe_bus26_irq_handler

IRQ56_NPE_BUS27 npe_bus27_irq_handler

IRQ57_NPE_BUS28 npe_bus28_irq_handler

AN-21010600-E5 38 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Interrup vectors Interrupt handler functions

IRQ58_NPE_BUS29 npe_bus29_irq_handler

IRQ59_NPE_BUS30 npe_bus30_irq_handler

IRQ60_NPE_BUS31 npe_bus31_irq_handler

IRQ61_NPE_COMB npe_comb_irq_handler

IRQ62_PM_TM pm_irq_handler

IRQ63_EOC eoc_irq_handler

__attribute__((section(".ram_code"))) void default_irq_handler(void)

{

}

void stimer_irq_handler(void) __attribute__((weak, alias("default_irq_handler")));

By default, all interrupt handler functions are weakly defined as default_irq_handler, an empty function.

Weak function

In theory, a project is not allowed to have two functions with the same name. Here it is OK to use _weak to
specify that one of them is a weak function.

When the program is compiled, if two functions with the same name are found and one of them is a weak
function, the weak function will be ignored and the normal function will be used for compilation; if only one
weak function is found, then the weak function will still be used to participate in the compilation.

When the upper layer uses it, just define another function which is the same, without specifying the weak
function, and then add some user code to the function.

Interrupt site save and resume

No interrupt save and resume are found in the interrupt processing, but the function is normal for the
following reasons:

attribute ((interrupt (“machine”), aligned(4)));

There are interrupt declarations in attribute, and the compiler sees that it will insert code that modifies the
protection registers.

5.3.3 Priority in external interrupt

When multiple interrupt sources initiate requests to the processor at the same time, the concept of interrupt
priority exists when these interrupt sources need to be arbitrated and which interrupt sources are prioritized.
When interrupt priority is not enabled, a new interrupt will not interrupt the interrupt being processed and
will wait until the interrupt service function is completed before a new interrupt request can be responded
accordingly. The default interrupt preemption function is not turned on, and if you need to use the interrupt
preemption function, you need the following three steps:

AN-21010600-E5 39 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

a) Set plic_set_threshold(). Only interrupts with priority> threshold can be generated, threshold defaults
to 0 and priority defaults to 1.

b) plic_preempt_feature_en(); //enable interrupt preemption function

c) plic_set_priority(); //set the interrupt priority

Note:

• The SoC has 4 interrupt priority 0-3. The interrupt source with no setting of interrupt priority,
the default priority is 1, the larger the number the higher the priority. Setting to 0 priority will not
generate interrupts (threshold default 0, do not meet the condition: priority> threshold). The high
priority interrupt source can interrupt the interrupt source with lower priority, can not interrupt
the interrupt with the same level priority.

There are 3 interrupts configured in the demo, stimer interrupt, timer0 interrupt and rf_tx interrupt.

a) Enable interrupt

core_interrupt_enable();

b) Enable interrupt preemption, set priority, default threshold is 0

plic_preempt_feature_en(); //enable interrupt preemption

plic_set_priority(IRQ1_SYSTIMER,IRQ_PRI_LEV3); //set the stimer priority

plic_set_priority(IRQ4_TIMER0, IRQ_PRI_LEV2); //set timer0 priority

plic_set_priority(IRQ15_ZB_RT, IRQ_PRI_LEV1); //set rf priority

Before and after the delay of the interrupt handler function, the observation IO is set to pull up before the
delay and pull down after the delay. In the demo, the stimer is delayed for 250us, the timer0 is delayed for
600us, and the rf_tx is delayed for 800us.

_attribute_ram_code_sec_noinline_ void irq_handler(void)

{ ...

gpio_set_high_level(LED3);

delay_us();

gpio_set_low_level(LED3);

}

5.3.4 Results observation

In the following figure, the interrupt nesting is enabled, rf_tx is interrupted by the high priority timer0, and
so forth, Time0 interrupt handler function is interrupted by the higher priority stimer.

AN-21010600-E5 40 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 5.1: Interrupt nesting is enabled

In the figure below, the interrupt nesting is not enabled, and the default priority of all three interrupt sources
is 1. After the previous interrupt handler function is executed, the next interrupt handler function is pro-
cessed without interrupts.

Figure 5.2: Interrupt nesting not enabled

AN-21010600-E5 41 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

6 GPIO

The SoC’s GPIO driver implements the configuration of GPIO inputs and outputs, pull-ups and pull-downs,
interrupts, and other functions.

6.1 Interrupt

GPIO can be configured to generate interrupts. The interrupt hardware structure is shown in the figure
below. Each GPIO can be configured to generate three types of interrupts, GPIO_IRQ, GPIO2RISC0_IRQ,
and GPIO2RISC1_IRQ. GPIO_IRQ is the most basic GPIO interrupt, GPIO2RISC0_IRQ and GPIO2RISC1_IRQ
can generate count or control signals in Timer (timer peripheral) applications, in addition to the GPIO_IRQ
functions.

Figure 6.1: Interrupt hardware architecture

6.1.1 Mechanism description

As shown in the figure below, the GPIO is set to trigger at rising edge. The mechanism of MCU is that the
level signal of GPIO is used as the signal to generate interrupt and trigger the interrupt at rising edge.

AN-21010600-E5 42 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 6.2: GPIO set to trigger at rising edge

As shown in the figure below, the GPIO is set to trigger at falling edge. The mechanism of MCU is to invert
the level signal of GPIO and then use the inverted signal as the signal for interrupt generation, and trigger
the interrupt at rising edge.

Figure 6.3: GPIO set to falling edge trigger

As shown in the figure below, if two GPIOs are set as one kind of interrupt, trigger at rising edge, the
mechanism of MCU is that the level signal of two GPIOs will be or operation, and then use the obtained
signal as the condition to generate interrupt, trigger the interrupt at rising edge. In this figure, only GPIO0
triggers the interrupt.

Figure 6.4: Two GPIOs set to one interrupt, trigger at rising edge

As shown in the figure below, if two GPIOs are set as one kind of interrupt, trigger at falling edge, the
mechanism of MCU is to invert the level signals of two GPIOs respectively, and then make or operation for
the inverted signal, and use the obtained signal as the condition to generate interrupt, which also triggers
interrupt at rising edge. That is, finally MCU uses the final signal to trigger the interrupt at rising edge. In
the figure, only GPIO0 triggers the interrupt.

AN-21010600-E5 43 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 6.5: Two GPIOs set to one interrupt, trigger at falling edge

As shown in the figure below, if GPIO0 is set to trigger at rising edge and GPIO1 is set to trigger at falling
edge, the mechanism of MCU is to invert the level signal of GPIO1, then make or operation for GPIO0 and
(!GPIO1), and use the obtained signal as the condition to generate interrupt, which also trigger interrupt at
rising edge. That is, finally MCU is using the final signal to trigger the interrupt at rising edge. In the figure,
only GPIO1 triggers the interrupt.

Figure 6.6: GPIO0 set trigger at rising edge, GPIO1 set trigger at falling edge

6.1.2 Conclusion

Two or more GPIOs set as one kind of interrupt, depending on the timing of input GPIO, triggering interrupts
is uncertain and not recommended. However, the mechanisms of different GPIO interrupts are independent

AN-21010600-E5 44 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

of each other. If one GPIO is set to one kind of interrupt, the interrupts of both GPIOs can be triggered.

For example, GPIO0 is set to GPIO_IRQ interrupt and GPIO1 is set to GPIO_IRQ_RSIC0 interrupt, both con-
figured to be triggered at rising edge. In the figure below, signals 0 and 1 are the input timing of GPIO0 and
the toggle signal set within the interrupt handler function to observe the GPIO0 interrupt, and signals 2 and
3 are the input timing of GPIO1 and the toggle signal set within the interrupt handler function to observe
the GPIO1 interrupt, respectively. In this figure, both GPIO1 and GPIO2 trigger the interrupt.

Figure 6.7: Two or more GPIOs set different interrupts

Note:

• Since there are only three GPIO interrupts, GPIO_IRQ, GPIO_IRQ_RSIC0, and GPIO_IRQ_RSIC1, up
to three GPIO interrupts can be set at the same time.

6.2 Attentions

If setting the trigger type as high or trigger at rising edge, pull-down resistor should be set; if setting the
trigger type as low or trigger at falling edge, pull-up resistor should be set.

Two other issues that do not require concern to the application layer are also briefly explained here (they
are addressed in the driver interface).

When setting trigger at falling edge, you need to clear the interrupt bit after setting the polarity of GPIO,
and then enable mask. (Otherwise, when setting GPIO to trigger at falling edge, a non-falling edge caused
interrupt trigger is generated at the moment of enabling GPIO interrupt.) This part has been handled in the
corresponding interrupt enable function of GPIO, and does not require the application layer to care.

GPIO multiplexing function switching notes:

(1) It starts with GPIO function, so you need to configure the required function MUX first, and then disable
the GPIO function at the end.

(2) It starts with IO function, and needs to change to GPIO output. First set the corresponding IO output
value and OEN set correctly, and enable GPIO function at the end.

(3) It starts with IO function, and needs to be changed to GPIO input.

Need pull up this IO:

Case 1 (digital pull-up): set output to 1 and OEN to 1;

Case 2 (analog pull-up): set pullup to 1.

AN-21010600-E5 45 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

No need to pull up:

Case 1 (digital pull-up): set output to 0 and OEN to 1;

Case 2 (analog pull-up): set pullup to 0.

Finally enable the GPIO function.

AN-21010600-E5 46 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

7 Clock

7.1 Brief description

The clock of Risc-V Platform SoC is relatively complex, the following figure shows the clock tree for some of
the clocks (the complete clock tree structure is in the datasheet). Here are a few of some important clocks,
pll_clk/cclk/hclk/pclk/mspi_clk.

pll_clk: it is PLL in the figure, which is the source of many module clock sources, many clocks including
sys_clk generally use frequency divided from PLL.

cclk: it is CPU clk, the speed of the program running is determined by this clock, and it is also the only clock
source of hclk and pclk.

hclk: hclk is used by all modules hooked to the AHB bus.

pclk: pclk is used by all modules hooked to the APB bus.

mspi_clk: mspi connects to flash and performs flash-related operations, including fetching commands,
reading and writing flash, and so on, all of which are controlled by this clock.

Figure 7.1: Clock tree

7.2 clock_init

The Driver provides the clock_init interface to configure the 5 clocks above.

Note:

• This function sets several clocks in addition to the parameters, and will also set the USB clock.
The USB clock is using fixed 48M clock.

AN-21010600-E5 47 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The maximum clocks currently supported are shown in the following table:

clk cclk hclk pclk mspi

fre_max 96M 48M 24M External flash: 48M; internal flash: 64M

7.2.1 PLL_CLK

Many clocks can be used, but if there is no special demand, 192M needs to be used uniformly.

Note:

• USB uses a fixed 48M clock, when configuring PLL_CLK, you need to pay attention to the fact that
if the clock cannot be divided to get 48M, it may cause the USB not to work normally.

• In addition, some frequencies in the Audio driver are set in accordance with192M, modifying the
PLL_CLOCK will lead to Audio errors.

7.2.2 CCLK

There are four optional clock sources for cclk, namely RC_24M, PAD_24M, PAD_PLL, and PAD_PLL_DIV,
where PAD_PLL_DIV has an optional dividing frequency ratio of 2-15.

7.2.3 HCLK

The hclk is frequency divided from cclk, and can be 1 and 2 frequency division.

7.2.4 PCLK

The pclk is frequency divided from the hclk and can be 1, 2, or 4 frequency division.

Note:

• When hclk = 1/2 cclk, pclk can not be set to 4 frequency divisions, this is related to the hardware,
which is processed in the interface. If set so, the program will stop and will not be executed for
the next.

• In addition: in the case of using REBOOT or PM, if hclk selects 2 frequency divisions, there is a
probability of causing a crash.

7.2.5 MSPI_CLK

The mspi clock has two optional clock sources, one is equal to cclk and the other is obtained by frequency
devision from the PLL_clock.

AN-21010600-E5 48 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

8 AES

It supports hardware AES128 encryption, all buffer data used in the interface are using the small endian
mode.

Note:

• This is because there is a restriction on the address where the data used in AES calculations can
be stored: it must be in the address space of base_address+64K.

• It is currently handled in the driver as follows: Define the base_address as 0xc0000000 (that is
the starting address of IRAM) in the first 64K of the IRAM range aes_data segment (which can be
seen in the link file), and the data that needs to be processed during AES calculation are put into
the aes_data segment for processing.

• If you do not change the location of the aes_data segment in the link file, you can use it directly
without concerning the above process.

• If it does not meet the demand, you can also adjust it by yourself according to the demand. The
driver provides aes_set_em_base_addr interface to modify the base_address.

• In addition, this address is shared with BT, and modifying it also requires ensuring that the data
used by BT is also in this address space.

AN-21010600-E5 49 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

9 EMI

EMI samples are used with “EMI_Tool” and “Non_Signaling_Test_Tool” tools. This document mainly intro-
duces related functions and considerations in the EMI test samples.

9.1 Protocol

Please refer to the Telink SoC EMI Test User Guide for the communication protocol.

9.2 Program description

EMI testing in Eagle supports carrieronly mode, continue mode, burst mode, and packet-receiving mode.

The supported wireless communication methods include Ble1M, Ble2M, Ble125K, Ble500K, and Zig-
bee250K.

9.2.1 CarrierOnly mode

Function: The CarrierOnly mode is used to generate a single-pass signal. In this mode, you can set the
channel, power value and the communication mode (rf mode) for the single-pass signal.

Example:

Test tool: select EMI_Tool

Wireless communication mode setting: Ble1M/Ble2M/Ble125K/Ble500K/Zigbee250K

Power setting: XXdB

Channel setting: 2402~2480MHz

AN-21010600-E5 50 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 9.1: CarrierOnly mode

9.2.2 Continue mode

Function: The continue mode is used to generate a continuous signal, in which the channel, power value
as well as the communication mode (rf mode) can be set.

The continue mode sending packet (Payload) data includes Prbs9, 0x0f, and 0x55, and can set frequency
hop.

Example:

Test tool: select EMI_Tool

Wireless communication mode setting: Ble1M/Ble2M/Ble125K/Ble500K/Zigbee250K

Power setting: XXdB

Channel setting: 2402~2480MHz

Note:

AN-21010600-E5 51 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• Currently EMI_Tool only supports sending prbs9 packets in continue mode.

Figure 9.2: Continue mode

9.2.3 Burst mode

Function: The burst mode allows you to set the channel, power value and the communication mode (rf
mode) for the Burst signal.

The burst mode sending packet (Payload) data includes Prbs9, 0x0f, and 0x55.

Example:

Test tool: select Non_Signaling_Test_Tool

Wireless communication mode setting: Ble1M/Ble2M/Ble125K/Ble500K/Zigbee250K

Power setting: XXdB

AN-21010600-E5 52 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Channel setting: 2402~2480MHz

Note:

• Due to the discontinuous signal in Burst mode, the Single Sweep and MaxHold settings of the
spectrum analyzer can be used to capture the signal.

The first three pictures below are the results of the Single Sweep setting, and the fourth picture is the result
of the MaxHold setting.

Figure 9.3: Burst mode 1

AN-21010600-E5 53 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 9.4: Burst mode 2

AN-21010600-E5 54 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 9.5: Burst mode 3

AN-21010600-E5 55 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 9.6: Burst mode 4

9.2.4 RX Mode

Function: In the packet-receiving mode, communication mode can be set to receive packets, specifically
with the non-signaling test tool “Non_Signaling_Test_Tool” to obtain the number of packets received and
RSSI.

Example:

Test tool: select Non_Signaling_Test_Tool

Wireless communication mode setting: Ble1M/Ble2M/Ble125K/Ble500K/Zigbee250K

Channel setting: 2402~2480MHz

AN-21010600-E5 56 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

10 Timer

This SoC supports 2 timers: Timer0 and Timer1.

The following four modes are supported: System Clock Mode, GPIO Trigger Mode, GPIO Pulse Width Mode,
and Tick Mode.

There is also a watchdog timer, configured as “watchdog” to monitor system operation and reboot if there
is an exception.

10.1 Function description

When using Timer0, Timer1 timers, you need to specify which mode to use by setting the timer_set_mode
function interface:

void timer_set_mode(timer_type_e type, timer_mode_e mode,unsigned int init_tick, unsigned int

cap_tick).↪

When using GPIO Trigger Mode and GPIO Pulse Width Mode of Timer0 and Timer1, the clock source of Timer
is provided by GPIO, which needs to be set through the following interface. You can select GPIO and polarity,
and the corresponding GPIO interrupt mask will also be set in this interface, so that the timer interrupt can
be generated normally.

void timer_gpio_init(timer_type_e type, gpio_pin_e pin, gpio_pol_e pol).

10.1.1 System Clock Mode

Clock Source Function Mechanism Description

pclk Timed interrupt generation After setting to this mode, when a rising edge of
pclk is detected, count register of the timer will add
1 until reaching the capture value, generating an
interrupt, and at the same time, initial_tick will be
automatically loaded, and recounted, and when
reaching capture value, the interrupt will be entered
again, timer enable is not turned off, so that this
operation will be cyclic all the time.

Setup steps (as the following code):

timer_set_mode(TIMER0, TIMER_MODE_SYSCLK, 0, 50*sys_clk.pclk*1000);

timer_start(TIMER0);

AN-21010600-E5 57 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

10.1.2 GPIO Trigger Mode

Clock Source Function Mechanism Description

Provided by
GPIO

Specific number of GPIO rising/falling edge
triggers interrupts.

After setting to this mode, the timer
will count plus 1 for every rising/
falling edge of GPIO. When the timer
count value reaches the specified set
number, an interrupt will be
performed, the timer will be cleared
to start counting again. The timer
enable interrupt is not turned off, so
that the operation will be cyclic all
the time.

Setup steps (as the following code):

timer_gpio_init(TIMER0, SW1,POL_RISING);

timer_set_mode(TIMER0, TIMER_MODE_GPIO_TRIGGER,0,TIMER_MODE_GPIO_TRIGGER_TICK);

timer_start(TIMER0);

10.1.3 GPIO Pulse Width Mode

Clock Source Function Mechanism Description

pclk Capture pulse width After setting to this mode, if the set GPIO detects a
rising/falling edge, it will trigger the timer timing. For
every pclk, the timer will count plus 1. When the GPIO
level invert is detected, it will enter the interrupt, the
timer count stops, at this time the current tick count
value can be read to calculate the width of the GPIO
pulse. This interrupt is triggered once, will not operate
in automatic loop.

Setup steps (as the following code):

timer_gpio_init(TIMER0, SW1, POL_FALLING);

timer_set_mode(TIMER0, TIMER_MODE_GPIO_WIDTH,0,0);

timer_start(TIMER0);

Example: If the polarity is set to POL_FALLING, the timing is triggered at the falling edge and the interrupt
is generated at the rising edge.

AN-21010600-E5 58 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

10.1.4 Tick Mode

Clock Source Function Mechanism Description

pclk Can be used as a time indicator,
this mode does not generate
interrupt.

After setting to this mode, the timer will count
plus 1 for every rising/falling edge of GPIO.
When the timer count value reaches the
specified set number, an interrupt will be
performed, the timer will be cleared to start
counting again. If the initial count value of the
timer is not set to 0 at the specified time, then
the timer will keep adding 1 until the timer
count overflows, automatically setting the
initial count value of the timer to 0 and starting
the timer again, and the timer will keep cycling
through the timer like a clock.

Setup steps (as the following code):

timer_set_mode(TIMER0, TIMER_MODE_TICK,0,0);

timer_start(TIMER0);

10.1.5 Watchdog Mode

Clock Source Function Mechanism Description

pclk Reset if you do not “feed the dog”
within the set time

After setting to this mode, the watchdog
starts timing. If the dog is not fed within
the specified time, the program will reset.
The dog feeding function is: wd_clear_cnt,
this function will clear the timing and
restart the timing. If the watchdog is not
used, you need to turn off the watchdog to
avoid the program reset.

Setup steps (as the following code):

wd_set_interval_ms(1000,sys_clk.pclk*1000);

wd_start();

AN-21010600-E5 59 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

10.2 Demo description

Choose which mode to use using the macro TIMER_MODE in Timer_Demo/app_config.h.

#define TIMER_SYS_CLOCK_MODE 1

#define TIMER_GPIO_TRIGGER_MODE 2

#define TIMER_GPIO_WIDTH_MODE 3

10.2.1 GPIO System Clock Mode

Demo setting:

Timer0, set to system clock mode, set initial_tick=0, capture value=50ms, enable timer0. Interrupt will be
reversed using LED2.

Execution result:

LED2 will be reversed every 50ms, resulting in the following:

Channel 1 (LED2): is an interrupt marker GPIO, about 50ms, reversing once.

Figure 10.1: GPIO System Clock Mode

10.2.2 GPIO Trigger Mode

Demo setting:

Timer0, set to GPIO trigger mode, initialize GPIO, configure SW1 as timer0s clock source, trigger at rising
edge, set initial_tick=0, value=0xf, enable timer0. Interconnect GPIO_PA2 and SW1 pins, GPIO_PA2 gener-
ates a rising edge every 500ms, when reaching the capture value, it enters an interrupt. The interrupt will
be reversed using GPIO_PB5.

Execution result:

For every 15 rising edges generated by GPIO_PA2, LED2 reverses once, resulting in the following:

Channel 1 (LED2): is the interrupt marker GPIO, for every 15 rising edges generated by GPIO_PA2, LED2
generates a reverse.

Channel 0 (GPIO_PA2): is the trigger signal pin GPIO_PA2.

AN-21010600-E5 60 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 10.2: GPIO Trigger Mode

The following is detailed description of the red box:

Figure 10.3: Red box 1

Figure 10.4: Red box 2

As you can see from the red box 1 and 2, after the 15th rising edge of the previous interrupt, the delay is
about 4.25us, it will enter the current interrupt, and LED2 will be reversed. And after the current LED2 lasts
for 15 rising edges, the delay is about 4.25us and it will enter the next interrupt.

10.2.3 GPIO Pulse Width Mode

Demo setting:

Timer0, set to GPIO pulse width mode, initialize GPIO, configure SW1 as trigger source for timer0, trigger
at falling edge, set initial_tick=0, capture value=0, enable timer0. Interconnect GPIO_PA2 and SW1 pins,
GPIO_PA2 generates a falling edge, trigger timer timing, delay 250ms, GPIO_PA2 generate a rising edge, it
enters an interrupt. The interrupt will be reversed using LED2.

Execution result:

When GPIO_PA2 generates a rising edge, LED2 reverses and the result is as follows:

Channel 0 (GPIO_PB4): is the waveform of trigger source GPIO_PA2.

Channel 1 (LED2): is an interrupt marker GPIO, detects that GPIO_PA2 generates a rising edge, an interrupt
occurs, and LED2 generates a reverse.

AN-21010600-E5 61 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 10.5: GPIO Pulse Width Mode

Figure 10.6: Red box description

The time delay for generating interrupts is 4.75us, and the CPU entering the interrupt needs a certain
amount of software and hardware processing time.

Reading the timing register of the timer results in the following:

Figure 10.7: Timing register

For 0x005b8e01 hexadecimal conversion to decimal, the result is 6000129, using the system clock, the
frequency is 24M, every 1/24M seconds count once, 6000129 * (1/24M) calculated to be about 250ms.

10.2.4 Tick Mode

Demo setting:

Timer0, set to tick mode, set initial_tick=0, capture value=0, enable timer0. Every 500ms, manually set
the timer timing to start from the beginning and LED2 reverses once.

Execution result:

LED2 will be reversed every 500ms, resulting in the following:

Channel 1 (LED2): is tick mode marker GPIO, which is reversed once every 500ms or so.

AN-21010600-E5 62 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 10.8: Tick Mode

10.2.5 Watchdog Mode

10.2.5.1 Dog-feeding test

Demo setting:

Set the watchdog time, reg_wt_target=1000ms. Every 990ms, feed the dog and LED2 reverses once.

Execution result:

LED2 will be reversed every 990ms, resulting in the following:

Channel 1 (LED2): is the dog-feeding test marker GPIO, which is reversed every 990ms or so.

Figure 10.9: Dog feeding test

10.2.5.2 No dog-feeding test

If the dog is not fed within the set watchdog time.

Demo setting:

delay_ms(990);

//wd_clear_cnt(); //cancel the dog feeding operation

gpio_toggle(LED2);

Execution result:

LED2 will periodically output a waveform with a low level of 991.3847ms and a high level of 10.0074ms,
resulting in the following:

Channel 1 (LED2): is no dog-feeding test marker GPIO.

AN-21010600-E5 63 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 10.10: No dog-feeding test

Figure 10.11: No dog-feeding test

Result: The time set for watchdog is 1000ms, after 990ms delay, reverse LED2, as there is no dog feeding,
LED2 high level state is maintained for 10ms, after reaching the time set for watchdog, the program resets
and keeps repeating the above operation.

AN-21010600-E5 64 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

11 Analog

The analog driver is used to read and write analog registers, supporting the function test of single Byte/
Hword/Word, data buffer, DMA channel read and write.

11.1 Attentions

When using DMA to read data from analog registers to buffer, the buffer size of the corresponding destination
address must be a multiple of 4.

The reason: Each DMA sends 4 bytes to buffer. 4 bytes will be written to the destination address even if
the configured read length is less than 4.

For example: if you define an array buffer of size 5 bytes and configure the DMA to read 5 bytes from the
analog register to buffer, the DMA actually transfers twice and 8 bytes in total to buffer, and the extra 3
bytes data will overflow from the array, and the overflowed data will overwrite other variables. At this time,
if the array size is configured to 8 bytes, the extra 3 bytes data will be stored in the array and will not be
overflowed, avoiding the potential risk.

11.2 Speed Test

Under the condition that cclk, pclk and hclk are set to 24MHz, each interface function is loaded into RAM
and the time spent on reading and writing 4 bytes and 8 bytes in each mode is tested as follows:

Mode Time of writing 4 bytes Time of reading 4 bytes

ALG_WORD_MODE 6us 12.9us

ALG_DMA_WORD_MODE 8.4us 10.2us

ALG_DMA_BUFF_MODE 8.4us 12.4us

ALG_BUFF_MODE 10us 12us

ALG_HWORD_MODE 12.8us 17.6us

ALG_DMA_ADDR_DATA_MODE 13.1us Not supported

ALG_BYTE_MODE 22.6us 26.8us

Mode Time of writing 8 bytes Time of reading 8 bytes

ALG_DMA_BUFF_MODE 11.2us 15.5us

ALG_BUFF_MODE 12.8us 16.6us

ALG_WORD_MODE 15.8us 19.3us

ALG_DMA_ADDR_DATA_MODE 18.9us Not supported

AN-21010600-E5 65 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Mode Time of writing 8 bytes Time of reading 8 bytes

ALG_DMA_WORD_MODE 23.5us 20.1us

ALG_HWORD_MODE 24.8us 32.9us

ALG_BYTE_MODE 44.1us 53.9us

AN-21010600-E5 66 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

12 Flash

The flash is a Non-Volatile memory that can retain data for a long time without current supply and has
storage characteristics equivalent to a hard disk. The flash can erase and reprogram memory cells called
blocks. The write operation of any flash device can only be performed in an empty or erased cell, so an
erase must be performed before a write operation can be performed.

12.1 Read operation

Note:

• When the read address exceeds the maximum address of flash, the value can still be read, but
the read address is calculated according to the valid address bits. (If the flash size is 1M bytes,
the maximum address is 0xfffff, that is, the lower 20 bits is the valid address bit; if the value of
0x100000 address is read, the value of 0x0 address is read.)

12.2 Write operation

Note:

• You should erase before write. The latest flash_write_page function supports cross-page writing.

AN-21010600-E5 67 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

13 BQB

This section describes how to use the BQB to test Demo.

13.1 Function description

• Supports 2-wire mode;

• Supports BLE1M, BLE2M, BLE_LR_S2/S8;

• Supports long packages (payload of 255);

• Supports manual adjustment of frequency bias values by writing flash;

• Supports manual adjustment of serial port configuration by writing flash.

13.2 Frequency bias value setting

The flash addresses of 0x7e000 (512K), 0xfe000 (1M), and 0x1fe000 (2M) are used to set the frequency
bias value, and the setting is made effective by a reset after writing the frequency bias value. If the value
is not written, (0xff) is the default frequency bias value.

13.3 Communication verification

After the serial port configuration is complete you can verify that the serial port is communicating properly
by the following method:

Open the serial port tool on the PC and send “C0 00” in hexadecimal format to Eagle development board.
If you can receive the response of “80 00” from the board, it means the communication is normal.

AN-21010600-E5 68 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14 PWM

14.1 PWM introduction

The SoC has 6 PWM channels: PWM0~PWM5.

The relevant modes supported by PWM are described as follows:

Modes supported by PWM0:

• continuous mode
• counting mode
• IR mode
• IR FIFO mode
• IR DMA FIFO mode

Modes supported by PWM1~PWM5:

• continuous mode

14.1.1 Clock

The PWM clock source is available in two ways, either pclk or 32K, as shown below:

Figure 14.1: Clock source for PWM

AN-21010600-E5 69 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

pclk:

Function: The clock can be frequency divided and then the divided clock is used as the clock source for
PWM.

Interface configuration: static inline void pwm_set_clk(unsigned char pwm_clk_div);

Where: pwm_clk_div = pclk_frequency /pwm_frequency -1; (pwm_clk_div: 0~255)

32K:

Function: The frequency division is not supported. It only supports continuous mode and counting mode.
This configuration is mainly for the purpose of sending PWM waveforms even in suspend mode.

Interface configuration: static inline void pwm_32k_chn_en(pwm_clk_32k_en_chn_e pwm_32K_en_chn);

Note:

• All channels use pclk clock source by default. If you want to use 32K clock source, call
pwm_32k_chn_en to enable the corresponding channel, the channel that is not enabled still uses
pclk clock source.

• For 32K clock source, PWM design only considered when the suspend scenario, using interrupts
in continuous mode and counting mode it will enter the interrupt a 32K clock cycle in advance, in
this 32K clock cycle, it will exit the interrupt and enter the interrupt. When using 32K PWM, if you
need interrupt, it is recommended using GPIO interrupt to achieve the interrupt.

• When using 32K clock source, if you need to update the duty cycle during operation, only calling
the function to set the duty cycle will not take effect, you should set the duty cycle and then call
the following function before it will take effect.

The specific function interface is as follows:

static inline void pwm_32k_chn_update_duty_cycle(void);

14.1.2 Duty cycle

A signal frame of PWM consists of two parts, Count status (high level time) and Remaining status (low level
time). And the specific waveform of a signal frame is as follows, where tmax is the cycle time.

Figure 14.2: Specific waveforms of the signal frame

AN-21010600-E5 70 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The functions to set the signal frame period and duty cycle in the driver both use tcmp and tmax as param-
eters.

a) Generic function interface for setting duty cycle (all channels supported):

static inline void pwm_set_tcmp(pwm_id_e id, unsigned short tcmp);

static inline void pwm_set_tmax(pwm_id_e id, unsigned short tmax);

pwm_set_tcmp:

id: select which PWM channel;

tcmp: set the high level duration.

pwm_set_tmax:

id: select which PWM channel;

tmax: set period.

Note:

• The second parameter in the pwm_set_tmax function sets the period of PWM, the parameter
type is short, the minimum value of tmax is 1 and cannot be 0. If tmax is 0, the pwm is in a
non-working state, so the value of tmax is in the range of 1~65535.

• The second parameter in the pwm_set_tcmp function sets the duty cycle of PWM, and the pa-
rameter type is short. The minimum value of tcmp can be 0, when it is 0, the waveform of pwm
is always low, and the maximum value can be tmax, when the waveform of pwm is always high,
so the value range of tcmp is: 0~tmax.

b) When using the IR FIFO Mode and IR DMA FIFO Mode of PWM0, another function interface will be
used:

static inline void pwm_set_pwm0_tcmp_and_tmax_shadow(unsigned short tmac_tick, unsigned short

cmp_tick);↪

Note:

• In the pwm_set_pwm0_tcmp_and_tmax_shadow function, the parameter tmac_tick sets the cy-
cle of pwm0, and the parameter cmp_tick sets the high level duration of pwm0. The value range
of tmac_tick: 1 ~ 65536, and the value range of cmp_tick: 0 ~ cycle_ tick.

c) When using the counting mode and IR mode of PWM0, pwm0 needs to set the number of pulses
output function, using the following function interface:

static inline void pwm_set_pwm0_pulse_num(unsigned short pulse_num);

pulse_num: the number of pulses.

d) When pwm0 writes cfg data to the fifo, the following function interface is used:

AN-21010600-E5 71 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

static inline void pwm_set_pwm0_ir_fifo_cfg_data(unsigned short pulse_num, unsigned char

use_shadow, unsigned char carrier_en);↪

use_shadow:

1: Use the period and duty cycle set under the pwm_set_pwm0_tcmp_and_tmax_shadow function.

