Application Note :
Telink TLSR826x BLE SDK
Developer Handbook

AN-17092700-E4

Verl.3.0

2019/10/14

Brief:

This document is the guide for TLSR826x BLE SDK

3.2.0 which supports 8261, 8266, 8267 and 8269.

JOLONANODINIS @
JOLONANOIJINGS MNITIL 6”\”1_:” /
&

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Published by

Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,
Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor

All Right Reserved

Legal Disclaimer

Telink Semiconductor reserves the right to make changes without further notice to any
products herein to improve reliability, function or design. Telink Semiconductor
disclaims any and allliability for any errors, inaccuracies or incompleteness contained
hereinor in any other disclosure relating to any product.

Telink Semiconductor does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under
its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or life-
sustaining applications. Customers using or selling Telink Semiconductor products not
expressly indicated for use in suchapplications do so entirely at their own risk and
agree to fully indemnify Telink Semiconductor for any damages arising or resultingfrom
such use or sale.

Information:

For further information on the technology, product and business term, please contact
Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

AN-17092700-E4 1 Verl.3.0

http://www.telink-semi.com/
mailto:telinkcnsales@telink-semi.com
mailto:telinkcnsupport@telink-semi.com

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

Change Log
Version | Main Changes Date Authors
Wangsihui, Gaogqiu,
1.0.0 Initial Release 2017/11 | Libiao, Chengiuwei,
Cynthia
Updated section 5.1 Audio
initialization,
6.1.3 Modify Flash storage
1.1.0 architecture, _ 2018/12 | LX, WSH, Cynthia
6.2.4.1 Modify firmware size and
OTA FW storage address,
6.3.4.1 Modify firmware size and
OTA FW storage address.
3261 Add rx overflow
description
3.2.8.17 Add
BLT_EV_FLAG_LL_REJECT_IND
description
3.2.8.18 Add
BLT_EV_FLAG_RX_DATA_ABAND
OM description
3.2.8.19 Add
BLT_EV_FLAG_PHY_UPDATE
description
130 3.2.9.23 Add 2019/10 | Chen Qiuwei

blc_Il_set_CustomedAdvScanAcc
essCode() description

3.2.10 Add 2M PHY Supported
description

3211 Add Data Length
Extension description

3. 3.21 Add
bls_l2cap_setMinimalUpdateReqSe
ndingTime_after_connCreate()
description

453 Add cpu_sleep_wakeup2()
description

AN-17092700-E4 2

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Table of contents

1 SDK OVEIVIEW....uiiiiiiiiiiiiiiiiie ittt e s s 20
1.1 Software arChit@CtUrecoouiiiiiiiiie e 20
0 0 R 00 1= 1 o X o PP PP OPPPPI 21
00 - To Yo T ofo 1 | =20 o FPS SR 21
1.1.3 application il 21
0 O = T I S - ol =Y o i SRR 22
1.2 APPHEA ICS et e e e s e e e eara e e e e e 22
1.3 DIV i e 23
1.4 DOOIOAAEN e 26
T 11 o - [o2 PSRRI 27
1.5.1 Category based 0N ICcooviiiiiiiiiiii e 28
1.5.2 Category based on function.........cccceeeiii i, 28
1.5.3 Category based on system clocK.......ccccoevemiiiiieiiiiicee e, 29
1.5.4 Other special liIDrariesiceieicceiireeeee e e 29
1.6 DeMO .ttt e 29
1.6.1 BLE SIQVe d@MO ..ciiiiiiiiiieiiie e 30
1.6.2 BLE MASter demOcooiiiiiiiieiiieeciiee e 30
1.6.3 Feature demo and driver demo........cccceervieeiieiiienecneceeeeee e 31

2 MCU BaSiC MOAUIES.......cccueiiiieiiiiieeeeeee et 32
D R |V, (@ U o [[T Y o - ol SR 32
2.1.1 MCU address space allocation..........cceeeeeeiieccciiiieiee e, 32
2.1.2 SRAM space ram alloCationcccevveveeiieeiiiiiiiieeeee e e 33
2.1.2.1 SRAM and FiIrMWare SPCaAC......cccccuurireeeeeeeiiiiiireeeeeeesirrereeeeeesssnnssneeeaseens 33

2.1.2.2 List file analysisS d@MO......ccccvveiiiiiieeciitee et e 37

2.1.3 MCU address SPACE ACCESS ..eeeeeerierrrrrrrreeeeeeeeiiitrrrereeeeessensssrreeseeeseesnnnnns 42
2.1.3.1 Peripheral SPace aCCESS.....uuuiiiiieieeiirieeiiee e ertte e e estre e setee e e saee e e e seaeeeaans 42

2.1.3.2 Flash Space OPeration.......ccceecccuieieeiiiee e e et e ectre e e sntee e e snee e e e snaeeeeans 43

AN-17092700-E4 3 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
2.1.4 SDK FLASH space allocationccccuviiiieieee it e e 46
2.1.4.1 Space allocation for 512kB Flashcccevceeriiiiiiiinieeieeeeeee e 47

2.1.4.2 Space allocation for 128KkB Flashccceeceeriiiiniiiniieieeieeeee e 50

P28 A © (o Tol Q' [o Yo [V 1T PSPPI 52
2.2.1 System clock configurationcccecceeeieiiiieiiniiiie e 53
2.2.2 SYSTEM LICK USAEE ceieii ittt e e e e e e e e e 54
2.3 GPIO MOAUIE .t s e s 56
2.3.1 GPIO definition....c.ceeiieiiiieeecce e e 56
2.3.2 GPIO State CONTIOl..cciiiiiieeeciiie e e 57
2.3.3 GPIO INItialization ...ccooeueeeeiiiiiee e 59
2.3.4 Configure SWS pull-up to avoid MCU error........ccccceeeeeeecccvvnieeeeeeee e 61

T = 18 S 1V o o (1] =P UPURPPPRN 62
3.1 BLE SDK software architeCtureccceviveieeeiciiiie e 62
3.1.1 Standard BLE SDK archit@Cturecccoevuveeeiriiieiieieee e 62
3.1.2 Telink BLE SDK archit@Cturecoocveeeieiiiieeeniieee et 63
3.1.2.1 Telink BLE CONEIOIIENcoiuieiieiieieeieeieeeeteete et 63

3.1.2.2 Telink BLE SIQVEvveeiieeeiieeiie et esieesiteeite e sete s te e s etneesaeeesnseesseesnees 64

3.1.2.3 Telink BLE M@StOI.cccueiiiiieeieeiienitesieesiee sttt ettt seee s saeas 66

3.2 BLE CONTIOHEI .ttt s 67
3.2.1 BLE controller introductionccoocueieiiiiniiieiniieeeeeeeee e 67
3.2.2 Link Layer state Machingccoov i 67
3.2.3 Link Layer state machine combined applicationccccccvvvevreeieenennns 69
3.2.3.1 Link Layer state machine initializationcccccoveeeviieeeecieee e, 69

3.2.3.2 1d1@ + AAVEEISING...veiiectiee ettt et et e et e e eetre e e e breeeesaraeeeenreeens 70

3.2.3.3 1d1@ + SCANNNING ..vveeieiiee ettt ettt e e rre e e erre e e e baeeeeenraeeeanreeeas 71

3.2.3.4 Idle + Advtersing + ConnSIaVEROIEccccvveeeeiiieeeeree e 72

3.2.3.5 Idle + Scannning + Initiating + ConnMasterRole............ccccvveeeviveeeennneenn. 74

3.2.4 Link Layer timing SEQUENCE.........ccccurrrreeeeeeeeeectrrreeeeeeeeeeenirreereeeeeesennnnns 75
3.2.4.1 Timing sequence in ldle state.......ccccveei e 76

AN-17092700-E4 4 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
3.2.4.2 Timing sequence in Advertising state........ccccvveeeeeeeicciiieeec e, 76

3.2.4.3 Timing sequence in Scanning statecccceee 77

3.2.4.4 Timing sequence in Initiating stateccccc 78

3.2.4.5 Timing sequence in Conn state Slave role.......cccceeeecciiieeei e, 78

3.2.4.6 Timing sequence in Conn state Master role.......cccceecvvveeeeeeevccciineeeeeeenn, 80

3.2.4.7 Conn state Slave role timing protectionccceceeriieriieinieenieeneeeee 81

3.2.5 Link Layer state machine extension.......ccccccoeeeeiiiieeeeii e 82
3.2.5.1 Scanning in Advertising Statecccccevveeiriiiiieenieesee e 82

3.2.5.2 Scanning in ConNNSIaVEROIE.......c.uiiiiiiiiieciie e 83

3.2.5.3 Advertising in CONNSIAVEROIEccocveiiviiiiiiieieerieeeee e 84

3.2.5.4 Advertising and Scanning in ConnSlaveRole.........ccccoovvvviiinieinieennieennne 85

3.2.6 Link Layer TX fifo & RX fifO...ccuuvieiiiiiieieiee e 85
3.2.6.1 SIaVe 10l€ fifO.ccueiiiieiieee e e 86

3.2.6.2 MaAStEr role fifO...iiviiiiiiieie et 89

3.2.7 Controller HCEEVENT ..cccuuiieiieeeiieeeeeceteeee ettt 89
3.2.7.1 HCE@VENT .. e e 91

3.2.7.2 HCILE @VENT..ci ittt ettt ettt et e e e e 92

3.2.8 Telink defined @Ventcoooiiiiiiiiiiiiieee e 95
3.2.8.1 BLT_EV_FLAG_ADV ...ttt ettt ettt ettt ettt st 98

3.2.8.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUTetiiiiiniieeiiieieeiee e 98

3.2.8.3 BLT_EV_FLAG_SCAN_RSP ..ttt ettt ettt 98

3.2.8.4 BLT_EV_FLAG_CONNECT ...ceiitttiiitenieeetteeite et e st e st e v e seeeesaeeesnee e 98

3.2.8.5 BLT_EV_FLAG_TERMINATEciiiitiiieeeite ettt ettt ettt et e 99

3.2.8.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONEccccemrieaniiieieeiieenieenne 100

3.2.8.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE........ccccctirieeriiieieenieenieene 100

3.2.8.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP.....ccctiiiiiaiienieeeiee e 101

3.2.8.9 BLT_EV_FLAG_CHN_MAP_REQ.......cccccciiiiiiiiiiiiiiiiii i 102

3.2.8.10 BLT_EV_FLAG_CHN_MAP_UPDATEccceottiiieiiieeeiee e esiee e 103

3.2.8.11 BLT_EV_FLAG_CONN_PARA_REQ......ccciiiviiiniiiniiiniiiniiiniienicniceins 103

3.2.8.12 BLT_EV_FLAG_CONN_PARA_UPDATE.......cteiieirieeeiieesiieesieesieens 103

3.2.8.13 BLT_EV_FLAG_SUSPEND_ENETRccccctiiiiiaiieenieeeiee et sieenns 104

AN-17092700-E4 5 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
3.2.8.14 BLT_EV_FLAG_SUSPEND _EXIT..ouceeeeeeeeeereeeeseeeseeeesseeesseeeseeessesnnens 104
3.2.8.15 BLT_EV_FLAG_READ _P256_KEY ...rveevereeereeeeeeeeseeeseeeeeeseeessesesens 104
3.2.8.16 BLT_EV_FLAG_GENERATE_DHKEY ...cvveeveeeeseeeeseeeeseeeeeeeeeseeeesseenens 104
3.2.8.17 BLT_EV_FLAG_LL_REJECT_IND oeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeseeeeseeenees 104
3.2.8.18 BLT_EV_FLAG_RX_DATA ABANDOM......oeeeeeereeeereeereeeereeeereesnnens 105
3.2.8.19 BLT_EV_FLAG_PHY_UPDATEcotiiiiiiiiiieeeeeeeeeeeee e 105

3.2.9 CoNtroller APl 106
3.2.9.1 Controller APIBrIEf. ..o 106
3.2.9.2 APl return type ble_sts_t......ccceriiiriiiiiieeiieeie e 106
3.2.9.3 MAC address initialization........ccccceverreereereeeee e 107
3.2.9.4 Link Layer state machine initializationcccccceevveerieiniiiinin e 108
3.2.9.5 bIs_I1_SEtAAVDALA .. .ciiiiiriieeiie ettt 108
3.2.9.6 bls_Il_setSCaNRSPDALA..cccueirriiieriieirieerieeeiteeiie e ste e e sare e 109
3.2.9.7 bls_I1_SEtAAVPAramcoccuiiiriiieiie ettt sre st 110
3.2.9.8 bls_II_SEtAdVENGDIEcoviiieiiieiiecieceeeec et 114
3.2.9.9 bls_I|_SetAdVDUIatioNcccvveeeeiiee ettt et 115
3.2.9.10 blc_Il_setAdvCustomedChannel.........c.cccoecveieeiiiieeeccieee e, 116
3.2.9.11 rf_set_power_level_iNdeX.......ccccoeeeviieeeeiiiee e 116
3.2.9.12 blc_Il_setScanParameter.........ccocveeeeiieeeeiciiee e 117
3.2.9.13 blc_Il_setScanEnable.........ccveieeciieeiiiiee e 118
3.2.9.14 blc_Il_createConnection........cccccveeeeeiieeeeciiee e e 119
3.2.9.15 blc_Il_setCreateConnectionTimMeOUL.........cceeevrieeeeecreeeeicrieeeennee 121
3.2.9.16 bIm_ll_updateConnection........ccceeeeeiireeeecriee et 121
3.2.9.17 bls_Il_terminateConnection.......c.ccceecveeeeiirieeeerieee e e 122
3.2.9.18 bIM 1 diSCONNECT ..ottt e 123
3.2.9.19 Get Connection Parametersccccvvviiiniiiniinniiinnicici 123
3.2.9.20 blc_Il_getCurrentState......cccveeeecreeeecree et et 124
3.2.9.21 blc_Il_getLateStAVERSSI........vvieeireeeeciree ettt e 124
3.2.9.22 Whitelist & ReSOIVINGIISt......ccvveieiiieiieciieeecee e, 124
3.2.9.23 blc_Il_set_CustomedAdvScanAccessCodeccccceeerveeerrveeennnen. 126

3.2.10 2M PHY SUPPOIEEA. ... 127

AN-17092700-E4 6 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
3.2.11 Data Length EXtENSIONcovviiiiiiiiiiiiiiieeee e 128
3.3 L2 AP s 131
3.3.1 Register L2CAP data processing functioncccceecveveeiiieereiniineeennns 131
3.3.2 Update connection parameters.......cccccceeeeeecceiieeeeee e cesccireeee e e e 131
3.3.2.1 Slave requests for connection parameter update..........ccccvveeeecrvereennnen. 131

3.3.2.2 Master responds to connection parameter update request................. 132

3.3.2.3 Master updates connection parameters in Link Layercccccvveeeennn. 135

B4 ATT R G AT T ettt ettt et et e e e e e s e sttt e e e e s e sesnberaeeeeeeeesannnes 136
3.4.1 GATT basic unit “Attribute”cooiiiriieeen 136
3.4.2 Attribute and ATT Table ..o 137
3.4.2.1 attNUM ceiii 138

A o =1 4 o o [T PP PP PP PPPPPPPPO 139

3.4.2.3 uuid and UUIALEN......oooiiiiei e 139

3.4.2.4 pAttrValue and attrlenocceeeeecieee e 140

3.4.2.5 Callback fUNCLION W ..cociiiiiiiiecee e 141

3.4.2.6 Callback FUNCLION F.eeeiiiiieccceee e 143

3.4.2.7 Attribute Table [ayout.......cccver i 144

3.4.2.8 ATT table Initializationcccooerveineniiee e 145

3.4.3 Attribute PDU & GATT APl ..eeeeiiieieeeeeeee ettt s 146
3.4.3.1 Read by Group Type Request, Read by Group Type Response.............. 146

3.4.3.2 Find by Type Value Request, Find by Type Value Response 147

3.4.3.3 Read by Type Request, Read by Type ReSPONSE......cccvvveevvvreeeerrreeeennnn 148

3.4.3.4 Find information Request, Find information Response............cccc...... 149

3.4.3.5 Read Request, Read RESPONSEcccvvreeeiiviieeeiiiee e e e 149

3.4.3.6 Read Blob Request, Read Blob ReSpONSEe.cccccvvevevcvreeeicieeeecvieee e 150

3.4.3.7 Exchange MTU Request, Exchange MTU ReSPONSE.......ccccvveeervveeennnnen. 150

3.4.3.8 Write Request, Write RESPONSEuviiiiiiiiiiiiiiieii ettt essiiiree e e 152

3.4.3.9 Write COMMANd ...ccceeiiiiiiiiiieieeie e e 153

3.43.10 Handle Value Notification..........cccveveeieenienieneeeeeeeeeeens 153

3.43.11 Handle Value INdicationcccceveeieeieeniniieeeeeeeeeseeeeene 154

AN-17092700-E4 7 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
3.4.3.12 Handle Value Confirmationc.ccoceevereneneeneneneceereneneeeeen 155

3.44 826X MaASter GATT ..ciiiiiiiiiiiiiiie it 156
3.5 SIMIP ettt eans 158
3.5.1 SMP parameter configurationcccceveuiieeiiiiieeiniieee e 158
0T I A B NV ot o Yo oo LT g = RS 158

3.5.1.2 Device OOB data verificationc.ccoceevereninenneneneneeeeeseeeee 158

3.52 SMP enable ... 159
3.5.3 SMP event.. i 160
3.5.3.1 BLT_EV_FLAG_PAIRING_BEGINccetiiiiiiiiiiiiieeeeeeriieeeee e 160

3.5.3.2 BLT_EV_FLAG_PAIRING_END.......utttiiiiiiiiiiiiieeee et eeeinreeeee e 160

3.5.4 SMP bonding information........ccceeuiiiiiniiiie e 161
3.6 826x master customized pairing managementccccceeeeeiiieeeercveeee e 163
3.6.1 Design of Flash storage methodcccooeeiiiiiiieciieecce e, 163
3.6.2 Slave Mactable ..o 164
3.6.3 APl e 165
3.6.3.1 user_tbl_slave_mac_addcccccueeeiiiiiiiicee e 165

3.6.3.2 user_tbl_slave_mac_Search.......ccccccecveeeicciee et 165

3.6.3.3 user_tbl_slave_mac_delete_by adr.......ccccoveeviieiieiiieeccceee e, 166

3.6.3.4 user_tbl_slave_mac_delete_by indeX........cccceecveriviieeecciieeeecriee e, 166

3.6.3.5 user_tbl_slave_mac_delete_all.......cccuveeveieiieiiieiieee e, 166

3.6.3.6 user_tbl_salve_mac_unpair_procC......c.cccceeueeeeiiveeeesiieeeeeireeeecereee e e 166

3.6.4 Connection and PailiNg....ccceeeeeeieeiirreereeeeeeeeecrrrree e e e eessebrrrereeeeeeeenanes 166
SRS T U o o - 11 o 1 = 167

4 Power Management (PIM) ..ottt e e e 169
O R o [=T PO PP TROPRO 169
4.1.1 LOW POWEE MOUES....uueeeieeeeiiiiiirieeeeeeeeeeiiiirrrereeeeeesesssrrreeseeseessesssrsseeess 169
4.1.2 Hardware Wakeup SOUICESuueeeeeeeeieiciiiiieeeeeeeeeeecnireeeeee e e e e eeansseeeeas 170
4.1.3 Low power mode entry and Wakeupccccceeeeeeeeeeciciiiieeeee e 171
4.2 BLE |OW POWEI MaNAZEMENT ...uuvvriiriiiieiieiiirireeeeeeeeeieiinrrereeeeessenanrrerereeeeeens 174

AN-17092700-E4 8 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
421 PMinIdIe State ..ccceeiiiiiiiieiieccee e 174
4.2.2 PMin BLE Adv state & CoNnN Statecceceeeevieeeniiieeniieeeee e 174

4.3 BLE PM CONFiUIatioN.....cciiiiiiieeiiiiee ettt e s s 175
4.3.1 PM module initializationccocceieiiiiiiiiii e 175
4.3.2 Set low power mode via “bls_pm_setSuspendMask”cccccuunen.. 175
4.3.3 Setlow power wakeup source via “bls_pm_setWakeupSource”......... 176
4.3.4 Working mechanism of low power managmentccccccoevvveeeencnneenn. 177

4.4 “latency_use” configuration and calculationccccoeeivieiiiiiieee e, 179

A5 OthEr APIS ..ot s 181
4.5.1 bls_pm_getSystemWakeupTicK.......ccoveirriiiireiiiiee e 181
4.5.2 bls_pm_enableAdvMcuStallcccooouiriiiiiiiieee e 182
4.5.3 cpu_sleep WaKEUP2Z ...ceece it 182

4.6 Notes about GPIO WaKEUP......ccuuviiiiieeee e e e 183
4.6.1 Fail to enter suspend/deepsleep when wakeup level is valid.............. 183

4.7 BLE system PM referenceccocccvvveeeeeiee ettt 184
4.8 Timer wakeup of APP [ayer ...t 187

oI XU o [T 3 o o Yol Ty 1 o = SR 187
5.1 Audio initializationcceeeiiiiieiieeee e 187
5.2 Processing of MIC sampled audio data......cc.cccceeeeenrreeeeeieeicccciireeeeee e, 190
5.2.1 Audio data compression and RF transferccccceeeeiieicciiieeeee e 190
5.2.2 Audio data compression ProCeSSiNGceeeeeeccirerieeeeeeeeccrereeeeeeeeseeanns 192

5.3 Compression and decompression algorithm.........cccceeveeieiiiiiiiiveeeeeee e, 195

ST © TSP U RO PRURPOPRPRPOPI 197
6.1 8267/8269 Flash architecture and OTA procedureccceeeeuveeeveeeeveeennee. 197
6.1.1 8267/8269 FLASH storage architecture..........cccceeeecveeeecreeeccreeeereeeenneen, 197
6.1.2 8267/8269 OTA update proCedUIre.......cecevvereecrereeirieeereecereeeereeeeneeees 198
6.1.3 Modify Flash storage archit@Cture......ccccccceveecuvvereeeeeeieicciieeeeeeeeeeeenns 200