0: Use the period and duty cycle set under pwm_set_tmax, pwm_set_tcmp function.

carrier_en:

1: Output pulse according to the settings of pulse_num and use_shadow.

0: Output low level, duration is calculated according to parameters pulse_num and use_shadow.

14.1.3 Invert/polarity

(1) The waveform set by pwm_set_tcmp and pwm_set_tmax will output high level of Count status first
and low level of Remaining status later by default.

(2) If PWM*_PIN is used, the output waveform is the same as the waveform set by pwm_set_tcmp and
pwm_set_tmax.

(3) If PWM*_N_PIN is used, the output waveform is the opposite of PWM*_PIN waveform.

(4) If the PWM* channel invert function is enabled using pwm_invert_en, it will flip the PWM*_PIN wave-
form.

(5) If the PWM* channel invert function is enabled using pwm_n_invert_en, it will flip the PWM*_N_PIN
waveform.

(6) If the polarity function of PWM* channels is enabled using pwm_set_polarity_en, all PWM_PINs will
be output according to the following rule: Count status outputs low, Remaining status outputs high.

14.2 Function description

14.2.1 Continuous mode

This mode will keep sending signal at the set duty cycle, set stop if you want to stop, and stop immediately
after setting. During sending, the duty cycle can be updated, and the duty cycle will take effect at the next
frame.

14.2.2 Counting Mode

It will stop once sending a set number of signal frames. In this mode, if stop, it will stop immediately. In
this mode, modifying the duty cycle during sending will not change the duty cycle.

AN-21010600-E5 72 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.2.3 IR Mode

It sends pulse groups continuously in IR mode, and the duty cycle can be changed in between and will take
effect on the next pulse group. If you want to stop it immediately, you can stop it directly. The difference
between IR mode and counting mode is that it sends one pulse group and then stops sending in counting
mode, while it sends pulse groups continuously in IR mode.

If you want to stop IR mode and finish the current pulse group, you can switch to counting mode.

If you want to stop immediately, you can stop directly.

Note:

• If you want to stop IR mode and finish the current pulse group, you can switch to counting mode
in the interrupt, but during the switching process, the pulse group in the current IR mode will be
sent out before switching over.

14.2.4 IR FIFO mode

The long code pattern can be sent without the MCU intervention. The IR carrier frequency is obtained by
dividing the system clock and can support common frequencies. The element “Fifo cfg data” is used as the
base unit of the IR waveform, and the hardware will parse the cfg information to send the corresponding
signal.

In the IR FIFO mode it takes out the cfg data in the FIFO in turn and sends the corresponding signal until the
fifo is empty. In this mode, you can use stop, but it only stops the execution of the current cfg data and
does not affect the execution of the cfg data after the fifo.

Note:

• In IR FIFO mode, as long as the fifo has data, it will keep sending out (auto send), no start signal
is needed, also IR DMA FIFO mode does not need start signal, but in all other modes, pwm_start
signal is needed.

• Every time the function pwm_set_pwm0_ir_fifo_cfg_data is called, the cnt of the FIFO is added
by 1 (if the FIFO is full at this time, it waits until the FIFO is not full and then writes), and the
hardware takes one out from the FIFO, the cnt in the FIFO is subtracted by 1. The depth of the
FIFO is 8 bytes. After the data is taken out from the FIFO, the send signal action is executed, and
only after the current signal is executed, the next one will be taken out from the FIFO.

14.2.5 IR DMA FIFO mode

The IR DMA FIFO mode is similar to IR FIFO mode, except that the configuration is not written directly by
the MCU in the FIFO, but is written to the FIFO via DMA.

Note:

• Inside the interrupt you need to update the DMA part of the configuration: update of the source
address, DMA triggering, and so on.

• In this mode, unlike the IR FIFO, the interrupt is not triggered when the number of cfg data in the
FIFO is empty, but only when all the configuration pwm signal frames in the fifo are executed.

AN-21010600-E5 73 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.3 Interrupts

The interrupt settings supported by PWM are described as follows (hardware does not automatically clear
the interrupt flag bit, it needs to be cleared manually by software).

Interrupts supported by PWM0:

a) FLD_PWM0_FRAME_DONE_IRQ: Each signal frame is completed and an interrupt is generated.

b) FLD_PWM0_PNUM_IRQ: An interrupt is generated after each pulse group is sent.

c) FLD_PWM0_IR_FIFO_IRQ: Enter interrupt when the cfg data inside the FIFO is less than (not including
equal to) the set value (trigger_level).

d) FLD_PWM0_IR_DMA_FIFO_IRQ: When the FIFO has finished executing the cfg data sent by DMA, it
enters the interrupt.

Interrupts supported by PWM1:

a) FLD_PWM1_FRAME_DONE_IRQ: Each signal frame is completed and an interrupt is generated.

Interrupts supported by PWM2:

a) FLD_PWM2_FRAME_DONE_IRQ: Each signal frame is completed and an interrupt is generated.

Interrupts supported by PWM3:

a) FLD_PWM3_FRAME_DONE_IRQ: Each signal frame is completed and an interrupt is generated.

Interrupts supported by PWM4:

a) FLD_PWM4_FRAME_DONE_IRQ: Each signal frame is completed and an interrupt is generated.

Interrupts supported by PWM5:

a) FLD_PWM5_FRAME_DONE_IRQ: Each signal frame is completed and an interrupt is generated.

A pulse group contains several frames and can be configured via the pwm_set_pwm0_pulse_num function
interface:

static inline void pwm_set_pwm0_pulse_num(unsigned short pulse_num).

The value of the IR FIFO mode trigger_level can be configured via the pwm_set_pwm0_ir_fifo_irq_trig_level
function interface:

static inline void pwm_set_pwm0_ir_fifo_irq_trig_level(unsigned char trig_level).

Note:

• When responding to an interrupt, there is a time delay of about 2~4 us.

AN-21010600-E5 74 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.4 Continuous mode

14.4.1 Function description

The demo implements the following functions: LED1 will continuously send signal frame (high level time of
50us, period of 100us), at the same time, every time an interrupt is generated, LED4 will be toggled once
(the GPIO is a marker signal set to do interrupt test).

14.4.2 Example results

Figure 14.3: Continuous mode test results

The above figure shows the test results captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED4): is an interrupt marker GPIO, generating an interrupt for each signal frame sent.

The red box indicates: the time delay to generate the interrupt, the CPU needs a certain amount of software
and hardware processing time to enter the interrupt.

14.4.3 Other validation results

14.4.3.1 Stop

Use the following test to verify that in continuous mode, signal will stop immediately after executing stop.

The code implementation is as follows, after the stop, toggle the state of LED3.

pwm_start(PWM_ID);

delay_ms(1);

pwm_stop(PWM_ID);

gpio_toggle(LED3);

Test results are captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the stop marker GPIO.

As can be seen from the figure, the PWM signal stops immediately after LED3 is toggled.

AN-21010600-E5 75 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 14.4: Other validation results

14.4.3.2 Duty cycle

Use the following test to verify that in continuous mode, the duty cycle can be updated during the data
sending period, and the update of the duty cycle will take effect in the next frame. The code implementation
is as follows, after modifying the duty cycle state, the state of LED3 is toggled.

pwm_start(PWM_ID);

delay_ms(1);

pwm_set_tcmp(PWM_ID,10 * CLOCK_PWM_CLOCK_1US);

gpio_toggle(LED3);

Test results are captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the duty cycle update marker GPIO.

As can be seen from the figure, after LED3 is toggled, PWM modifies the duty cycle to take effect at the
next frame.

Figure 14.5: Update duty cycle

14.5 Counting mode

Choose which interrupt method by using the macro in app_pwm_count.c

#define COUNT_FRAME_INIT 1

#define COUNT_PNUM_INIT 2

#define SET_COUNT_INIT_MODE COUNT_FRAME_INIT

AN-21010600-E5 76 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.5.1 COUNT_FRAME_INIT

14.5.1.1 Function description

The demo implements the following functions, LED1 will output a number of 16 signal frame (high level time
of 50us, period of 100us), at the same time, it generates an interrupt every signal frame sent, , LED4 will
be toggled once (the GPIO is a marker signal set to do interrupt test).

14.5.1.2 Example results

Figure 14.6: COUNT_FRAME_INIT example

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED4): is an interrupt marker GPIO, generating an interrupt for each signal frame sent.

The red box indicates: the time delay to generate the interrupt, the CPU needs a certain amount of software
and hardware processing time to enter the interrupt.

14.5.2 COUNT_PNUM_INIT

14.5.2.1 Function description

The demo implements the following functions: LED1 will output a signal frame with a number of 16 (50us
high level time, 100us period), and after sending the specified number of pulses, an interrupt will be gener-
ated and LED4 will be toggled (the GPIO is a marker signal set for interrupt testing).

14.5.2.2 Example results

Figure 14.7: COUNT_PNUM_INIT example

The details of the red boxes are as follows:

AN-21010600-E5 77 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 14.8: Details of the red boxes

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED4): is the interrupt marker GPIO, specify the number of pulses sent out, generate an inter-
rupt.

Red box description: 3us more than 50us, indicating that there is a certain time delay to enter the interrupt
and the CPU needs a certain amount of software and hardware processing time to enter the interrupt.

14.5.3 Other validation results

14.5.3.1 Stop

Use the following test to verify that in counting mode, signal will stop immediately after executing stop.

The code implementation is as follows, after the stop, toggle the state of LED3.

pwm_start(PWM_ID);

delay_ms(1);

pwm_stop(PWM_ID);

gpio_toggle(LED3);

Test results are captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the stop marker GPIO.

As can be seen from the figure, the PWM signal stops immediately after LED3 is toggled.

Figure 14.9: Other validation results

AN-21010600-E5 78 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.5.3.2 Duty cycle

Use the following test to verify that in counting mode, the duty cycle cannot be changed when changing
the duty cycle during data sending.

The code is implemented as follows, toggle the state of LED3 after modifying the duty cycle state.

pwm_start(PWM_ID);

delay_ms(1);

pwm_set_tcmp(PWM_ID,10 * CLOCK_PWM_CLOCK_1US);

gpio_toggle(LED3);

Test results are captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the duty cycle update marker GPIO.

As can be seen from the figure, the signal of PWM does not change after LED3 is toggled.

The test results are as follows:

Figure 14.10: Changing duty cycle

14.6 IR mode

14.6.1 Function description

The demo implements the following functions, LED1 will output 6 pulse groups (each pulse group, the num-
ber of pulses is 4, the high level time is 50us, the period is 100us), at the same time, after sending a pulse
group, an interrupt is generated, LED4 will be toggled once (the GPIO is a marker signal set to do interrupt
test).

14.6.2 Example results

Figure 14.11: IR mode example

AN-21010600-E5 79 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The above figure shows the test results captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is an interrupt marker GPIO, toggle once after a pulse group sent.

The red box indicates: the time delay to generate the interrupt, the CPU needs a certain amount of software
and hardware processing time to enter the interrupt.

14.6.3 Other validation results

14.6.3.1 Stop

Use the following test to verify that in counting mode, signal will stop immediately after executing stop.

The code implementation is as follows, after the stop, toggle the state of LED3.

pwm_start(PWM_ID);

delay_ms(1);

pwm_stop(PWM_ID);

gpio_toggle(LED3);

Test results captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the stop marker GPIO.

As can be seen from the figure, the PWM signal stops immediately after LED3 is toggled.

Figure 14.12: Other validation results

14.6.3.2 Duty cycle

Use the following test to verify that in counting mode, the duty cycle can be changed in the middle, but it
will take effect after the current pulse group is executed.

The code implementation is as follows:

AN-21010600-E5 80 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

pwm_start(PWM_ID);

delay_ms(1);

pwm_set_tcmp(PWM_ID,10 * CLOCK_PWM_CLOCK_1US);

gpio_toggle(LED3);

Test results are captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the duty cycle update marker GPIO.

As you can see from the figure, the signal of pwm does not change immediately after LED3 is toggled, but
takes effect after the current pulse group is executed.

Figure 14.13: Changing duty cycle

14.7 IR FIFO Mode

14.7.1 Function description

The general flow of the IR FIFO MODE demo is introduced: at the beginning, write two groups of cfg data1,
cfg data2 to the FIFO, when the cfg data inside the FIFO is less than (not including equal to) the set value
(trigger_level is 1) to enter the interrupt, in the interrupt the same two groups of cfg data1, cfg data2 are
configured.

The demo implements the following functions, LED1 is sent in two groups of pulses in sequence and contin-
uously, and the two groups of pulses are set as follows:

(1) cfg data1, high level time of 50us, period of 100us

(2) cfg data2, high level time of 100us, period of 200us

LED4 will be toggled once for each interrupt generated (this GPIO is a marker signal set to do interrupt
testing).

AN-21010600-E5 81 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.7.2 Example results

Figure 14.14: IR FIFO mode example

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED4): is the interrupt marker GPIO, when the cfg data inside the FIFO is less than (not including
equal to) the set value (trigger_level is 1), toggle once (after the execution of cfg data1, cfg data2 is taken out
from the FIFO, the value of cnt is 0, which is less than the trigger level (value is 1), it enters an interrupt).

The red box indicates: the time delay to generate the interrupt, the CPU needs a certain amount of software
and hardware processing time to enter the interrupt.

14.7.3 Other validation results

14.7.3.1 Stop

Use the following test to verify that in IR FIFO mode, after executing stop, it only stops the execution of the
current cfg data and does not affect the execution of the cfg data after the fifo.

The code implementation is as follows, after the stop, toggle the state of LED3.

delay_ms(10);

pwm_stop(PWM_ID);

gpio_toggle(LED3);

Test results are captured using a logic analyzer:

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED3): is the stop marker GPIO.

In the IR FIFO MODE function description:

cfg data1: Number of pulses is 5, high level time is 50us, period is 100us.

cfg data2: number of pulses is 6, high level time is 100us, period is 200us.

As can be seen from the figure, after executing stop, LED3 is toggled, stopping the execution of the current
cfg data1 does not affect the execution of cfg data2 behind the fifo.

AN-21010600-E5 82 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 14.15: Other validation results

14.8 DMA FIFO mode

Select the working method by using the macro in app_pwm_ir_dma.c

#define PWM_IR_FIFO_DMA 1

#define PWM_CHAIN_DMA 2

#define SET_PWM_DMA_MODE PWM_IR_FIFO_DMA

14.8.1 PWM_IR_FIFO_DMA

In IR DAM FIFO Mode, interrupts need to be constantly triggered to request DMA to send cfg data to the
FIFO.

IR DMA FIFO Mode program rough flow: in the main program through the DMA request, send three groups
of cfg data to the FIFO, respectively cfg data1, cfg data2, and cfg data3. When all the cfg data in the FIFO
are executed, enter the interrupt, in the interrupt through the DMA request, send two groups of cfg data to
the FIFO, respectively cfg data4, cfg data5.

14.8.1.1 Function description

The demo implements the following functions, with LED1 sending a three-set of pulse group at the begin-
ning:

cfg data1: the number of pulses is 5, the high level time is 50us, and the period is 100us.

cfg data2: the number of pulses is 4, the high level time is 50us, and the period is 100us.

cfg data3: the number of pulses is 6, the high level time is 100us, and the period is 200us.

Next, two sets of pulses are continuously sent in groups of two pulses:

cfg data4: the number of pulses is 4, the high level time is 50us, and the period is 100us

cfg data5: the number of pulses is 4, the high level time is 50us, and the period is 100us

At the same time, LED4 will be toggled once for each interrupt generated (this GPIO is a marker signal set
to do interrupt testing).

AN-21010600-E5 83 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

14.8.1.2 Example results

Figure 14.16: PWM_IR_FIFO_DMA example

Channel 0 (LED1): is the PWM output signal.

Channel 1 (LED4): is the interrupt marker GPIO.

As you can see from the above figure, in this mode, the interrupt is triggered only when all the cfg data of
the FIFO is executed, which is different from the interrupt mechanism of IR FIFO Mode.

The following figure is the enlarged red box in the above figure. From the figure, we can see that the last
low maintenance time of cfg data3 is 105us (not 100us as set by cfg data3), so we can see that in this
usage method, after sending the first group of DMA data, the DMA is retriggered in the interrupt, and there
is a time delay on the signal. (This example is equivalent to the actual output: cfg1+cfg2+cfg3+delay(low
level 5us or so)+cfg4+cfg5), the 5us time includes the time to enter the interrupt and reset the relevant
settings.

Figure 14.17: Zoom box of PWM_IR_FIFO_DMA example

14.8.2 PWM_CHAIN_DMA

The SoC chip’s DMA has a chain table form that can be used in conjunction with the DMA FIFO mode, the
advantage of which is that it is possible to keep sending the desired signal repeatedly without the MCU’s
intervention. In the previous IR DAM FIFO Mode example, it is necessary to continuously trigger interrupts
to request DMA to send cfg data to the FIFO, using the chain table method can also accomplish the function
of continuous sending data without interrupt participation.

In the example of pwm_chain_dma, the chain table structure is as follows:

AN-21010600-E5 84 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 14.18: PWM_CHAIN_DMA chain table structure

First create the head node head_of_list , then add nodes to the circular chain table, in the demo, two circular
chain table nodes are added, tx_dma_list[0] and tx_dma_list[1].

Note:

• The head node needs to be configured with the DMA source address, the DMA length, and the
address where the next node configuration is located. We cannot just configure the address where
the next node configuration is located.

From the flow chart, we can see that the execution of the head pointer starts first, then tx_dma_list[0],
tx_dma_list[1], then tx_dma_list[0] is executed, and so on in a loop until LLP is set to 0.

This is only to achieve two circular chain tables through DMA to achieve continuous sending. If you want
to achieve more arrays of circular sending, you can follow the above structure to add the corresponding
pointer structure.

The specific DMA chain table configuration is as follows:

pwm_set_dma_config(DMA_CHN);

pwm_set_dma_chain_llp(DMA_CHN,(u16*)(&CHIAN_DMA_Buff[0]),MIC_BUFFER_SIZE,&tx_dma_list[0]);

pwm_set_tx_dma_add_list_element(DMA_CHN,&tx_dma_list[0],&tx_dma_list[1],(u16*)

(&CHIAN_DMA_Buff[0]),CHAIN_BUFFER_SIZE);↪

pwm_set_tx_dma_add_list_element(DMA_CHN,&tx_dma_list[1],&tx_dma_list[0],(u16*)

(&CHIAN_DMA_Buff[1]),CHAIN_BUFFER_SIZE)↪

pwm_ir_dma_mode_start(DMA_CHN);

The DMA chain table differs from PWM_IR_FIFO_DMA in that:

pwm_set_dma_chain_llp function and pwm_set_tx_dma_add_list_element function.

Set the chain table header with the pwm_set_dma_chain_llp function.

void pwm_set_dma_chain_llp(dma_chn_e chn,u16 * src_addr, u32 data_len,dma_chian_config_t *

head_of_list)↪

chn: DMA configuration.

src_addr: DMA source address, that is cfg data array.

AN-21010600-E5 85 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

data_len: DMA data length.

head_of_list: the address where the next node is configured.

Contents included in each node: DMA configuration, address where the current node configuration is lo-
cated, address where the next node configuration is located, DMA source address, DMA length, nodes of
the circular chain table set by the pwm_set_tx_dma_add_list_element function.

void pwm_set_tx_dma_add_list_element(dma_chn_e chn, dma_chian_config_t *config_addr,

dma_chian_config_t *llponit , u16 * src_addr, u32 data_len)↪

chn : DMA configuration.

config_addr: The address where the current node configuration is located.

llponit: The address where the next node configuration is located.

src_addr: DMA source address, that is cfg data array.

data_len: DMA data length.

14.8.2.1 Function description

The demo implements the following functions, LED1 will first send the cfg data array configured by the head
node at the beginning, and then will execute non-stop sending the cfg data array configured by node 1 and
the cfg data array configured by node 2 alternately and circularly.

Node 1 is configured with the following cfg data:

cfg data1: the number of pulses is 5, the high level time is 100us, and the period is 200us.

cfg data2: the number of pulses is 4, the high level time is 100us, and the period is 200us.

cfg data3: the number of pulses is 6, the high level time is 100us, and the period is 200us.

cfg data4: the number of pulses is 3, the high level time is 100us, and the period is 200us.

Node 2 is configured with the following cfg data:

cfg data 5: the number of pulses is 5, the high level time is 50us, and the period is 100us.

cfg data6: the number of pulses is 4, the high level time is 50us, and the period is 100us.

cfg data7: the number of pulses is 6, the high level time is 50us, and the period is 100us.

cfg data8: the number of pulses is 3, the high level time is 50us, and the period is 100us.

14.8.3 Example results

Figure 14.19: PWM_CHAIN_DMA example

AN-21010600-E5 86 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Channel 0 (LED1): is the PWM output signal.

To elaborate on the red box, the cfg data of pointer 1 and pointer 2 are switched without the generation of
time delay.

Figure 14.20: Details of the red boxes 1

Figure 14.21: Details of the red boxes 2

As can be seen from the figure, there is no delay generation, so a continuous PWM waveform can be sent
using the chain table approach.

AN-21010600-E5 87 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

15 I2C

15.1 Introduction

I2C, a serial bus consisting of the data SDA and the clock SCL, can send and receive data and is a half-duplex
communication method. The clock is controlled by the master end and the I2C communication protocol is
as follows:

Figure 15.1: I2C communication protocol

The I2C communication protocol is described in detail as follows:

Status Process

Idle state When both the SDA and SCL signal of the I2C bus are high at the same
time, it is specified as the idle state of the bus.

Start signal The SDA jumps from high to low during SCL is high.

Stop signal The SDA jumps from low to high during SCL is high.

Responding signal The requirement for the feedback valid responding bit ACK is that the
receiver pulls the SDA signal low during the low period before the 9th clock
pulse and ensures a steady low level during the high period of that clock. If
the receiver is the master, it sends a NACK signal after it receives the last
byte to notify the controlled transmitter to end data transmission and
release the SDA signal so that the master receiver can send a stop signal P.

Validity of data When the I2C bus is used for data transfer, the data on the data line must
remain stable during the period when the clock signal is high. Only during
the period when the signal on the clock line is low, the high or low state on
the data line is allowed to change. That is, the data needs to be ready
before the rising edge of SCL arrives, and must be stable before the falling
edge arrives.

AN-21010600-E5 88 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Status Process

Data transfer Each bit of data transmitted on the I2C bus has a corresponding clock pulse
(or synchronization control), that is, each bit of data is transmitted serially
on SDA bit by bit in cooperation with the SCL serial clock.

15.2 Interrupt

Interrupt-related introduction in I2C mode is as follows:

I2C no-DMA mode:

Related interrupts:

a) I2C_RX_BUF_MASK: Related to rx_irq_trig_lev setting, when fifo_data_cnt>=rx_irq_trig_lev , it gen-
erates an interrupt.

b) I2C_RX_DONE_MASK: Generate an interrupt after receiving the sent data.

Whether to clear the interrupt flag bit manually:

I2C_RX_BUF_MASK and I2C_RX_DONE_MASK do not need to clear the interrupt flag bits manually, they will
be cleared automatically when the conditions are not met.

I2C DMA mode:

Related interrupts:

a) TC_MASK: TC interrupt of DMA will be up when DMA has finished transferring the received data.

b) I2C_TX_DONE_MASK: Generate an interrupt when finished sending data.

Whether to manually clear the interrupt flag bit:

TC_MASK, I2C_TX_DONE_MASK need to clear the interrupt flag bit manually, otherwise it will keep going in
and out of interrupts.

Note:

• In non-DMAmode, when the slave end uses interrupts to receive data, the slave endmust use both
I2C_RX_BUF_MASK and I2C_RX_DONE_MASK to determine the completion of a frame in order to
be compatible with all possible data lengths. the reason is as follows:

(1) I2C_RX_DONE_MASK cannot be captured if the data length is a multiple of trigger level;
(2) I2C_RX_BUF_MASK is not detected by the tail packet interrupt when the data length is not a

multiple of trigger level.

• In DMA mode, the I2C_RX_DONE_MASK interrupt flag bit is not captured. Use the TC_MASK inter-
rupt of DMA instead.

• All interrupt MASKs of DMA are turned on by default, you need to turn off other unused MASKs to
avoid affecting the results of the experiment.

• Before using the I2C_TX_DONE_MASK interrupt, you need to clear the I2C_TX_DONE_CLR state
manually. If not, it will keep going into the interrupt.

• I2C_TX_DONE_MASK interrupt does not mean that a frame is sent (it just means that the data part

AN-21010600-E5 89 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

is sent, without waiting for the stop signal), after generating the I2C_TX_DONE_MASK interrupt,
then query the BUSY signal until IDLE represents the end.

15.3 I2C mode

The chip supports both as master and as slave. If acting as master, you need to do master initialization and
set the clock signal, the interface is as follows:

void i2c_master_init(void);

void i2c_set_master_clk(unsigned char clock);

If acting as a slave, the following interface is invoked for initialization, with a unique address (id) for each
device:

void i2c_slave_init(unsigned char id).

15.3.1 I2C no-DMA mode

15.3.1.1 Master

The relevant interfaces for the master to send and receive data are configured as follows:

unsigned char i2c_master_write(unsigned char id, unsigned char *data, unsigned char len);

unsigned char i2c_master_read(unsigned char id, unsigned char *data, unsigned char len);

The functions of i2c_master_write and i2c_master_read are as follows:

In the case that the master reads and writes, and the slave is normally responding (responds with ACK), the
result is as follows:

Figure 15.2: During master reads and writes, the slave normal responding results

AN-21010600-E5 90 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 15.3: During master reads and writes, the slave normal responding results

After the master sends the address frame, if the slave responds with NACK, the master will send a stop to
stop the transmission, and the result is as follows:

Figure 15.4: The result of the slave responds with NACK after the master has sent the address frame

Figure 15.5: The result of the slave responds with NACK after the master has sent the address frame

If during the data phase, the slave responds with NAK, the master will still send the remaining data normally.
The result is shown as follows:

Figure 15.6: During data phase, results of slave responds with NAK

Note:

• At present, only MCUmode supports the function of stopping when NACK is detected after sending
the address frame, DMA mode does not support it. The DMA mode will send the whole frame of

AN-21010600-E5 91 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

data regardless of whether the slave end responds with NAK or not.

15.3.1.2 Slave

The relevant interfaces for the slave to receive and send data are configured as follows:

void i2c_slave_write(unsigned char* data , unsigned char len).

void i2c_slave_read(unsigned char* data , unsigned char len).

Slave end receiving data: you can use interrupts to enable the rx (I2C_RX_BUF_MASK) interrupt and rx_done
(I2C_RX_DONE_MASK) interrupt when in non-DMA mode to determine if a frame of data has been re-
ceived.

The specific configuration of interrupts on the Slave end is as follows:

i2c_set_irq_mask(FLD_I2C_MASK_RX|FLD_I2C_MASK_RX_DONE);

i2c_rx_irq_trig_cnt(SLAVE_RX_IRQ_TRIG_LEVEL);

core_interrupt_enable();

plic_interrupt_enable(IRQ21_I2C);

Note:

• Current problem: When I2C is used as a slave, the software cannot distinguish whether the master
sends a read or a write command. The Slave end does not know whether to read or write, so
the slave needs to write the data to the FIFO in advance before the maste end sends the read
command. However, from the application point of view, it is difficult to control the time of writing
data in advance because we don’t know when the master end will read the data.
This can lead to the following problem: In non-DMA mode, the slave end needs to put the sent
data in the fifo in advance before the master sends the read command. The size of the fifo is only
8 bytes, and if the master does not read it away, it will be stuck in the i2c_slave_write function,
so to use this function, you need to control the timing at the software level.

15.3.2 I2C DMA mode

15.3.2.1 Master

The relevant interfaces for the master to send and receive data are configured as follows:

void i2c_master_write_dma(unsigned char id, unsigned char *data, unsigned char len);

void i2c_master_read_dma(unsigned char id, unsigned char *rx_data, unsigned char len);

The relevant interfaces used to determine whether the master end has finished sending and receiving data
are as follows:

AN-21010600-E5 92 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

static inline bool i2c_master_busy(void).

Note:

• TX_DONE interrupt does not mean that a frame is sent (it just means that the data part is sent,
without waiting for the stop signal), after generating the TX_DONE interrupt, then querying the
busy signal until idle represents the end.

15.3.2.2 Slave

The relevant interfaces for the slave to send and receive data are configured as follows:

void i2c_slave_read_dma(unsigned char *data, unsigned char len);

void i2c_slave_write_dma(unsigned char *data, unsigned char len);

The DMA TC_MASK needs to be configured for receiving interrupts on the slave end, as follows:

i2c_clr_txdone_irq_status (I2C_TX_DONE_CLR);

i2c_set_irq_mask(I2C_TX_DONE_MASK);

core_interrupt_enable();

plic_interrupt_enable(IRQ21_I2C);

To send interrupts on the slave end, you need to configure I2C_TX_DONE_MASK, as follows:

dma_set_irq_mask(I2C_RX_DMA_CHN, TC_MASK);

Note:

• The master end sends a read command to the slave end, and the slave end needs to use
i2c_slave_write_dma before the master end sends a read command.

• The function puts the sent data in the DMA in advance. (Note, you need to ensure that this fill
is the data that needs to be responded, because after calling this function, the DMA will put the
specified buffer data in the fifo, and wait for the master’s clock to come to read the data out.)

15.4 I2C demo description

Choose which mode to use via the macros I2C_MASTER_WRITE_READ_MODE in app.c and app_dma.c.

#define I2C_MASTER_WRITE_READ_NO_DMA 1

#define I2C_MASTER_WRITE_READ_DMA 2

#define I2C_MASTER_WRITE_READ_MODE I2C_MASTER_WRITE_READ_NO_DMA

Select master and slave mode via macro I2C_DEVICE.

AN-21010600-E5 93 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

#define I2C_MASTER_DEVICE 1

#define I2C_SLAVE_DEVICE 2

#define I2C_DEVICE I2C_MASTER_WRITE_READ_NO_DMA

Note：
• When testing I2C communication through two boards, when the code of the master end and the
salve end are burned to the board, after both boards are powered off, power on the slave end
first, and then the master (to avoid data errors), and there is a common ground between the two
boards.

15.4.1 Function description

Node Function description

master Keep sending write operations, read operations, and then compare the sent data
with the read data, if the comparison result differs, LED2 status will change.

slave Return the received data to the master.

15.4.2 Example results

Using a logic analyzer to capture the timing sequence of the I2C sent data and received data, the following
results were executed:

Channel 0: represents the SCL signal of I2C.

Channel 1: represents the SDA signal of I2C.

Channel 2: LED2 represents the flag bit on the master side to determine whether the sent data and received
data are the same, and will be flipped if the compared data is not the same.

Master end sends data:

Figure 15.7: Master end is sending data

Master end receives data:

AN-21010600-E5 94 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 15.8: Master end is receiving data

Special notes:

(1) When i2c writes, the slave will respond with ACK after the master completes writing the last byte, and
then the master will send stop signal to end the communication.

(2) When i2c reads, after the master receives the last byte sent by the slave, the slave end sends the
NACK signal and releases the SDA signal so that the master receiver can send a stop signal P.

AN-21010600-E5 95 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

16 UART

16.1 Introduction

UART is an asynchronous full-duplex serial communication protocol consisting of two data lines, Tx and
Rx. Since there is no clock reference signal, the two communicating parties using UART must agree on
configuration parameters such as serial port baud rate, data bit width, parity bit, stop bit, and so on.
Therefore they can communicate at the same rate.

Usually, asynchronous communication takes one character as the transmission unit, and the time interval
between two characters in communication is not fixed, but the time interval between two adjacent bits in
the same character is fixed. When the baud rate is 9600 bps, the time interval for transmitting one bit is
about 104.16 us, and when the baud rate is 115200 bps, the time interval for transmitting one bit is about
8 us.

The data transmission rate is expressed in terms of baud rate, which is the number of binary bits transmitted
per second. Each character consists of 11 bits (1 start bit, 8 data bits, 1 parity bit, and 1 end bit). For example,
if the data transmission rate is 120 characters per second, the baud rate is 11 x 120 = 1320 characters per
second = 1320 baud.

16.2 Data communication timing

Figure 16.1: Data communication timing

The meaning of each bit is as follows:

Start bit: A logical “0” is issued first to indicate the start of the transmitted character.