6.2 8266 Flash architecture and OTA procedure.........ccccvvueeeeeriiieeessiieeeesnenn 201

AN-17092700-E4 9 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
6.2.1 8266 FLASH storage architeCtureccccccevvecceiiieeeee e 201
6.2.2 8266 OTA UPErade ProCeAUIEccuviiieriiieeeeriieee e esree e siee e e e sireeeeeaes 202
6.2.3 cstartup_8266.S, reset, reboot, code transfercceeccciiieieeiinninnns 203

6.2.3.1 boot_flag detect and process by cstartup_8266.S.........ccccvveeevrvereennen. 203

6.2.3.2 FIrMWAIE SIZ€..ccoiiiiiiiiiiiieieee et 206

6.2.3.3 Reset and reboot......cc.eeiiiiiiee e 207

6.2.4 Modify Flash storage architecture.........ccccceeeeeiiieeeiiiiee e, 208
6.2.4.1 Modify firmware size and OTA FW storage address.........cccceeevvverennnen. 208

6.2.4.2 Modify storage address of OTA boot bin.......cccccvevivvieiivicee e, 209

6.2.4.3 Modify storage addrss of OTA boot flag....c..cccevvuvevevvieeiiceeee 209

6.3 8261 Flash architecture and OTA procedure.......cccccceeeeeeeieccciiieeeee e 210
6.3.1 8261 FLASH storage architeCturecccccocueeeeeiiieieiieee e 210
6.3.2 8261 OTA UPdate ProCEAUIEccivcviieeecitiee e ceieee e e e e e sreee e 211
6.3.3 cstartup_8261.S, reset, reboot, code transfercccoeeccvviiieieeeiiiicnns 212
6.3.3.1 boot_flag detect and process by cstartup_8261.S.........cccvveevvverennnnn. 212

6.3.3.2 Firmware size, reset and reboot.........cccccoviiii 215

6.3.4 Modify Flash storage architecture.......ccccceeeeeciiiieeee e 215
6.3.4.1 Modify firmware size and OTA FW storage address.........ccceeeevvveeennnnen. 216

6.3.4.2 Modify storage address of OTA boot bin........ccccoverevviieeicciiee e, 217

6.3.4.3 Modify storage addrss of OTA boot flag.......cccecveveeiciveeicciieeeceeeee, 217

6.4 RF data proceesing for OTA MOdEccvveeeeiieeieiiiiiiieeeee e e e eeeeanns 218
6.4.1 OTA processing in Attribute Table on Slave side........ccccccvvvevieeieeiiennnns 218
6.4.2 OTA data packet format......ccccooeiiiiiiiee e 218
6.4.3 RF transfer processing on Master sideccccovvvieeeeiieccciiiieeeee e 219
6.4.4 RF receive processing on SIave Side.........ccovvvvvirereeeeeeieiiiiirieeeeeeeeeeennns 223

A (23T 1ot o S 226
7.1 KeY MaAtriX oo, 226
7.2 Keyscan, keymap and Keycodecceummiiiiiiei i 228
2 A R Q=1 or- | o USRS 228

AN-17092700-E4 10 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
7.2.2 Keymap &Kkb_event.......ooiieiii e 229

/2 T G2V ol Yo [P UUPPUPRUPRN 231
7.4 KeYSCAN FIOW oottt s s s e e e s naan e e e eaes 233
7.4.1 Basic keyscan flOWccccuuiiiiiiiiieicee e 233
7.4.2 Keyscan flow timing optimization..........cccocveeeeiiiee e, 235

7.5 Deepsleep wakeup fast KEYSCANcciiviiiiiiiiiiiie e 237
7.6 Repeat Key ProCesSiNg ... 239
7.7 StUCK K@Y PrOCESSING . .ceiiiiieiciiiieeiee e ee ettt e e e e e sesttree e e e e e e e senreaeeeeeeeesennnes 240
7.8 Power optimization for [ong Key pressccccueeeeeccieeecccieeee e 242

8 LED Management .o 243
8.1 LED task related invoking functions.........cccoccveieiiiiiii s 243
8.2 LED task configuration and management..........cccccoueeeeiiiiieeeciiieeeeccieee e 243
8.2.1 Led event definitioncoceeiieiiiinieeee e 243
8.2.2 Led eVENT Priority .. e ettt e e e e e e 244

O bIt SOfIWAIre TIMEI e e s 246
9.1 Timer initializationcccueeeiiiiiiiee e 246
9.2 TiMer inqUIry ProCeSSING...ccccciiiiiiiiiiii 246
9.3 Add timer task.....oocue e 249
9.4 Delete timer task........cceeuiireerieeieeee e 249
9.5 DBMO ettt e 250
L0 IR ettt b e h et b et e b e e et e e bt e eabeenheeeabeenaeeereenaeeaa 252
10.1 PWM DIIVEF ittt 252
10.1.1 PWIM id @nd PiN.cceeicciiiieeieeceeeeiiireeeee e eeseirrreeeeeeeeseanraeeeeeeessennnnrsnnenss 252
10.1.2 PWIM ClOCK ..t 253
10.1.3 PWM cycle and dULYeeeeeeiee et 253
10.1.4 PWM FreVEIT..cciiiiiiiiiiiiiii ittt 254
10.1.5 PWIM MOGE ...cuiiiiiiiiieeieeee et 254
10.1.6 PWM Start and StOP ...uveeeeriieeiiiiiiee e eiteee st e e s e e svae e s e 256

AN-17092700-E4 11 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
10.1.7 PWM PUISE NUMDET ...eiiieiei e e 256
O T T VAV I o] o - 1 SRR 256
10.1.9 PWM INTEITUPT ..eeeeeeeiieieiitetet ettt ee et eeeeeeeeeeeeeeeeeeneee 256

10.2 IR implementation method.........ccccevvriiiiiii e, 258
10.3 IR DEemMO detailSceerueiiiiiiiiiiieeceee e 259
10.3.1 NEC IR ettt et st s e et e s saneeea 259
O T Y= o= | 1= PP UPT PP 260
10.3.3 Setlogicl and 10gICO tiMEccceeiiiiiieeee e 260
10.3.4 Configure a complete NEC IRuviieiiiiieiciieeee e 262
10.3.5 Add timing sequence SigNalccveeiviiiieeiriiiie e 263
10.3.6 Add data..ccceeeeiiiieiieeee e s 264
10.3.7 NECITR SENG ..ciiiiiiiiiiieieeetee et s 264
10.3.8 NECIR repeat....cccciiiiiiiiiieiiicrttiiiiese et e e e e treaiaes e e e e e eeeaaaa s 265
10.3.9 INterrupt ProCESSING....uu e i i e e e e e e s 266
10.3.10 APP layer checks IR busy Statuscciceeeeieciirrieeieeeeeicieeeeee e, 266
11 Drivers in BLE SDK.......ooiiiiiiiiiiiiii ittt e 267
11.1 External capacitor for 12/16 MHz crystalcccoceeeeiieeecieeciie e 267
11.2 External 32kHz crystal 0SCillator.........eeeveeeeeiecciiieeeeeeeeeceeeeee e, 267
103 P A e e e nes 268
114 PWIM ettt ettt ettt e s 269
12,5 UART ettt e et e st b e et e e e e e e e e e b e e eanee s 269
11.5.1 UART GPIO ..ottt s 269
11.5.2 UART CONFIZUIAtION ...uvvverieiiiiieiiieeeee ettt eeeenraer e e e e e e anrreeeees 270
11.5.2.1 UART common configurationcccceeeeieeenceneesiee e, 270

11.5.2.2 UART proprietary configurationccccccceeevvieeeenciee s, 271

11.5.3 UART Data RX/TX in DMA MOGE.....cccoiriiriieiirienieeie s s 273
11.5.31 UART data RXin DMA MOde.......ccceevieiieenieiieeieeieese e 274

11.5.3.2 UART data TXin DMA MOdEcocveiviieiiieieeieeieeieeeereesieesieenens 274

11.5.4 UART Data Rx/Tx in NON-DMA MOdE.......cccovuveiiiiiriieieiieieeeerreee e 275

AN-17092700-E4 12 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
11.54.1 UART data Rx in NON-DMA MOde....ccc.eeiiuiiiiiiinieenieeeiieeeeenieens 275

11.54.2 UART data Tx in NONn-DMA MOdeccceeeriuiiiiiiiiiienieeeiee e 276

11.5.5 UART baudrate calculation tool........c.cccceeviiiiiiiiiiiiiiececeee 276
T1.6 ADC e an 279
I S0 B T G @ (o Yol SRR 279
11.6.2 ADC configUrationueeiieciiiee it e 279
11.6.21 8261/8267/8269 ADC initializaitonccccevervreeienieneeeeieinn 279

11.6.2.2 8266 ADC initializaitoncoecueeeiieeeiieeee e 282

11.6.3 Obtain ADC convertion value...........ccocveiiiiiiiiiiiiiieceeceecee e 285
11.6.3.1.1 Calculate actual voltage value for 8261/8267/8269 285

11.6.3.1.2 Calculate actual value for 8266cccceveereenienienienieneeneeen 286

11.7 Low battery voltage detect......cccvevuiiiiiiciiiee e 286
11.7.1 “Low battery check” implementationccccccevviiiieieiiieee e, 287
11.7.11 “Low battery check” for 8266.........ccccccvevviieriviiee e 287

11.7.1.2 “Low battery check” for 8261/8267/8269ccccovevveevecrvecrnennnn. 288

11.7.2 Demo for “Low battery check” ..o, 292
0 | 294
R 20 R | [O o o PP UPPR 294
30 A | [O oo oY 7= U1 = o) o FO TR 295
11.8.2.1 [IC Master initialization.........ccoceeiiiiiiiiii e 295

11.8.2.2 [IC Slave initialization.........ceeeiieeiiieee e 296

11.8.3 HC data tranSfer ..coouii it 297
11.83.1 [IC Master write transfer ... 297

11.8.3.2 [IC Master read transfer ... 298

11.8.3.3 [IC Slave data transfer.........coeiieiiiiieie e 299

S S | T T 0 =T o U o) PPNt 299
R Y o (R PP PPP 299
R TR Y I S o DU UPPT PP 299
11.9.2 SPI cONfIUIAtiON ...ciiiiiiiiiieiiie et 301
11.9.2.1 SPI Master initializationcccooveeeiiiiiiiii e 301
AN-17092700-E4 13 Ver1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
11.9.2.2 SPI Slave initializationccccoovevieiiiniii 302

11.9.3 SPIData transfercoceeeiieieeeeeeee s 303
11.9.31 SPI Master wWrite transfer.........ccueieriinienieneeeee e 303

11.9.3.2 SPI Master read transfer.........oeerienienieneneee e 304

11.9.3.3 SPI Slave data transfer ... 305

11.9.4 SPLINTEITUPT ..eeeeieieiieiieeetet ettt eeeeeteeeeeeaeeeeeeeeeeeeeeeeesnneees 305
T1.00 EMI e s 305
T11.10.1 EMITEST ettt ettt e eeeeeeeeeeeeaeeeeeeeeeeeeeneenenneee 305
11.10.1.1 Emiinitialization Settingccccoeeeviiiieeiee e 306

11.10.1.2 Power level and Channel.........c.cccoverienienieneneececeeen 307

11.10.1.3 EMIi Carrier ONIY .ottt rtee e see e e e e seae e 308

11.10.1.4 Emi Carrier Dataccccevvieiiiiiiiiiiiiic e, 308

11.10.1.5 B TX ottt s s e s e e 308

11.10.1.6 EMIRX cieiiieeiee ettt e e 309

11.10.1.7 Set configuration parameters.......cccccevcieiieiciee s 310

11.20.2 EMITESE TOO! ettt st 311
R B o o = PRSPPI 316
D Y oY o 1T s o [GRS PPRPT 317

AN-17092700-E4 14 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Table of figures

Figure 1-1 SDK file StrUCLUIEeeeeeeiiiee et 20
Figurel-2 pm and rf drivVer ... 23
Figurel-3 adc/gpio driver and bootloader..........cccecevvveecieeccieeeieecee e 24
Figurel-4 i2¢/spi/Uart driVErccueeecieeiiieeeciee ettt e 25
Figurel-5 Difference in i2C driver......ccoieiieiiiee e 25
Figurel-6 Select bootloader.......ccoiiiiciiiiiieeei e 26
Figurel-7 = Select liDrary ... 27
Figurel-8 Libraries supplied in BLE SDKccooiiiicciiiieeeee e, 27
Figurel-9 Demo code supplied in BLE SDKcccevviiiiieeiieecieeeee e, 29
Figure2-1 MCU address space allocationcccccvviieeieeiiccccciieeee e, 32
Figure2-2 SRAM and Firmware SPACEceeeeeeeeicciiiieeeeeeeeeccireereee e e e s e sneveneeas 33
Figure2-3 Section distribution in list filecccooeeeiiieiiee e, 38
Figure2-4 Section address in list file.......ccceeeeiieieeccee e, 39
Figure2-5 512kB FLASH address space allocation........ccccoeeecviiiieeeienicccnnneen, 47
Figure2-6 128kB Flash address space allocation........ccccceeecciiiieeeeiee e, 50
Figure2-7 Modify lib Ibrary ... 54
Figure3-1 BLE SDK standard architectureccocccvviieeieeiiiecccieeee e, 62
Figure3-2 HCI data transfer between Host and Controller........ccccccceeennnnnneeen. 63
Figure3-3 826X HCl architeCturecoceviiiieeiee e 64
Figure3-4 Telink BLE Slave architeCtureccccoeeeccvviieeiee e, 65
Figure3-5 Telink BLE Master architectureoooecvviveeieeiiecccieeeee e, 66
Figure3-6 State diagram of the Link Layer state machine in BLE Spec 68
Figure3-7 Telink Link Layer state machineccccovvieeieeiiiccccie e, 68
Figure3-8 Idle + AdVErtiSINGuveieeiiei e 70
Figure3-9 Idle + SCanNiNgG......uuviiieiiei e e et e e e e e e 71
Figure3-10 BLE SIave LL State....cceeiiei et 72
Figure3-11 BLE Master LL State. ... s 74
Figure3-12 Timing sequence chart in Advertising Stateccccceeeeeiecnnnnneen. 76
Figure3-13 Timing sequence chart in Scanning statecccccevvvveeeiniieee i, 77
Figure3-14 Timing sequence chart in Initiating statecccccvvvieeeiniiieeeinnnen, 78

AN-17092700-E4 15 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Figure3-15 Timing sequence chart in Conn state Slave role.......cccccceeveinnnnneenn. 78
Figure3-16 Timing sequence chart in ConnMasterRolecccccvveeeiiiieicnnnnnnn. 80
Figure3-17 Timing sequence chart with Scanning in Advertising state............ 83
Figure3-18 Timing sequence chart with Scanning in ConnSlaveRole................ 84
Figure3-19 Timing sequence chart with Advertising in ConnSlaveRole 84
Figure3-20 Timing sequence chart with Advertising and Scanning in

CoNNSIAVEROIE.......eeiiiiiie e 85
FIBUrE3-21 HCI @VENT ..ueuiiiiiii s 90
Figure3-22 Disconnection Complete EVent........cccccviieeieeiiieccciieeeee e, 91
Figure3-23 Read Remote Version Information Complete Event....................... 92
Figure3-24 LE Connection Complete EVentccccvviveeieeiieccccieeeee e, 93
Figure3-25 LE Advertising REPOrt EVENtccoovveiciviiieeiee e, 93
Figure3-26 LE Connection Update Complete Eventccoeccvvivveeeeeeicccnnnenen, 94
Figure3-27 Architecture of Telink defined event........ccccceeeveciiiiieeii e, 95
Figure3-28 Connect reqUESt PDUiiiiiiiiiiiiiiiiciccccccs s 99
Figure3-29 LL_CONNECTION_UPDATE_REQ format in BLE stackcccceeu.e. 103
Figure3-30 Adv packet format in BLE StacK.........ccoeecviieieeeeeiiciiiiieeee e, 108
Figure3-31 Advertising Event in BLE StackKcoooeeiviiiieeeeei e, 110
Figure3-32 Four adv events in BLE StacK........ccccovvieeiiieeiee e, 111
Figure3-33 Whitelist/Resolvinglist address filter........ccccecereveeeeeieeeccreeennnen. 126
Figure3-34 Connection Para update Req format in BLE stackcccc.cc........ 132

Figure3-35 BLE sniffer packet sample: conn para update request & response .132

Figure3-36 conn para update rsp format in BLE stack..........cccccvvivieieeinnnnnnis 133
Figure3-37 BLE sniffer packet sample: |l conn update req........ccccouvvveeeeeiiennnnnns 135
Figure3-38 GATT service containing Attribute group.....ccccceeeeeieecciiieeeeeiieecns 136
Figure3-39 Attribute Table in 826X BLE SDKcocoiiiiiieeeeeee e, 138

Figure3-40 BLE sniffer packet sample when Master reads hidinformation....... 141

Figure3-41 Write Request in BLE Stackceeeeeeiieicciiiiiiiee e e 142
Figure3-42 Write Command in BLE stack.......cccceeiieicciiiieeee e, 142
Figure3-43 Service/Attribute LayOuUt........ccceeeireeeeiiieeeirieeeiee et 145

Figure3-44 Read by Group Type Request/Read by Group Type Response......... 146

Figure3-45 Find by Type Value Request/Find by Type Value Response............. 148

AN-17092700-E4

16 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Figure3-46 Read by Type Request/Read by Type Responseccccceeeeveeennenn. 148
Figure3-47 Find information request/Find information response..................... 149
Figure3-48 Read Request/Read RESPONSEcccuveeereeeereeeeieeecreeecreeeeree e e 149
Figure3-49 Read Blob Request/Read Blob Response.........ccccceevcveeevvieecveeennnen. 150
Figure3-50 Exchange MTU Request/Exchange MTU Response...........ccccueeeuneee.. 150
Figure3-51 Write Request/Write RESPONScccveeeiieeeeirieeeiee et eeree e 153
Figure3-52 Handle Value Notification in BLE SPEC......cccceveeeeiieeeeiiiieee e 153
Figure3-53 Handle Value Indication in BLE SPEC.....ccccuvvveeeeeiieiiiiireeeeee e, 154
Figure3-54 Handle Value Confirmation in BLE SPECcccecvvveeeeciiieiiiiieeeees 156
Figure3-55 Pairing Disableuuviviiiiiei e 159
Figure3-56 Pairing CoONN Trig N ... s 159
Figure3-57 Pairing Peer TrigBer ... s 160
Figure3-58 Pairing_Req sent from Master.......cccceeecciiiiieeee e 160
Figured-1 Hardware wakeup sources for 826X MCUcccccceeveevciviiieeeeeeenecnns 170
Figured-2 PM in Link Layer Idle state......ccccveeeeeiieicciieeeee e, 174
Figured4-3 Reference code of 8267 remote low power management 185
Figured-4 Trigger app wakup tick in advancCe.........oooeccviiiieee e, 187
Figure5-1 AUdio CIrCUIL....cieie it e e e e e e e e e e e eaanes 188
Figure5-2 MIC configuration HW block diagram..........cccceveeeerieiiciiieeeee e, 189
Figure5-3 Audio data SAamPleuueeeeiii i e 191
Figure5-4 MIC service in Attribute Tableooeeeiieicciee e, 192
Figure5-5 Compression ProCeSSINGuuuuuuuuuuuuuuuuirssissnnnnnannnnnnnnnnnnnnnns 194
Figure5-6 Data corresponding to compression algorithm...........ccccceeeeiiiennns 196
Figure6-1 8267/8269 default Flash storage structurecccceeevveeecveeeeveeennnenn. 197
Figure6-2 8266 default Flash storage structure.........cccceveeeeiieccciiiieeeee e, 201
Figure6-3 8266_ota_boot project setting.....cccceeeeeeciiiiiee e, 204
Figure6-4 firmware size inforamtion..........cccceeei e, 206
Figure6-5 firmware endingccccceeeeeiieciiiiiiee e e 207
Figure6-6 8261 default Flash storage structure.........cccceeeeeeiiiciciiieeeeeeeeeens 210
Figure6-7 8261 ota_boot project setting......ccceeeveeciiiiiiee e, 213
Figure6-8 Write Command format in BLE stack.......cccccceevvvviiieieiniiiiieiiiiiieecns 218

AN-17092700-E4 17 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Figure6-9 Format of OTA command and data.........ccceecvveeeecieeeeccee e, 219
Figure6-10 Master obtains OTA Attribute Handle via “Read By Type Request” 220

Figure6-11 firmware sample: starting part.......cccccoeeeveeeeeccieee e 221
Figure6-12 firmware sample: ending partcccceeeeeieeeecccieee e 221
Figure6-13 master sends “OTA start”ooeeeviiieeeeciiiee e 221
Figure6-14 Master OTA dat@cceeeeiiiiciiiiiieee e e e 222
Figure7-1 Row/Column KeY MatriXcccveeeiuieeeiieeciee ettt 226
Figure7-2 keycode processing functioncccceeevcciiieieee e, 232
Figure7-3 Keyscan time optimization.......ccccovvvvviiiviviiiviiiiiiicicrccccccc s 237
Figurel0-1 PWM timing and PWIM SEtuuviieiieiieiiiieeeee e e e e 255
Figurel0-2 NEC IR Protocol.........uuieeeeiiii ittt e e eecvreree e e e e e e 259
FIGUrEL10-3 IR €NAING ..ueiiieieei it e e e e e e e e e e rer e e e e e e e e eennnes 262
Figurel0-4 Add low level irtask as IR endcooevieieiieieee e, 263
FIgUrel0-5ir_NEC_SENd ..cciiiieieeeeee e e e e e e e e e e e e e ennnes 264
Figurel0-6 ir_nec_Send _rePEat.....cccccceeicccciiiiieeee e eecccreree e e eee e e e e e e e e eaees 265
Figurell-1 Tscript initial interfaceoooeceiiiieeiie e, 276
Figurel1l-2 UART_BaudRate_cal.luacccuvimmieiieiieeeeee e, 277
Figurell-3 Input baudrate.......ccuveeeeeeiii e e 277
Figurell-4 Input SYStem ClOCKuvvieeiiiieciiiieee e e 278
Figurell-5 Get “clk_div” and “bwpc” result.......cccooeeciiieiieeiei e, 278
Figure11-6 ADC CONVEISION CUMNVEuuuuuuueuiiiniiinin e nnnan 285
Figurell-7 8266 ADC Channel........ceeeiiiiieciiiieee et e 287
Figurel1-8 Hardware chart for 8266 low battery check..........cccccvvvvieeieiinnnnnnns 287
Figure11-9 8261/8267/8269 ADC channelccceeevieiiinienenienieseee e 288
Figure11-10 1/3 internal voltage division network, VCC channel 291
Figurel1l-11 1/3internal voltage division network, PB7 channel 292
Figurell-12 EMI test t0O]ueeeiiiieeeee e 311
Figurell-13 Select data bus..........ueeiiiiiiicciee e 312
Figurell-14 Swire synchronization operationcccccovveeeeeiei e, 312
Figurell-15 Set Channel ... e e e e 313
Figurel1-16 Select RF MO ..ccuvviiiiiiiiee ittt e e 313