Data bits: can be 5-8 bits of logic “0” or “1”, such as ASCII code (7 bits), extended BCD code (8 bits), the
transmission method is small-end transmission, that is, LSB first, MSB second.

Parity bit: The data bit is added with this parity to make the number of “1” bit even (even parity) or odd
(odd parity).

Stop bit: it is a character data end flag, can be 1 bit, 1.5 bits, 2 bits high-level (used to synchronize both
ends, the longer the stop bit time, the more fault tolerance).

Idle bit: in the state of logic “1”, indicating that there is no data transmission on the current line.

AN-21010600-E5 96 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 16.2: Asynchronous communication timing

As shown above, it is worth noting that asynchronous communication is transmitted by character, and
the receiving device receives the start signal correctly as long as it is synchronized with the transmitting
device for the transmission time of one character. After the next character start bit arrives it needs to be
synchronized and recalibrated again (relying on the detection of the start bit to achieve self-synchronization
of the clocks of the sender and receiver).

16.3 Communication principle

Figure 16.3: UART communication principle

Take the UART module in Telink SoC as an example, the data to be sent is first written to the TX buffer by
the MCU or DMA of the chip, and then the UART module sends the data in the TX buffer to other devices
through the TX pin. In the receiving device, the data is first written to the RX buffer through the RX pin of
the UART module, and then the data is read by the MCU or DMA of the receiving device.

If the chip’s RX buffer is close to overflowing, the chip will send a signal (either configured high or low) to its
connected device via its RTS pin, indicating that the device should stop sending data. Similarly, if the chip
receives a signal via its CTS pin that the RX buffer of another device is close to overflowing, the chip should
stop sending data.

AN-21010600-E5 97 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

16.4 Function introduction

16.4.1 Initialization

The caveats are as follows:

(1) Whenever you use UART port, it is better to call uart_reset() function to reset first, so that the effect of
the previous operation of using UART can be avoided on this use. (for example, UART related register
legacy setting)

uart_reset(uart_num_e uart_num)

(2) Use uart_set_pin() to set TX/RX pins in UART

uart_set_pin(uart_tx_pin_e tx_pin,uart_rx_pin_e rx_pin)

Wiring Note: The TX/RX of the current device is connected to the TX/RX of other devices with the
rule TX-RX, RX-TX.

(3) In DMA mode, pay attention to choose the DMA channels that are not occupied by other modules

(4) In NDMA mode, if using interrupts, the following configuration are needed:

(a) uart_rx_irq_trig_level(): it is used to set the number of interrupt triggering level for receiving
characters. If set to 1, it will enter interrupt once for receiving one character. (Recommended
setting is 1)

(b) uart_tx_irq_trig_level(): it is used to set the interrupt trigger level for sending characters. When
the number of characters in the sending buffer reaches this level, it will enter the sending inter-
rupt. A setting of 0 indicates that there is data in the buffer to send.

Note:

• When NDMAmode is used to receive data using interrupts, it is recommended to set level=1 during
initialization (more general) for the following reasons:

(1) When receiving data in NDMA mode, you can manually set the receive data interrupt level during
initialization, the level value can be 1-4. We set the level to 1 by default. If the level is set to 2, 3,
4, the length of the received data needs to meet certain conditions to complete the data reception
normally. For example, if the level is set to 2, and the actual length of received data is a multiple
of 2, the data can be received normally. But if the actual received data length is not a multiple of
2, such as 3, the first two data can be received normally, but the third data will be lost. (NDMA
mode takes data from buffer according to the length of level, if the last time to obatin data, the
length can not reach this level, the data will not be taken out). The situation of level setting as
3 and 4 is similar, it needs to receive data length of times of 3, 4, in order to complete the data
reception normally.

(2) When level is set to 1, it should be noted that: because the receive interrupt is triggered too
frequently, if the receiving data is too fast (baud rate is too high), it may appear that the next
data has arrived before the previous one is not fully received. If this situation occurs, it can be
solved by appropriately reducing the baud rate.

AN-21010600-E5 98 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

16.4.2 Baud rate

16.4.2.1 Function calls

Two functions are used to calculate the baud rate:

(1) uart_cal_div_and_bwpc() function will calculate the optimal clock division number div and bit width
bwpc based on the input baud rate and system clock.

uart_cal_div_and_bwpc(unsigned int baudrate, unsigned int sysclk, unsigned short* div,

unsigned char *bwpc)↪

(2) uart_init() passes the above calculated clock division div and bit width bwpc into the function to really
set the baud rate, while the function also sets the UART port, the stop bit, parity bit, and so on.

uart_init(uart_num_e uart_num, unsigned short div, unsigned char bwpc, uart_parity_e

parity, uart_stop_bit_e stop_bit)↪

There are some applications with high timing requirements, you can calculate the clock division num-
ber div and bit width bwpc first, and then call uart_init directly, which saves the execution time of
uart_cal_div_and_bwpc function.

16.4.2.2 Tested data

We tested the effect of different baud rates on data transfer accuracy in DMA and NDMA modes, respec-
tively.

Test data: 0x00, 0x11, 0x22 …… 0xff, 16 data in total.

Test conditions: two B91 development board TX/RX interconnected, communication every one second (ex-
periments show that the phenomenon of no time interval and with time interval consistent, here for more
stable phenomenon, we use 1s time interval), clock settings of 16MHZ-PCLK, 16MHZ-HCLK, 16MHZ-CCLK.

Test chip: B91 80pin-EVK

Test program: UART-DEMO.

NDMA mode:

Baud rate Receive Send

2000000 Fail Fail

1500000 Pass Pass

1000000 Pass Pass

500000 Pass Pass

256000 Pass Pass

115200 Pass Pass

57600 Pass Pass

AN-21010600-E5 99 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Baud rate Receive Send

38400 Pass Pass

19200 Pass Pass

9600 Pass Pass

4800 Pass Pass

2400 Pass Pass

1200 Pass Pass

600 Pass Pass

300 Pass Pass

DMA mode:

Baud rate Receive Send

2000000 Pass Pass

1500000 Pass Pass

1000000 Pass Pass

500000 Pass Pass

256000 Pass Pass

115200 Pass Pass

57600 Pass Pass

38400 Pass Pass

19200 Pass Pass

9600 Pass Pass

4800 Pass Pass

2400 Pass Pass

1200 Pass Pass

600 Pass Pass

300 Pass Pass

From the test, it can be seen that from 300bps to 1.5Mbps baud rate, it can communicate normally in both
NDMA and DMA mode. At 2Mbps baud rate, in DMA mode it can still communicate normally, but in NDMA
mode it has shown an error (sent and received garbled data).

AN-21010600-E5 100 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Note:

• Further tests show that the DMA limit baud rate can reach 5Mbps at 16MHZ-PCLK.
• When PCLK is raised to 24MHZ, HCLK and CCLK are raised to 48MHZ, NDMA mode limit baud rate
can reach 5Mbps, DMA limit baud rate can reach 8Mbps, PCLK is the main influencing factor of
UART baud rate limit.

16.4.3 Interrupt

Interrupt Generation condition Automatic or manual clearing

TX DMA TC Interrupts are generated every time a frame of
data is received

It needs to be cleared
manually.

UART_TXDONE Shared by NDMA and DMA. The default value
is 1. It will be set to 0 when it starts to send
data and will be automatically set to 1 by the
hardware when the data transmission is
finished.

It needs to be cleared
manually.

UART_RXDONE
(need to check the
chip difference if it
can be used)

This interrupt can only be used in DMA mode,
the default value is 0, and will be set to 1 after
receiving a packet of data.

It needs to be cleared
manually.

UART_RXBUF_
IRQ_STATUS

When the amount of data in the receiving
BUFF buffer reaches the level set during
initialization, an interrupt is generated.

This flag bit is cleared
automatically when the buffer
data is read.

UART_TXBUF_
IRQ_STATUS

When the amount of data in the transmitting
BUFF buffer reaches the level set during
initialization, an interrupt is generated.

This flag bit is cleared
automatically when the buffer
data is sent out.

UART_RX_ERR
(need to check the
chip difference if it
can be used)

UART receive error flag. When the UART
receives data with error (such as parity error
or stop bit error), an interrupt will be
generated, and the data reception will be
stopped after the interrupt.

This flag bit needs to be
cleared manually.

16.4.4 DMA mode

16.4.4.1 Sending data

Using this function to send data, the function only triggers the send action, and does not actually send all
data, you need to use a query or interrupt to determine whether it sent all data.

unsigned char uart_send_dma(uart_num_e uart_num,unsigned char * addr,unsigned char len)

Query

AN-21010600-E5 101 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

uart_send_dma(UART0, (unsigned char*)tx_byte_buff, 16);

while(uart_tx_is_busy(UART0));

You need to use uart_tx_is_busy interface to query the current status, if this flag bit is 0, it indicates that
the last frame data transmission is finished and you can enter into the current frame data transmission.

Interrupt

To use the TX_DONE interrupt, you need to set the corresponding mask:

uart_set_irq_mask(UART0, UART_TXDONE_MASK);

In addition to the normal use of interrupt-related function calls, the following matters need to be noted:

When initializing, the following function needs to be called (to set the TX_DONE signal to 0, otherwise it will
keep going into interruptions):

uart_clr_tx_done(UART0);

The interrupt handler function needs to be handled in the following manner:

_attribute_ram_code_sec_noinline_ void uart0_irq_handler(void)

{

if(uart_get_irq_status(UART0,UART_TXDONE))//judge the interrupt flag bit

{

.........

uart_clr_tx_done(UART0); //set TX_DONE signal to 0

}

}

Flag bit: UART_TXDONE

When using the interrupt method, the UART_TXDONE interrupt is generated to indicate that the previous
frame of data transmission is finished and can move to the next frame of data transmission.

Note:

• When DMAmode uses interruptmethod to send data, we need to use the status of UART_TXDONE.
Since the initial default value of UART_TXDONE is 1, in order to generate interrupt normally, we use
uart_clr_tx_done(UART0) function to set UART_TXDONE to 0 during initialization, so that when
the sending is finished UART_TXDONE will be set to 1 automatically, then enter UART_TXDONE
interrupt, then use uart_clr_tx_done(UART0) function to pull down UART_TXDONE again in the
interrupt handler program.

16.4.4.2 Receiving data

When using DMA to receive data, the initialization has a packet reception end judgment rx_timeout.

AN-21010600-E5 102 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

uart_set_dma_rx_timeout(uart_num_e uart_num, unsigned char bwpc, unsigned char bit_cnt,

uart_timeout_mul_e mul)↪

Where bwpc and bit_cnt set the time used to transmit a byte, and the time required to transmit a byte is
(bwpc+1)*bit_cnt. We use mul to set the timeout time, which can be set to 0, 1, 2, or 3. The mul set to
0 means that if no data is received for more than 1 byte, the packet receiving is considered to be finished.
The mul set to 1 means that if no data is received for more than 2 bytes, the packet receiving is considered
to be finished.

There are two ways to receive data using DMA mode:

(1) RX_DONE interrupt

Using RX_DONE interrupt to receive data is a more general way, this way allows us to receive packets
of unknown length, but some chips do not support this way. Please check the chip difference chapter
of UART if the chip supports this way.

(2) DMA interrupt

If the chip does not support the RX_DONE interrupt, you can use the DMA interrupt to receive data.
However, this method has a usage limitation and can only receive packets of known length.

RX_DONE interrupt

To use RX_DONE interrupt, you need to set the corresponding mask.

uart_set_irq_mask(UART0, UART_RXDONE_MASK);

Flag bit: UART_RXDONE

When data is received using the interrupt method, the RX_DONE interrupt is generated to indicate that data
has been received, and this flag bit needs to be cleared manually.

Note:

• When using the DMA-RX_DONE interrupt, the interrupt handler function has the calculation of
the received data length rec_data_len, so that we can clearly know the received data length when
using the RX_DONE method to receive data.

DMA interrupt

With the interrupt flag bit DMA_TC_IRQ, this flag bit needs to be cleared manually when there is an interrupt
request, indicating that data has been received.

void uart_receive_dma(uart_num_e uart_num, unsigned char * addr,unsigned char rev_size)

Note:

• The length of the data must be known in order to generate an interrupt. The parameter rev_size
needs tomeet a certain relationship with the actual length of the received data, len, so that no data
will be missed and the interrupt will be generated accurately. (For example, if 4(n-1)<len≤4n, then

AN-21010600-E5 103 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

rev_size needs to meet 4(n-1)<rev_size≤4n, where n is the same value). (For example: rev_size
is set to 8, the received data length is 5/6/7/8 to generate an interrupt).

Attentions:

(1) The size of the rec_buff receiving array should be reserved for more areas. The reason is: DMA
transfers data in a unit of 4byte, for example, the actual length of the received data is 5, rev_size can
be set to 5 - 8, DMA will transfer data twice, although the second transfer only left one valid data,
DMA will still transfer 4 data, the last three of which are useless data.

(2) The length len of the received data meets a certain relationship, for example, when 4(n-1)<len≤4n,
the rec_buff size is set to greater than or equal to 4n. This way the first len data of the rec_buff is
valid data, and the later ones are invalid data, which we need to distinguish accurately.

(3) When actually using DMA to receive data, it is better to set rec_buff=rev_size=4n when the received
data length len is at 4(n-1)<len≤4n.

Example: rec_buff length is set to 8, rev_size is set to 8, and 4, 5, 6, 7, 8 data are sent to compare.

The program sets the DMA to receive mode and initializes rec_buff to all 0. Check the rec_buff value by
BDT.

Sending data Receiving data

Whether the
interrupt is
generated

Number of
invalid data

DMA
transferring
times

0x11, 0x22,
0x33, 0x44

0x11, 0x22, 0x33, 0x44 No 0 1

0x11, 0x22,
0x33, 0x44,
0x55

0x11, 0x22, 0x33, 0x44,
0x55, 0xXX, 0xXX, 0xXX

Yes 3 2

0x11, 0x22,
0x33, 0x44,
0x55, 0x66

0x11, 0x22, 0x33, 0x44,
0x55, 0x66, 0xXX, 0xXX

Yes 2 2

0x11, 0x22,
0x33, 0x44,
0x55, 0x66,
0x77

0x11, 0x22, 0x33, 0x44,
0x55, 0x66, 0x77, 0xXX

Yes 1 2

0x11, 0x22,
0x33, 0x44,
0x55, 0x66,
0x77, 0x88

0x11, 0x22, 0x33, 0x44,
0x55, 0x66, 0x77, 0x88

Yes 0 2

Note:

• 0xXX means invalid data value, usually displayed as garbled code

AN-21010600-E5 104 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

16.4.5 NDMA mode

16.4.5.1 Sending data

void uart_send_byte(uart_num_e uart_num, unsigned char tx_data)

Note:

• NDMA mode also provides us to send data as hword (2byte) and word (4byte). It should be noted
that when sending data, the low byte data is sent first, then the high byte data is sent. For
example, if a string of data is 0x11223344, if we want to receive data at the receiver end, the
order of sending data in hword form is 0x2211, 0x4433, and in word form is 0x44332211.

Query

uart_send_byte(UART0, uart0_tx_buff_byte[i]);

while(uart_tx_is_busy(UART0));

You need to use uart_tx_is_busy interface to query the current status, if this flag bit is 0, it indicates that
the last frame data transmission is finished and you can enter into the current frame data transmission.

Interrupt

Flag bit: UART_TXBUF_IRQ_STATUS

In the initialization, the interrupt trigger number level of TX is set by uart_tx_irq_trig_level(), when the send
buffer data reaches this level, the sending will start. At this time it will enter the sending interrupt.

Note:

• The DEMO gives the TX interrupt trigger level as 0, that is, the buffer has data to send. At this
time, if we use TX interrupt, the program will be in TX interrupt state all the time, which is not
good for practical use. Therefore, the DEMO does not give the judgment and processing of TX
interrupt, so that it is more in line with our actual use habits (send directly if there is a demand
for sending), if you really need to judge the sending status, it is recommended to use the query
method.

16.4.5.2 Receiving data

unsigned char uart_read_byte(uart_num_e uart_num)

Flag bit: UART_RXBUF_IRQ_STATUS

In the initialization, the trigger number level of receiving interrupts is set. When the number of received
characters reaches the level, the flag bit will be set to 1, and then the interrupt will be entered and the buffer
data will be moved to our pre-defined receive array.

AN-21010600-E5 105 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

16.4.6 Flow Control

Because of the difference in processing speed between the two sides of the UART, there is a large gap
between the receiving rate and the sending rate when data is transmitted, so that the receiving end may
not be able to receive the data in time during the process of sending and receiving. In order to prevent data
loss, it is necessary for the sender to control, which is called flow control.

CTS (clear to send) allows sending

RTS (request to send) request to send

If UART0 is communicating with UART1, the RTS pin of UART0 is connected to the CTS pin of UART1, and
the CTS pin of UART0 is connected to the RTS pin of UART1.

16.4.6.1 CTS

uart_cts_config(uart_num_e uart_num,uart_cts_pin_e cts_pin,u8 cts_parity)

The uart_cts_config() function is used to configure the port number to use CTS flow control with the CTS
pin. When the input level of CTS pin is equal to cts_parity, UART will stop transmitting.

16.4.6.2 RTS

uart_rts_config(uart_num_e uart_num,uart_rts_pin_e rts_pin,u8 rts_parity,u8 auto_mode_en)

uart_rts_trig_level_auto_mode(uart_num_e uart_num,u8 level)

The uart_rts_config() function is used to configure the UART port number, RTS pin.

The rts_parity is valid only in auto mode, it indicates the jump direction of the RTS pin when the received
data amount reaches the level value, the level jumps from low to high when it is 1, and from high to low
when it is 0.

Note:

• RTS has twomodes to choosewhen configuring, UART_RTS_MODE_AUTO/UART_RTS_MODE_MANUAL
which are Auto mode and Manual mode. In auto mode, the RTS pin automatically performs the
RTS_INVERT related jumps when receiving RTS-THRESH data. In manual mode, we need to
calculate the received data length, and when the data length reaches the expected value, we
need to pull down or pull up the RTS pin manually using the uart_set_rts_level() function.

The uart_rts_trig_level_auto_mode() function is the RTS jump trigger setting, level indicates the trigger
threshold, if set to 5, the RTS pin will be jumped upon receiving 5 data.

16.5 DEMO introduction

You can choose to configure the UART working mode (DMA and NDMA) in the header UART_DEMO/
app_config.h, as shown below, corresponding to the contents in app_dma.c and app.c respectively.

AN-21010600-E5 106 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

#define UART_DMA 1 //uart use dma

#define UART_NDMA 2 //uart not use dma

#define UART_MODE 2

Among them, you can specifically select flow control mode in NDMA and DMA mode as follows

#define BASE_TX 0 //just for NDMA

#define NORMAL 1

#define USE_CTS 2

#define USE_RTS 3

#define FLOW_CTR 1

16.5.1 DMA Mode

The UART module keeps sending the received data via DMA, and the initial rec_buff[] is all 0.

Verification via serial port tool is as below:

AN-21010600-E5 107 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 16.4: DMA serial port verification

16.5.2 NDMA Mode

When the number of received characters reaches the preset acceptance length (which is UART0_RX_IRQ_LEN),
uart0_rx_flag will be 1, and then the interrupt service program will process the received characters and
send them out.

Verification via serial port tool is as below:

AN-21010600-E5 108 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 16.5: NDMA serial port verification

16.5.3 RTS and CTS

Take NDMA as an example, due to hardware constraints, only a single demonstration of RTS or CTS is
available.

CTS: Set STOP_VOLT=1, which means stop sending TX when in high level.

When the CTS pin is 0, continuous transmission, using the serial port tool to view:

AN-21010600-E5 109 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 16.6: CTS pins is 0

Set CTS high to stop transmitting.

RTS: In auto mode, set RTS_THRESH=5,RTS_INVERT=1, which means the RTS pin jumps from low to high
when 5 data are received cumulatively.

To make the phenomenon more significant, the logic analyzer was used to view the jump results.

Use the serial port tool to send 4 data:

AN-21010600-E5 110 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 16.7: Sending 4 data using the serial port tool

RTS jump did not occur.

Send 5 data:

AN-21010600-E5 111 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 16.8: Sending 5 data using the serial port tool

The RTS pin completes the jump from low to high.

Figure 16.9: Level jump

Note:

AN-21010600-E5 112 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• When actually using the flow control of UART, we need to pay attention to the reasonable config-
uration of CTS and RTS jumping method. For example, if the RTS pin of one device is set to jump
from low to high when triggered, then the CTS pin of the other device connected to it needs to
be set to high to stop transmitting. Thereafter, the UART flow control can work properly.

16.6 Chip Differences

16.6.1 UART_RXDONE interrupt

The use of this interrupt is supported in order to effectively determine the end of a packet (even if the length
of the packet is unknown).

Chip DMA mode RX_DONE interrupt

B91 A0 Not supported

Other Supported

16.6.2 UART_RX_ERR interrupt

B91 A0 chip:

(1) DMA mode: UART_RX_ERR interrupt is not available. (Reason: Hardware detects this interrupt and
clears it automatically, software does not detect it.)

(2) NDMA mode: UART_RX_ERR interrupt can be used.

Recommended usage: clear interrupt status, clear RX-FIFO, zero in on hardware pointer and software
pointer.

Reason: when receiving errors, there may be wrong data in the FIFO, in order not to affect the subsequent
reception of correct data, the RX-FIFO needs to be cleared (that means the pointer is zeroed, uart_reset()
makes the hardware pointer zeroed, while the software pointer is kept consistent also needs to be cleared).

Summarize: after the UART_RX_ERR interrupt is detected in this mode, the following actions need to be
performed:

uart_clr_irq_status (UART0,UART_CLR_RX); //NDMA mode will clear RX-FIFO and RX_ERR_IRQ,

RX_BUFF_IRQ (Note: if it enters RX_ERR interrupt, it means there is an error in receiving

data, clearing RX will clear RX_BUFF interrupt at the same time)

↪

↪

uart_reset()；//clear to zero on hardware pointer

uart_clr_rx_index();//clear to zero on the software pointer

Other chip:

(1) DMA mode: UART_RX_ERR interrupt can be used.

Recommended usage: clear interrupt status only.

AN-21010600-E5 113 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Reason: DMA mode receiving data occurs error, when enter to RX_DONE interrupt, DMA will finish trans-
ferring data in RX-FIFO, FIFO pointer will be zeroed automatically, no need uart_reset(), the error data will
not affect the subsequent reception of correct data. (Note: If UART_RX_ERR interrupt occurs, the data in
the receive array will be the wrong data and cannot be used.)

Summarize: after the UART_RX_ERR interrupt is detected in this mode, the following actions need to be
performed:

uart_clr_irq_status(UART0,UART_CLR_RX); //In DMA mode it will clear RX_FIFO, RX_DONE_IRQ, and

RX_ERR status↪

AN-21010600-E5 114 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

17 SPI

17.1 Introduction

17.1.1 Standard SPI interface

The Serial Peripheral Interface (SPI) is a synchronous serial peripheral interface that allows embedded pro-
cessors to communicate and exchange data with various peripheral devices in a serial manner.

The standard SPI interface typically uses four lines of communication:

Figure 17.1: SPI Interface

Name Meaning

CSN Device chip select signal line, active low

CLK Clock signal line

MOSI Master data output and Slave data input line

MISO Master data input and Slave data output line

17.1.2 SPI communication process

The following figure shows a simple example of SPI communication:

AN-21010600-E5 115 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 17.2: SPI communication

This is the communication timing of a standard SPI. The CSN, CLK, and MOSI signals are generated by the
Master, and the data output is through the MOSI line, while the MISO signal is generated by the Slave, and
the Master reads the data from the Slave through this signal line. The MOSI and MISO signals are only active
when CSN is low. The sampling is triggered at the rising or falling edge of CLK. In each clock cycle of CLK,
MOSI and MISO transfer 1bit data, and can achieve 1byte data transfer in 8 clock cycles.

According to the different CLK Clock Polarity (CPOL) at idle time and CLK Clock Phase (CPHA) at sampling
time, SPI distinguishes four working modes as the following table, the host and slave need to work in the
same mode to communicate properly.

SPI working mode CPOL CPHA

SPI_MODE0 0 0

SPI_MODE1 0 1

SPI_MODE2 1 0

SPI_MODE4 1 1

CPOL: Clock Polarity

• When CPOL = 0, CLK is held low at idle time.
• When CPOL=1, CLK is held high at idle time.

CPHA: Clock Phase

• When CPHA = 0, sampling is triggered at the odd edge of CLK.
• When CPHA = 1, sampling is triggered at the even edge of CLK.

17.1.3 Diversified SPI interface

On the basis of the standard SPI, many types of SPI interfaces have gradually been derived to suit different
application scenarios.

AN-21010600-E5 116 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

3line SPI: 3line SPI implies only 3 lines as the name, CLK, CSN, and MOSI. The data sending and receiving
share a common line, which is half-duplex communication.

Dual SPI: it extends the usage of MOSI and MISO by making them work in half-duplex and transferring data
in the same direction to double the data transfer. That is, for Dual SPI, MOSI becomes IO0 and MISO becomes
IO1, so that 2 bits of data can be transferred in one clock cycle, doubling the data transfer.

Quad SPI: similar to Dual SPI, it extends the usage of WP and HOLD, WP becomes IO2 and HOLD becomes
IO3. Which means, it has four data lines at the same time and can transfer 4 bits in one clock cycle, the
transfer speed is significantly increased.

Figure 17.3: Diversified SPI interface

17.2 Function description

The SOC contains a variety of SPI modules, including HSPI, SPI and SPI Slave, each with appropriate driver
support.

17.2.1 Interface description

The interface naming rule is as follows.

• spi as prefix: an interface that can be used by both hspi and pspi.
• pspi as prefix: for pspi use only.
• hspi as prefix: for hspi use only.
• dma as suffix: the interface that will be used by dma mode.
• plus as suffix: support richer read/write modes and operation commands.

For example, the spi_master_write_read_dma_plus interface will use the DMA channel when in use, first
writing the address to the SPI Slave and then reading the data from the corresponding address of the SPI
Slave.

Note:

AN-21010600-E5 117 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• The function of the interfaces with the “read” or “write_read” segment is to read data from the
SPI Slave.

• The difference between the above two is as below:

(1) The interface with the “read” segment supports hardware auto-sending address frames for appli-
cations that enable hardware address frame, and the interface can directly read data from the
corresponding address.

(2) The interface with the “write_read” segment is usedwithout enabling the hardware address frame.
The address information is first written to the SPI Slave by “write” and then the data at the corre-
sponding address can be read.

17.2.2 HSPI and PSPI

HSPI and PSPI are two advanced SPI interfaces supported by the SoC, both supporting Master and Slave
modes. HSPI/PSPI Slave both automatically parse cmd and require software operation for data receiving
and sending.

Note:

• In the example, the HSPI/PSPI Slave receives and sends data through software, which has the
advantage of being more flexible in configuration and supporting Quad I/O mode, but has the dis-
advantage of not being as easy to configure as using the SPI Slave module directly and consuming
computing resources. If you need to simply configure the device as a Slave, it is recommended to
use the SPI Slave module.

17.2.2.1 Master

Standard SPI Master

The HSPI/PSPI module of the SoC supports the standard SPI Master mode, in which the function interface
is called without the “plus” suffix and the functions and modes are relatively simple.

Initialize the interface as follows:

spi_master_config(SPI_MODULE_SEL, SPI_NOMAL);

The supported interfaces for read and write operations are:

void spi_master_write(spi_sel_e spi_sel, u8 *data, u32 len);

void spi_master_write_dma(spi_sel_e spi_sel, u8 * data, u32 len);

void spi_master_write_read(spi_sel_e spi_sel, u8 * addr , u32 addr_len, u8 * data , u32

data_len);↪

void spi_master_write_read_dma(spi_sel_e spi_sel, u8 *addr, u32 addr_len, u8 *data, u32

data_len);↪

HSPI/PSPI Master

Function description:

AN-21010600-E5 118 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The SoC’s HSPI/PSPI Master has additional hardware configurations for several frame information in common
protocols, including cmd frame, address frame, and dummy frame (null cycle).

In the table below, among the features supported by HSPI/PSPI Master, Y stands for supported and N stands
for not supported.

SPI Module cmd_en cmd_fmt address_en address_fmt 3line Dual Quad

HSPI Y Y Y Y Y Y Y

PSPI Y N N N Y Y N

• cmd_en: hardware cmd frame
• cmd_fmt: cmd frame follows the encoding format corresponding to Dual/Quad I/O
• address_en: hardware address frame
• address_fmt: cmd frame follows the encoding format corresponding to Dual/Quad I/O
• 3line: 3line SPI mode
• Dual: Dual SPI mode
• Quad: Quad SPI mode

Data frame format:

HSPI/PSPI Master supports sending data in the following format: [cmd] + [adress] + [dummy] + data. []
stands for optional.

Step 1 The data frame format supported by the HSPI is configured by calling the following structure interface,
and the PSPI is similar:

hspi_config_st hspi_slave_protocol_config = {

.hspi_io_mode = HSPI_QUAD,

.hspi_ dummy _cnt = 6,

.hspi_ cmd _en = 1,

.hspi_addr_en = 1 ,

.hspi_addr_len = 3,//when hspi_addr_en = false,invalid set.

.hspi_cmd_fmt_en = 0,//when hspi_cmd_en = false,invalid set.

.hspi_addr_fmt_en = 1 ,//when hspi_addr_en = false,invalid set.

};

This code configures the various frame parameters of the HSPI Master:

• Module is configured as Quad I/O mode
• dummy frame length is 6 clocks.
• Hardware cmd is enabled, cmd transmission is in Single I/O mode, not following the encoding format
corresponding to Dual/Quad I/O (hspi_cmd_fmt_en = 0).

• Hardware address is enabled, with the address frame length of 3 Bytes, following the encoding format
corresponding to Dual/Quad I/O (hspi_addr_fmt_en = 1).

The corresponding communication timing diagram is as follows:

AN-21010600-E5 119 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 17.4: Communication Timing

Call the following interface to enable the configuration of the frame parameters:

hspi_master_config_plus(&hspi_slave_protocol_config);

Interface for read/write operation calls:

The interface for HSPI/PSPI Master read/write operation calls is as follows:

void spi_master_write_plus(spi_sel_e spi_sel, u8 cmd, u32 addr, u8 *data, u32 data_len,

spi_wr_tans_mode_e wr_mode);↪

void spi_master_write_dma_plus(spi_sel_e spi_sel, u8 cmd, u32 addr, u8 *data, u32 data_len,

spi_wr_tans_mode_e wr_mode);↪

void spi_master_read_plus(spi_sel_e spi_sel, u8 cmd, u32 addr, u8 *data, u32 data_len,

spi_rd_tans_mode_e rd_mode);↪

void spi_master_read_dma_plus(spi_sel_e spi_sel, u8 cmd, u32 addr, u8 *dst_addr, u32 data_len,

spi_rd_tans_mode_e rd_mode);↪

void spi_master_write_read_plus(spi_sel_e spi_sel, u8 cmd, u8 *addrs, u32 addr_len, u8 *data,

u32 data_len, spi_rd_tans_mode_e wr_ mode);↪

void spi_master_write_read_dma_plus(spi_sel_e spi_sel, u8 cmd, u8 *addr, u32 addr_len, u8

*rd_data, u32 rd_len, spi_rd_tans_mode_e rd_mode);↪

Read and write method:

The HSPI/PSPI Master operates the SPI Slave through the operation commands and also needs to configure
the HSPI/PSPI read/write method to match the operation process. The read/write method is used to indicate
whether the operation requires a dummy (empty cycle) frame and whether the command operation is a read
or a write.

AN-21010600-E5 120 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The enumeration for the read-write method is defined as follows:

typedef enum{

SPI_MODE_WR_WRITE_ONLY = 1,//write

SPI_MODE_WR_DUMMY_WRITE = 8,//dummy_write

}spi_wr_tans_mode_e;

typedef enum{

SPI_MODE_RD_READ_ONLY = 2,//must enbale CmdEn

SPI_MODE_RD_DUMMY_READ = 9,//dummy_read

}spi_rd_tans_mode_e;

typedef enum{

SPI_MODE_WR_RD = 3,//must enbale CmdEn

SPI_MODE_WR_DUMMY_RD = 5,//write_dummy_read

}spi_wr_rd_tans_mode_e; .

For example, when reading data, SPI Slave requires to have dummy idle frame, and SPI_MODE_RD_DUMMY_READ
method should be selected for reading data.

17.2.2.2 Slave

The SoC’s HSPI supports Single, Dual, and Quad I/O modes when used as a Slave. The PSPI supports Single
and Dual I/O modes when used as a Slave. Both of them automatically parse cmd, but Slave data receiving
and sending requires software operation.