AN-17092700-E4 18 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Figurel1l-17 Interface after RF mode setting.........ccceeecvveeeeicieeeccciiee e, 314
Figurell-18 Select teSt MOUEuuviviieiie e e 314
Figurel1-19 Set TX packet NUMbEr ..., 315
Figure11-20 TX mode iNterface......ccccvueieieiiiiee et 315
Figurel1l-21 Read RX packet numberand RSSI........ccccviveiieeiiiiiiieeeee e, 316

AN-17092700-E4 19 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1 SDK Overview

Telink 826x BLE SDK supplies demo code for BLE Slave/Master development,
based on which user can develop his own application program.

Currently the SDK applies to four Telink ICs: 8261/8266/8267/8269.

1.1 Software architecture

Software architecture for Telink 826x BLE SDK includes APP layer and BLE protocol
stack.

Figure 1-1 shows the file structure after the SDK project is imported in Telink IDE,
which mainly contains three top-layer folders including “proj”, “proj_lib” and “vendor”.

= C/C++ - ble_sdk_release/vendor/826x_ble_remote/app.c - Eclipse

File Edit Source Refactor Navigate Search Project @ Telink Tools Run Window Help

i |0-To A5 @g-a-d-@ {R-BH- B-O0-L- SO - - - f=1R s
I Project Explorer &2 = B[[d mainc (€] app.c &
E G~

4|7 £ ble_sdk_release _ . .
vold main loop (void)

> [l Includes ¢

> = proj
> = proj_lib

tick loop ++;

a ;= vendor

4 (= B26x_ble_remote AL L AL E LT L LA BLE entry [/ ffIILEFEEFEEddiddirtfidfdidiriis
blt sdk main loop()
> |c] app_att.c - - -
> app_config.h
> [c] app.c
| main.c FELEESELT PRSI Pifrri i rrriss UL entxry ff/fFFEFFFFFFFEFEAEFrrrririreress
> 9 redre #if (BLE_AUDIO_ENABLE)
> rc_ir.h //blc_checkConnFaramUpdate () ;
i if(ui_mic enable){
=4 mmmﬂh task audio():
> = 826x_driver_test }
> (= 826x feature test #endif
> = 826x_hci
> (= 826x_hid_sample #1f (BATT_CHECK ENASLE)
» = 826x_master_kma_dongle i (e, @il I o § .
battery power check()://whether or not entry battery check
> = 826x_module ' - -
» = B26x_ota_boot gendif
b div_mod.5 /{lowBatt_alarmFlag = //low battery detect
> version.h
besrdils proc_kevboard (0,0, 0);
&) getver_file.sh
f getver_nie.s device led process():
2] getver.sh - -
hei.cpraject] m

[E] mvver.sh (R R E— —

Figure 1-1 SDK file structure

<> proj: This folder contains MCU related peripheral driver, such as flash, 12C, USB,
GPI0O, UART driver, and etc.

<> proj_lib: This folder contains library files necessary for MCU running, e.g. BLE stack,
RF driver, PM driver. Since this folder is supplied in the form of library files (e.g.
liblt_8267.a, liblt_8261.a), the source files are not open to users.

<> vendor: This folder contains user APP-layer code, e.g. 826x_ble_remote demo

AN-17092700-E4 20 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

application. The following four basic files are needed for each new user folder.

1.1.1 main.c
The “main.c” file includes main function entry, system initialization functions and
endless loop “while(1)”. It’s not recommended to make any modification to this file.
int main (void) {
blc_pm_select_internal_32k_crystal(); //select internal 32k rc as 32k counter clock
source
cpu_wakeup_init(CRYSTAL_TYPE);//Basic MCU hardware initialization, negligible to user

clock_init(); // Clock initialization, user only needs to configure related

parameters in app_config.h
set_tick_per_us(CLOCK_SYS_CLOCK_HZ/1000000);// Clock initialization

gpio_init(); // GPIO initialization, user only needs to configure related

parameters in app_config.h
rf_drv_init(CRYSTAL_TYPE);// RF initialization, negligible to user
user_init (); // BLE initialization, initialization of the whole system, configured by user
irg_enable(); // Enable global interrupt
while (1) {

#if (MODULE_WATCHDOG_ENABLE)
wd_clear(); //clear watch dog

#tendif

main_loop (); //include BLE Rx/Tx processing, power management and user tasks

1.1.2 app_config.h

The user configuration file “app_config.h” serves to configure parameters of the
whole system, including parameters related to BLE, GPIO, PM low-power management,
and etc. Parameter details of each module will be illustrated in following sections.

1.1.3 application file

“app.c”: User file for system initialization and adding user task Ul.

AN-17092700-E4 21 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

“app_att.c” of BLE Slave project: configuration files for services and profiles.
Based on Telink Attribute structure, as well as Attributes such as GATT, standard HID,
proprietary OTA and MIC, user can add his own services and profiles as needed.

1.1.4 BLE stack entry
There are two entry functions in BLE stack code of Telink BLE SDK.
1) BLE related interrupt processing entry in “irq_handler” function of “main.c” file

“irq blt sdk_handler”.

_attribute ram code void irq_handler (void)

—~

irg blt sdk handler ();

2) BLE logic and data processing function entry in application file mainloop
"blt_sdk_main_loopﬂ

void main loop (void)

{
tick loop ++;

/111771777777 //////// BLE entxy [/////////////////////////]/
blt sdk main loop();

/17171777177 7771771/777// UT entxy ////////1//1/7/1/171////1/7/

1.2 AppliedICs

The four applied ICs can be divided into two categories:

<> 8261/8267/8269: The three ICs share the same IP core, thus their hardware
modaules are almost the same except in audio, Flash size and SRAM size.

<> 8266: This IC has IP core and hardware modules differenet from 8261/8267/8269.

IC IP core Audio Flash size SRAM size

8266 IP1 X 512 kB 16 kB

AN-17092700-E4 22 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
IC IP core Audio Flash size SRAM size
8261 X 128 kB 16 kB

267 N, 512 kB 16 kB
826 P2
8269 N, 512 kB 32 kB

Following sections will introduce characteristics of SDK file structure
corresponding to IC difference.

1.3 Driver

In SDK, drivers can be divided into two categories: 8266, 8267.

Since 8261/8269 share the IP core of 8267, drivers of 8267 also applies to
8261/8269 application.

E.g. for an 8269 ble remote application based on 8269, to use drivers such as
rf/gpio driver, user should find corresponding rf_drv_8267/gpio_8267 files.

In SDK, most drivers are supplied in source code (except for rf and pm driver), and
these files are mainly available from the following three locations:

1) proj_lib

As shown below, source code of pm_8266 and pm_8267 are not open to user,
while related interfaces are assembled in lib. Only head files are supplied for user
reference.

4 (= proj_lib
> = ble
> |n| pm_B266.h
> |n| pm_B267.h
> Lh| pm.h
> |n| rf_drv_B266.h
+ [rf_drv_8267.h
> | rf_dreh

Figurel-2 pm and rf driver

2) proj/mcu_spec

For drivers which have great difference in 8267 and 8266, e.g. adc and gpio driver,
corresponding source files and head files (adc/gpio/register files as shown below)
are placed under the “proj/mcu_spec” folder.

AN-17092700-E4 23 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4 = proj

> (= app

> = common

» = config

(= drivers

> = mcu

4|2 mcu_spec
> |£] ade_8266.c
> adc_8266.h
> €] ade_8267.c
> [n] adc_8267.h
> anareg_B8886.h
» cstartup_8261.5
> cstartup_8266_ram.S
> cstartup_B8266.5
> cstartup_8267_ram.5
> cstartup_8267_spi.5
> cstartup_8267.5
> cstartup_8269_ram.S
> cstartup_8269.5
> |£| gpio_8266.c
> gpio_B8266.h
> €] gpio_8267.c
> gpio_8267.h
> gpio_default_8266.h
5 gpio_default_8267.h
> register_8266.h
> register_8267.h

m

Figurel-3 adc/gpio driver and bootloader

3) proj/drivers

For drivers which have slight difference in 8267 and 8266, e.g. uart/i2c driver,
corresponding files are unified under the “proj/driver” folder, while differences
are processed by using “MCU_CORE_TYPE” in the source files.

AN-17092700-E4 24 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4 [= praj
b > app
[[= common
» (= config
4 |(= drivers
i [adch
i [g audio.c
i |h audio.h
I € battery.c
> [battery.h
€] emic
i [k emih
i [g flash.c
i+ [n] flash.h
¢ [g i2ec
i [i2c.h
i [g keyboard.c
i |[n keyboard.h
b [H pgah
¢ [g rf_pa.c
i [n rf_pa.h
i [n] spi_ih
i [g spic
I [h spih
13 @ uart.c
> [h] uarth

Figurel-4 i2c/spi/uart driver

52 wvoid i2¢ pin_init (I2C GPIC GroupTypeDef iZ2c pin group) {
53 u32 gpio_sda, gpio scl;

S4 #if (MCU CORE TYPE == MCU CORE 8266)

55 gpio_=sda = GPIO PE7;

56 gpio_scl = GPIO PF1;

8 gpic_set func(gpioc sda,AS I2C): //disable gpig function
59 gpic set func(gpioc =scl,AS I2C): //dis=able gpig function

61 gpio_setup up down resistor(gpio sda, PM PIN PULLUP 10K]) ;
62 gpio setup up down resistor(gpio scl, FM PIN PULLUP 10K):

64 gpio_set input en(gpioc =da,l);
65 gpio_set input en(gpio_scl,1):;

67 #elif ((MCU CORE TYPE == MCU CORE 82&1) || (MCU CORE TYPE == MCO
switch (iZ2c pin group) {
case I2C GPIO GROUP A3A4;

gpioc_sda = GPIC PA3;

gpic_scl = GPIO PA4;

O W fa

Figurel-5 Difference in i2c driver

AN-17092700-E4 25 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1.4 bootloader

Each of the four ICs has its own bootloader: cstartup_8261.S / cstartup_8266.S /
cstartup_8267.S / cstartup_8269.S. Please refer to Figurel-3 for file location in SDK.