Communication data frame format

The communication data frame formats supported by HSPI/PSPI Slave are listed in the table below.

(1) HSPI/PSPI SINGLE WRITE

MOSI_IO0 cmd (write 8bit) dummy (8clock) data0 …

MISO_IO1 - - - -

(2) HSPI/PSPI SINGLE READ

MOSI_IO0 cmd (read 8bit) dummy (8clock) - …

MISO_IO1 - - data0 -

(3) HSPI/PSPI DUAL WRITE

AN-21010600-E5 121 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

MOSI_IO0 cmd (write 8bit) dummy (8clock) D6 D4 D2 D0 …

MISO_IO1 - - D7 D5 D3 D1 …

(4) HSPI/PSPI DUAL READ

MOSI_IO0 cmd (read 8bit) dummy (8clock) D6 D4 D2 D0 …

MISO_IO1 - - D7 D5 D3 D1 …

(5) HSPI/PSPI QUAD WRITE

MOSI_IO0 cmd (write 8bit) dummy (8clock) D4 D0 …

MISO_IO1 - - D5 D1 …

WP_IO2 - - D6 D2 …

HOLD_IO3 - - D7 D3 …

(6) HSPI/PSPI QUAD READ

MOSI_IO0 cmd (read 8bit) dummy (8clock) D4 D0 …

MISO_IO1 - - D5 D1 …

WP_IO2 - - D6 D2 …

HOLD_IO3 - - D7 D3 …

Operation commands supported by HSPI/PSPI Slave

The operation commands supported by HSPI/PSPI Slave are represented by enumeration definitions in the
demo, which correspond to the cmd parameters of the read/write function interface when used.

enum{

SPI_READ_STATUS_SINGLE_CMD = 0x05,

SPI_READ_STATUS_DUAL_CMD = 0x15,

HSPI_READ_STATUS_QUAD_CMD = 0x25,

SPI_READ_DATA_SINGLE_CMD = 0x0B,

SPI_READ_DATA_DUAL_CMD = 0x0C,

HSPI_READ_DATA_QUAD_CMD = 0x0E,

SPI_WRITE_DATA_SINGLE_CMD = 0x51,

SPI_WRITE_DATA_DUAL_CMD = 0x52,

HSPI_WRITE_DATA_QUAD_CMD = 0x54,

AN-21010600-E5 122 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

};

Note:

• The operation commands are related to the HSPI or PSPI mode. The SPI prefix indicates that
commands are common for HSPI and PSPI, the HSPI prefix indicates that only HSPI can be used,
DUAL_CMD corresponds to Dual SPI mode, and QUAD_CMD corresponds to Quad SPI mode.

17.2.2.3 Clock settings

In the SoC, the clock source for the HSPI is hclk and the clock source for the PSPI is pclk.

Master clock

The clock calculation formula in Master mode is:

𝐹𝑀𝑎𝑠𝑡𝑒𝑟 = 𝐹ℎ𝑐𝑙𝑘&𝑝𝑐𝑙𝑘
(𝑠𝑝𝑖_𝑐𝑙𝑘_𝑑𝑖𝑣 + 1) ∗ 2

Where spi_clk_div is the frequency dividing coefficient.

𝐹𝑀𝑎𝑠𝑡𝑒𝑟 is the CLK frequency of the Master output.

𝐹ℎ𝑐𝑙𝑘&𝑝𝑐𝑙𝑘 is the frequency of the clock source, where the clock source of HSPI is hclk and PSPI is pclk.

The clock frequency configuration interface of the Master is a macro definition:

#define SPI_CLK 500000

The enable interface for clock configuration is:

spi_master_init(SPI_MODULE_SEL, sys_clk.pclk * 1000000 / (2 * SPI_CLK) - 1, SPI_MODE0);

For actual use, simply modify the SPI_CLK macro definition to the corresponding clock frequency.

Note:

• When the frequency dividing coefficient is 0xff, the Master output clock frequency can reach the
maximum frequency of the source clock.

• The configuration range of SPI_CLK is described in the demo, which can be referred to when
configuring, and exceeding the configuration range may cause communication failure.

Slave clock

The clock of the Slave is input by the Master, and the Slave does not need to configure the corresponding
clock. However, the clock input by the Master to the Slave needs to satisfy the following conditions:

𝐹𝑀𝑎𝑠𝑡𝑒𝑟 ≤ 𝐹ℎ𝑐𝑙𝑘&𝑝𝑐𝑙𝑘
3

where 𝐹𝑀𝑎𝑠𝑡𝑒𝑟 is the CLK frequency that the SPI Master inputs to the Slave.

𝐹ℎ𝑐𝑙𝑘&𝑝𝑐𝑙𝑘 is the Slave device’s own internal clock source frequency, PSPI Slave corresponds to pclk fre-
quency, HSPI Slave corresponds to hclk frequency.

AN-21010600-E5 123 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

17.2.2.4 Interrupt

The SoC supports a variety of SPI interrupt types, which can be flexibly configured according to the appli-
cation scenario when used. The characteristics of each interrupt type are listed in the following table:

Mode Related interrupts

Whether
abnormal
interrupt

Whether
manually clear

the interrupt flag
bit

Generated by
Master or
Slave

Non-DMA SPI_RXF_OR_INT: RX FIFO
over run interrupt. When
receiving data, the program
does not read the data fast
enough and the RX FIFO will
be overwritten with new data,
this loss of data is called over
run.

Y Y Slave

Non-DMA SPI_TXF_UR_INT: TX FIFO
under run interrupt. When
sending data, the speed at
which the program writes data
to the TX FIFO cannot keep up
with the speed of sending, and
there is an interruption in
sending data, which is called
under run.

Y Y Slave

Non-DMA SPI_RXF_INT: RX FIFO
threshold (threshold value)
interrupt. With this interrupt
enabled, this interrupt is
triggered when the RX FIFO
data reaches or exceeds the
threshold value.

N Y Master and
Slave

Non-DMA SPI_TXF_INT: TX FIFO
threshold (threshold value)
interrupt. With this interrupt
enabled, this interrupt is
triggered when the TX FIFO
data less than or reaches the
threshold value.

N Y Master and
Slave

DMA, not
common with
DMA

SPI_END_INT: Data transfer
end interrupt, a data transfer
completion will trigger this
interrupt.

N Y Master and
Slave

AN-21010600-E5 124 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Mode Related interrupts

Whether
abnormal
interrupt

Whether
manually clear

the interrupt flag
bit

Generated by
Master or
Slave

DMA, not
common with
DMA

SPI_SLV_CMD_INT: When it is
configured to Slave mode, this
interrupt will be triggered for
every 1Byte command
received.

N Y Slave

17.2.2.5 DMA mode

Use macro definition to select DMA channels with the following relevant interfaces:

#define TX_DMA_CHN DMA2

#define RX_DMA_CHN DMA3

hspi_set_tx_dma_config(TX_DMA_CHN);

hspi_set_rx_dma_config(RX_DMA_CHN);

The example here configures DMA2 for tx channel, configures DMA3 for rx channel. The PSPI is similar,
details can be viewed in the demo.

The relevant interfaces used to determine whether data has been sent and received in DMA mode are as
follows:

Enquiry:

static inline _Bool spi_is_busy(spi_sel_e spi_sel)

Interrupt mode:

spi_set_irq_mask(SPI_MODULE_SEL, SPI_END_INT_EN);//endint_en

Note:

• SPI_END_INT interrupt does not represent the end of data transfer (it just means the end of fifo
data transfer, CSN is not pulled up). After generating SPI_END_INT interrupt, query the busy
signal, until IDLE represents the end.

• When using DMA for data transmission, the structure or array that defines the send (receive) is
quadruple aligned, as reflected in the demo by __attribute__((aligned(4))).

• When using DMA to receive SPI data into Buffer, the Buffer size of the corresponding destination
address must be a multiple of 4. The reason is: Each DMA sends 4 Bytes to Buffer. 4 Bytes will be
written to the destination address even if the configured read length is less than 4. For example, if
you define an array Buffer of size 5Byte and configure the DMA to read 5Byte from SPI to Buffer,
at this time the DMA actually transfers twice and 8Byte in total to Buffer, and the extra 3Byte
data will overflow from the array, and in severe cases the overflowed data will overwrite other

AN-21010600-E5 125 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

variables. In this case, if the array size is configured to 8 Bytes, the extra 3 Bytes will be stored in
the array and will not overflow, avoiding the potential risk.

17.2.2.6 3Line

HSPI/PSPI Master/Slave supports 3line mode, which needs to be enabled in Slave.

The interface to be called is:

void spi_set_3line_mode(spi_sel_e spi_sel)

Note:

• The 3line mode read/write commands are compatible with SINGLE_CMD of HSPI/PSPI.

17.2.2.7 Multi-SPI Slave architecture

For multi-SPI Slave application scenarios, a CSN pin can be assigned to each Slave. When a data transfer is
completed, the CSN will be pulled high. At this time, you can switch CSN to achieve the effect of switching
Slave.

The HSPI Master calls the interface as follows:

void hspi_cs_pin_dis(hspi_csn_pin_def_e pin)

void hspi_cs_pin_en(hspi_csn_pin_def_e pin)

The PSPI Master calling the interface is similar and can be viewed in the code of the interface.

17.2.2.8 XIP mode

XIP: eXecute In Place, which means that applications can be command obtained, decoded, and executed
directly in the external storage device. The HSPI supports XIP mode, which allows the address space of
the SoC to be extended to the external storage device through the HSPI interface, providing a hardware
foundation for running applications with large amounts of data.

Configure XIP mode

The XIP mode is configured via the following interface.

hspi_xip_seq_mode_en();//must

hspi_xip_page_size(4);

hspi_xip_en();

The seq_mode(sequential mode) in the code indicates an interval sending and receiving mode, which means
that the data is divided into blocks of 2𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 bytes, and the CS will be pulled up once after each block is
transferred, until all the data is completely transferred.

Sending command

Send commands through the following interface:

AN-21010600-E5 126 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

void hspi_master_write_xip_cmd_data(u8 cmd, u32 addr_offset, u8 data_in, spi_wr_tans_mode_e

wr_mode)↪

Data reading and writing

The read/write data calling interface is as follows:

void hspi_master_write_xip(u8 cmd, u32 addr_offset, u8 *data, u32 data_len, spi_wr_tans_mode_e

wr_mode)↪

void hspi_master_read_xip(u8 cmd, u32 addr_offset, u8 *data, u32 data_len, spi_rd_tans_mode_e

rd_mode)↪

XIP on-chip running program

To run the program in XIP mode, you need to switch the PC pointer to the address corresponding to the
program in the XIP device before running it. Here the base address of XIP is 0x1000000, switch the PC
pointer to the corresponding address of XIP device (base address 0x1000000+relative address 0x00) by
the following two commands, and then you can run the program in XIP mode.

__asm__("li t0,0x1000000");

__asm__("jarr t0");

17.2.3 SPI Slave

As the name implies, SPI Slave only supports Slave mode. In the program you only needs to configure the
corresponding GPIO of SPI Slave as SPI function. The hardware will automatically parse the received SPI
data (read/write the value of the corresponding address) and do the corresponding response. In addition,
SPI Slave also supports Dual I/O mode.

17.2.3.1 Communication data frame format

The communication data formats supported by the SPI Slave module are listed in the table below.

（1）SPI SLAVE SINGLE WRITE

MOSI_IO0 cmd (write 8bit) addr(32bit) high -> low data0 data1 …

MISO_IO1 - - - - -

（2）SPI SLAVE SINGLE READ

MOSI_IO0 cmd (read 8bit) addr(32bit) high -> low dummy (8cycle) - -

MISO_IO1 - - - data0 -

AN-21010600-E5 127 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

（3）SPI SLAVE DUAL WRITE

MOSI_IO0 cmd (write 8bit) addr(32bit) high -> low D6 D4 D2 D0 …

MISO_IO1 - - D7 D5 D3 D1 …

（4）SPI SLAVE DUAL READ

MOSI_IO0 cmd (read 8bit) addr(32bit) high -> low dummy (8cycle) D6 D4 D2 D0 …

MISO_IO1 - - - D7 D5 D3 D1 …

Note:

• “addr(32bit) high -> low” indicates that the high byte comes first in the address order.

17.2.3.2 Operation commands supported by SPI Slave

The operation commands supported by SPI Slave are represented by enumeration definitions in the demo,
which correspond to the cmd parameters of the read/write function interface when used.

typedef enum{

SPI_SLAVE_WRITE_DATA_CMD = 0x00,

SPI_SLAVE_WRITE_DATA_DUAL_CMD,

SPI_SLAVE_WRITE_ADDR_DUAL_CMD,

SPI_SLAVE_WRITE_DATA_DUAL_4CYC_CMD,

SPI_SLAVE_WRITE_ADDR_DUAL_4CYC_CMD,

SPI_SLAVE_WRITE_DATA_AND_ADDR_DUL_4CYC_CMD,

}spi_slave_write_cmd_e;

typedef enum{

SPI_SLAVE_READ_DATA_CMD,

SPI_SLAVE_READ_DATA_DUAL_CMD,

SPI_SLAVE_READ_ADDR_DUAL_CMD,

SPI_SLAVE_READ_DATA_DUAL_4CYC_CMD,

SPI_SLAVE_READ_ADDR_DUAL_4CYC_CMD,

SPI_SLAVE_READ_DATA_AND_ADDR_DUL_4CYC_CMD,

}spi_slave_read_cmd_e;

Note:

• The operation command and the SPI mode are related, DUAL_CMD corresponds to Dual SPI mode,
4CYC_CMD corresponds to dummy 4cycle mode. These commands are or to each other when

AN-21010600-E5 128 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

called. For example, if both address and data support Dual I/O encoding, then the read command
format is: SPI_SLAVE__DATA_DUAL_CMD | SPI_SLAVE_READ_ADDR_DUAL_CMD.

17.3 Demo description

17.3.1 Demo structure description

The application .c files of SPI Demo are app.c, app_dma.c and app_hspi_xip.c, which correspond to DMA,
NDMA (non-DMA), and XIP transfer modes, respectively.

Select which transfer mode to use using the macro SPI_MODE in SPI_Demo/app_config. h.

#define SPI_NDMA_MODE 1

#define SPI_DMA_MODE 2

#define SPI_XIP_MODE 3

#define SPI_MODE SPI_NDMA_MODE

In DMA and NDMA transfer modes, the SPI_DEVICE macro in each mode is configured to select Master and
Slave modes.

#define SPI_MASTER_DEVICE 1

#define SPI_SLAVE_DEVICE 2

#define SPI_DEVICE SPI_MASTER_DEVICE

Using HSPI or PSPI module is selected via the macro SPI_MODULE_SEL.

#define PSPI_MODULE 0

#define HSPI_MODULE 1

#define SPI_MODULE_SEL HSPI_MODULE

In DMA and NDMA transfer modes, the communication protocols are divided into three categories according
to the Slave device, which are selected by the macro SPI_TRANS_MODE.

#define KITE_VULTURE_SLAVE_PROTOCOL 1

#define HSPI_PSPI_SLAVE_PROTOCOL 2

#define SPI_SLAVE_PROTOCOL 3

#define SPI_TRANS_MODE SPI_SLAVE_PROTOCOL

KITE_VULTURE_SLAVE_PROTOCOL: is a mode designed for use scenarios such as Telink Kite (TLSR825x) or
Vulture (TLSR827x) as Slave.

HSPI_PSPI_SLAVE_PROTOCOL: is the mode designed for the use scenario of SoC’s HSPI/PSPI as Slave.

SPI_SLAVE_PROTOCOL: it is a mode designed for the use scenario of SPI SLAVE of SoC as Slave.

Note:

AN-21010600-E5 129 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• When testing SPI communication of two boards, after burning the code of both the Master end
and Slave end to the board, power up the Slave end first and then the Master, and there needs to
be a stable common ground between the two boards.

17.3.2 Hardware connection

The wiring method will be different for different SPI_TRANS_MODE in the Demo.

The hardware connection for KITE_VULTURE_SLAVE_PROTOCOL is as follows:

HSPI/PSPI Master (SoC) Slave (Kite/Vulture)

CLK CLK

CSN CSN

MOSI_IO0 SDI

MISO_IO1 SDO

The hardware connection for HSPI_PSPI_SLAVE_PROTOCOL is as follows.

HSPI/PSPI Master (SoC) HSPI/PSPI Slave (SoC)

CLK CLK

CSN CSN

MOSI_IO0 MOSI_IO0

MISO_IO1 MISO_IO1

WP_IO2(HSPI only) WP_IO2(HSPI only)

HOLD_IO3(HSPI only) HOLD_IO3(HSPI only)

The hardware connection for SPI_SLAVE_PROTOCOL is as follows.

HSPI/PSPI Master (SoC) SPI Slave (SoC)

CLK CLK

CSN CSN

MOSI_IO0 MOSI_IO0

MISO_IO1 MISO_IO1

AN-21010600-E5 130 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

17.3.3 Initial configuration of HSPI/PSPI Master/Slave

The initialization flow of HSPI/PSPI Master/Slave is shown in the following diagram:

Figure 17.5: HSPI/PSPI Master/Slave initialization flow

17.3.4 HSPI/PSPI Master read/write operations

The read/write operation flow of HSPI/PSPI Master is shown in the following diagram:

AN-21010600-E5 131 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 17.6: HSPI/PSPI Master read/write operation flow

17.3.4.1 Test example

The Demo configures HSPI in SPI_SLAVE_PROTOCOL mode as Dual SPI, HSPI Master writes 16Bytes
data to SPI Slave using DMA via Dual I/ O write command SPI_SLAVE_WRITE_DATA_DUAL_CMD |
SPI_ SLAVE_WRITE_ADDR_DUAL_CMD, and then reads it out using DMA via Dual I/O read command
SPI_READ_DATA_DUAL_CMD | SPI_READ_ADDR_DUAL_CMD. The test is successful and the logic analyzer
waveform is as follows:

Figure 17.7: Logic analyzer waveform

AN-21010600-E5 132 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

17.3.5 SPI_XIP_MODE mode

The XIP Device for Demo is a PSRAMmodel APS1604M-3SQR, which supports both traditional SPI and QUAD
SPI modes.

17.3.5.1 Communication format

The communication format of PSRAM in Demo is enabled by macro definition, and the macro definition and
meaning are as follows:

#define SPI_XIP_SERIAL_CMD_READ 1

#define SPI_XIP_SINGLE_CMD_FAST_READ 2

#define SPI_XIP_SINGLE_CMD_FAST_QUAD_READ 3

#define SPI_XIP_QUAD_CMD_FAST_READ 4

#define SPI_XIP_QUAD_CMD_FAST_QUAD_READ 5

#define SPI_XIP_LOAD_PROGRAM_TO_PSRAM 6

#define SPI_XIP_TEST_MODE SPI_XIP_SERIAL_CMD_READ

SPI_XIP_SERIAL_CMD_READ: Single-line command data read/write mode.

SPI_XIP_SINGLE_CMD_FAST_READ: Upgrade mode for single-line command data read/write, supporting
higher CLK.

SPI_XIP_SINGLE_CMD_FAST_QUAD_READ: Single-line command four-line data read/write mode.

SPI_XIP_QUAD_CMD_FAST_READ: Four-line command four-line data read/write mode.

SPI_XIP_QUAD_CMD_FAST_QUAD_READ: Upgrade mode for four-line command four-line data read/write,
supporting higher CLK.

SPI_XIP_LOAD_PROGRAM_TO_PSRAM: The mode of running the program inside the chip.

Note:

• The APS1604M-3SQR supports a variety of communication formats, from single-line cmd frame
to four-line cmd frame, and the number of dummies varies with the mode difference, all of which
are reflected in the demo. Here only represents the meaning of the interfaces called, if users want
to know more about the application, they can refer to the demo and the related PSRAM manual
when developing.

17.3.5.2 Configure XIP mode

The APS1604M-3SQR hardware requires that the single data transfer time should not exceed 8us (some
versions are 4us, check the product manual for details), otherwise there will be a risk of error, therefore the
seq_mode should be enabled when configuring XIP mode to. The page_size is set to 1 in the figure below,
and 8 bytes data (0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x77) are written on the PSRAM base address
0x000000, the data is divided into 4 blocks and sent each time 2𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 = 2bytes, sent in four times to
complete. The time interval between adjacent CSN pull-ups is less than 8us.

AN-21010600-E5 133 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 17.8: Configuring XIP mode

Note:

• Because of the 8us interval required by the APS1604M-3SQR, the CLK frequency has to be in-
creased to reduce the time consumed by each transfer of 2𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 Bytes of data to meet the
8us requirement, so the SPI_CLK of the HSPI in XIP mode is higher than the general SPI application.
When the SPI_CLK cannot be adjusted to meet the 8us requirement, the size of page_size can be
configured to reduce the number of bytes per transfer and increase the number of transfers to
meet the time requirement.

17.3.5.3 Test example

The Demo configures HSPI to QUAD XIP mode, writes the LED blinking program in the array led_program_in
_sram to PSRAM address 0x00 via HSPI XIP, and then jumps to the corresponding address in PSRAM to
execute the program.

The test found that LED2 blinks at intervals, proving that the PSRAM on-chip running program is success-
ful.

Read the program in PSRAM to the array led_program_in_psram, read the array led_program_in_psram and
led_program_in_sram by BDT tool to compare, the two sets of data are exactly the same, which proves the
success of reading and writing PSRAM.

Figure 17.9: Test example

AN-21010600-E5 134 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

18 PM

The MCU is in working mode during normal program execution and the current will be at the mA level. If
you need to save power you need to enter the low power mode.

18.1 Function description

The Low power mode (LPM), also known as sleep mode, has three types as follows:

(1) Suspend

(2) deep sleep without SRAM retention (hereinafter referred to as deep)

(3) deep sleep with SRAM retention (hereinafter referred to as deep retention)

Each mode is divided into PAD wake-up, 32k_timer wake-up (internal 32k, external 32k clock source), MDEC
wake-up, LPC wake-up and CORE wake-up depending on the wake-up source, where CORE wake-up only
supports suspend mode and other wake-up sources support all modes.

The current chip models that support deep retention mode include: blackHawk (8K), kite (8K/16k/32k),
vulture (16k/32k), and eagle (32k/64k).

The states of SRAM, digital register, and analog register in the three low-power modes are as follows.

module suspend deep retention deep

SRAM 100% keep First 16K/32K/64K keep, others lost 100% lost

digital register 99% keep 100% lost 100% lost

analog register 100% keep 99% lost 99% lost

The three low-power modes are described as follows:

18.1.1 Suspend

In suspend mode, the program stops running, similar to a pause function. When the suspend mode is
woken up, the program continues to execute. In suspend mode, the PM module works normally, SRAM
does not power down (no data loss), all the analog register does not power down, and a small amount of
digital register power down. In order to save power, the software can be set to power down the RF/USB/
Audio modules, at this time the corresponding part of the digital register of these modules will be lost. For
example, RF needs to be re-initialized after waking up in order to send packets, the rest of the registers are
not lost. If you want to be able to send packets directly after waking up, you cannot set the corresponding
module power down, but the corresponding power consumption will increase. It can be woken up by IO,
timer, and other methods; here it should be noted that in the pad wake-up mode in order to avoid false
triggering, you need to do the corresponding pull-up and pull-down to ensure the initial level.

AN-21010600-E5 135 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

18.1.2 Deep

In deep mode, the program stops running, the vast majority of the MCU hardware modules are powered
off. When the deep mode is woken up, the MCU will restart, similar to re-powering, and the program starts
initializing again. In deep mode, the pm module works normally, the SRAM is powered down, data is lost,
most of the 3.3V analog register will be saved, the rest of the analog register is powered down, and all digital
registers are powered down. It can be woken up by IO, Timer, and other methods, but the SRAM data is
lost.

18.1.3 Deep retention

The deep mode has low current, but cannot store SRAM information; the suspend mode can keep SRAM
and register without losing data, but the current is high. In order to achieve some application scenarios that
require low current when sleeping and to ensure that the state can be restored immediately after waking
up from sleep, the deep retention mode is added. The Deep Retention mode is closer to deep mode, and
the only difference with deep is that it can save SRAM, and you can choose the size of SRAM retention area
according to your actual needs.

In deep retention mode, the program stops running, most of the MCU hardware modules are powered off.
When the deep retention mode is woken up, the MCU will restart, similar to re-powering, the program starts
initialization again. In deep retention mode, pm module works normally, SRAM keeps part of the space
without power off, the rest is powered off. All others are powered down, most of the 3.3V analog register
will be saved, other analog register is powered down, all digital register is powered down, and the current
value greater than deep mode is the current value consumed to keep the SRAM. It can be woken up by
IO, Timer, and other methods. Since deep retention mode will save SRAM, it can save part of the action of
moving code/data from flash to RAM after waking up. In addition, the program can also define the retention
data. The variable defined as retention data will not go to flash to get the value after waking up, but will
be saved in SRAM directly, so the last modified value will be saved.

18.1.4 Low power mode workflow

The MCU operation flow is different for different sleep modes. The following is a detailed description of the
MCU operation flow after waking up from the 3 sleep modes: suspend, deepsleep, and deepsleep retention.
Please refer to the following diagram.

AN-21010600-E5 136 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 18.1: MCU operation flow

Description of the modules in the flowchart.

a) Run hardware bootloader

The MCU hardware performs some fixed actions that are solidified in the hardware and cannot be modified
by software.

b) Run software bootloader

After the hardware bootloader finishes running, the MCU starts running the software bootloader, which is
the vector segment that corresponds to the assembly program inside the S file. The software bootloader is

AN-21010600-E5 137 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

to set up the memory environment for the later C program, which can be understood as the initialization of
the whole memory.

c) System initialization

The system initialization corresponds to the initialization of each hardware module such as sys_init and
clock_init in the main function, and sets the digital/analog register status of each hardware module.

d) User initialization

The user initialization corresponds to the function user_init.

e) main_loop

After the user initialization is completed, it enters the main_loop controlled by while(1). The series of op-
erations before entering sleep mode in main_loop is called “Operation Set A”, and the series of operations
after waking up from sleep is called “Operation Set B”.

Process analysis of each sleep mode.

(1) no sleep

Without sleep, the MCU runs as a loop in while(1), repeatedly executing “Operation Set A” -> “Operation Set
B”.

(2) suspend

The cpu_sleep_wakeup function is called to enter the suspend mode. When the suspend mode is woken
up, the MCU continues to run to “Operation Set B”, similar to the normal exit of the cpu_sleep_wakeup
function. During suspend sleep, all SRAM data remains unchanged, and most of the digital/analog register
states remain unchanged (with a few special exceptions); therefore, after the suspend mode is woken up,
the program continues to run in its original position, and there is almost no need to consider any SRAM and
register state recovery.

(3) deepsleep

The cpu_sleep_wakeup function is called to enter the deep mode, and when the deep mode is woken up,
similar to re-powering, the MCU goes back to hardware bootloader to run again. During deep sleep all
SRAM and most of the digital/analog registers are powered down (with the exception of some special analog
registers) and all hardware and software initialization will be redone.

(4) deepsleep retention

The deep retention mode is a sleep mode between suspend and deep. The cpu_sleep_wakeup function is
called to enter deep retention mode. When deep retention is woken up, the MCU returns to run software
bootloader to start running. During the deep retention sleep period SRAM keeps only a part of SRAM powered
on, most of the digital/analog registers are powered down (with the exception of some special analog
registers). After waking up, part of the data in front of the SRAM is kept, and the step of “Run hardware
bootloader” can be skipped, because the retention area on the SRAM is limited, “run software bootloader”
cannot be skipped and must be executed; because deepsleep retention cannot save the register state, the
system initialization must be executed and the register initialization needs to be reset. Since the program
can also define the retention data, the user initialization can be optimized and improved, and the user
initialization after power on/deep wake-up can be differentiated.

AN-21010600-E5 138 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

18.2 Driver description

The driver layer provides a number of interface resources for use by the upper application layer, which are
described below.

18.2.1 Reserved information BUF

When the chip enters the deep/retention state, the data of most of the registers will be lost. The chip
reserves 8 registers that will not be lost in deep/retention, so that the application layer can record some
information that you want to save in the sleep state. You can define in the driver as the following (0x38<0>
and 0x39<0> are used by the driver and the rest is reserved for the application layer):

(1) The following registers will be cleared in three cases: watchdog, hardware/software reset, and power-
up.

//watchdog, chip reset, RESET Pin, power cycle

#define PM_ANA_REG_WD_CLR_BUF0 0x38 // initial value 0xff. [Bit0] is already occupied. The

customer cannot change!↪

(2) The following registers will be cleared only when re-powered.

#define PM_ANA_REG_POWER_ON_CLR_BUF0 0x39 // initial value 0x00. [Bit0] is already occupied.

The customer cannot change!↪

#define PM_ANA_REG_POWER_ON_CLR_BUF1 0x3a // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF2 0x3b // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF3 0x3c // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF4 0x3d // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF5 0x3e // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF60x3f // initial value 0x0f

18.2.2 Status information

The driver defines a global variable g_pm_status_info that will update the relevant status of the pm in the
sys_init function, which contains the following:

typedef struct{

unsigned char is_pad_wakeup; //Whether this time it is woken up by the pad

unsigned char wakeup_src; //Which wake-up source is for wake-up this time, including the

wake-up status of PAD, TIMER, MDEC, LPC and CORE.↪

pm_mcu_status mcu_status; //Which state is MCU back from, including power on/watchdog/deep/

deep ret four states↪

unsigned char rsvd;

}pm_status_info_s;

extern _attribute_aligned_(4) pm_status_info_s g_pm_status_info;

Note:

AN-21010600-E5 139 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• For the wake-up source WAKEUP_STATUS_TIMER, as long as the timer time to the set time, the
flag will be set up by itself, even if no timer wake-up set on, the flag will be set up, but not
wake-up. After clearing the flag, it will still be set up when the time comes.

• For the wake-up source WAKEUP_STATUS_CORE, it belongs to the digital part of the wake-up
mode, during the wake-up process the digital registers can not be powered off, so it only supports
suspend sleep mode. Register configuration default open core wake-up, when power on/deep/
deep ret is back the wake-up source flag bit will be set up, you need to ignore this flag bit, back
from suspend the wake-up source flag bit will display normally.

• For the wake-up source WAKEUP_STATUS_PAD, when entering sleep, if the pad meets the wake-
up condition, the program will not enter sleep and continue to run. If it is deep mode, the driver
sleep function is set to enter reboot, and the program is processed as reboot. If it is retentionmode,
the driver sleep function is not processed, the upper software can be processed as suspend, and
after exiting the sleep function, the rf module needs to be initialized again.

18.2.3 Suspend power setting

Interface function: pm_set_suspend_power_cfg

This function configures whether the basebend, usb, and npe modules are powered down when suspend.
The default state is all power down. If you want to be in suspend mode, you can call this function to set it
before entering suspend.

18.2.4 LPC wake-up

In the test, it is found that when setting 872mv and 50%, it can wake up below 2.02V (normally it should
wake up below 1.744V), the reason is that the LPC function is less accurate in LPC_LOWPOWER mode.

18.2.5 USB wake-up

In the test, we found that the USB wake-up flag will be set wrongly, because the trigger condition of USB
wake-up is that there is a voltage change on the USB pins DP and DM and data is generated, before setting
the USB wake-up, software configuration is needed to connect the DP pin to pull-up and the DM pin to
pull-down, which can ensure the stability of the voltage level.

Note:

• The DM pin is connected to the pull-down in order to simulate the state of the connection with
the host, which is only needed when testing the USB wake-up configuration.

18.3 Demo description

18.3.1 Process description

The flow chart of the Demo is as follows.

AN-21010600-E5 140 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 18.2: Demo flow chart

Flowchart description:

(1) The 2s delay is added at the beginning to keep communication possible, because after entering sleep,
swire will not work, it is easy to fail active when using BDT and cannot burn the program.

(2) Turn off all IO pins to prevent leakage before the current test starts.

(3) CORE wake-up only supports suspend sleep mode, not deep mode or deep retention mode.

(4) Suspend mode turns on LED2 before sleep and turns it off after waking up, deep and deep retention
mode goes to sleep when the chip is powered down and LED1 turns off automatically. (LED is just to
indicate the status.)

(5) Because RC clocks are inaccurate and vary with temperature, they generally need to be calibrated
regularly. The following recommendations are given:

a) 24M RC

It can be calibrated every 10s, calibrated before sleep, this accuracy will affect the start time of the crystal
after sleep. Waking up from sleep, the hardware uses 24M RC clock to kick crystal, the more accurate the
time, the faster the start time.

b) 32K RC

It is calibrated once after power up and wake up from deep. Because of the tricking method used in PM
(using 16M to count the time of 32K fixed cycles), there is no effect on the accuracy of Timer wake-up time
here.

If other modules use 32K RC, they need to be handled according to the application requirements.

AN-21010600-E5 141 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

c) 32K xtal

It is needed to kick crystal after power up. In addition, when using 32K xtal, you need to solder a capacitor
externally.

18.4 Chip difference

18.4.1 Sleep current value

Set The CURRENT_TEST current test macro to 1, test the sleep current in uA (this is a chip test data, for
reference only, you can refer to the datasheet for details).

Sleep current value of B91 A0 chip:

-
Pad
ldo

Pad
dcdc

32k rc
ldo

32k rc
dcdc

32k
xtal ldo

32k
xtal
dcdc

mdec
ldo

mdec
dcdc

lpc
ldo

lpc
dcdc

deep 0.7 0.7 1.3 1.2 1.7 1.6 1.4 1.4 1.6 1.6

deep retention 32k
sram

1.8 1.8 2.4 2.4 2.8 2.7 2.6 2.6 2.8 2.8

deep retention 64k
sram

2.7 2.7 3.2 3.2 3.7 3.6 3.4 3.4 3.7 3.8

Sleep current values for the B91 A1 chip:

#9
Pad
ldo

Pad
dcdc

32k rc
ldo

32k rc
dcdc

32k
xtal ldo

32k
xtal
dcdc

mdec
ldo

mdec
dcdc

comp.
ldo

comp.
dcdc

core
ldo

core
dcdc

suspend 36.6 36.7 37.1 37.1 36.8 37.1 37.1 36.8 37.9 37.7 37 36.8

deep 0.6 0.5 1.1 1.1 1.5 1.4 1.1 1.0 1.5 1.5 - -

deep ret
32k

1.8 1.7 2.3 2.2 2.7 2.5 2.3 2.2 2.7 2.7 - -

deep ret
64k

2.7 2.6 3.1 3.1 3.5 3.4 3.2 3.1 3.6 3.1 - -

AN-21010600-E5 142 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

19 LPC

19.1 Introduction

The Low Power Comparator (LPC for short) compares the input voltage multiplied by the selected scale
factor with a reference voltage and outputs the result of the comparison. There are two working modes of
the LPC, which are:

(1) Normal mode, the internal reference voltage is from bandgap (BG for short), it has higher accuracy,
high power consumption, and works in the chip’s normal power supply environment.

(2) Low power mode, internal reference voltage is from UVLO, it has lower accuracy, low power consump-
tion, and works in the chip sleep environment.

The output of the low-power comparator can also be used as a signal to wake up the system from low-power
mode.

19.2 Working principle

The LPC requires a 32K RC clock source to be used as the comparator clock. The comparison results are as
follows:

(1) If the value of [Input Voltage * Scaling] is greater than the reference voltage, the output will be low
(“0”).

(2) If the value of [Input Voltage * Scaling] is less than the reference voltage, the output will be high (” 1“).

(3) If the value of [Input Voltage * Scaling] is equal to the reference voltage, or if the input channel is
selected as float, the output will be indeterminate.

19.3 Demo description

Demo flow chart is as follows:

AN-21010600-E5 143 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 19.1: Demo flow chart

The reference voltage value is set to 872mv, and the scaling ratio is set to 50%, then when the input voltage
is 0 ~ 1.744V, the lpc_get_result returns “1”; and when the input voltage is 1.744 ~ 3.3V, the lpc_get_result
returns “0”.

AN-21010600-E5 144 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

20 MDEC

MDEC is the Manchester Decoding Module.

20.1 Test environment setup

The working environment for implementing the MDEC function consists of two other boards in addition to
the development board:

(1) AT9001H-V1.1: Receive RF data and send the data out through MCU_1.

(2) E21480094v-0: Send RF data to the AT9001H-V1.1 board.

In the figure of AT9001H-V1.1, the black cable is GND, the red cable is MCU_1, the long iron piece on the right
is GND, and the diagonal iron above is VBAT. When wiring, please note that MCU_1 should be connected to
the MDEC function pins (PA0 on the silkscreen) set in the development board. The red cable of PCB board
E21480094v-0 is 24V+ and the black cable is 24V-.

Figure 20.1: PCB board AT9001H-V1.1

AN-21010600-E5 145 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 20.2: PCB board E21480094v-0

In addition, the PCB board E21480094v-0 requires a 24V regulated voltage source to supply power. The
specific wiring schematic is as follows:

Figure 20.3:Wiring diagram

Figure 20.4:Wiring diagram

When the environment is set up and powered on, the board E21480094v-0 will continuously send wireless

AN-21010600-E5 146 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

packet data content, when the board AT9001H-V1.1 receives the data it will send through MCU_1 to the SoC’s
Manchester interface IO in the form of levels. Pay attention to place the two boards as close as possible,
and the correct level waveform is as follows:

Figure 20.5: Level waveform

Note:

• If you see a messy waveform, reposition the two boards and adjust the long black coil in the
connector at the bottom of the E21480094v-0.

20.2 Function description

Using the MDEC module requires a 32K clock to be turned on, where both 32K RC and 32K Xtal are suitable.
The relevant data is obtained and determined by reading the voltage level of the Manchester input pin. It
can be used for MDEC wake-up in low-power mode.

Note:

• The 32K clock source is used because the MDEC is designed to be used as a wake-up source in
deep and suspend scenarios.

AN-21010600-E5 147 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

21 RF

The RF driver supported transceiver modes include BLE1M, BLE2M, BLE125K, BLE500K, Zigbee250K, Hy-
bee1M, Hybee2M, Hybee500K, Private1M, Private2M, Private250K, Private500K, and ANT mode. Where
BLE1M, 2M also contains two modes of turning on PN and turning off PN.

The BLE mode works in standard compliant 1Mbps BLE mode, 2Mbps enhanced BLE mode, 125Kbps BLE
remote mode (S8), and 500kbps BLE remote mode (S2). The Zigbee mode works in IEEE 802.15.4 compliant
250Kbps mode.

21.1 Initialization

The RF module initialization is as follows:

rf_mode_init(); //RF initialization

rf_set_ble_1M_mode(); //different modes call different mode initialization, here take BLE_1M

mode as an example↪

rf_set_power_level(RF_POWER); //Set the transmit energy

rf_access_code_comm(ACCESS_CODE);// Zigbee, hybee mode has no access code concept, so this step

is not needed↪

rf_set_tx_dma(0,128);//1 FIFO, each FIFO size is 128bytes

rf_set_rx_dma(rx_packet,RX_FIFO_NUM-1,RX_FIFO_DEP);

rf_set_ble_chn(17);//for BLE open PN 2440MHz

If you want to send and receive packets, there are two usage options:

(1) Manual Mode: all the use process for tx and rx are controlled by the software process, for example,
set tx mode, wait for stable PLL before sending packets, and so on.

(2) Auto Mode: as long as the corresponding state machine mode is triggered, the subsequent actions
are automatically controlled by the hardware and do not require software control.

21.2 Energy setting

Currently there are two interfaces to set energy:

void rf_set_power_level (rf_power_level_e level)

Applicable mode Parameter chn_num

All modes Set the value of the enumeration variable corresponding to the energy.

void rf_set_power_level_index (rf_power_level_index_e idx)

AN-21010600-E5 148 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Applicable mode Parameter chn

All modes The passed in index value of the enumeration variable in the corresponding
array for the energy.

Note:

• The only difference between the two is the inconsistency in the way the parameters are passed,
and in the application you can choose whichever to use as needed.

21.3 Frequency setting

Currently there are two interfaces to set the frequency point:

void rf_set_ble_chn(signed char chn_num)

Applicable mode Parameter chn_num

ble_1M, ble_2M, ble_250K, ble_500K The actual frequency point is set to (chn_num+2400) MHz

void rf_set_chn(signed char chn)//all modes can be used

Applicable mode Parameter chn

All modes The index value of the frequency point is passed in. It is set to the
corresponding frequency point by the transformation of index, and the index
relationship is as follows.

The correspondence between the rf_set_ble_chn function parameter chn_num and the frequency points is
shown in the following table.

Corresponding frequency point (MHz) chn_num

2402 37

2404 0

2406 1

2408 2

2410 3

2412 4

AN-21010600-E5 149 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Corresponding frequency point (MHz) chn_num

2414 5

2416 6

2418 7

2420 8

2422 9

2424 10

2426 38

2428 11

2430 12

2432 13

2434 14

2436 15

2438 16

2440 17

2442 18

2444 19

2446 20

2448 21

2450 22

2452 23

2454 24

2456 25

2458 26

2460 27

2462 28

2464 29

2466 30

2468 31

2470 32

AN-21010600-E5 150 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Corresponding frequency point (MHz) chn_num

2472 33

2474 34

2476 35

2478 36

2480 39

21.4 Interrupt

All interrupts below need to be cleared manually by the software.

Mode Related interrupts

Auto FLD_RF_IRQ_RX_TIMEOU: If the packet is still not received within the time set from
trigger to timeout, an interrupt is generated and the state machine returns to idle
state. The timeout time is set by void rf_set_rx_timeout(); and the timeout starts from
the trigger RX.

Auto FLD_RF_IRQ_CMD_DONE: After completing a normal packet receiving or sending
operation, the state machine returns to the IDLE state normally and generates an
interrupt.

Auto FLD_RF_IRQ_RX_CRC_2: BTX,BRX,PTX,PRX will generate interrupt if CRC error is
detected twice in a row during packet receiving (continuous packet receiving).

Auto FLD_RF_IRQ_FSM_TIMEOUT: It contains the state machine used for switching from
receive to send, specifying the time of the entire state machine, and determining
whether the specified time is exceeded in the TX_WAIT state.

Auto FLD_RF_IRQ_TX_RETRYCNT: Generate an interrupt when the number of ptx retry
exceeds the set r_max_retry_cnt.

Auto FLD_RF_IRQ_TX_DS: Length of payload (sent by PTX, PRX) ! = 0, generate tx_ds
interrupt.

Auto FLD_RF_IRQ_RX_DR: PRX, PTX, SRX received packets detect the packet payload
length ! = 0, generate rx_dr interrupt.

Auto FLD_RF_IRQ_STX_TIMEOUT: The STX state does not wait for tx_done in the specified
time, thus timeout, generating an interrupt.

Auto FLD_RF_IRQ_INVALID_PID: PTX or PRX receives invalid pid and generates interrupt.

Auto FLD_RF_IRQ_FIRST_TIMEOUT: BRX, PRX, SRX, SRT first RX timeout, when the first
packet receive timeout it will generate an interrupt.

AN-21010600-E5 151 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Mode Related interrupts

Auto FLD_RF_IRQ_WIFI_DENY: After the Bluetooth chip receives the wifi_deny signal from
the WiFi chip when it is connected to the WiFi chip, the Bluetooth chip generates an
interrupt

Auto/
Manual

FLD_RF_IRQ_RX: an interrupt is generated after each packet is received.

Auto/
Manual

FLD_RF_IRQ_TX: an interrupt is generated after each packet is sent.

Auto/
Manual

FLD_RF_IRQ_SUPP_OF: The interrupt is mainly used for AOA and AOD. If iq sampling
frequency is too high the hardware FIFO will overflow error, generate interrupt iq
sample and synchronize fifo overflow.

21.5 Packet format

The format of the packet contents of sending and receiving packets in ram differs for each mode. The
following describes the format of the packet contents in ram for each mode according to the sending and
receiving packets.

The first four bytes of the outgoing packet format in all modes are DMA_LEN_INFO, which can be obtained
and filled in by calling the following function:

DMA_LEN_INFO = rf_tx_packet_dma_len (data_len).

Note:

• The receiving/ sending buffer must be four-byte aligned. For example: unsigned char
rx_packet[128*4] __attribute__ ((aligned (4)));

21.5.1 BLE packet format

21.5.1.1 BLE packet sending format

The format of the packet sending in RAM is shown below (where payload length is the data length and data
is the data to be sent):

BLE TX Packet:

Address Content

addr, addr + 1, addr + 2, addr + 3 DMA_LEN_INFO rf_tx_packet_dma_len(payload length+2).

addr + 4 header0

addr + 5 header (payload length)

AN-21010600-E5 152 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Address Content

addr + 6 data(0)

addr + 7 data(1)

addr + 8 data(1)

….. …..

addr +6+(length-1) data(length-1)

21.5.1.2 BLE packet receiving format

When the SoC is in BLE mode for packet receiving, the received packet data is stored in ram in the following
format:

BLE packet receiving format:

Address Content Description

rba-4, rba-3, rba-2,
rba-1

- -

rba header0 refer to Bluetooth low
energy spec

rba+1 header1 (payload length) indicate length of
payload only, do not
include 3 crc bytes

rba+2 data(0) payload

rba+3 data(1) payload

rba+4 data(2) payload

….. ….. payload

rba+2+(length-1) data(length-1) payload

rba+2+(length) crc(0) crc byte0

rba+2+(length+1) crc(1) crc byte1

rba+2+(length+2) crc(2) crc byte2

rba+2+(length+3) r_tstamp[7:0] time stamp byte0

rba+2+(length+4) r_tstamp[15:8] time stamp byte1

rba+2+(length+5) r_tstamp[23:16] time stamp byte2

rba+2+(length+6) r_tstamp[31:24] time stamp byte3

AN-21010600-E5 153 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Address Content Description

rba+2+(length+7) pkt_fdc[7:0] low byte of recorded
frequency offset after
demodulation

rba+2+(length+8) {1’b0,rx_packet_chn_efuse[2:0]},
{1’b0,pkt_fdc[10:8]}

high byte of recorded
frequency offset after
demodulation

rba+2+(length+9) pkt_rssi recorded packet RSSI

- [0] crc error

- [1] sfd error

- [2] link layer error

- [3] power error

- [4] long range 125K
indicator

- [6:5] N/A

- [7] NoACK indicator

21.5.1.3 BLE packet receiving data parsing

According to the receiving packet format introduced in the previous sections, the information commonly
used in the receiving packet can be obtained through the interface, which has been encapsulated with the
relevant functions:

Function Description

rf_ble_packet_crc_ok(p) Determine whether the receiving packet CRC is correct

rf_ble_dma_rx_offset_crc24(p) Get the index of the CRC location in the packet

rf_ble_dma_rx_offset_time_stamp(p) Get the index value of time_stamp in the packet

rf_ble_dma_rx_offset_freq_offset(p) Get the index value of the frequency offset in the packet

rf_ble_dma_rx_offset_rssi(p) Get the index value of rssi in the packet

AN-21010600-E5 154 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

21.5.1.4 Packet parsing example

Figure 21.1: Example of packet parsing

21.5.2 Zigbee/hybee packet format

21.5.2.1 Zigbee/hybee packet sending format

Zigbee 250K and hybee mode sending packet data are stored in ram in the following format:

Zigbee/Hybee TX Packet:

Address Content

tba, tba + 1, tba + 2, tba + 3 DMA_LEN_INFO: rf_tx_packet_dma_len(payload length-1)

tba + 4 Payload length

tba + 5 data(0)

tba + 6 data(1)

tba + 7 data(1)

….. …..

tba+5+(length-3) data(length-3)

21.5.2.2 Zigbee/hybee packet receiving format

When the SoC is in zigbee 250K or hybee mode to receive packets, the received packet data is stored in ram
in the format shown in the table below:

Zigbee/hybee packet receiving format:

Address Content Description

rba-4, rba-3, rba-2, rba-1 - -

rba length (payload+crc) indicate length of payload and 2 crc
bytes

AN-21010600-E5 155 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Address Content Description

rba+1 data(0) payload

rba+2 data(1) payload

rba+3 data(2) payload

….. ….. payload

rba+1+(length-3) data(length-3) payload

rba+1+(length-2) crc(0) crc byte0

rba+1+(length-1) crc(1) crc byte1

rba+1+(length) r_tstamp[7:0] time stamp byte0

rba+1+(length+1) r_tstamp[15:8] time stamp byte1

rba+1+(length+2) r_tstamp[23:16] time stamp byte2

rba+1+(length+3) r_tstamp[31:24] time stamp byte3

rba+1+(length+4) pkt_fdc[7:0] low byte of recorded frequency
offset after demodulation

rba+1+(length+5) {1’b0,rx_packet_chn_efuse[2:0]}
{1’b0,pkt_fdc[10:8]}

high byte of recorded frequency
offset after demodulation

rba+1+(length+6) pkt_rssi recorded packet RSSI

rba+1+(length+7) [0] crc error

rba+1+(length+7) [1] sfd error

rba+1+(length+7) [2] link layer error

rba+1+(length+7) [3] power error

rba+1+(length+7) [4] long range 125K indicator

rba+1+(length+7) [6:5] N/A

rba+1+(length+7) [7] NoACK indicator

21.5.2.3 Packet data parsing

Obtain the index of the received packet information according to the packet format.

Function Description

rf_zigbee_packet_crc_ok(p) Determine whether the CRC of the packet is correct

rf_zigbee_dma_rx_offset_crc(p) Obtain the index of the CRC in the packet

AN-21010600-E5 156 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Function Description

rf_zigbee_dma_rx_offset_time_stamp(p) Obtain the index of time_stamp in the packet

rf_zigbee_dma_rx_offset_freq_offset(p) Obtain the index of frequency offset in the packet

rf_zigbee_dma_rx_offset_rssi(p) Obatin the index of rssi in the packet

21.5.2.4 Packet parsing example

The received data can be parsed according to the storage format of the received packets in zigbee/hybee
mode in the previous sections, as shown in the following example:

Figure 21.2: Example of packet parsing

21.6 Private packet format

The Private mode can be divided into two types of SB and TPLL(Telink Proprietary Link Layer), and this
section introduces the sending and receiving packet formats for each of them.

21.6.1 Private TPLL packet sending format

When the SoC sends packets in private mode using the TPLL, the packet data is stored in the following
format:

Private TPLL TX Packet:

Address Content

tba, tba + 1, tba + 2, tba + 3 DMA_LEN_INFO: rf_tx_packet_dma_len(payload length).

tba + 4 Payload length

tba + 5 data(0)

tba + 6 data(1)

….. …..

AN-21010600-E5 157 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Address Content

tba+5+(length-1) data(length-1)

21.6.2 Private TPLL packet receiving format

When the SoC is in private TPLL mode to receive packets, the format of the received packets in RAM is
shown below:

Private TPLL mode receiving packet format:

Address Content Description|

rba-4, rba-3 0 -

rba-2 - -

rba-1 - -

rba payload length indicate length of payload only, do
not include 2 crc bytes

rba+1 data(0) payload

rba+2 data(1) payload

rba+3 data(2) payload

….. ….. payload

rba+1+
(length-1)

data(length-1) payload

rba+1+(length) crc(0) crc byte0

rba+1+
(length+1)

crc(1) crc byte1

rba+1+
(length+2)

r_tstamp[7:0] time stamp byte0

rba+1+
(length+3)

r_tstamp[15:8] time stamp byte1

rba+1+
(length+4)

r_tstamp[23:16] time stamp byte2

rba+1+
(length+5)

r_tstamp[31:24] time stamp byte3

rba+1+
(length+6)

pkt_fdc[7:0] low byte of recorded frequency offset
after demodulation

rba+1+
(length+7)

{1’b0,rx_packet_chn_efuse[2:0]}
{1’b0,pkt_fdc[10:8]}

high byte of recorded frequency
offset after demodulation

AN-21010600-E5 158 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Address Content Description|

rba+1+
(length+8)

pkt_rssi recorded packet RSSI

rba+1+
(length+9)

[0] crc error

rba+1+
(length+9)

[1] sfd error

rba+1+
(length+9)

[2] link layer error

rba+1+
(length+9)

[3] power error

rba+1+
(length+9)

[4] long range 125K indicator

rba+1+
(length+9)

[6:5] N/A

rba+1+
(length+9)

[7] NoACK indicator

21.6.3 TPLL receiving packet parsing

Get the index of the information received in the packet according to the packet format.

Function Description

rf_pri_tpll_packet_crc_ok(p) Determine whether the receiving packet CRC is correct

rf_pri_tpll_dma_rx_offset_crc(p) Get the index of the CRC location in the packet

rf_pri_tpll_dma_rx_offset_time_stamp(p) Get the index value of time_stamp in the packet

rf_pri_tpll_dma_rx_offset_freq_offset(p) Get the index value of the frequency offset in the packet

rf_pri_tpll_dma_rx_offset_rssi(p) Get the index value of rssi in the packet

AN-21010600-E5 159 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

21.6.4 Example of TPLL receiving packet parsing

Figure 21.3: Example of TPLL receiving packet parsing

21.6.5 Private SB packet format

When the SoC is in private SB mode for packet sending, the data is stored in ram in the following table:

Private SB TX Packet:

Address Content

tba, tba + 1, tba + 2, tba + 3 DMA_LEN_INFO: rf_tx_packet_dma_len(payload length).

tba + 4 Payload length

tba + 7 data(1)

Note:

• In private SB mode, the payload length information is not included in the packet format,
so the packet format is different, and the payload length can be set by the function void
rf_set_private_sb_len().

21.6.6 Private SB packet receiving format

When the SoC is in private SB mode for packet receiving, the received packet data is stored in the ram as
shown in the following table:

Private SB packet receiving format:

Address Content Description

rba-4, rba-3 0 -

rba-2 - -

rba-1 - -

rba data(0) payload

AN-21010600-E5 160 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Address Content Description

rba+1 data(1) payload

rba+2 data(2) payload

….. ….. payload

rba+1+(length-1) data(length-1) payload

rba+1+(length) crc(0) crc byte0

rba+1+(length+1) crc(1) crc byte1

rba+1+(length+2) r_tstamp[7:0] time stamp byte0

rba+1+(length+3) r_tstamp[15:8] time stamp byte1

rba+1+(length+4) r_tstamp[23:16] time stamp byte2

rba+1+(length+5) r_tstamp[31:24] time stamp byte3

rba+1+(length+6) pkt_fdc[7:0] low byte of recorded frequency offset
after demodulation

rba+1+(length+7) {1’b0,rx_packet_chn_efuse[2:0]}
{1’b0,pkt_fdc[10:8]}

high byte of recorded frequency offset
after demodulation

rba+1+(length+8) pkt_rssi recorded packet RSSI

rba+1+(length+9) [0] crc error

rba+1+(length+9) [1] sfd error

rba+1+(length+9) [2] link layer error

rba+1+(length+9) [3] power error

rba+1+(length+9) [4] long range 125K indicator

rba+1+(length+9) [6:5] N/A

rba+1+(length+9) [7] NoACK indicator

AN-21010600-E5 161 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

21.6.7 Example of SB receiving packet parsing

Figure 21.4: Example of SB receiving packet parsing

Note:

• The demo framework of all modes is basically the same, but in private mode there is a need to
distinguish between TPLL and SB; when using TPLL mode the operation is basically the same as
other modes, but when using SB mode to send and receive packets you need to configure the cor-
responding registers to turn on the SB mode corresponding interface void rf_private_sb_en(void),
and because SB mode packet format does not contain payload length information, you need to
set the payload length of the receiving and sending end, corresponding to the interface void
rf_set_private_sb_len(int pay_len).

21.7 Manual mode

21.7.1 Manual TX

21.7.1.1 Single-frequency sending

For single frequency point sending in manual TX mode, the setup steps are as follows:

rf_set_txmode(); //enter tx mode and wait for the trigger to send packets

delay_us(113); //wait for PLL to stabilize

while(1)

{

rf_tx_pkt(ble_tx_packet); //trigger the packet sending

while(! (rf_get_irq_status(FLD_RF_IRQ_TX))); //wait for the end of packet sending

rf_clr_irq_status(FLD_RF_IRQ_TX); //clear the interrupt flag

}

Note:

AN-21010600-E5 162 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• In manual mode, the tx_settle time needs to be controlled manually to wait for the PLL to stabilize
during the settle phase. 112.5us is the minimum settle time, and since the PLL is always working
after rf_set_txmode() is set in manual mode, this action only needs to be done once when the
manual tx is turned on.

21.7.1.2 Frequency-hopping sending

If you need to switch frequencies during data sending, you need to wait for a packet to be sent before you
can switch frequencies and send the next packet, set up as the following steps:

//first complete the initialization action

rf_set_ble_chn(17);// 2440MHz

rf_set_txmode();

delay_us(113);//wait for PLL to stabilize

rf_tx_pkt(ble_tx_packet);//trigger the packet sending

while(! (rf_get_irq_status(FLD_RF_IRQ_TX))); //wait for packet sending to finish

rf_clr_irq_status(FLD_RF_IRQ_TX); //clear interrupt status

//Frequency-hopping sending usually requires waiting for the previous packet to be sent before

switching the frequency and then triggering the next packet sending.↪

rf_set_ble_chn(37); //Switch the frequency to 2402MHz

rf_tx_pkt(ble_tx_packet); //trigger again to send packet

21.7.2 Manual RX

21.7.2.1 Single frequency receiving

If you need to use manual mode to send packets after completing the initialization settings, you can set the
rf_set_rxmode() interface to enter the packet receiving state. The setting steps are as follows:

rf_set_rxmode();//enter packet receiving mode, no packets are received at this stage, need to

wait for stable PLL↪

delay_us(85); //Wait for the PLL to stabilize and then enter the real packet receiving

stage, if not switch the state, it will always be in the RX state and can always receive

packets

↪

↪

while(1)

{

if(rf_get_irq_status(FLD_RF_IRQ_RX)) //determine whether packet receiving is completed

{

if(rf_ble_packet_crc_ok(rx_packet)) //determine whether the received packet CRC is

correct↪

{

rx_cnt++; //count the received packet

}

rf_clr_irq_status(FLD_RF_IRQ_RX); //clear packet receiving interrupt status

}

}

AN-21010600-E5 163 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Note:

• In manual mode, the rx_settle time needs to be controlled manually to wait for the PLL to stabilize
during the settle phase. The minimum settle time is 85us, and since the PLL is always working
after setting rf_set_rxmode() in manual mode, this action only needs to be done once when the
manual rx is turned on.

• The PLL stays on in manual mode when a packet is received, so clearing the interrupt flag after a
packet is received moves to the next packet receiving state.

void rf_set_rx_dma (unsigned char *buff,unsigned char wptr_mask, unsigned short fifo_byte_size)

function description:

Parameters Description

buff Receiving packet address

wptr_mask Receive packet with dma write pointer mask = number of FIFOs - 1

fifo_byte_size FIFO size

Note:

• In manual mode, because the hardware will not maintain reading and writing pointers, only one
FIFO will be used for receiving, the number of FIFOs is usually set to 1 when setting the dma. An
example of setting: rf_set_rx_dma(rx_packet,0,128) one FIFO, FIFO size of 128bytes.

Figure 21.5: Example of manual mode setting

21.7.2.2 Frequency-hopping receiving

If frequency hopping is required during packet receiving, the setting example is as follows:

AN-21010600-E5 164 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

// first complete the initialization action

rf_set_ble_chn(17);// 2440MHz

rf_set_rxmode();//enter packet receiving mode

delay_us(85);//wait for the PLL to stabilize and enter the actual packet receiving phase after

stabilization↪

if(rf_get_irq_status(FLD_RF_IRQ_RX))

{

if(rf_ble_packet_crc_ok(rx_packet))

{

rx_cnt++;

}

rf_clr_irq_status(FLD_RF_IRQ_RX);

}

while(rf_receiving_flag());//wait for the end of the packet receiving (currently it waits for

the completion of the packet receiving, whether there is a problem in the packet receiving

status is directly interrupted is still being confirmed)

↪

↪

rf_set_ble_chn(37);//Switch the frequency to 2402MHz and wait for the next packet receiving

21.7.2.3 Send-receive switching

If you need to switch between sending and receiving modes during operation, code example is as follows:

// first complete the initialization action

rf_set_ble_chn(17);// 2440MHz

rf_set_txmode();//enter packet receiving mode

delay_us(113);//wait for the PLL to stabilize and enter the actual packet receiving phase after

stabilization↪

while(! (rf_get_irq_status(FLD_RF_IRQ_TX))); //wait until the end of packet sending

rf_clr_irq_status(FLD_RF_IRQ_TX); //clear interrupt status

//Switching states requires waiting for the previous state to end before switching states

rf_tx_rx_off();//turn off tx,rx

rf_set_rx_mode(); //enter rx state

delay_us(85);//wait for PLL to stabilize

21.8 Auto mode

21.8.1 STX

The workflow of the state machine in auto mode is as follows:

AN-21010600-E5 165 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 21.6:Workflow of the state machine in auto mode

Call function void rf_start_stx (void* addr, unsigned int tick) to trigger STX, enter tx settle, settle ends and
enters actual tx state.

void rf_start_stx (void* addr, unsigned int tick)

function description:

Parameters Description

addr Packet sending address

tick Trigger immediately when the current tick value is greater than the set tick

Note:

• The default value of TX_SETTLE time is 150us. You can call interface void rf_tx_settle_us(unsigned
short txstl_us) to adjust the settle time, but the tx settle time should not be less than 112.5us.

21.8.1.1 Single-frequency sending

Calling the rf_start_stx function will trigger the state machine to enter the TX state (including tx settle),
complete the packet sending and return to the IDLE state. The setting steps are as follows.

// first complete the initialization action

rf_start_stx(ble_tx_packet,clock_time());//trigger the first packet sending, and the state

machine automatically returns to IDLE state after the packet is sent.↪

AN-21010600-E5 166 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

while(1)

{

while(! (rf_get_irq_status(FLD_RF_IRQ_TX))); //determine whether the packet sending is

completed↪

rf_clr_irq_status(FLD_RF_IRQ_TX);//

rf_start_stx(ble_tx_packet,clock_time());

}

21.8.1.2 Frequency-hopping sending

If you need to switch the frequency point during packet sending, the setting steps are as follows:

// first complete the initialization action

rf_set_ble_chn(17);// 2440MHz

rf_start_stx(ble_tx_packet,clock_time());//trigger the first packet sending, and the state

machine automatically returns to IDLE state after the packet is sent.↪

while(! (rf_get_irq_status(FLD_RF_IRQ_TX)));//determine whether the packet sending is completed

rf_clr_irq_status(FLD_RF_IRQ_TX);// clear the packet sending interrupt status

rf_set_ble_chn(37);// 2402MHz switch frequency

rf_start_stx(ble_tx_packet,clock_time());//trigger packet sending again

21.8.2 SRX

The working process of the state machine when receiving packets in auto mode is as follows:

AN-21010600-E5 167 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 21.7: The working process of the state machine when receiving packets in auto mode

The auto mode use function void rf_start_srx(unsigned int tick); to trigger SRX, enter rx settle, after settle
ends and enter actual rx, when packet receiving is completed it automatically returns to idle state. In the
specified time, if the data is not synchronized to the packet, it triggers FLD_RF_IRQ_RX_TIMEOUT inter-
rupt.

void rf_start_srx (unsigned int tick)

function description:

Parameters Description|

tick Trigger immediately when the current tick value is greater than the set tick

AN-21010600-E5 168 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Note:

• The default value of rx_settle time is 150us, you can call the interface void rf_rx_settle_us(unsigned
short txstl_us) to adjust the settle time, but the tx settle time should not be less than 85us.

21.8.2.1 Single-frequency receiving

If single frequency point receiving is performed in auto mode, the setting steps are as follows:

// first complete the initialization action

rf_start_srx(clock_time());//after triggering the state machine will enter the synchronous state

from IDLE state, while timeout starts timing.↪

while(1)

{

if(rf_get_irq_status(FLD_RF_IRQ_RX))//determine if packet receiving is finished

{

u8* raw_pkt = rf_get_rx_packet_addr(RX_FIFO_NUM,RX_FIFO_DEP,rx_packet);//find the

current packet receiving address, only needed in auto mode.↪

if(rf_ble_packet_crc_ok(raw_pkt))//determine whether the CRC of the packet is

correct↪

{

rx_cnt++;//record the number of packets received

rf_clr_irq_status(FLD_RF_IRQ_RX);//clear the interrupt status

rf_start_srx(clock_time());//trigger the next packet receiving

}

}

Note:

• In auto mode, DMA will automatically offset the data when carrying data to the ram address
based on the number of FIFOs and FIFO depth. Therefore, after each packet is received, you need
to find the address of this packet in ram for crc check by rf_get_rx_packet_addr(int fifo_num,int
fifo_dep,void* addr) function.

The rf_get_rx_packet_addr function is described as follows:

Parameters Description

fifo_num Number of FIFOs

fifo_dep Size of each FIFO

addr Receiving packet address

When using the function rf_set_rx_dma(rx_packet,3,128); to set DMA, it will have 4 FIFOs for packet receiv-
ing.

AN-21010600-E5 169 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 21.8: Before receiving the first packet

Figure 21.9: Before receiving the second packet

Until the four FIFOs are received, it returns to the first FIFO. The following figure shows the result of packet
receiving in auto mode, where the number of FIFOs is 4 and the FIFO size is 128 bytes.