Take “cstartup_8267.S” for example: The first sentence “#ifdef MCU_CORE_8267"
indicates this bootloader will take effect only when the “MCU_CORE_8267" is defined
by user.

Therefore, user can correspondingly define MCU_CORE_8261 / MCU_CORE_8266
/ MCU_CORE_8267 / MCU_CORE_8269 to enable compiler to automatically select the
correct bootloader.

The “8267_ble_remote” is taken as an example to illustrate how to select 8267
bootloader. As shown below, user can define MCU_CORE_8267 (-DMCU_CORE_8267)
in the 8267_ble_remote.

= Properties for ble_lt_sdk =R]
type filter text Setlings (I S
Resource
Builders
Conﬁguratian;(FZG‘LbIaJemme \ ‘] [Managa Configurations..

d
Build Variables
Discovery Options

Environment & Tool Settings ‘.ﬁ Build Stepsl Build Aniiactl Binary Parsers | @ Error Parsers

Logging

ﬁ (& Addit] ools in Toolchain || Suppress warnings (-W)

Tmoa\ T Editor i TC32 CC/Assembler (-Xassembler) options &)
General

C/C++ General

(% Paths
2 Debugging
4 B TC32 Compiler
(2 Directories
(2 Symbols
(2 Warnings
(# Debugging
(# Optimization
(# Language Standard
(# Miscellansous
4) TC32 C Linker
(% General
(2 Libraries
(% Objects
a4 %) TC32 Create Extended Listing
(% General
4 %) TC32 Create Flash image
(% General
4 i) Print Size
(% General

Project References
Run/Debug Settings
Task Repository
Telink Tools
WikiText

m

Other GCC Flags| -DMCU_CORE_8267

Figurel-6 Select bootloader

AN-17092700-E4 26 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

1.5 library

The figure below shows how to select library corresponding to project.

= Properties for ble_sdk_It E‘Eﬂ
type filter text Settings & T
Resource o
Builders
€/C++ Build Configuration: [SEG?_bIe_remote [Active] '] [Manage Configurations..

Build Variables

Discovery Options

Environment

Logging

Settings

Tool Chain Editor
C/C++ General
Project References
Refactoring History
Run/Debug Settings
Task Repository
Telink Toals
WikiText

B Tool Settings | # Build Slepsl

Build Artifact | Binary Parsers | @ Error Parser5|

(2 Additional Tools in Toolchain
4 [y TC32 CCfAssembler
(2 General
(22 Paths
(% Debugging
4 B3 TC32 Compiler
(2 Directories
(2 Symbols
(22 Warnings
(2 Debugging
(# Optimization
(2 Language Standard
(2 Miscellaneous
4 i j TC32 C Linker
(2 General
(% Libraries
(2 Objects
4 3 TC32 Create Extended Listing
(2 General
4 3 TC32 Create Flash image
(2 General
4 3 Print Size
(2 General

% aa 85 L

m,

Libraries Path (-L)

& 8352

[| +

Cancel

[ok

J{

Figurel-7 Select library

Figurel-8 shows libraries currently supplied in SDK 3.2.0. Not all libraries all
released in SDK, however, if user has special requirement (e.g. liblt_8267_48m.a) in
actual development, he can apply as needed, and will be provided with the the library
after evaluation and approval by Telink.

AN-17092700-E4

| liblt_8261.a

| liblt_8261_mod.a

| liblt_8266.a

| liblt_8266_32m.a

% | liblt_8266_master_1_conn.a
| liblt_8266_mod.a

| liblt_8267.a

% | liblt_8267_32m.a

| liblt_8267_32m_IR.a

& liblt_8267_IR.a

% | liblt_8267_master_1_conn.a
| liblt_8267_mod.a

Figurel-8 Libraries supplied in BLE SDK

27 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Following sub-sections show features of libraries in Telink BLE SDK.

1.5.1 Category based on IC

According to IC, libraries can be divided into three categories: 8261 relative/8266
relative/8267 relative.

8269 libraries are not supplied independently, and user can directly use 8267
libraries, since:

1) As shown in the IC difference table, the sole difference between 8269 and
8267 is SRAM size: 32kB (8269), 16kB (8267).

2) SRAM configuration of 8267/8269 is implemented in corresponding
bootloader (cstartup_8267.S / cstartup_8269.S supplied in source code), user
only needs to select his bootloader in setting of project.

1.5.2 Category based on function
Currently SDK supplies libraries corresponding to three basic BLE functions.
1) BLE Slave, Telink 826x acts as Host MCU. Corresponding libraries include:

liblt_8261/liblt_8261 32m and etc.; liblt_8266/liblt_8266_32m and etc,;
liblt_8267/liblt_8267 32m and etc.;

2) BLE Slave, Telink 826x acts as BLE SPP module and communicates with Host
MCU via interface such as UART/SPI. Corresponding libraries include:

liblt_8261_mod/ liblt_8261_mod_32m and etc,;
liblt_8266_mod/liblt_8266_mod_32m and etc.;
liblt_8267_mod/liblt_8267_mod_32m and etc.;

3) BLE Master, only single connection can be established, Telink 826x acts as Host
MCU. Corresponding libraries include: liblt_8266_master_1 conn and
liblt_8267 _master_1 conn. Note that 8261 libraries are not released
independently, thus if 8261 is used to develop BLE single connection master,
user can select “liblt_8267_master_1 conn”.

The library category below will be released in following SDK versions:

BLE Master, support multi connection, Telink 826x acts as Host MCU.
Corresponding libraries include: liblt_8266_master_n_conn and
liblt_8267_master_n_conn.

AN-17092700-E4 28 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1.5.3 Category based on system clock

For BLE Master, libraries won’t differ according to system clock of application
program.

However, for BLE Slave, library name will indicate libray of corresponding system
clock, as shown below:

<> By default, library name is not marked with clock, which indicates library
corresponding to 16m system clock. For example, “liblt_8266.a” indicates 8266
library corresponding to 16m system clock.

<> Library name marked with 32m/48m (not 16m) indicates library corresponding to
32m/48m system clock. For example, “liblt_8267_32m.a” indicates 8267/8269
library corresponding to 32m system clock.

For BLE master single connection, regardless of 16m, 32m or 48m system clock
is used, 8266 will use unified library “liblt_8266_master_1_conn”, while
8261/8267/8269 will use unified library “liblt_8267_master_1_conn”.

1.5.4 Other special libraries

Considering actual application cases, SDK also provides some special libraries, e.g.
“liblt_8267_IR.a” and “liblt_8267 32m_IR.a” for 8267/8269 IR application
corresponding to 16m and 32m system clock.

Note: All IR applications need specific library. To develop 8261/8266 IR application,
user needs to contact Telink and apply for corresponding library.

1.6 Demo

Telink BLE SDK supplies multiple BLE demos for user. Each demo code
corresponding to specific hardware, based on which user can run demo, observe effect
and modify demo code for his own application development.

= vendor
7= B26x_ble_remote
= common
= B26x_driver_test
= B26x_feature test
(= 826x_hci
[= B26x_hid_sample
= B26x_master_kma_dongle
[= B826x_module
(= B26x_ota_boot

Figure1-9 Demo code supplied in BLE SDK

AN-17092700-E4 29 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1.6.1 BLE Slave demo

BLE Slave demo and differences are listed as in the table below:

Demo Stack Application MCU function

Controller, communicate

826x hci BLE controller No with MCU Host via HCI
interface

826x module BLE controller + host | Application in Host MCU BLE SPP module

826x remote BLE controller + host | Remote control application | Host MCU

. Simple Slave demo with
826x hid sample | BLE controller + host Host MCU
V+/V- volume control only

826x hciis a BLE Slave controller. It supplies USB/UART-based HCI to communicate
with MCU Host and forms a complete BLE Slave system.

826x remote/826x module are complete BLE Slave stack.

<> 826x module only acts as BLE SPP module to communicate with Host MCU via
UART interface. Generally application code is written in Host MCU.

<> 826x remote is a demo of BLE remote controller which supports basic remote
control function. It can connect with standard iOS/Android device or Telink 826x
master kma dongle to control the peer.

826x hid sample is simplified demo based on 826x remote, which should run on
Telink 8266/8267 dongle. The dongle can pair and connect with standard i0OS/Android
device, and the two buttons on the dongle simulate Vol+/Vol-. This demo can run on
826x dongle, thus user can save demo hardware cost for debugging and development.

826x ota boot is a code section of OTA necessary for all 8261/8266 BLE Slave
projects, while 8267/8269 does not need ota boot. Please refer to OTA section for
details.

1.6.2 BLE master demo

826x master kma dongle is a demo of BLE Master single connection. It can connect
and communicate with 826x hid sample/826x remote/826x module.

Libraries corresponding to 826x remote/826x hid sample supply standard BLE
stack, including BLE controller + BLE host. User only needs to add his own application
code in APP layer by using APIs of controller and Host, and does not need to process
BLE Host.

Libraries corresponding to 826x master kma dongle only provide standard BLE

AN-17092700-E4 30 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

controller function, and does not provide standard Host. 826x master kma dongle
demo code gives BLE Host implementation in APP layer for reference, including ATT,
simple SDP (service discovery protocol), the most common SMP (security
management protocol), and etc.

The most complex function of BLE Master is service discovery of Slave server and
recognition of all services, which generally can be implemented in Android/linux
system. Limited by Flash size and SRAM size, Telink 826x IC cannot supply complete
service discovery. However, SDK supplies all ATT interfaces needed for service
discovery. Based on service discovery process of 826x remote by 826x master kma
dongle, user can implement traversal of specific services.

1.6.3 Feature demo and driver demo

826x feature test gives demo code for some common features related to BLE. User
can implement his own functions based on these demos. All features will be
introduced in BLE section.

826x driver test gives sample code for basic drivers, based on which user can
implement his own driver functions. The Driver section will introduce various drivers
in detail.

AN-17092700-E4 31 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2 MCU Basic Modules

2.1 MCU address space

2.1.1 MCU address space allocation

Telink 826x MCU supports maximum addressing space of 16M bytes, including
8M-byte program space from 0 to Ox7fffff and 8M-byte peripheral space (e.g. SRAM,
register space) from 0x800000 to Oxffffff.

Oxffffff
SRAM
Peripheral
Space
0x808000
Register
0x800000
Ox7fffff
Program
space FLASH
Customizable
0x000000

Figure2-1 MCU address space allocation

During physical addressing of 826x MCU, address line BIT (23) serves to
differentiate program space / peripheral space:

<> Address line BIT (23) is 0: acess program space
<> Address line BIT (23) is 1: acess peripheral space

When addressing space is peripheral space (BIT(23) is 1), address line BIT (15)
serves to differentiate Register / SRAM.

<> Address line BIT (15) is 0: access Register
<> Address line BIT (15) is 1: access SRAM.

AN-17092700-E4 32 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2.1.2 SRAM space ram allocation
2.1.2.1 SRAM and Firmware spcae

For 16kB SRAM, address space range is 0x808000 ~ 0x80C000; while for 32kB
SRAM, address space range is 0x808000 ~ 0x810000.

The figure below shows SRAM and Firmware space allocation in 16kB SRAM.

Sram Flash
0x00000
0x808000 , o
vector vector }
. /ﬂ power on \ 4
real_ramcode_size ram_code load ram_code ’,f'_ramcode_size_i___.
0x808000+rea1_ramcode_size\“ vasted Sram area |,
Cache
2. 25K
0x808900+real_ramcode_size
data + bss
unused area'«;'f/ """ Firmware
text
stack
0x80C000
rodata & data
init value
128K/512K

Figure2-2 SRAM and Firmware space

In SDK, files related to SRAM space allocation include “boot.link” and bootloader
S file corresponding to IC (e.g. “cstartup_8267.5").

Firmware in Flash includes vector, ramcode, text, Rodata and Data initial value.
SRAM includes vector, ramcode, Cache, data, bss, stack and unused area. Note that
vector/ramcode in SRAM is a copy of vector/ramcode in Flash.

AN-17092700-E4 33 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1) vectors, ram_code

Vectors is a code section of Flash Firmware (executable bin file generated by
program compiling in SDK), and it corresponds to assembling file “cstartup_826x.S”
(i.e. startup code bootloader).

Ramcode is memory resident code in Flash Firmware, and it corresponds to all
functions with keyword “_attribute_ram_code_" (e.g. flash erease function).

_attribute ram code void flash_erase_sector (u32 addr);
In the following two cases, functions should be memory resident:

<> Some functions (e.g. Flash operation functions) involve timing multiplex with four
Flash MSPI pins: If these functions are placed in Flash, it will cause timing conflict
and system crash.

<> Whenever functions resident in RAM are invoked, it isn’t needed to re-read them
from Flash, thus time will be saved. Therefore, the functions with limited
execution time should be memory resident to increase execution efficiency. In SDK,
some functions related to BLE timing sequence need frequent execution, in order
to decrease execution time and save power consumption, these functions are
memory resident.

User can set a function as memory resident by adding the keyword
“ attribute_ram_code_" (please refer to flash_erase_sector). After compiling,
user can find this function in ramcode section of list file.

It’s needed to load the vector and ramcode in firmware to RAM when power on.
After compiling, the total size of the two parts is “_ramcode_size_”, which is a
variable recognizable by compiler. Its calculation is implemented in “boot.link”. As
shown below, the compiling result “_ramcode_size_” equal the size of all code
including vector and ramcode.

. = 0x0;

.vectors
{
* (.vectors)
(.vectors.¥)
}
.ram code :
{
* (.ram_code)
(.ram_code.¥)
}
PROVIDE (_ramcode size = .);//calculate actual ramcode size(vector +
ramcode)

AN-17092700-E4 34 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
PROVIDE (_ramcode size div 16 = (. + 15) / 16);
PROVIDE (_ramcode size div 256 = (. + 255) / 256);
PROVIDE (_ramcode size div 16 align 256 = ((. + 255) / 256) * 16);
2) Cache

Cache is high-speed instruction buffer of MCU, and it must be configured as a
section in SRAM. Cache size is fixed as 2.25K (0x900), including 256-byte tag and
2048-byte Instructions cache.

Memory resident code can be directly read and executed from memory, however,
only a small part of firmware is memory resident code, and the majority are still
in Flash. According to program locality principle, a part of Flash code can be stored
in the Cache. Thus, if the code to be executed is in the Cache, instructions can be
directly read and executed from the Cache; otherwise it’s needed to read code
from Flash to replace the old code in the Cache, then read and execute
instructions from the Cache.

As shown in Figure2-2, the “text” in firmware is Flash code not placed in SRAM.
According to program locality principle, it’s needed to load this part to the Cache
so that it can be executed.

Though Cache size is fixed as 2.25K, its starting address in SRAM is configurable.
To ensure enough space to store vector and ramcode in Flash, this starting address
must exceed “0x808000+_ramcode_size_". As specified by 826x MCU hardware,
Cache starting address must be 256-byte aligned, therefore, the
“real_ramcode_size” is the 256-byte aligned size of “_ramcode_size_”, Cache
starting address should be:

0x808000 + real_ramcode_size
0x808000 + ((_ramcode_size_+255)/256)* 256
0x808000 + _ramcode_size_div_256_* 0x100

Cache starting address is 256-byte aligned “0x808000 + _ramcode_size_div_256_
* 0x100”, while the “_ramcode_size_" is not 256-byte aligned generally. The actual
size of the code loaded from Flash to RAM when power on is
“ ramcode_size_div_256_* 256", which means a part of space in SRAM is wasted
area.

For example: Suppose “_ramcode_size_” is 0x780, and the size of code loaded to
SRAM is 0x800, then the code of 0x00000 ~ 0x007ff in Flash firmware is memory
resident, the 128 bytes of 0x808780 ~0x8087ff in SRAM is wasted area, i.e. non-
ramcode is memory redident in SRAM.

If “ ramcode_size " is 0x701, 255 bytes will be wasted; if “_ramcode_size " is
0x800, the size of wasted SRAM area is 0. The maximum size of wasted SRAM area

AN-17092700-E4 35 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3)

4)

is 255 bytes, therefore, during program design, user needs to check list file to view
ramcode occupation, and try to avoid large wasted area.

Since Cache size is fixed as 2.25K, Cache ending address should be:
0x808000 + real_ramcode_size + 0x900
= 0x808900 + real_ramcode_size

data / bss

“data” in SRAM serves to store initialized global variables of program (i.e. global
variables which are non-zero initially). The initial value of the global variables in
“data” is “data init value” in firmware, as shown in Figure2-2.

“bss” in SRAM serves to store global variables of program not initialized (i.e. global
variables which are zero initially).

Cache is followed by “data”, while “data” is followed by “bss”. The starting address
of “data + bss” is Cache ending address, i.e. “0x808900 +
_ramcode_size_div_256_* 0x100”.

Following shows the code in “boot.link” which directly defines the starting address
of “data”.

. = 0x808900 + ramcode size div 256 * 0x100;

.data :

stack / unused area

“stack” in SRAM starts from 0x80C000 (default 16kB SRAM) / 0x810000 (32kB
SRAM), which is the lowest address. Its SP pointer will descend during push
operation, and ascend during pop operation.

By default, size of stack used by SDK library does not exceed 256 bytes. However,
since the size of used stack depends on stack depth (i.e. the address of the deepest
location), final size of used stack is relevant to user upper-layer program design.
Any case which causes deep stack, e.g. complex recursive function invoking is used,
or large local array variable is used in a function, will increase the final size of used
stack.

When large area of SRAM is used, user needs to know the size of stack used by
program. This cannot be obtained by analyzing list file; instead, user should run
actual product application, ensure all of the code which may use deep stack have
been executed, then reset MCU and read SRAM space to determine the size of
used stack.

AN-17092700-E4 36 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

5)

6)

“unused area” in SRAM is the space from deepest stack address to bss ending
address. This area should exist to ensure non-overlap of stack and bss; otherwise
it indicates SRAM size is not enough.

“bss” ending address can be obtained via list file, thus the maximum size for stack
is determined. User needs to analyze whether this space is enough for stack usage.
Please refer to 2.1.2.2 List file analysis demo for analysis method.

text

”

“text” is a part of Flash firmware. Functions with “_attribute_ram_code_” in
firmware will be compiled as “ram_code”, while other functions without this
keyword will be compiled as “text”.

“text” occupies the maximum space in firmware, which largely exceeds SRAM size
generally. Therefore, it’s needed to use Cache buffer function, i.e. load code into
Cache and then execute it.

rodata/data init value

”n u

The remaining data except for “vector”, “ram_code” and “text” in firmware are
“rodata” and “data initial value”.

“rodata” is read-only data in firmware, i.e. variable with keyword “const”. E.g. ATT
table in Slave:

const attribute t my Attributes[] = ...

User can view the “my_Attributes” is within the “rodata” by checking
corresponding list file.

As introduced above, “data” is initialized global variables in firmware, e.g.
int testValue = 0x1234;

The compiler will store the initial value “0x1234” in “data initial value”. When the
bootloader (cstartup_826x.S) is executed, this initial value will be copied to
memory address corresponding to “testValue”.

2.1.2.2 List file analysis demo

A simple BLE Slave demo “8267 hid sample” is taken as an example to illustrate

SRAM and Flash address space allocation (please refer to Figure2-2 SRAM and
Firmware space). Based on this demo, user can analyze SRAM and Flash space
allocation of his own program.

AN-17092700-E4 37 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Bin file and list file of this demo is available under the directory “SDK” -> “Demo”
-> “list file analyze”. Information of SRAM space allocation can be analyzed from the
“8267_hid_sample.list” file.

All screeshots herein are available from the files including “boot.link”,
“cstartup_8267.5”, “8267_hid_sample.bin” and “8267_hid_sample.list”.

In the list file, each code part of a specific function is called a “section”. The figure
below shows section distribution in the list file “8267_hid_sample.list”.

Sections:
Tdx Name
0 .wectors
A , Lo
.ram code . 000012cH 0 100 0000 0
: : : LOAD, RELDONLY,
00 ado 00001340
AT , LOAD, READONLY,
po0o854 00 4f4 000064f4)
NTENTS, AL , LOAD, RERDONLY, DATA
000124 00805400 0000&d88 00011400
JTENTS, ALLOC

10be0 0080%=30] 0001lez4

Figure2-3 Section distribution in list file

Following lists the sections in the list file.
1) vectors: start from Flash 0, size is 0x100.
2) ram_code: start from Flash 0x100, size is 0x12c8.
3) text: start from Flash 0x13d0, size is 0x5124.
4) rodata: start from Flash 0x64f4, size is 0x894.
5) data: start from SRAM 0x809d00, size is 0x124.

6) bss: start from SRAM 0x809e30, size is Oxbe0. By calculation, “bss” ending address
is 0x809e30 + Oxbe0 = 0x80aal0. The remaining space size following the “bss” is
0x80c000 — 0x80aal0 = Ox15F0 = 5616 bytes. Except for the 256 bytes for stack,
the remaining 5360 bytes are unused.

AN-17092700-E4 38 Verl.3.0

'SEM’COND”‘TORb Telink TLSR826x BLE SDK Developer Handbook
Dizassembly of _ -ram code:

) <irg handler>:
J_rq_h-anr:ller ()=
. 100: 10 tpush [1r}
:) 9bed tjl Tel <irg blt sdk

3c Q00B80a70c taddeq =1, r0, ip, l=

Disassembly of _ -text:

00001340 € modsi3>:

_ modsi3d|():
caf0: Qd4cdbd00 tstorerkbeq £fp, [z4],

Dizassembly of _ -.rodata:

Q000e4fd <tb l_a dvData>:
pafd: 48740505 tloadmdami r4!,

6dB4: 13867909 tstormmikbne r&,

Dizassembly of _ .data:

tandseq rl, rl, r2, 1
tandeq 0, 0, ré&

0080a2d0 <smp param peer>:

Disassembly of _ TC32.attributes:

Figure2-4 Section address in list file

The figure above shows starting/ending address of various sections by searching
“section” in the list file.