AN-21010600-E5 170 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 21.10: Packet receiving results in auto mode

21.8.2.2 Frequency-hopping receiving

If you need to switch the frequency point during packet receiving, the setting steps are as follows:

// first complete the initialization action

rf_set_ble_chn(17);// 2440MHz

rf_start_srx(clock_time());//trigger packet receiving, and the state machine will automatically

return to IDLE state after packet receiving is completed↪

if(rf_get_irq_status(FLD_RF_IRQ_RX))//determine the end of packet receiving

{

u8* raw_pkt = rf_get_rx_packet_addr(RX_FIFO_NUM,RX_FIFO_DEP,rx_packet);//find the address of

the packet receiving↪

if(rf_ble_packet_crc_ok(raw_pkt))

{

rx_cnt++;

}

rf_clr_irq_status(FLD_RF_IRQ_RX);

}

while(rf_receiving_flag());//determine whether packet sending is completed

rf_clr_irq_status(FLD_RF_IRQ_RX);//clear packet receiving interrupt status

rf_set_ble_chn(37);// 2402MHz switching frequency

rf_start_srx(clock_time());//trigger packet receiving again

AN-21010600-E5 171 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

21.8.2.3 Automatic mode switching

If you switch between sending and receiving in auto mode, the code example is as follows:

// first complete the initialization action

rf_set_ble_chn(17);// 2440MHz

rf_set_stx(ble_tx_packet,clock_time());

while(! (rf_get_irq_status(FLD_RF_IRQ_TX))); //wait for the end of packet sending

rf_clr_irq_status(FLD_RF_IRQ_TX); //clear the interrupt status

// Wait for the previous state to end before switching states

rf_set_tx_rx_off_auto_mode();//turn off tx,rx

rf_start_srx(clock_time());//trigger packet receiving

Note:

• Currently, when switching states we usually wait until the previous state is finished before stopping
the state machine, and then switch to the next state.

AN-21010600-E5 172 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

22 ISO-7816

22.1 Introduction of ISO-7816 protocol

ISO-7816, the International Standard for Smart Card Communication, specifies the specifications for contact
smart cards, including physical characteristics, interface specifications, transmission protocols, command
exchange formats, and so on.

Telink SoC integrates ISO-7816 communication module and supports communication with contact IC cards.
This article briefly introduces the method to establish communication between Telink SoC and contact IC
cards.

22.2 How to use ISO-7816

22.2.1 Hardware connection

Figure 22.1: Hardware connection

In actual use, we need to connect each contact of IC card to SoC one by one, which is the hardware basis
for communication between SoC and IC card.

(1) VCC is the power supply voltage of IC card and RST is the reset signal of IC card. We can choose any
two of the free GPIO pins of the SoC to connect to it.

(2) CLK is the clock contact of the IC card. The clock is supplied to the IC card by the SoC.

(3) TRX, I/O contact, is IC card input and output contact. Because IC card only supports half-duplex
communication, at a certain moment I/O contact only supports input or output, so in actual use we
need to pay attention to the timing.

Note:

• The IS07816-3 protocol specifies three operating voltages for IC cards: Class A-5V, Class B-3V,
and Class C-1.8V. In actual use, the voltage provided by the SoC needs to match the operating
voltage of the card.

AN-21010600-E5 173 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

22.2.2 Initilization

s7816_set_pin(gpio_pin_e rst_pin,gpio_pin_e vcc_pin,gpio_pin_e clk_pin,gpio_pin_e trx_pin)

s7816_init(uart_num_e uart_num,s7816_clock_e clock,int f,int d)

s7816_set_pin() is used to configure the RST,VCC,CLK,TRX pins.

S7816_init() is used to select UART channels (UART0 and UART1), configure IC card clock, and IC card clock
frequency adjustment factor F (default is 372) and bit rate adjustment factor D (default is 1).

s7816_en(uart_num_e chn)

After the configuration is complete, you need to use the function s7816_en() to enable the 7816 module.

Note:

• The S7816 is implemented through the UART function of the SoC, so it will occupy the correspond-
ing UART module when used.

22.2.3 IC card activation and cold reset

s7816_coldreset();

The ISO7816 protocol states that after the reset pin is pulled up, the cold reset answer will begin within
400-40,000 clock cycles thereafter.

Figure 22.2: Cold reset

Taking the SoC clock configuration of 4MHz as an example, the cold reset process is as follows:

a) After VCC is pulled up, the SoC outputs CLK from the Ta moment, the SoC configures the TRX pin, and
after the SoC’s TRX pin is configured, the SoC’s TRX pin is set to the receive state.

AN-21010600-E5 174 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

b) Within 40,000 cycles (10,000us) after Ta, RST is pulled up.

c) Within 40,000 cycles (10,000us) after RST is pulled high, the IC card will pass back the reset character
to the SoC.

s7816_set_time(int rst_time_us)

s7816_set_time() is used to reset the s7816_rst_time time in a cold reset.

(1) rst_time_us corresponds to s7816_rst_time, which is the reset waiting time from Ta to Tb in the timing
sequence, and the default is 40,000 clock cycles.

(2) s7816_atr_time, the time to wait for the ATR return time after Tb in the timing sequence, ranges from
400 to 40,000 clock cycles. In practice, you need to wait for the ATR character to be received before
proceeding to the next operation (you can perform protocol parsing in the main function to determine
whether the ATR character is received).

22.2.4 Warm reset

s7816_warmreset()

Figure 22.3:Warm reset

The IC card has specified specifications and contents for the reset answer to the terminal. If the answer to
reset received by the interrupt does not meet the specified requirements, the terminal will initiate a warm
reset and obtain a reset signal from the IC card.

Take the clock configuration 4MHz as an example, the warm reset process is as follows:

a) CLK and VCC always remain normal state (CLK applied, VCC pulled up).

b) At the moment of Tc, set RST from high to low.

c) Within 200 cycles (50us) of the Tc moment, the SoC sets the TRX pin to the receiving state.

d) Set RST high within 40,000 cycles (10000-10000us) after Tc. The IC card answer to reset will start
within 40,000 cycles (10000us) after Td.

Like the cold reset, the warm reset can also reset the s7816_rst_time (default value 40,000 clock cycles)
using the s7816_set_time() function. You need to wait for the ATR character to be received before you can
proceed to the next step.

Note:

AN-21010600-E5 175 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• The answer to reset (initial ATR) is the same for cold reset and warm reset. The difference between
the two is that cold reset is accompanied by IC card activation and warm reset is performed after
IC card activation.

22.2.5 Contact release

s7816_release_trig()

Figure 22.4: Contact release

During cold reset or warm reset, if the IC card does not respond to the reset within the specified time, the
terminal needs to initiate a contact release timing sequence.

(1) The terminal starts the contact release sequence by setting RST to low level.

(2) After setting RST low and before VCC is powered down, the terminal sets CLK and I/O low as well.

(3) Finally, the terminal power down VCC before actually breaking the contact.

22.3 Demo introduction

Take an initialized SMARTCOS-PSAM card as an example. The demo first performs a cold reset and then
takes random numbers.

Take random command is: 0x00,0x84,0x00,0x00,0x04 (take 4 bytes of random number)

Cold reset to obtain initial ATR:

Figure 22.5: Cold reset to obtain initial ATR

AN-21010600-E5 176 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The initial ATR is 16 bytes in total. The initial ATR is analyzed as follows:

(1) 3B: positive agreement.

(2) 6C: that is, T0, binary of 6 is 0110, indicating the presence of TB1 and TC1, C indicates that the
historical characters is 12.

(3) From T0, we know that TB1 is 00, which means no additional programming voltage is required.

(4) It is known from T0 that TC1 is 02 and two additional protection times are required, that is, two
additional etu times are required between every two bytes when sending data from the terminal to
the IC card.

(5) From T0, we know that the 12 historical characters are 0x58,0x02,0x86,0x38,0x50,0x53,0x41,0x4d,
0x80,0x00,0x83,0x73.

(6) The IC card uses the T=0 protocol and has no TCK check character.

Taking random numbers is as follows:

Figure 22.6: Taking random numbers

Where 0x00,0x84,0x00,0x00,0x00,0x04 are the commands sent by the terminal to the IC card to take
random numbers.

The random numbers obtained are 0xf0,0x44,0xef,0x7f for a total of 4 bytes, and the random numbers
taken will be different each time.

Data ending with 9000 indicates successful execution of the command.

AN-21010600-E5 177 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

23 ADC

23.1 Introduction

The ADC driver can be used for ADC sampling of external GPIO voltage, battery voltage and temperature
sensor.

23.2 Working principle

23.2.1 Internal structure

Internal structure of SAR_ADC, as shown below:

Figure 23.1: Internal structure of ADC

SAR ADC only supports differential mode. The code value is obtained through differential sampling, and
then converted into voltage value or temperature value by the driver.

Application scenario P end N end

Single GPIO sampling ADC_GPIO GND

Two GPIO differential sampling ADC_GPIO1 ADC_GPIO2

Vbat channel VBAT GND

Temp sensor ADC_TEMSENSORP_EE ADC_TEMSENSORN_EE

AN-21010600-E5 178 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Requirements for P end and N end voltage:

For the sampling range of a single GPIO, refer to (1) and (2) below to determine the final sampling range.

The application scope of two GPIO differential sampling needs to meet the following four conditions:

(1) The voltage of P end and N end is not allowed to exceed prescal * vreference.

(2) The voltage of P end and N end is not allowed to exceed V_ioh (Voltage value at IO output high level).

(3) The difference voltage between P end and N end is not allowed to exceed prescal * vreference.

(4) ((Vp+Vn)/2)<(prescal*Vreference).

Chip V_ioh(Voltage value at IO output high level)

B85 V_ioh=vbat<3.6v

B87 V_ioh=vbat<3.6v

B91 (1) When the Vbat voltage in the application scenario must be lower than 3.6V, set
Vbat_MAX_VALUE_LESS_THAN_3v6 mode. (2) When the Vbat voltage in the application
scenario may be higher than 3.6V, set VBAT_MAX_VALUE_GREATER_THAN_3V6 mode,
V_ioh follows vbat when vbat < V_ldo, and V_ioh = V_ldo when vbat > V_ldo.
(V_ldo=3.3v(+-10%))

23.2.2 Sampling voltage value calculation

The analog input voltage (𝑉𝐼𝑁) is compared with the reference voltage (𝑉𝑅𝐸𝐹) to generate a proportional
N-bit sample code value, which is stored in a register. In actual application we will generally do pre-scale to
𝑉𝐼𝑁 to support a larger sampling range. Taking the 14-bit resolution sampling code value as an example,
when the pre-scale factor pre_scale = ¼, the conversion formula between 𝑉𝐼𝑁 and code value is:

1
4 ∗ 𝑉𝐼𝑁
𝑉𝑅𝐸𝐹

= 𝑎𝑑𝑐_𝑐𝑜𝑑𝑒
𝑟𝑒𝑓_𝑐𝑜𝑑𝑒

Among them, adc_code is the code value obtained by sampling 𝑉𝐼𝑁 .

The ref_code is the code value converted from 𝑉𝑅𝐸𝐹 , 14-bit resolution corresponds to 0x1fff (bit13 is the
sign bit).

The inverse of this can be used to obtain the sampled voltage value of 𝑉𝐼𝑁 .

Note:

• For GPIO, after pre-scale it can be compared with the reference voltage as a differential signal.
However, Vbat can be compared only after two voltage dividers of Vbat divider and pre-scale. The
final voltage divider factor is the product of two voltage divider factors. e.g. when the pre-scale
factor pre_scale = 1 and Vbat_divider = 1/3, the conversion formula between 𝑉𝐼𝑁 and code value
is:

1
3 ∗ 1 ∗ 𝑉𝐼𝑁

𝑉𝑅𝐸𝐹
= 𝑎𝑑𝑐_𝑐𝑜𝑑𝑒

𝑟𝑒𝑓_𝑐𝑜𝑑𝑒
AN-21010600-E5 179 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

23.3 B91 ADC instructions

23.3.1 Interface description

The interface naming rule is:

• init suffix: the interface used for initialization.
• dma suffix: the interface that will be used for dma mode sampling.
• No dma suffix: the interface that will be used for manual sampling.

23.4 Demo description

23.4.1 Demo structure description

The application.c file for ADC Demo is app.c, and the macro ADC_MODE in ADC_Demo/app_config.h selects
which sampling mode to use.

#define ADC_DMA_MODE 1

#define ADC_NDMA_MODE 2

#define ADC_MODE ADC_NDMA_MODE

In ADC_NDMA_MODE (manual sampling mode) and ADC_DMA_MODE (DMA sampling mode), the ADC usage
scenario is selected by configuring the macro ADC_SAMPLE_MODE for one of GPIO analog signal input,
battery voltage (Vbat) and temperature sensor.

#define ADC_GPIO_SAMPLE 1 //GPIO voltage

#define ADC_VBAT_SAMPLE 2 //Vbat channel Battery Voltage

#define ADC_TEMP_SENSOR_SAMPLE 3 //Temp test

#define ADC_SAMPLE_MODE ADC_GPIO_SAMPLE

23.4.2 ADC initialization configuration

The ADC initialization flow is shown in the following figure:

AN-21010600-E5 180 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 23.2: ADC initialization flow

23.4.3 ADC sampling and conversion process

The sampling and conversion of the ADC is shown in the following figure:

AN-21010600-E5 181 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 23.3: ADC sampling and conversion

Note:

• When sampling (ADC_NDMA_MODE) manually, only one adc_code can be acquired at a time, dur-
ing which the ADC sampling function will be turned off, and when using, it is necessary to ensure
that the time interval between continuous acquisition of adc_code is greater than 2 sampling
cycles.

23.4.4 Demo test example

Sample Vbat using the method of configuring DMA.

The sampling results are viewed through the BDT tool as follows:

AN-21010600-E5 182 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 23.4: Sampling results

In the above figure: adc_sample_buffer stores the code values of 8 sets of samples, adc_vol_mv_val rep-
resents the sampled voltage value, 0xae2 converted to decimal is 2786mV (2790mV measured by volt-
meter).

23.5 Chip difference

23.5.1 Feature support differences

Chip GPIO sampling Vbat sampling mode
Whether Temp
sampling is supported

B85 PB0-7/PC4-5 Vbat channel mode is not supported, using GPIO
output high level, to GPIO sampling way of vbat
sampling, at this time the GPIO voltage is the
voltage of Vbat. (This method does not require
hardware wiring, you can set a pin without
package to save GPIO resources.)

not support

B87 PB0-7/PC4-5 vbat channel support

B91 PB0-7/PD0-1 The external voltage divider is used in the
hardware circuit, and the GPIO method is used for
sampling in the software

support

23.5.2 Calibration configuration description

The configurations with chip level calibration are listed below. It is recommended to use these configurations
to reduce the error (if other configurations are used, the calibration value is inaccurate). If you want the
error to be smaller, you can use a fixture for board level calibration on the production line.

Chip Factory calibration value

Sampling error (The amount of
test data is small and is only for
reference)

B85 GPIO sampling, sampling rate 96KHz, pre-scale factor 1/8,
reference voltage 1.2V.

Error in -14~12mV. (29 sample
chips)

AN-21010600-E5 183 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Chip Factory calibration value

Sampling error (The amount of
test data is small and is only for
reference)

B87 GPIO sampling, sampling rate 96KHz, pre-scale factor 1/8,
reference voltage 1.2V.

Error in 9~12mV. (20 sample
chips)

B87 vbat channel sampling, sampling rate 96KHz, pre-scale
factor 1, vbat scale factor 1/3, reference voltage1.2V.

Error within 10mV. (10 sample
chips)

B91 GPIO sampling, sampling rate 48KHz, pre-scale factor 1/4,
reference voltage 1.2V.

Error in -11~7mV. (19 sample
chips)

Distinction between signal-to-noise ratio and error concepts

The datasheet of B91 indicates that the signal-to-noise ratio is 10.5bit, which means as follows:

The signal-to-noise ratio (significant bit) is 10.5 bits, and the corresponding analog quantity is 1200mV/
（2ˆ10.5）≈0.82mV (assuming reference voltage selection 1200mV), which means that the sampling accuracy
of ADC is 0.82mV, that is, the code value of 1 unit represents the voltage value of 0.82mV.

The concept of error, e.g. the error is 10mV, the input is 500mV, and the sampling result is 510mV.

External voltage divider circuit

When the voltage to be sampled exceeds the ADC sampling range, an external voltage divider circuit must be
used to divide the original voltage to the sampling range, and then input to the sampling point for sampling
through GPIO. The recommended configuration of the external voltage divider circuit is as follows (it can be
selected according to the respective application requirements):

Hardware circuit reference:

As the chip internal resistance is tens of Mbps, so the total resistance values of the voltage divider circuit
should not be too large (preferably not more than 2M), otherwise the current is too small and the ADC cannot
sample normally.

M-level voltage divider circuit: small leakage, slow sampling

AN-21010600-E5 184 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 23.5: M-level voltage divider circuit

Hundred K-level voltage divider circuit: large leakage, fast sampling

Figure 23.6: Hundred K-level voltage divider circuit

AN-21010600-E5 185 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Software requirements:

The input equivalent of sar adc is a capacitance of about 15pF, and there will be a dynamic current equivalent
to 𝑓 ∗ 𝑐 ∗ 𝑣 in the sampling, so the voltage value of the sampling point of the resistor divider will slowly
produce an error voltage. So

(1) When the ADC is turned on to sample immediately, the value of the sampling point is still in a more
accurate place, so the sampling value is more accurate.

(2) Delay after closing ADC, the resistance value at the voltage divider point will return to the accurate
value due to no dynamic current.

(3) The higher the sampling rate, the greater the error voltage.

There are different solutions for different working modes. Take B91 as an example to illustrate.

(The delay part marked below will be related to the sampling frequency, voltage and current, so when
using only need to refer to the following logic processing method, but the relevant delay part, please
test according to the actual application, and set aside a certain amount of margin out.)

Hardware configuration: B91 calibration chip + M-level voltage divider circuit

Software configuration (ADC_Demo):

• 1.2V Vref reference voltage
• 1 / 4 pre_scale pre-voltage-dividing factor
• Sampling frequency 23K

(1) In normal operating mode:
a. Turn on the ADC to sample immediately, and then turn off the ADC immediately.
b. Delay (greater than 50ms, less than this value error will be larger).
c. Perform the next sampling, the sampling steps are the same as a and b.

Note:

• If you need to switch the PIN, the operation of switching the PIN can be added before step a.

(2) In the deep or deep retention mode, after sampling, it will enter the deep or deep retention without
additional operation.

(3) In the suppend mode, it will enter the suppend after sampling, and the time to configure suppend is
greater than 200ms.

Chip level calibration error is - 9 ~ 5mV; The board level calibration error is - 3 ~ 8mV. (10 sample chips)

Hardware configuration: B91 calibration chip + Hundred K-level voltage divider circuit

Software configuration (ADC_Demo):

• 1.2V Vref reference voltage
• 1 / 4 pre_scale pre-voltage-dividing factor
• Sampling frequency 23K

(1) In normal operating mode:
a. Turn on the ADC to sample immediately, and then turn off the ADC immediately.
b. Delay (greater than 5ms, less than this value error will be larger).
c. Perform the next sampling, the sampling steps are the same as a and b.

Note:

AN-21010600-E5 186 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

• If you need to switch the PIN, the operation of switching the PIN can be added before step a.

(2) In the deep or deep retention mode, after sampling, it will enter the deep or deep retention without
additional operation.

(3) In the suppend mode, it will enter the suppend after sampling, and the time to configure suppend is
greater than 50ms.

Chip level calibration error is - 5 ~ 7mV; The board level calibration error is - 4 ~ 6mV. (10 sample chips)

AN-21010600-E5 187 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

24 USB introduction

USB (Universal Serial Bus) is an external bus standard used to standardize the connection and communica-
tion between computers and external devices. It is an interface technology applied in PC area. USB interface
supports plug-and-play and hot-plug functions of devices. USB was jointly proposed by Intel, Compaq, IBM,
Microsoft and many other companies at the end of 1994. As shown in the figure below, USB consists of four
wires, namely VCC, GND, D- (DM), and D+ (DP). USB can choose to be powered through the host computer
or self-powered, and most USB devices are currently powered through the host computer.

Figure 24.1: USB interface

The USB communication is the communication between the controller and the device, the computer host is
the controller, Telink USB is the device, and the host referenced later is the controller by default. USB bus is
a one-way bus, communication can only be initiated by the controller, the device receives a request from
the controller, the data is sent to the controller. The controller is sending requests to the device every n
units of time, and n is the user configuration parameter.

The USB has four operating speeds: Super Speed (5.0Gbit/s), High Speed (480Mbit/s), Full Speed (12Mbit/
s) and Low Speed (1.5Mbit/s), where the communication frame period (the interval between sending two
consecutive frames of data) of the Full Speed and Low Speed USB buses is 1ms, and the communication
frame period of the High Speed USB bus is 125us. USB1.1 only supports full speed and low speed, USB2.0
supports high speed, full speed and low speed, and super speed is only supported in USB3.0.

24.1 USB packet format and transfer process

Packet is the most basic unit of USB data transmission, that is, each data transmission is in the form of a
packet. And packets have to be composed into transactions for effective communication. There are various
packets for composing various transactions (IN, OUT, SETUP) according to the communication needs. One or
more transactions make up a transmission (control transmission, bulk transmission, terminal transmission,
and isochronous transmission).

Packets are the smallest unit of data transfer on the USB bus and cannot be interrupted or interfered with,
otherwise it will raise an error. Several packets form a single transaction, and a single transaction cannot
be interrupted either, that is, several packets belonging to a single transaction.

AN-21010600-E5 188 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

24.1.1 USB packet structure

Packet is the basic unit of information transmission in the USB system, all data is packaged and transmitted
on the bus.

As shown in the figure below, a USB packet consists of seven parts, namely the synchronization field (SYNC),
packet identification (PID), address field (ADDR), endpoint field (ENDP), frame number field (FRAM), data
field (DATA), and checksum field (CRC). Note that not every USB packet contains all seven of these fields,
meaning that some packets contain only a few of them.

Figure 24.2: Common format of USB packet

(1) Synchronization field

The sync field is mainly to notify each other of the start of data transfer and to provide a synchronous
clock. For low-speed and full-speed devices, the synchronization field uses 0000 0001 (binary number);
for high-speed devices it uses 000000 00000000 00000000 00000001.

(2) Packet ID (PID)

The packet ID is mainly used to identify the type of the packet and consists of 8 bits: the lower 4 bits are
the PID code, and the upper 4 bits are the checksum field, which is obtained by inverting the lower 4 bits.
Various packets in USB are distinguished by the PID field.

(3) Address field

Since there may be more than one device accessing the USB bus, the address field needs to be introduced
to make it easier to distinguish which device is the one currently communicating. The address field contains
7 data bits and up to 128 addresses can be specified. Address 0 is used as the default address and is not
assigned to a USB device. For each device on the USB bus, the address is unique.

(4) Endpoint field

The endpoint field is used to specify an endpoint number of a device on the USB bus, containing 4 data
bits; full-speed/high-speed devices can contain up to 16 endpoints, and low-speed devices can contain
up to 3 endpoints. All USB devices must contain an endpoint with endpoint number 0, which is used to

AN-21010600-E5 189 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

exchange basic information between the host and the device. All endpoints except for endpoint 0 are
specific to the specific USB device. The address field and endpoint field combination specifies the channel
for communication between the host and the device.

(5) Frame number field

The frame number field is used to indicate the frame number of the current frame, which is sent only in
the SOF token packet at the beginning of each frame/microframe. Its data bits are 11 bits long and are
incremented by 1 for each frame transmitted by the host and zeroed when the maximum value of 7FFH is
reached.

(6) Data field

The data field contains the data to be transferred between the host and the USB device in bytes, with a
maximum length of 1024, while the actual length depends on the specifics of the transfer.

(7) Checksum field

The checksum field is primarily used to verify the correctness of the communication data. The CRC is used
in both USB token packets and data packets. However, the CRC is generated by the sender prior to bit
padding, which requires the receiver to decode the CRC field after removing the bit padding. The PID field
in the message packet itself contains the checksum, so the CRC calculation does not contain a PID part. The
CRC for the token packet uses a 5-bit CRC, and the data field in the data packet uses a 16-bit CRC.

24.1.1.1 Token packets

The SOF packets are sent from the host to the device: every 1.00 ms ± 0.0005 ms for the full-speed bus
and every 125us ± 0.0625us for the high-speed bus.

The SOF packet format is as below.

Figure 24.3: SOF packet format

The IN, OUT, SETUP packet format is as below.

Figure 24.4: IN OUT SETUP packet format

24.1.1.2 Data packets

Data packets (DATA0, DATA1, DATA2, MDATA)

AN-21010600-E5 190 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.5: Data packets

24.1.1.3 Handshake packets

PRE, ACK, NAK, STALL, NYET packet format.

Figure 24.6: PRE ACK NAK STALL NYET packet format

24.1.2 USB transfer process

24.1.2.1 USB transaction

The process of receiving or sending data at one time in USB is called Transaction, and the transaction is
usually composed of a series of packets. For different transactions, the packets composed of transactions
are different. In the USB data transfer, common transactions include IN transaction, OUT transaction, and
SETUP transaction. Note that SOF is only an indication of the beginning of a frame with no valid data and
is not a transaction; EOF is a level state at the end of a frame transmission and is not a transaction.

The transaction usually consists of two or three packets: a token packet, a data packet, and a handshake
packet. The token packet initiates the transaction, the data packet transmits the data, the sender of the
handshake packet is usually the data receiver. When the data is correctly received, the handshake packet
is sent, and the device can also use NACK to indicate that the data is not ready.

24.1.2.2 Input transaction

An input (IN) transaction is the process of a host getting data from one of the endpoints of a USB device. As
shown in the figure below, an input transaction has three states, namely, a normal input transaction (figure
(a)), an input transaction when the device is busy or has no data (figure (b)), and an input transaction when
the device is in error (figure (c)). A correct input transaction includes three phases: token packet, data
packet, and handshake packet.

Input transaction processing flow

Figure 24.7: (a) Normal input transaction

AN-21010600-E5 191 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.8: (b) Input transaction when device is busy or no data

Figure 24.9: (c) Input transaction when device is in error

The normal input transaction is introduced and analyzed with the normal input transaction example. As
shown in the following figure, a normal input transaction contains three interaction processes: (1) Host
sends an IN token packet to Device; (2) Device receives the IN token packet and sends the data to be sent
to the host; (3) Host receives the packet and replies with an ACK packet to confirm the packet is received
correctly.

Figure 24.10: Example of a normal input transaction

24.1.2.3 Output transaction

An output (OUT) transaction is the process of sending data from a host to one of the endpoints of a USB
device. As shown in the figure below, an output transaction has three states, namely, a normal output
transaction (figure (a)), an output transaction when the device is busy (figure (b)), and an output transaction
when the device is in error (figure (c)). The correct output transaction includes three phases: token, data
and handshake.

Output transaction processing flow

Figure 24.11: (a) Normal output transaction

Figure 24.12: (b) Output transaction when device is busy

AN-21010600-E5 192 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.13: (c) Output transaction when device is in error

The following is an introduction and analysis of a normal output transaction with an example of a normal
output transaction. As shown in the following figure, a normal output transaction contains three interaction
processes: (1) Host sends an OUT token packet to Device; (2) Host sends a data packet to Device; (3) Device
receives the data packet and replies with an ACK packet to confirm that the data packet was correctly
received.

Figure 24.14: Example of a normal output transaction

24.1.2.4 Setup transaction

The SETUP transaction handles and defines the special data transfer between Host and Device, which is
only applicable to the establishment phase of USB control transfer. As shown in the figure below, the
setup transaction usually has three states, namely, normal setup transaction (figure (a)), device busy setup
transaction (figure (b)) and device error setup transaction (figure (c)), and the correct setup transaction
includes three phases: token, data and handshake.

SETUP transaction process

Figure 24.15: (a) Normal setup transaction

Figure 24.16: (b) Setup transaction processing when device is busy

AN-21010600-E5 193 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.17: (c) Setup transaction processing when device is in error

The following is an introduction and analysis of a normal SETUP transaction with an example of a normal
SETUP transaction. As shown in the figure below, a normal setup transaction consists of three interaction
processes: (1) Host sends a SETUP token packet to Device; (2) Host sends a DATA0 packet to Device;
(3) Device receives the packet and replies with an ACK packet to confirm that the packet was received
correctly.

Figure 24.18: Example of a normal setup transaction

24.1.3 USB transfer

The USB transfer consists of transactions such as OUT, IN or SETUP. The USB standard protocol defines four
types of transfers: Control Transfer, Bulk Transfer, Interrupt Transfer and Isochronous Transfer. The priority
of the four types of transfers from high to low is: Isochronous Transfer, Interrupt Transfer, Control Transfer,
and Bulk Transfer.

24.1.3.1 Control transfer

The Control Transfer is the most basic and important transfer method in USB, and is the default transfer
method for port 0. Control Transfer is typically used for transfers between the host and USB peripherals
on Endpoint 0, but vendor-specific Control Transfer may be used on other endpoints. Control Transfer
is primarily used to query, configure, and send generic commands to USB devices. Control transfers are
unidirectional (except for Endpoint 0, which is bidirectional) and the amount of data is usually small. The
maximum packet length of the control transfer depends on its operating speed, with a fixed maximum
packet length of 8 bytes for low-speed mode, 64 bytes for high-speed mode, and a choice of 8, 16, 32, and
64 bytes for full-speed mode.

Note:

• The packet length of Telink USB’s endpoint 0 is a fixed length of 8 bytes, and no other value can
be configured.

• The control transfer is composed of three stages, namely the setup stage, the data stage (optional)
and the status stage, each consisting of one or more (data stage) transactions.

• Setup stage: The setup stage consists of the SETUP transaction as shown in the figure below.
The data stage of the SETLUP transaction always uses DATA0 and has a fixed length of 8 bytes.

AN-21010600-E5 194 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.19: Flowchart for creating a transaction

• Data stage: The data stage is optional. If a data stage is available, it includes one or more IN/
OUT transactions, which are used to transfer data in the USB defined format as required by the
setup stage. The transactions in the data stage have the same direction, that is, either all IN or all
OUT. if the data to be transferred is larger than the length of a packet, the controller divides it into
multiple packets for transfer. Once the data transfer direction is changed, it is considered to enter
the status process. The first packet of the data process must be a DATA1 packet, and then each
time it seeks to transfer a packet it is exchanged between DATA0 and DATA1. If the last packet
size is equal to the maximum packet size, then another packet of size 0 should be transferred to
determine the end. According to the direction of data transfer the data stage, control transmission
can be further divided into three types, namely Control Write, Control Read and No-data Control,
as shown in the following figure.

AN-21010600-E5 195 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.20: Control transfer sequence diagram

• Status stage: The status stage is the last stage of control transaction processing and consists of
an IN or OUT transaction, always composed using DATA1 packets. The status stage is transferred
in the opposite direction to the data stage, that is, if the data stage is IN, the status stage is OUT,
and vice versa. It is used to report the results of the setup stage and data stage transfers.

24.1.3.2 Interrupt transfer

The Interrupt Transfer is the same as bulk transfer except that it does not support PING and NYET packets,
so its sequence diagram can refer to bulk transfer. The main difference between interrupt transfer and
bulk transfer is reflected in two points: First, the priority is different, interrupt transfer has a higher priority
than bulk transfer, second only to isochronous transfer; Second, the maximum packet length supported
is different, the maximum packet length of interrupt transfer low-speed mode is capped at 8 bytes, the
maximum packet length of full-speed mode is capped at 64 bytes, and the maximum packet length of
high-speed mode is capped at 1024 bytes.

It is important to note that the interrupt described here is not the same as interrupt on hardware. Since
USB does not support hardware interrupt, the host must be polled periodically to know if a device needs
to transmit data to the host. It can be seen that interrupt transfer is also a polling process, polling period
determined by the user device (polling interval of full-speed device is 1ms ~ 255ms, low-speed device is
10ms ~ 255ms), the host only needs to ensure that schedule a transfer in no greater than the interval. The
polling period is very important, if it is too fast, it will occupy too much bus bandwidth; if it is too low, the
data may be lost, so the user needs to set it according to the condition of their data.

Interrupt transfers are typically used in devices that do not have a large amount of data, but are time-
critical, such as keyboard and mouse in human interface devices (HIDs). Interrupt transfer can also be used
to continuously check the status of the device and then use bulk transfer to transfer large amounts of data
when the conditions are met. The endpoint type of interrupt transfer is generally IN endpoint, that is, from
Device to Host (IN transaction), rarely used in OUT endpoint, some computers do not even support interrupt
transfer OUT transaction.

AN-21010600-E5 196 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.21: Interrupt transfer flow chart

24.1.3.3 Isochronous transfer

The Isochronous Transfer is an unreliable transfer. Isochronous transfer has only two stages, token packet
(IN/OUT token packet) and data packet (DATAx), it has no handshake packet and does not support PID in-
verse, host has the highest priority when scheduling the transfer. The maximum length of isochronous trans-
fer packet is capped at 1023 bytes for full-speed mode, 1024 bytes for high-speed mode, and isochronous
transfer is not supported for low-speed mode.

AN-21010600-E5 197 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.22: Isochronous transfer flow chart

Isochronous transfer is suitable for data that must arrive at a fixed rate or at a specified moment in time,
where occasional errors can be tolerated. USB reserves bus bandwidth for it, ensuring that it can be served
within each frame/small frame. The rate is accurate and the transfer time is predictable. However, error
control and retransfer mechanisms are not used, and success is not guaranteed for every transfer, it is
suitable for audio and video devices.

24.1.3.4 Bulk transfer

The Bulk Transfer, also known as block transfer, is a one-way reliable transfer consisting of one or more IN/
OUT transactions in which the packets in the transaction are inverted according to DATA0-DATA1-DATA0-
… to ensure synchronization between the transmitting end and the receiving end, as shown in the figure
below.

AN-21010600-E5 198 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.23: Bulk transfer flow chart

The error detection and retransfer mechanism in USB is done by hardware. If this transfer has error, the
DATA packet will not be inverted and the packet will be retransferred. At the same time, the receiving end
receives consecutive DATA packets with the same PID, which will be considered as retransfer packets. USB
allows less than 3 consecutive transfer errors, if more than 3 times, the host considers the endpoint function
error (STALL) and abandons the transfer task of the endpoint.

24.2 USB applications

This chapter is not about the real USB applications, but about the design of the application layer that lies
above the USB driver layer. This chapter will explain in detail the basic concepts and working principles of
USB from the user’s point of view, in order to facilitate the user’s familiarity and mastery of the basics and
usage of USB.

24.2.1 Basic concept

The relationship between USB hardware devices and software devices is that a USB hardware device can
correspond to one or more software devices, depending on the user’s enumeration information (configura-
tion descriptor information). A software device is a virtual device in which the PC abstracts the interface of
a hardware device, a class that implements the same function, and can be operated in a uniform manner.
A software device contains one or more interfaces, an interface contains one or more endpoints (endpoints
will be explained below), and interfaces and endpoints are all concepts in a hardware device.

An Endpoint is the smallest unit in a USB device that can send and receive data. Except for Endpoint 0 (which
is fixed for bidirectional control transfer), all other endpoints support only unidirectional communication, that
is, input endpoints (data flow from device to host) or output endpoints (data flow from host to device). The
number of endpoints supported by the device is limited to a maximum of 2 groups of endpoints (2 inputs,

AN-21010600-E5 199 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

2 outputs) for low-speed devices and a maximum of 15 groups of endpoints for high-speed and full-speed
devices, in addition to the default endpoint 0.

The Interface is a collection of endpoints that make up a basic function in a USB device, and is the object
controlled by the USB device driver (the host will virtualize a USB device that can be operated directly on
the PC according to the interface, the virtual device is a USB device class). From the host, a USB device
can consist of one or more interfaces, such as a USB device with an integrated mouse and keyboard, they
have two Interfaces, one for the keyboard and the other for the mouse; for example, an audio device is
composed of an interface for command transmission and an interface for data transmission.

The summary is as follows:

Endpoint: An endpoint is the only identifiable part of a USB device that is the end point of the communication
flow between the host and the device, and is a data buffer on a USB device or host that is used to store and
send various data from the USB.

Interface: can be understood as a function.

Configuration: For the combination of interfaces, select which combination during the connection.

Figure 24.24: USB applications

24.3 Standard descriptor

The Descriptor is data knot used to describe the attributes of a device and it is divided into standard descrip-
tor and proprietary descriptor. Standard descriptor is common to all USB device classes, including device
descriptor, configuration descriptor, interface descriptor, endpoint descriptor, and string descriptor, among
which string descriptor is divided into serial number descriptor, product descriptor, vendor descriptor, and
language ID descriptor. Proprietary descriptor is unique to each device class, such as HID class unique de-
scriptor has HID descriptor, report descriptor and entity descriptor, and so on. The following figure shows
the standard device request structure specified by the USB protocol.

AN-21010600-E5 200 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.25: Data structure of a standard device request

24.3.1 Device descriptor

A device descriptor describes the basic information of a USB device, which has only one device descriptor.
The following diagram presents the structure of a standard device descriptor. The first 8 bytes summarize
the basic properties of USB, which is the first information the host has to obtain in the USB enumeration.

Offset Field Size Value Description

0 bLength 1 Digital Number of bytes in this description table

1 bDecriptorType 1 Constant Type of descriptor (here it should be 0x01, which is
device descriptor)

2 bcdUSB 2 BCD code USB device description version number (BCD code)
of this device compatible with the description table

AN-21010600-E5 201 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Offset Field Size Value Description

4 bDeviceClass 1 Class Equipment class code.

5 bDeviceSubClass 1 Subclass Subclass mask

6 bDevicePortocol 1 Protocol Protocol code

7 bMaxPacketSize0 1 Digital Maximum packet size for endpoint 0 (only
8,16,32,64 are legal values)

8 idVendor 2 ID Vendor id (assigned by the USB-IF organization)

10 idProduct 2 ID Product id (assigned by the manufacturer)

12 bcdDevice 2 BCD code Device issue number (BCD code)

14 iManufacturer 1 Index The index value of the string descriptor describing
the vendor information.

15 iProduct 1 Index The index value of the string descriptor describing
the product information.

16 iSerialNumber 1 Index The index value of the string descriptor describing
the device serial number information.

17 bNumConfigurations 1 Digital Number of possible configuration descriptors

Note:

• idVendor(VID) and idProduct(PID) are used to uniquely identify a device, but for the Windows
system, given only the VID and PID, it does not uniquely identify the device, which behaves as a
non-stop installation of new drivers. At this point, you also need to consider the serial number
string, that is, only when the VID, PID and serial number are consistent, Windows only need to
install the driver once.

• The index values of the three string descriptors should be different values (except 0).

24.3.2 Configuration descriptor

A configuration descriptor defines the configuration information of a device. A device can have multiple
configuration descriptors.

Offset Field Size Value Description

0 bLength 1 Digital The length of the byte count of this description
table.

1 bDescriptorType 1 Constant Configure description table type (0x02 here)

2 wTotalLength 2 Digital Total length of this configuration information
(including configuration, interface, endpoint
descriptors)

AN-21010600-E5 202 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Offset Field Size Value Description

4 bNumInterfaces 1 Digital Number of interfaces supported by this
configuration

5 bCongfigurationValue 1 Digital Use as a parameter in the SetConfiguration(x)
request to select this configuration

6 iConfiguration 1 Index Description of the string description table index for
this configuration (0 - none)

7 bmAttributes 1 Bitmap Configuration features: D7: Reserved (set to one);
D6: Self-powered; D5: Remote wake-up; D4..0:
Reserved (set to one)

8 MaxPower 1 mA Bus power consumption in this configuration, in
units of 2mA

24.3.3 Interface descriptor

The interface descriptor describes the configuration provided by the interface. The number of interfaces
owned by a configuration is determined by the bNumInterfaces of the configuration descriptor.

Offset Field Size Value Description

0 bLength 1 Digital Number of bytes of this table

1 bDescriptorType 1 Constant Interface description table class (should be 0x04
here)

2 bInterfaceNumber 1 Digital Interface number, the index of the array of
interfaces supported by the current configuration
(starting from zero).

3 bAlternateSetting 1 Digital The index value of the optional setting.

4 bNumEndpoints 1 Digital Number of endpoints for this interface, except
endpoint 0

5 bInterfaceClass 1 Class The value of the class to which the interface
belongs

6 bInterfaceSubClass 1 Subclass Subclass code .

7 bInterfaceProtocol 1 Protocol Protocol code: bInterfaceClass and
bInterfaceSubClass fields depending on the value.

8 iInterface 1 Index The index value of the string description table
describing this interface.

AN-21010600-E5 203 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

24.3.4 Endpoint descriptor

Each endpoint in a USB device has its own endpoint descriptor, the number of which is determined by the
bNumEndpoint in the interface descriptor.

Offset Field Size Value Description

0 bLength 1 Digital Length of bytes of this description table

1 bDescriptorType 1 Constant Endpoint description table class (should be 0x05
here)

2 bEndpointAddress 1 Endpoint Address and direction of the endpoints described in
this description table: Bit 3..0 : Endpoint number.
The endpoint number cannot be repeated in the
change configuration; Bit 6..4 : Reserved, zero; Bit
7: Direction, omitted if the control endpoint. 0:
Output endpoint (host to device). 1: Input
endpoint (device to host).

3 bmAttributes 1 Bitmap The characteristics of the endpoint. Bit 1..0
:Transfer type 00=Control transfer 01=Isochronous
transfer 10=Bulk transfer 11=Interrupt transfer

4 wMaxPacketSize 2 Digital The maximum packet size that this endpoint can
receive or send in the current configuration. For
interrupt transfer, bulk transfer and control
transfer, endpoints may send packets shorter than
this.

6 bInterval 1 Digital The interval at which the host polls this endpoint,
is ignored for bulk and control transfer endpoints;
for isochronous transfer endpoints, it must be 1;
for interrupt transfer, it is 10 to 255 (ms) here for
low-speed mode and 1 to 255 (ms) for full-speed
mode.

24.3.5 String descriptor

The String descriptor is optional. If string descriptor is not supported, all string descriptors within their
device, configuration, and interface descriptors must have an index of 0. Language string descriptors have
an index of 0.

Offset Field Size Value Description

0 bLength 1 Digital Number of bytes for this description table (value N + 2
for the bString field)

1 bDescriptorType 1 Constant String description table type (here should be 0x03)

AN-21010600-E5 204 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Offset Field Size Value Description

2 bString N Digital UNICODE encoded strings

24.4 USB enumeration

The Enumeration is that the host reads some information from the device side to know what kind of device
it is and how it communicates, so that the host can load the appropriate driver based on this information.
When debugging USB devices, it is important to check the USB enumeration, as long as the enumeration
is successful, it has been mostly successful. The following USB enumeration sequence diagram (figure (a)
below) and the Telink mouse class USB enumeration example (figure (b) below) are to introduce the USB
enumeration process in detail.

24.4.1 USB enumeration sequence

The USB enumeration sequence diagram is given in the figure below, from which we can see that the USB
enumeration process is divided into 8 steps to complete, where Step 1 to 7 is the standard USB enumeration
process, and Step 8 is the USB device class proprietary enumeration process.

AN-21010600-E5 205 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.26: (a) USB enumeration sequence diagram

• Step 1 After the host detects a device access: first, the host determines whether the device is a low-
speed device or a full-speed device based on the level status on the differential signal line (high-speed
devices are considered to be full-speed devices by default at the initial power-up); then the host waits
for the device power to stabilize (>=100ms) and sends a reset signal to the device (D+ and D- all low
for >=10ms); finally, if it is a high-speed device and the host (Hub) supports high-speed mode, the
device can switch to high-speed mode after the host and the device perform high-speed detection
and handshake, otherwise it still maintains full-speed mode.

• Step 2 After Step 1, the host will use endpoint 0 (default endpoint, control transfer) and send a Get-
Descriptor request (device address is 0). After the device receives the request, it will send its own
device descriptor to the host, and the host will take the next action based on this device descriptor
(bMaxPacketSize0 field). It should be noted that: (1) only the device receives the reset signal in Step
1 to respond to the host; (2) the device that has completed the enumeration does not respond to the
request; (3) the length of the descriptor is at least 8 bytes (bMaxPacketSize0 field is in the 8th byte);
(4) if the device timeout without respond or responds incorrectly, the host will start again and try three

AN-21010600-E5 206 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

times, and if still cannot get the correct response for three times, the host will consider the device as
an unrecognizable device (the same below).

• Step 3 After the host correctly completes Step 2 and obtains the maximum packet length for endpoint
0, it resets the device, after which the packets will be unpacked and grouped according to that length.

• Step 4 The host assigns a non-zero address to the device that is different from the other devices on the
hub and is used to ensure the stability of directed communication. After the host completes addressing
the device, communication between the host and the device will continue at the new address until the
device is reset or removed.

• Step 5 The host gets the standard descriptors (device descriptor, configuration descriptor, interface
descriptor, endpoint descriptor and string descriptor) of the device in order according to the new
address of the device in Step 4. Note: (1) the host has already obtained the length of the device
descriptor in Step 2, so the host specifies the length (the maximum length is the length of the device
descriptor) to get the device descriptor, other descriptors are obtained by finding the maximum length
255, the device end only needs to send according to the actual length; (2) the interface descriptor and
endpoint descriptor of the device may be included in the configuration descriptor. The host will retrieve
all the data for the configuration based on the wTotalLength field in the configuration descriptor. (3)
If the device has more than one configuration, the host will divide it into multiple times to request the
configuration descriptors; (4) The host will request the string descriptors according to the number of
string descriptors contained in the descriptors of the device, configuration, interface and endpoint,
according to their index values. And the index value of 0 is special string descriptor (voice information
descriptor).

• Step 6 After completing Step 5, the host obtains the actual length of the configuration descriptor,
and in turn obtains the configuration descriptor information and other information contained in the
configuration descriptor (such as interface descriptor and endpoint descriptor, and so on).

• Step 7 Step 1~6 is the standard USB enumeration process. Only when Step 1~6 are all correct, the host
issues the SetConfiguration command to activate and use a configuration of the device, and then the
device is truly available. After the device is configured, the host will split the device into one or more
virtual devices based on the standard descriptor of the device.

• Step 8 After Step 7 is completed, one or more virtual devices are generated on the host, and each
virtual device has its class identification. The host will look up the corresponding driver according
to its VID, PID and serial number, and install the driver (if it has backup on the host, it will be used
directly and not installed anymore). Then, the host loads the corresponding class-exclusive description
information according to the driver. The standard HID device is given here, and the host comes with
the driver.

24.4.2 USB enumeration example

The following figure (b) is the enumeration process when Telink Dongle is used as a mouse device, Step
x in the figure corresponds to Step x in the above figure (a). Step 8 is the HID device class proprietary
enumeration process, that is, to obtain the report descriptor, the structure of the report descriptor can be
referred to the USB HID protocol Universal Serial Bus (USB)-Device Class Definition for Human Interface
Devices (HID).

AN-21010600-E5 207 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.27: (b) Enumeration flow when Telink Dongle is a mouse device

24.5 USB hardware introduction

The Telink USB hardware module internally solidifies the processing of raw packets and transactions, auto-
matically completes the saving of IN endpoint data and the sending of OUT endpoint data, and packages
the data of endpoint 0 into standard user packets, which not only improves the efficiency of USB execution
but also minimizes the difficulty of USB development.

24.6 USB endpoint

24.6.1 Endpoint configuration

Telink USB supports USB1.1 protocol and adopts external power supply mode. The DP pin has a 1.5k pull-up
resistor (optional for users), users can set the analog register to enable (set to 1) or disable (set to 0) the
USB function, and the default is off. Telink USB has 9 endpoints, i.e. endpoint 0 and endpoints 1~8, the
endpoints 1, 2, 3, 4, 7 and 8 can be configured as input endpoints, while endpoints 5 and 6 are configured

AN-21010600-E5 208 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

as output endpoints. Endpoint 0 can only use control transfer, endpoints 1~8 support three other transfer
modes except control transfer. In audio applications, endpoints 6 and 7 are isochronous transfer endpoints
by default (users can turn off the isochronous transfer function of endpoints 6 and 7 by clearing bit6 and bit7
of digital register 0x38). The endpoint 6 supports synchronous output and endpoint 7 supports synchronous
input.

Configurable endpoint type Endpoint number

Control endpoints (both inputs and outputs) 0

Output endpoint 5, 6

Input endpoint 1, 2, 3, 4, 7 and 8

24.6.2 Endpoint memory allocation

Telink USB uses 8+256 bytes USB exclusive RAM to cache the data of each endpoint, the RAM address
of endpoint 0 is fixed and the size is 8 bytes, the rest of the endpoints share 256 bytes. The user can
configure the address registers as needed to set the starting location of each endpoint data. The cache size
of the endpoint is the starting address of the next endpoint minus the starting address of this endpoint.
The USB endpoint resource allocation chart is calculated based on the default configuration in the table
below (USB Endpoint Register Default Allocation Table). The hardware will store the received data into the
corresponding buffer or take data from the corresponding buffer and send it to the host according to the
user’s configuration. It should be noted that the user should calculate the address of each endpoint when
configuring the address register, otherwise it may trigger data overwriting problems.

Endpoint starting address Meaning

0x00 Endpoint 1 starting address

0x08 Endpoint 2 starting address

0x10 Endpoint 3 starting address

0x20 Endpoint 6 starting address

0x30 Endpoint 7 starting address

0x40 Endpoint 4 starting address

0x80 Endpoint 8 starting address

0xc0 Endpoint 5 starting address

AN-21010600-E5 209 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.28: USB endpoint resource allocation chart

Note:

• The endpoint cache size is determined by the following two conditions:

a) At the starting point of each endpoint, the cache size of the endpoint is the starting address of
the next endpoint minus the starting address of this endpoint. For example, if endpoint 1 starts at
0x00 and endpoint 2 starts at 0x08, the endpoint 1 has a cache size of 0x08 bytes. The default
endpoint addresses are not ordered by endpoint 1-8, but by the starting address of the endpoint.

b) The endpoint cache maximum is determined by the max register (except for endpoint 7, which
can be allocated to all cache space) and defaults to 64 bytes, so the cache size for each endpoint
should not exceed 64 bytes maximum.

• The endpoint starting address only works for endpoint cache allocation if it is used in an enu-
merated device. For example, usb audio only uses endpoints 6 and 7, the other default starting
addresses, do not work for cache allocation.

24.7 Interrupt

The USB interrupts can be divided into three types, endpoint 0 interrupt, endpoints 1-8 interrupts and
suspend/250us/reset interrupts, shown as below.

Interrupt Generation conditions
Automatic or
manual clearing

CTRL_EP_SETUP(IRQ7) Endpoint 0 control transfer setup phase Clear status
manually

AN-21010600-E5 210 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Interrupt Generation conditions
Automatic or
manual clearing

CTRL_EP_DATA (IRQ8) Endpoint 0 control transfer data phase Clear status
manually

CTRL_EP_STATUS
(IRQ9)

Endpoint 0 control transfer state phase Clear status
manually

Endpoint(1-8)
interrupts(IRQ11)
FLD_USB_EDP8_IRQ (in)
FLD_USB_EDP1_IRQ (in)
FLD_USB_EDP2_IRQ (in)
FLD_USB_EDP3_IRQ (in)
FLD_USB_EDP4_IRQ (in)
FLD_USB_EDP5_IRQ
(out)
FLD_USB_EDP6_IRQ
(out)
FLD_USB_EDP7_IRQ (in)

1. Except for synchronous endpoints Output
endpoint: host out transaction, the corresponding
position 1 of the status register, generating interrupt,
after receiving return ACK. Input endpoint: After the
data is filled, configure ACK, notifies the hardware
and generates an interrupt, and the hardware sends
the data to the host upon receipt of the host in
transaction. 2. Synchronous endpoints Endpoints 6,
7 can be set as synchronous endpoints and timed at
1ms to generate an interrupt.

Clear status
manually

USB_IRQ_USB_SUSPEND
(IRQ24)

USB bus idle, for example, unplug USB port, host
hibernate

Clear status
manually

USB_IRQ_250us (IRQ34) 250us timed interrupt Clear status
manually

USB_IRQ_RESET
(IRQ35)

Host sends reset timings Clear status
manually

Note:

• Driver enumeration process transfers are handled by polling and no interrupts are used.

24.8 Automatic and manual modes

Telink USB has two modes, namely automatic mode and manual mode:

Users can set the configuration register of endpoint 0 to control whether to choose automatic mode or
manual mode. The default configuration register of Endpoint 0 is 0xFF, which is auto mode, when all
codecs related to USB endpoint 0 are automatically driven by Telink hardware, and Telink comes with a
driver for Print device. Use endpoint 8 as the endpoint of the control interface, from which printer data is
sent to endpoint 0.

The Manual mode requires the user to modify the EDP0CFG register (as below), typically by setting bit[7] and
bit[5] to 0, that is, the user is to complete the enumeration of the standard USB and use the user-defined
descriptors.

AN-21010600-E5 211 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.29: Endpoint0 configuration register

24.9 USB software fundamental

24.10 USB operation flow

The software operation flow of Telink USB can be divided into two phases, namely the initialization phase
and the cyclic detection phase, as shown in the figure below.

Figure 24.30: Telink USB operation flow chart

During the initialization phase it mainly completes the USB-related configuration and enables USB. The USB
configuration options include mode switching (auto mode and manual mode), setting USB data buffer and

AN-21010600-E5 212 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

setting other configuration items; mode switching is mainly to switch the USB working mode to manual
mode, at this time the related enumeration process and descriptors are controlled by the user, and the
device will report the enumeration information prepared by the user to the host; setting USB buffer is to
assign a buffer to the related endpoints (total buffer size 256 Bytes, endpoints not used do not need to
be specified) according to the usage of their endpoints (except endpoint 0); setting other configurations is
used for other configuration operations, users can choose to configure themselves if they do not want to
use the system default configuration items, such as interrupt form transferring data, and so on.

The main purpose of the loop detection is to constantly check whether there is data in the data receive
and send buffers, and if there is data, then the relevant operation will be performed, and usb_handle_irq
will be executed repeatedly during the program run. The operation process of endpoint 0 can be divided
into three stages, as shown in the figure below, which correspond to the SETUP stage, DATA stage and
STATUS stage of the control transfer, mainly to complete the USB identification and configuration, such as
USB enumeration which is completed in the main loop; SETUP parses the commands sent by the host and
prepares the corresponding data according to the host’s commands; DATA sends the data prepared in the
data stage to the host or receives the data sent by the host; STATUS is the handshake process between the
two sides.

Figure 24.31: Endpoint0 data operation flow

24.11 Data receiving and sending

24.11.1 Data receiving

Telink USB data receiving is done by the hardware, which will save the received data into RAM, and the
hardware will generate an interrupt to notify the user after the receiving is completed, and the user only
needs to read the data after the interrupt is detected. Data detection and receiving should be performed in
the usb_handle_irq function in usb.c. Combined with the following diagram, the processing flow of Telink
USB data receiving is analyzed in detail:

(1) The user needs to check if the relevant interrupt identification bit (reg_usb_irq) is set to 1. If it is set
to 1, the data reception stage is entered.

(2) Once the data has been detected, the user needs to clear the interrupt identification bit, that is
reg_usb_irq = BIT((USB_EDP_CUSTUM_OUT & 0x07)).

AN-21010600-E5 213 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

(3) Before the user can read the data, he needs to use reg_usb_ep_ptr(USB_EDP_CUSTUM_OUT) to get
the length of the received data.

(4) After the user gets the data length, he can get all the data received this time by repeatedly reading
usbhw_read_ep_data(USB_EDP_CUSTUM_OUT).

(5) After the user receives the data, he needs to set the call to usbhw_data_ep_ack(USB_EDP_CUSTUM
_OUT). (Note that this step is important, only when the ACK of the OUT endpoint is set up, the hardware
will go to receive the data sent down to that endpoint by the host and generate an interrupt when the
receiving is complete.)

Figure 24.32: Telink USB data receiving

24.11.2 Data sending

Telink USB data sending is done by hardware just like data receiving, user only needs to fill the data into
the corresponding USB RAM and set the data ACK bit to 1. Before filling the data, user needs to first detect
if there is pending data in the USB RAM, if there is pending data, you need to wait for the completion of
sending before filling the new data, otherwise the data overwrite will occur.

The following figure gives an example of sending data in the Telink SDK. The following is a detailed analysis
of the USB data sending process with this example:

(1) Before sending data, the user needs to detect if the operating endpoint is busy, and if it is busy (data
to be sent), it needs to wait until the sending is completed before filling the data.

(2) If the endpoint is idle, the endpoint counter needs to be reset first, that is reg_usb_ep_ptr(USB_EDP
_CUSTUM_CMISC_IN) = 0.

(3) After resetting the endpoint counter, the user can fill the endpoint with data. Note that
reg_usb_ep_dat(USB_EDP_CUSTUM_CMISC_IN) = data[i] puts the data into the USB RAM (hard-
ware operation).

(4) After the user fills the data, he needs to call reg_usb_ep_ctrl(USB_EDP_CUSTUM_CMISC_IN) =
FLD_EP_DAT_ACK to inform the hardware that the data is ready and the hardware will send the data
to the next host when it requests it after receiving this command.

AN-21010600-E5 214 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.33: Telink USB data sending

24.12 USB demo

The USB application mainly introduces the USB standard device class HID (Human Interface Device) device,
Audio device, CDC (Communication Device Class) device simple application, customers can freely combine
according to the needs.

The HID class devices are common types of USB devices, which are USB devices that interact directly with
people, such as USB mouse, USB keyboard.

The most common USB Audio devices are microphones and speakers.

The CDC class of USB is the abbreviation for the USB communication device class, and the virtual serial
device is a type of CDC class device.

In the header USB_DEMO/app_config.h you can choose to configure it as different devices.

#define USB_MOUSE 1

#define USB_KEYBOARD 2

#define USB_MICROPHONE 3

#define USB_SPEAKER 4

#define USB_CDC 5

#define USB_MIC_SPEAKER 6

#define USB_DEMO_TYPE USB_MOUSE

24.12.1 USB mouse

24.12.1.1 Mouse processing flow

The USB HID devices transfer data via report. A report descriptor can describe multiple reports, and different
reports are identified by their ID, which is the first byte of the report. When no report ID is specified, the
report has no ID field and starts with data. Detailed information on the report descriptors can be found in
the USB HID protocol and in the HID Usage Tables.

First the host identifies the Telink USB as a mouse device, which needs to go through an enumeration stage,
and after the device is successfully enumerated, it enters the data sending and receiving stage. According to
the content of mouse report descriptor, there are 4 bytes in the descriptor with report ID USB_HID_MOUSE.

AN-21010600-E5 215 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The low 5 bits of the 1st byte word indicate whether the key is pressed or not, and the high 3 bits are
constant and useless; the 2nd byte is the amount of X-axis change; the 3rd byte is the amount of Y-axis
change; and the 4th byte is the amount of scroll wheel change. The report is returned by the function
usbmouse_hid_report(USB_HID_MOUSE ,mouse,4).

In the Demo program, the array unsigned char mouse[4] is defined, where mouse[0]: BIT(0) - left key;
BIT(1) - right key; BIT(2) - middle key; BIT(3) - side key; BIT(4) - external key. The corresponding bit is set
to 1, which means the corresponding mouse button is pressed; mouse[1]: the amount of change relative to
the x coordinate; mouse[2]: the amount of change relative to the y coordinate; mouse[3]: the amount of
change of the scroll wheel.

24.12.1.2 Mouse test

Press test

In the demo program, report ID: USB_HID_MOUSE=1,

Assignment of the array mouse: mouse[0]=BIT(1), mouse[1]= -2 (code complement), mouse [2]=2,
mouse[3]=2.

Ground pin PD1 on the development board and then unplug it, the function usbmouse_hid_report(USB_HID_
MOUSE,mouse,4) will be executed.

You can observe that the on the desktop right mouse button is pressed and the mouse cursor is moved
down to the left, as in the figure below, and also from the USB packet capture tool Input Report[1]: x:-2,Y:
2,wheel:0,Btns=[2].

Figure 24.34: Mouse Input Report packet capture screenshot

Release test

The same operation as PD1 is performed on pin PD2, the mouse array is cleared to zero and the key is
released.

24.12.2 USB keyboard

24.12.2.1 Keyboard processing process

According to the contents of the keyboard report descriptor, there are input and output reports, where the
input report specifies 8 bytes and the 8 bits of the first byte indicate whether the special key is pressed or
not.

BYTE0 : BIT(0) - Left Ctl ; BIT(1) - Left Shift ; BIT(2) - Left Alt ; BIT(3) - Left GUI

BIT(4) - Right Ctl; BIT(5) - Right Shift; BIT(6) - Right Alt; BIT(7) - Right GUI

The second byte is a reserved value, both are 0.

AN-21010600-E5 216 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

BYTE1: 0

Bytes 3 to 8 are common key value. When no key is pressed, all 6 bytes are 0. The first byte value of
these 6 bytes is the key value of the key, and when more than one key is pressed at the same time, the key
values are returned at the same time, and the order of the keys in the array is irrelevant. Please refer to
the HID Usage Table document for specific key values. For example, 0x59 corresponds to numeric keypad
1; 0x5a corresponds to numeric keypad 2; 0x5b corresponds to numeric keypad 3; 0x39 corresponds to
case-switching key.

24.12.2.2 Keyboard test

Press test

In the demo program, define the array kb_data[6] and assign the values kb_data[0] = 0; kb_data[1] = 0;
kb_data[2] = 0x59; kb_data[3] = 0x5a; kb_data[4] = 0x39; kb_data[5] = 0;

Ground pin PC1 on the development board and then unplug it, the function usbkb_hid_report_normal(0x10,
kb_data) will be executed, where parameter 1 corresponds to the first byte and parameter 2 is an array
corresponding to 3~8 bytes.

It can be observed that in the edit window input screen, the numbers 1 and 2 will be entered and the right
Ctrl key and capslock key pressed.

As shown in the figure below, you can also see from the USB packet capture tool Input Report: Keys=[Rctrl
1 2 CapsLk]

Figure 24.35: Keyboard Input Report packet capture screenshot

Release test

Perform the same operation on GPIO_PC2 as GPIO_PC1, special keys and kb_data array are cleared to zero
and keys are released.

24.12.3 USB MIC

24.12.3.1 MIC processing flow

Take AMIC for example, the USBmicrophone device is the device’s AMIC data through the USB transfer to the
host, you need to ensure that the entire data channel sampling rate and channel number match. In Demo
program, the main data upload to the USB part is different, Mic endpoint interrupt is 1ms timing interrupt,
also 1ms into an interrupt. According to the different sampling rate, 1ms generate different amounts of data,
for example, 16K sampling rate receive sounds, mono data, 1 sample for 2 bytes, 1ms data for 32bytes,
correspond to the audio buff will be filled into the USB SRAM.

AN-21010600-E5 217 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

24.12.3.2 Mic demo test

In Audio-related tests, we use the help of Audacity software, as shown in the figure below microphone
choosing Telink Audio16, speaker choosing PC speaker.

Device Mic receive sounds, PC speaker playback, if recorded vocals can be played through the speaker
without distortion, indicating that the Mic works properly.

Figure 24.36: Audacity software setup (Mic)

24.12.4 USB speaker

24.12.4.1 Speaker handling process

The USB speaker device is transferring the audio data from the host to the device via USB, and this process
is also done in a 1ms interrupt, reading the length of the USB SRAM data and filling the corresponding data
to the audio buff.

24.12.4.2 Speaker demo test

In Audacity software, select PC Microphone for microphone and Telink Audio16 for speaker. We use the
output audio interface (3.5mm headphone jack). If the recorded vocals can be played out through the
headphones without distortion, it means that the speaker is working properly.

Figure 24.37: Audacity software setup (Spk)

AN-21010600-E5 218 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

24.12.5 USB CDC

The CDC device has two interfaces, a CDC control interface and a CDC data interface. The control interface
allocates endpoint 2, as an interrupt input endpoint transfer. The data interface allocates endpoint 5 (out),
endpoint 4 (out), and must first set the ACK of endpoint 5 up before the endpoint can receive data from the
USB host.

24.12.5.1 CDC processing flow

USB Installation of CDC Device

The first time the host is recognized as a CDC device, the .inf file needs to be installed manually, as shown
in the following figure under the 8278_USB_Demo path.

Figure 24.38: .inf file path

Data receiving (host to device)

In Demo program, in function void usb_cdc_irq_data_process(void) host send data to device, endpoint 5
generates interrupt, function usb_cdc_rx_data_from_host(usb_cdc_data) is for data receiving.

Data sending (device to host)

As shown in the figure below, in main_loop, when the received buff data length is judged to be non-zero,
the received data is sent to host by the function usb_cdc_rx_data_from_host(usb_cdc_data).

AN-21010600-E5 219 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 24.39: Data sending

24.12.5.2 CDC demo test

The test phenomenon is shown in the figure below, which returns the data sent by the serial tool.

Figure 24.40: CDC data transceiver test

AN-21010600-E5 220 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

25 CPU performance test

One important measure of a processor is power consumption, and another important measure is perfor-
mance. There are many benchmarks in the processor area, the most well-known and common benchmarks
in the embedded processor area are Dhrystone and CoreMark.

25.1 Dhrystone

The Dhrystone standard test method is simple, it is how many times the Dhrystone program is run per unit
time, and its metric unit is DMIPS/MHz. The MIPS stands for Million Instructions Per Second, the number
of million machine language instructions processed per second. The D in DMIPS is an abbreviation for
Dhrystone, which indicates the MIPS under the Dhrystone standard test method, mainly used to measure
integer computing power.

25.2 CoreMark

The CoreMark program is written in C and contains the following four types of algorithms: mathematical
matrix operations (normal matrix operations), enumeration (find and sort), state machine (used to deter-
mine whether the input stream contains valid numbers), and CRC (cyclic redundancy check). Similar to
Dhrystone, the standard CoreMark test method is how many times the CoreMark program is run per unit of
time under a certain combination of configuration parameters, with the metric unit of CoreMark/MHz. The
higher CoreMark numbers mean the higher performance.

25.3 Testing

Dhrystone_Demo and CoreMark_Demo are for Dhrystone and CoreMark tests, respectively, with the test
information exported from the USB.

Benchmarks Test results Remarks

Dhrystone 2.7 (DMIPS) attach1

CoreMark 3.38 attach2

Note:

• To improve the test performance, the link file corresponding to the two demos is flash_boot_ramcode.link.

AN-21010600-E5 221 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26 Audio

26.1 Audio introduction

26.1.1 Sound basic

Sound is an acoustic wave produced by the vibration of an object and is a mechanical wave. The audio
recording process is an analog-to-digital conversion process and the playback process is the opposite.

Figure 26.1: Analog to digital conversion process

• Sampling: Taking a point at regular intervals for an analog signal.

• Quantization: scales the vertical coordinates and takes integer values according to an approximation
so that the values of the points sampled are integers.

• Encoding: Encode the integer values obtained by quantization in binary.

• Digital signal: Transform the sequence of 0’s and 1’s obtained by encoding into a high and low level
signal.

The whole analog-to-digital conversion process is called Pulse Code Modulation (PCM for short), and as can

AN-21010600-E5 222 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

be seen from the above analog-to-digital conversion, the contents of the PCM format file are actually the
encoded sequence.

26.1.2 Basic concepts of sampled audio

Sampling frequency: Sampling is the digitization of an analog signal on a time axis, which is sampled
(AD-converted) at a frequency more than twice the highest frequency of the sound according to Nyquist’s
Theorem (sampling theorem). Sounds with frequencies between 20 Hz and 20 kHz are recognizable to the
human ear. This is why the sampling frequency is generally around 40 kHz, commonly used for music at
44.1 kHz (44,100 samples/second), 48 kHz, etc. The sampling rate for telephones is 8 kHz.

Sampling bits: The range of data that each sample point can represent. The number of sampling bits is
usually either 8 bits or 16 bits, the greater the number of bits, the more detailed the variation in sound
that can be recorded and the greater the corresponding amount of data. The 16-bit is the most common
sampling accuracy.

Number of channels: The number of channels refers to the number of audio channels that can support
different sound generation, commonly used are mono, stereo (left and right channel).

For example, the relevant parameters for CD sound quality are, sample bit width of 16 bits, sample rate of
44100, number of channels is 2, which is used to measure the volume size of the audio data per unit time,
the data bit rate of CD sound quality is: 44100 * 16 * 2 = 1411.2 kbps.

PCM audio data: PCM is sampled and quantized uncompressed audio data, converted from analog signals
into standard digital audio data by sampling, quantizing and encoding. In the case of mono audio files, the
sampled data is stored sequentially in chronological order (in the case of dual channels it is stored in LRLR
mode, the storage is also related to the big/small-endian of the machine). The big-endian mode is shown
in the figure below.

Figure 26.2: PCM data format

26.1.3 I2S protocol

The I2S (Inter-IC Sound) bus, also known as the integrated circuit built-in audio bus, is a bus standard
developed by Philips Semiconductors (now NXP Semiconductors) for the transmission of audio data between
digital audio devices, which is used exclusively for data transmission between audio devices.

26.1.3.1 I2S signals

(1) Serial clock BCLK

AN-21010600-E5 223 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

The serial clock, BCLK, has a pulse for each bit of data corresponding to the digital audio.

(2) Frame clock LRCK

The frame clock LRCK is for switching data between left and right channels. LRCLK (Left/Right CLOCK),
frequency of LRCK = sampling frequency.

(3) Serial data SDATA

It is the audio data expressed in binary complement, (MSB —> LSB: the data is transmitted sequentially
from high to low bits).

26.1.3.2 I2S data format

Depending on the position of the data relative to the LRCLK and BCLK, it is divided into I2S standard for-
mat (I2S), left-justified (LJ) and right-justified (RJ), and the same data format must be used on both the
transmitter and receiver end.

Note:

• The driver defaults to the I2S format.

(1) I2S format

The highest bit of the data is always at the 2nd BCLK pulse after the LRCLK change (i.e. the start of a frame)
and the timing sequence is shown as below.

Figure 26.3: I2S format

(2) LJ format

AN-21010600-E5 224 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Data transmission starts at the same time as the LRCLK is flipped. Note that at this point when LRCLK is 1,
the left channel data is transmitted, which is just the opposite of the I2S Philips standard. The left-aligned
(MSB) standard timing sequence is shown as below.

Figure 26.4: LJ format

(3) RJ format

While the sound data LSB transmission is completed, the LRCLK completes its second flip (it just happens
that the LSB and LRCLK are right-justified, hence called right-justified standard). Note that at this point
when LRCLK is 1, the left channel data is transmitted.

AN-21010600-E5 225 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 26.5: RJ format

(4) DSP/PCM mode

The DSP/PCM mode is divided into two modes, Mode-A and Mode-B. Some of the datasheets for different
chips write PCM mode and some write DSP mode. The I2S left and right channels are high and low respec-
tively, PCM has only one start signal and the left channel data follows the right channel. In figure A below,
the Mode-A data is at the first BCLK pulse. In figure B below, the Mode-B data is at the 2nd BCLK pulse.

Figure 26.6: DSP format (Mode-A)

AN-21010600-E5 226 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 26.7: DSP format (Mode-B)

26.2 Audio structure

26.2.1 CODEC introduction

As shown in the diagram below, the audio CODEC has an analog-to-digital converter (ADC). The CODEC
converts the analog signal from the AMIC and Line-in inputs into an A/D conversion, turning the analog
signal into a digital signal that the CPU can process; the digital-to-analog converter (DAC) converts signals
such as PCM into a D/A conversion, converts the digital audio signal into an analog signal.

Figure 26.8: CODEC framework

AN-21010600-E5 227 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26.2.2 Audio framework

As shown in the figure below, the audio module consists of 3 parts: the data input and output interfaces,
which may vary from SoC to SoC, the I2S RX interface and the audio CODEC ADC interface at Input_Path,
the I2S TX interface and the CODEC DAC interface at Output_Path; the FIFO and DMA that make up the data
interaction interface (blue box); BUFF for storing PCM data (orange box).

• Input_Path：The CODEC passes the A/D converted digital signal into the BUFF or directly passes the
data into the BUFF via the I2S RX interface.

• Output_Path：D/A conversion of signals such as PCM from BUFF, converting digital audio signals to
analog signals or direct output via I2S TX.

Figure 26.9: Audio framework

26.2.3 Audio I2S clock

As shown in the figure below, when the SoC as master to accommodate different sampling rates (LRCLK),
supporting 8K/16K/32K/48K/44.1K, it is necessary to set different dividing factors to calculate the corre-
sponding sampling rate, where the Audio module clock source of MCLK clock and I2S_CLK are directly from
PLL = 192M, then I2S_CLK is divided to BCLK and LRCLK.

AN-21010600-E5 228 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 26.10: SoC audio clock source

In which, MCLK=PLL/diver1, LRCLK=PLL/divder2/divider3/divider4.

26.3 Audio driver

26.3.1 DMA transfer

The audio data transfer is via DMA (Direct Memory Access). The working mechanism of DMA and Audio
BUFF are introduced below.

26.3.1.1 DMA transfer mechanism

The DMA transfer is the direct sending of data from a peripheral device to internal memory without CPU,
or, from internal memory to an external device without CPU. The transfer action itself is implemented and
completed by the DMA controller, and the transfer process does not require the involvement of the CPU.
As shown in the following figure, the audio FIFO and BUFF data interaction is transferred via DMA, with the
source address of the recording (Rx) DMA being the first address of Rx_FIFO with a depth of 8 words and the
destination address being the first address of Rx_BUFF with a depth that can be configured. The playback
(Tx) DMA has a destination address of the first address of Tx_FIFO with a depth of 8 word and a source
address of the first address of Tx_Buff with a depth that can be configured. If Rx_BUFF and Tx_BUFF share
a common BUFF, then the destination address of Rx and the source address of Tx are the same.

Figure 26.11: DMA and Audio FIFO interaction

AN-21010600-E5 229 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26.3.1.2 DMA link transfer

The audio data streams are generated without interruption. DMA transfers are completed once and then
the next transfer requires configuration of the relevant control registers and DMA length to trigger the
DMA transfer again. The DMA linked list can solve this problem, using the linked list method can complete
the function of continuous transfer without CPU involvement. The DMA linked list includes the following
contents: DMA control, src_addr, dst_addr, DMA length and LLP_ptr (the address of the next linked list).
After the DMA has completed the first transfer, set the head of the linked list (Head_of_list) and the DMA
will be transferred according to the contents of the linked list configuration and then linked to the next linked
list for transfer, and the cycle repeats.

(1) DMA ping-pong buff link transfer

The following figure shows the link transfer of a ping-pong buff with Tx as an example. Create the
header node Head_of_list first, and then add two linked lists to the circular linked list, Tx_dma_list[0]
and Tx_dma_list[1], with Tx_dma_list[0] corresponding to the source address Tx_BUFF[1], Tx_dma_list[1]
corresponding to Tx_BUFF[0]. According to its flow, the data of Tx_BUFF[0] is carried first, then the data
of Tx_BUFF[1] is carried according to the linked list header LLP pointing to Tx_dma_list[0], the data of
Tx_BUFF[0] is carried according to the LLP in Tx_dma_list[0] pointing to the Tx_dma_list[1], then LLP in
turn points to Tx_dma_ list[0], which closes to form a ping-pong buff.

Figure 26.12: ping-pong buff link transfer

(2) DMA single buff link transfer

As shown in the figure below, in the case of Tx, the ping-pong buff is used tomake the LLP of the Tx_dma_list
point to itself, and to send a DMA is to carry the data of a single Tx_BUFF all the time.

Figure 26.13: Single BUFF link transfer

AN-21010600-E5 230 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26.3.2 Audio buff working mechanism

Audio uses a ring buff, Rx for recording and Tx for playback. Data is transferred via DMA, with the source ad-
dress of DMA for Rx being the audio peripheral FIFO address and the destination address being the RX_BUFF
first address, and the source address of DMA for Tx being Tx_BUFF and the destination address being the
audio peripheral FIFO address.

26.3.2.1 Rx Path

As shown in the figure below, Rx_BUFF with BUFF_size length set , the recording data is moved into Rx_BUFF
by DMA to obtain rx_wptr which is maintained by hardware (the way it is obtained varies from chip to chip).
Record rx_rptr according to the software fetch data operation from Rx_BUFF, maintained by the software.
The red line part is the readable data length read_len which has below conditions:

• rx_wptr > rx_rptr, read_len = rx_wptr - rx_rptr;

• rx_wptr < rx_rptr, read_len = buff_size - (rx_rptr - rx_wptr).

Figure 26.14: Rx_BUFF

26.3.2.2 Tx Path

As shown in the figure below, Tx_BUFF with BUFF_size length is set, and the playback is to move the BUFF
data out of BUFF by DMA to obtain tx_rptr maintained by hardware (the way it is obtained varies from
chip to chip). Record tx_wptr according to the software fill data operation to Tx_BUFF, maintained by the
software. The red line is the length of the writable data write_len which has below conditions:

• tx_rptr > tx_wptr, write_len = tx_rptr - tx_wptr;

• tx_rptr < tx_wptr, write_len = buff_size - (tx_wptr - tx_rptr).

AN-21010600-E5 231 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Figure 26.15: Tx_BUFF

26.3.3 Audio_Demo

In the header of audio demo, configure the macro AUDIO_MODE in app_config.h to select the different audio
modes.

Demo Function

LINEIN_TO_LINEOUT The analog audio is fed in at the input jack, with speakers or
headphones connected at the output jack to hear the
CODEC-processed audio in real time.

AMIC_TO_LINEOUT AMIC recording, with CODEC-processed audio heard in real time by
connecting speakers or headphones to the output jack.

DMIC_TO_LINEOUT DMIC recording, with a speaker or headphone connected to the
output jack to hear the CODEC-processed audio in real time.

BUFFER_TO_LINEOUT The PCM data from the BUFF will be output through CODEC
processing, and the audio from the BUFF (usually 1K sine wave) can
be heard by connecting speakers or headphones to the output jack.

FLASH_TO_LINEOUT The PCM data in the flash is read out according to a certain way to fill
in the AUDIO BUFF, and then output after CODEC processing, the
audio in the flash can be heard in the output jack connected to the
speaker or headphones.

EXT_CODEC_LINEIN_LINEOUT The SoC’s I2S interface interacts with an external CODEC (WM8731
for example), which is LINE_IN to LINE_OUT in external CODEC.

AN-21010600-E5 232 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26.4 Chip difference

26.4.1 Difference between Input Path and Output Path

26.4.1.1 B91 Audio Input Path

Referring to Input_Path in the Audio framework diagram, as shown below, there are 2 types of audio input:
I2S signals (AMIC/DMIC/LINE-IN) processed by the internal CODEC (all CODECs refer to the internal CODEC
unless otherwise stated); and I2S signals input from the external CODEC.

I2S input:

The IO of the I2S interface is connected to an internal CODEC or an external CODEC via Mux selection. I2S
supports I2S, LJ, RJ and DSP formats; the bit width supports 16bit, 20bit, 24bit and 32bit data formats.
When transferring data I2S_Rx will convert the received serial I2S data into parallel data and write it to
Rx_BUFF.

Figure 26.16: Audio input path

26.4.1.2 B91 Audio output Path

Referring to Output_Path in the Audio framework diagram, as shown below, there are 2 ways to output
audio: audio data in Tx_BUFF, which is output to the internal CODEC or external CODEC via the I2S inter-
face.

I2S output:

The audio data in Tx_BUFF is converted to serial I2S format by I2S_Tx and fed to an internal CODEC or an
external CODEC.

Figure 26.17: Audio output path

AN-21010600-E5 233 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26.4.2 Audio Demo difference

26.4.2.1 B91 LINEIN_TO_LINEOUT

Figure 26.18: LINEIN_TO_LINEOUT

Note:

• The ADC input supports single-ended and differential, the default is differential mode, while the
DAC only supports differential output.

• In MONO mode, you can select single left channel output or left and right channel output at the
same time, when the data of both channels are the same, the default is the latter.

• In STEREO mode, the left input corresponds to the left output and the right input corresponds to
the right output.

26.4.2.2 AMIC_TO_LINEOUT

Figure 26.19: AMIC_TO_LINEOUT

Note:

• The ADC input supports single-ended and differential, the default is differential mode, while the
DAC only supports differential output.

• In MONO mode, for the input channel: the default is left channel as AMIC input, you can call
audio_set_mono_chn interface to set it to right channel as AMIC input. For the output channel:
you can choose single left channel output or left and right channel output at the same time, at
this time the data of both channels is the same, the default is the latter.

• In STEREO mode, the left input corresponds to the left output and the right input corresponds to
the right output.

AN-21010600-E5 234 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

26.4.2.3 DMIC_TO_LINEOUT

Figure 26.20: DMIC_TO_LINEOUT

Note:

• In MONO mode, single DMIC only need 2 signal lines of data and clk, the clk frequency is fixed at
3 MHz.

• In STEREO mode, the left input corresponds to the left output, the right input corresponds to the
right output, the dual DMIC has 1 signal line of data and 2 clks, the dual DMICs share data, the
timing of the 2 clks is the same, the data of one DMIC is collected on the upper edge of the clk,
the data of the other DMIC is collected on the lower edge of the clk.

26.4.2.4 BUFFER_TO_LINEOUT

The demo provides mono audio data at a frequency of 1KHz with a sample rate of 44.1Kbps, and mono
audio data at a frequency of 1KHz with a sample rate of 48Kbps.

Note:

• The first address of BUFF here is the source address of the DMA, using BUFFER as audio_buff.
• Whether in MONO or STEREO mode, the output dual channel output will have a sample phase
difference. Calling audio_invert_i2s_lr_clk to invert the i2s clk will eliminate the phase difference.

26.4.2.5 EXT_CODEC_LINEIN_LINEOUT

The demo implementation: the SoC’s I2S interface interacts with an external CODEC (WM8731 for example),
external CODEC LINE_IN to LINE_OUT.

Figure 26.21: EXT_CODEC_LINEIN_LINEOUT

AN-21010600-E5 235 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

Note:

• MCLK (12M) is provided using PWM0.
• The default sample rate is 32Kbps, MONO, BIT_16.

26.4.2.6 FLASH_TO_LINEOUT

The demo function: the PCM data in the flash is read out in accordance with the fixed length filled into
the AUDIO_BUFF, and then through the LINE_OUT output. Refer to AUDIO BUFF working mechanism, the
length of the BUFF is 4K (AUDIO_BUFF_SIZE), the flash data is very large and needs to be filled into the
BUFF in batches.

B91 audio module has no valid interrupts to fill and fetch audio data:

• The recording data is moved into Rx_BUFF by the DMA in the unit of word, and the destination address
of the DMA is self-adding by 4 each time, returning to 0 after self-adding to BUFF_size-4. The offset
of the destination address relative to the first address of Rx_BUFF is noted as rx_wptr.

• The playback is to move the BUFF data out of the BUFF by the DMA in the unit of word, and the DMA
source address is self-added by 4 each time, returning to 0 after self-adding to BUFF_size-4. The
offset of the source address relative to the first address of Tx_BUFF is noted as tx_rptr.

The function interface is introduced first:

u32 audio_get_tx_dma_rptr (dma_chn_e chn) //The parameter chn is configured as a tx dma channel

to obtain the corresponding channel dma source address↪

The source address of the initialization DMA is configured as the first address of audio_buff. The size of
audio_buff is 4K, the playback is to move the buff data out of the buff by DMA in the unit of word, the
source address of DMA will add 4 at each move, returning to 0 after the addition to buff_size-4. The source
address of DMAminus the first address of audio_buff address, which characterizes the state of the hardware
read at audio_buff, noted as the read pointer tx_rptr:

tx_rptr= ((audio_get_tx_dma_rptr (DMA3)-(u32)audio_buff));

And the write state of audio_buff_buff, maintained by software, is noted as tx_wptr, referring to the formula
for calculating Tx Path in the AUDIO BUFF working mechanism, the remaining writable space of audio_buff
is coded as below:

if((tx_wptr&(AUDIO_BUFF_SIZE - 1))>tx_rptr)

{

unused_buff=AUDIO_BUFF_SIZE-(tx_wptr&(AUDIO_BUFF_SIZE-1))+tx_rptr;

}

else

{

unused_buff=tx_rptr-tx_wptr;

}

AN-21010600-E5 236 Ver1.1.1

Te
lin
k S
em
ico
nd
uc
to
r

Telink Driver SDK Developer Handbook

For example, if the BUFF is filled by fixed length of data (AUDIO_THD_SIZE), its flow in while (1) is as
follows.

Figure 26.22: Flow

Note:

• The ADC input supports single-ended and differential, the default is differential mode, while the
DAC only supports differential output.

• In MONO mode, you can select single left channel output or left and right channel output at the
same time, when the data of both channels are the same, the default is the latter.

• In STEREO mode, the left input corresponds to the left output and the right input corresponds to
the right output.

AN-21010600-E5 237 Ver1.1.1

	Revision History
	1 Driver directory structure
	1.1 boot
	1.2 common
	1.3 drivers
	1.4 link
	1.5 vendor

	2 Boot mechanism
	2.1 Telink platform SoC
	2.2 Risc-V platform SoC

	3 S and link files
	3.1 Use of combinations
	3.2 Configuration method
	3.2.1 Link
	3.2.2 S file
	3.2.3 objdump.txt

	3.3 Link file details
	3.3.1 Code detail
	3.3.2 Alignment

	3.4 S file details
	3.4.1 Code detail
	3.4.2 Differences between vectors and retention_reset segments
	3.4.3 Others
	3.4.3.1 Notes on the use of .org
	3.4.3.2 Compression command
	3.4.3.3 FPU enable

	4 Debug Demo
	4.1 Simulate serial output via GPIO port
	4.2 USB printout

	5 Interrupt
	5.1 Interrupt overview
	5.2 Interrupt type
	5.3 External interrupt
	5.3.1 Interrupt enable
	5.3.2 External interrupt handler function in vector mode
	5.3.3 Priority in external interrupt
	5.3.4 Results observation

	6 GPIO
	6.1 Interrupt
	6.1.1 Mechanism description
	6.1.2 Conclusion

	6.2 Attentions

	7 Clock
	7.1 Brief description
	7.2 clock_init
	7.2.1 PLL_CLK
	7.2.2 CCLK
	7.2.3 HCLK
	7.2.4 PCLK
	7.2.5 MSPI_CLK

	8 AES
	9 EMI
	9.1 Protocol
	9.2 Program description
	9.2.1 CarrierOnly mode
	9.2.2 Continue mode
	9.2.3 Burst mode
	9.2.4 RX Mode

	10 Timer
	10.1 Function description
	10.1.1 System Clock Mode
	10.1.2 GPIO Trigger Mode
	10.1.3 GPIO Pulse Width Mode
	10.1.4 Tick Mode
	10.1.5 Watchdog Mode

	10.2 Demo description
	10.2.1 GPIO System Clock Mode
	10.2.2 GPIO Trigger Mode
	10.2.3 GPIO Pulse Width Mode
	10.2.4 Tick Mode
	10.2.5 Watchdog Mode
	10.2.5.1 Dog-feeding test
	10.2.5.2 No dog-feeding test

	11 Analog
	11.1 Attentions
	11.2 Speed Test

	12 Flash
	12.1 Read operation
	12.2 Write operation

	13 BQB
	13.1 Function description
	13.2 Frequency bias value setting
	13.3 Communication verification

	14 PWM
	14.1 PWM introduction
	14.1.1 Clock
	14.1.2 Duty cycle
	14.1.3 Invert/polarity

	14.2 Function description
	14.2.1 Continuous mode
	14.2.2 Counting Mode
	14.2.3 IR Mode
	14.2.4 IR FIFO mode
	14.2.5 IR DMA FIFO mode

	14.3 Interrupts
	14.4 Continuous mode
	14.4.1 Function description
	14.4.2 Example results
	14.4.3 Other validation results
	14.4.3.1 Stop
	14.4.3.2 Duty cycle

	14.5 Counting mode
	14.5.1 COUNT_FRAME_INIT
	14.5.1.1 Function description
	14.5.1.2 Example results

	14.5.2 COUNT_PNUM_INIT
	14.5.2.1 Function description
	14.5.2.2 Example results

	14.5.3 Other validation results
	14.5.3.1 Stop
	14.5.3.2 Duty cycle

	14.6 IR mode
	14.6.1 Function description
	14.6.2 Example results
	14.6.3 Other validation results
	14.6.3.1 Stop
	14.6.3.2 Duty cycle

	14.7 IR FIFO Mode
	14.7.1 Function description
	14.7.2 Example results
	14.7.3 Other validation results
	14.7.3.1 Stop

	14.8 DMA FIFO mode
	14.8.1 PWM_IR_FIFO_DMA
	14.8.1.1 Function description
	14.8.1.2 Example results

	14.8.2 PWM_CHAIN_DMA
	14.8.2.1 Function description

	14.8.3 Example results

	15 I2C
	15.1 Introduction
	15.2 Interrupt
	15.3 I2C mode
	15.3.1 I2C no-DMA mode
	15.3.1.1 Master
	15.3.1.2 Slave

	15.3.2 I2C DMA mode
	15.3.2.1 Master
	15.3.2.2 Slave

	15.4 I2C demo description
	15.4.1 Function description
	15.4.2 Example results

	16 UART
	16.1 Introduction
	16.2 Data communication timing
	16.3 Communication principle
	16.4 Function introduction
	16.4.1 Initialization
	16.4.2 Baud rate
	16.4.2.1 Function calls
	16.4.2.2 Tested data

	16.4.3 Interrupt
	16.4.4 DMA mode
	16.4.4.1 Sending data
	16.4.4.2 Receiving data

	16.4.5 NDMA mode
	16.4.5.1 Sending data
	16.4.5.2 Receiving data

	16.4.6 Flow Control
	16.4.6.1 CTS
	16.4.6.2 RTS

	16.5 DEMO introduction
	16.5.1 DMA Mode
	16.5.2 NDMA Mode
	16.5.3 RTS and CTS

	16.6 Chip Differences
	16.6.1 UART_RXDONE interrupt
	16.6.2 UART_RX_ERR interrupt

	17 SPI
	17.1 Introduction
	17.1.1 Standard SPI interface
	17.1.2 SPI communication process
	17.1.3 Diversified SPI interface

	17.2 Function description
	17.2.1 Interface description
	17.2.2 HSPI and PSPI
	17.2.2.1 Master
	17.2.2.2 Slave
	17.2.2.3 Clock settings
	17.2.2.4 Interrupt
	17.2.2.5 DMA mode
	17.2.2.6 3Line
	17.2.2.7 Multi-SPI Slave architecture
	17.2.2.8 XIP mode

	17.2.3 SPI Slave
	17.2.3.1 Communication data frame format
	17.2.3.2 Operation commands supported by SPI Slave

	17.3 Demo description
	17.3.1 Demo structure description
	17.3.2 Hardware connection
	17.3.3 Initial configuration of HSPI/PSPI Master/Slave
	17.3.4 HSPI/PSPI Master read/write operations
	17.3.4.1 Test example

	17.3.5 SPI_XIP_MODE mode
	17.3.5.1 Communication format
	17.3.5.2 Configure XIP mode
	17.3.5.3 Test example

	18 PM
	18.1 Function description
	18.1.1 Suspend
	18.1.2 Deep
	18.1.3 Deep retention
	18.1.4 Low power mode workflow

	18.2 Driver description
	18.2.1 Reserved information BUF
	18.2.2 Status information
	18.2.3 Suspend power setting
	18.2.4 LPC wake-up
	18.2.5 USB wake-up

	18.3 Demo description
	18.3.1 Process description

	18.4 Chip difference
	18.4.1 Sleep current value

	19 LPC
	19.1 Introduction
	19.2 Working principle
	19.3 Demo description

	20 MDEC
	20.1 Test environment setup
	20.2 Function description

	21 RF
	21.1 Initialization
	21.2 Energy setting
	21.3 Frequency setting
	21.4 Interrupt
	21.5 Packet format
	21.5.1 BLE packet format
	21.5.1.1 BLE packet sending format
	21.5.1.2 BLE packet receiving format
	21.5.1.3 BLE packet receiving data parsing
	21.5.1.4 Packet parsing example

	21.5.2 Zigbee/hybee packet format
	21.5.2.1 Zigbee/hybee packet sending format
	21.5.2.2 Zigbee/hybee packet receiving format
	21.5.2.3 Packet data parsing
	21.5.2.4 Packet parsing example

	21.6 Private packet format
	21.6.1 Private TPLL packet sending format
	21.6.2 Private TPLL packet receiving format
	21.6.3 TPLL receiving packet parsing
	21.6.4 Example of TPLL receiving packet parsing
	21.6.5 Private SB packet format
	21.6.6 Private SB packet receiving format
	21.6.7 Example of SB receiving packet parsing

	21.7 Manual mode
	21.7.1 Manual TX
	21.7.1.1 Single-frequency sending
	21.7.1.2 Frequency-hopping sending

	21.7.2 Manual RX
	21.7.2.1 Single frequency receiving
	21.7.2.2 Frequency-hopping receiving
	21.7.2.3 Send-receive switching

	21.8 Auto mode
	21.8.1 STX
	21.8.1.1 Single-frequency sending
	21.8.1.2 Frequency-hopping sending

	21.8.2 SRX
	21.8.2.1 Single-frequency receiving
	21.8.2.2 Frequency-hopping receiving
	21.8.2.3 Automatic mode switching

	22 ISO-7816
	22.1 Introduction of ISO-7816 protocol
	22.2 How to use ISO-7816
	22.2.1 Hardware connection
	22.2.2 Initilization
	22.2.3 IC card activation and cold reset
	22.2.4 Warm reset
	22.2.5 Contact release

	22.3 Demo introduction

	23 ADC
	23.1 Introduction
	23.2 Working principle
	23.2.1 Internal structure
	23.2.2 Sampling voltage value calculation

	23.3 B91 ADC instructions
	23.3.1 Interface description

	23.4 Demo description
	23.4.1 Demo structure description
	23.4.2 ADC initialization configuration
	23.4.3 ADC sampling and conversion process
	23.4.4 Demo test example

	23.5 Chip difference
	23.5.1 Feature support differences
	23.5.2 Calibration configuration description

	24 USB introduction
	24.1 USB packet format and transfer process
	24.1.1 USB packet structure
	24.1.1.1 Token packets
	24.1.1.2 Data packets
	24.1.1.3 Handshake packets

	24.1.2 USB transfer process
	24.1.2.1 USB transaction
	24.1.2.2 Input transaction
	24.1.2.3 Output transaction
	24.1.2.4 Setup transaction

	24.1.3 USB transfer
	24.1.3.1 Control transfer
	24.1.3.2 Interrupt transfer
	24.1.3.3 Isochronous transfer
	24.1.3.4 Bulk transfer

	24.2 USB applications
	24.2.1 Basic concept

	24.3 Standard descriptor
	24.3.1 Device descriptor
	24.3.2 Configuration descriptor
	24.3.3 Interface descriptor
	24.3.4 Endpoint descriptor
	24.3.5 String descriptor

	24.4 USB enumeration
	24.4.1 USB enumeration sequence
	24.4.2 USB enumeration example

	24.5 USB hardware introduction
	24.6 USB endpoint
	24.6.1 Endpoint configuration
	24.6.2 Endpoint memory allocation

	24.7 Interrupt
	24.8 Automatic and manual modes
	24.9 USB software fundamental
	24.10 USB operation flow
	24.11 Data receiving and sending
	24.11.1 Data receiving
	24.11.2 Data sending

	24.12 USB demo
	24.12.1 USB mouse
	24.12.1.1 Mouse processing flow
	24.12.1.2 Mouse test

	24.12.2 USB keyboard
	24.12.2.1 Keyboard processing process
	24.12.2.2 Keyboard test

	24.12.3 USB MIC
	24.12.3.1 MIC processing flow
	24.12.3.2 Mic demo test

	24.12.4 USB speaker
	24.12.4.1 Speaker handling process
	24.12.4.2 Speaker demo test

	24.12.5 USB CDC
	24.12.5.1 CDC processing flow
	24.12.5.2 CDC demo test

	25 CPU performance test
	25.1 Dhrystone
	25.2 CoreMark
	25.3 Testing

	26 Audio
	26.1 Audio introduction
	26.1.1 Sound basic
	26.1.2 Basic concepts of sampled audio
	26.1.3 I2S protocol
	26.1.3.1 I2S signals
	26.1.3.2 I2S data format

	26.2 Audio structure
	26.2.1 CODEC introduction
	26.2.2 Audio framework
	26.2.3 Audio I2S clock

	26.3 Audio driver
	26.3.1 DMA transfer
	26.3.1.1 DMA transfer mechanism
	26.3.1.2 DMA link transfer

	26.3.2 Audio buff working mechanism
	26.3.2.1 Rx Path
	26.3.2.2 Tx Path

	26.3.3 Audio_Demo

	26.4 Chip difference
	26.4.1 Difference between Input Path and Output Path
	26.4.1.1 B91 Audio Input Path
	26.4.1.2 B91 Audio output Path

	26.4.2 Audio Demo difference
	26.4.2.1 B91 LINEIN_TO_LINEOUT
	26.4.2.2 AMIC_TO_LINEOUT
	26.4.2.3 DMIC_TO_LINEOUT
	26.4.2.4 BUFFER_TO_LINEOUT
	26.4.2.5 EXT_CODEC_LINEIN_LINEOUT
	26.4.2.6 FLASH_TO_LINEOUT