From Figure2-3 Section distribution in list file and Figure2-4 Section address
in list file, the analysis is shown as below:

AN-17092700-E4 39 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1)

2)

3)

4)

5)

vector

“vector” is bootloader corresponding to “startup_826x.S” assembly file. As shown
in the list file, this section contains 256 bytes (size) from 0 (starting address) to
0xff (ending address). After power on load to SRAM, the corresponding address in
SRAM is 0x808000 ~ 0x8080ff.

ram_code

“ram_code” section contains 0x12c8 bytes (size) from 0x100 (starting address) to
0x13c8 (ending address). Since “_ramcode_size_” is 0x13c8, 256-byte aligned
“real_ramcode_size” is 0x1400, there are actually 56 (0x38) bytes in SRAM are
wasted.

Cache
Cache starting and ending address are:
0x808000 + real_ramcode_size ~ 0x808900 + real_ramcode_size

0x809400 ~ 0x809d00

Cache related information are not shown in the list file.

text

“text” section contains 0x5124 (size= 0x64f4 — 0x13d0) bytes from 0x13d0
(starting address of “text”, i.e. ending address of “ram_code”) to 0x64f4 (ending
address).

rodata
“rodata” section starts from 0x64f4 (“text” ending address) and ends till 0x6d88.

As shown in the “8267_hid_sample.bin”, the actual bin size is Ox6eac. According
to analysis above, the remaining firmware space 0x6d88 ~ Ox6eac is actually “data
init value”, i.e. initial value of initialized global variables in the firmware.

There is not a specific section in the list file corresponding to the “data init value”.
User can search the keyword “_dstored_” and find the value “0x6d88” which
indicates the starting address of the “data init value”.

00006d88 g *ABS* 00000000 _dstored_

AN-17092700-E4 40 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

6)

7)

Following is the “_dstored_" definition in the “boot.link”. This will tell the compiler
that initial value of initialized global variables in the “data” section are all stored
in the “_dstored_” of firmware.

. = 0x808900 + ramcode size div 256 * 0x100;
.data :
AT (_dstored)
{
= (000 +3) /)
PROVIDE (_start data = .);
*(.data);
(.data.);
= (000 +3) /)
PROVIDE (_end data = .);
}

data

“data” section starts from Cache ending address 0x809d00, and its size is shown
as 0x124 in Figure2-3 Section distribution in list file.

The final variable in the “data” section is “smpResSignalPkt”, which is a structure
variable in SDK bottom layer. This variable starts from 0x809e08, and its size is 28
= Ox1c. Therefore “data” ending address is 0x809e24, and the size of the “data”
section is 0x809e24 - 0x809d00 = 0x124.

bss

“data” section is followed by “bss”. Since the first array “_start_bss_” should be
16-byte aligned, the “bss” section starts from 0x9e30, and its size is shown as
OxbeO in Figure2-3 Section distribution in list file.

The final variable in the “bss” section is “smp_param_peer”, which is a structure
variable in SDK bottom layer. This variable starts from 0x80a9d0, and its size is 64
= 0x40. Therefore “bss” ending address is 0x80aal0, and the size of the “bss”
section is 0x80aal0 - 0x809e30 = OxbeO.

By calculation, the remaining SRAM space size is 0x80c000 — 0x80aal10 = 0x15F0 =
5616 bytes. Except for the 256 bytes for stack, the remaining 5360 bytes are
unused.

AN-17092700-E4 41 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2.1.3 MCU address space access

MCU address space 0x000000 ~ Oxffffff can be accessed in firmware as follows:

2.1.3.1 Peripheral space access

The peripheral space (register & SRAM) is directly accessed (read/write) via
pointer.

u8 x = *(volatile u8*)0x800066; //read register 0x66

(volatile u8)0x800066 = 0x26; //write register Ox66
u32 y = *(volatile u32*)0x808000; //read SRAM 0x8000~0x8003
(volatile u32)0x808000 = 0x12345678; //write SRAM 0x8000~0x8003

In firmware, functions including “write_reg8”, “write_regl6”, “write_reg32”,
“read_reg8”, “read_regl6” and “read_reg32”, which implement pointer operation, are
used to write or read the peripheral space correspondingly. Please refer to
“proj/common/compatibility.h” and “proj/common/utility.h” for details.

Note: For operation such as write_reg8(0x8000) / read_reg16(0x8000), to ensure
the access space is Register/SRAM rather than Flash, the base address “0x800000” is
automatically added (address line BIT(23) is 1), as shown below.

#define REG_BASE_ADDR 0x800000

#define write reg8(addr,v) U8 SET((addr + REG_BASE ADDR), V)
#define write regl6(addr,v) Ul6 _SET((addr + REG BASE ADDR),V)
((addr + REG_BASE_ADDR), V)
#define read reg8(addr) U8 GET((addr + REG_BASE ADDR))
#define read regl6(addr) Ul6 GET((addr + REG BASE ADDR))

#define write reg32(addr,v) U32 SET

#define read reg32(addr) U32 GET((addr + REG BASE ADDR))

Please pay attention to memory alignment: If a pointer pointing to 2 bytes/4
bytes is used to access the peripheral space, make sure the address is 2-byte/4-byte
aligned to avoid data read/write error. Following shows two incorrect formats:

ule x=*(volatile u16*)0x808001; //0x808001 is not 2-byte aligned
(volatile u32)0x808005 = 0x12345678; //0x808005 is not 4-byte aligned
The correct formats should be:

ule x=*(volatile u16*)0x808000; //0x808000 is 2-byte aligned
(volatile u32)0x808004 = 0x12345678; //0x808004 is 4-byte aligned

AN-17092700-E4 42 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2.1.3.2 Flash space operation

Read/Write access operation of the Flash space is implemented by using the

function “flash_read_page”/“flash_write_page”. Codes about flash access and erasing
operation are available in “proj/drivers/flash.c” and “flash.h”.

1)

Flash Read/Write access operation

The functions including “flash_read_page” and “flash_write_page” serve to read
or write the Flash space correspondingly.

void flash_read_page(u32 addr, u32 len, u8 *buf);
void flash_write_page(u32 addr, u32 len, u8 *buf)

Flash read operation example via “flash_read_page”:
void flash_read_page(u32 addr, u32 len, u8 *buf);
u8 data[6] ={0 };

flash_read_page(0x11000, 6, data); //read 6 bytes starting from flash
0x11000 into the array “data”

Flash write operation example via “flash_write_page”:
flash_write_page(u32 addr, u32 len, u8 *buf);
u8 data[6] = {0x11,0x22,0x33,0x44,0x55,0x66 };

flash_write_page(0x12000, 6, data); //write 6-byte data “0x665544332211”
into flash starting from 0x12000

Since the “flash_write_page” function accesses flash area starting from the “addr”
within a page, the maximum allowed “len” should be the page size, i.e. 256 bytes.
It’s not allowed to operate flash area across two or more pages in this function.

If the “addr” is the starting address of one page, the “len” cannot exceed 256.

flash_write_page(0x12000, 256, data) //correct, write 256 bytes into the page starting
from 0x12000

flash_write_page(0x12000, 257 , data) //wrong, 257 bytes exceed page size “256”, and
the final byte belongs to the next page

If the “addr” is not the starting address of one page, the “len” cannot exceed (the
end address of the page - “addr” + 1). For example, if the “addr” is 0x120f0, the
“len” cannot exceed (0x120ff - 0x120f0 + 1)=16.

flash_write_page(0x120f0, 20, data) // wrong, 20 bytes exceed the maximum allowed

AN-17092700-E4 43 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

length “16”, the first 16 bytes belong to the page starting from 0x12000, but the last 4 bytes
belong to the page starting from 0x12100.

For the “flash_read_page” function, one operation can read data more than 256
bytes, i.e. it’s allowed to read flash area across pages in this function.

2) Flash erase operation
The function “flash_erase_sector” serves to erase flash.
void flash_erase_sector(u32 addr);
One sector contains 4096 bytes, e.g. 0x13000 ~0x13fff.

The “addr” must be the starting address of one sector, and each erase operation
erases a complete sector.

In the case of 16M system clock, it takes round 30~100ms or even longer time to
erase a sector.

3) Influence to system interrupt caused by flash access/erasing operation

System interrupt must be disabled via “irq_disable()” when the flash access or
erasing function is executed, and then restored via “irq_restore()” after the
operation is finished. This will ensure integrity and continuity of flash MSPI timing
operation, and avoid hardware resource reentry due to MSPI bus lines invoking by
flash operation in interrupt.

Since timing sequence of BLE SDK RF packet transmission and reception is always
controlled by interrupt, when system interrupt is disabled during flash operation,
it may ruin the timing sequence, thus MCU fails to respond in time.

The influence to BLE interrupt by execution time of the flash access function is
almost negligible; howerver, the “len” in the function will determine the time to
access the flash area, it’s highly recommended not to set the “len” as large value
in BLE connection state during mainloop.

It takes tens of milliseconds to hundreds of milliseconds to execute the
“flash_erase_sector” function. Therefore, during mainloop of main program, once
MCU enters BLE connection state, try not to invoke the “flash_erase_sector” to
avoid disconnection. If it’s inevitable to erase flash during BLE connection, BLE
timing sequence protection as introduced in 3.2.4.7 Conn state Slave role timing
protection should be adopted.

AN-17092700-E4 44 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
4) Read flash via pointer
Firmware of 826x BLE SDK is stored in Flash. When the firmware is running, only
former part of the code in Flash (memory resident) is stored and executed in RAM,
and the majority will be transferred to the high-speed “Cache” of RAM from Flash
when needed. MCU will automatically control internal MSPI hardware module to
read Flash.
Flash can also be read via pointer: When data are accessed by MCU system bus, if
the data address is not in the memory resident ramcode, system bus will
automatically switch to MSPI, and read data from flash by using MSCN, MCLK,
MSDI and MSDO lines to operate SPI timing sequence.
Following shows three examples::
ule x=*(volatile u16*)0x10000; //read two bytes from flash 0x10000
u8 data[16];
memcpy(data, 0x20000, 16); //read 16 bytes from flash 0x20000 and copy
to data

if('memcmp(data, 0x30000, 16)){ // read 16 bytes from flash 0x30000 and

compare with data

In user_init, when calibration values are read from flash and set to corresponding
registers, the reading is implemented via pointer. Please refer to the function
below in the SDK:

static inline void blc_app_loadCustomizedParameters(void);

Flash can be read by using the function “flash_read_page” or pointer, but it can
be written via the “flash_write_page” function only. Pointer access is not
supported for Flash writing operation.

*Note: When flash is read by using pointer, since data read by system bus will be
buffered in cache, MCU may directly use the buffered data as the result of the new
reading operation.

Example:
u8 result;

result = *(volatile u16*)0x40000; //read flash via pointer

AN-17092700-E4 45 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

u8 data = Ox5A;

flash_write_page(0x40000, 1, &data);

result = *(volatile u16*)0x40000; // read flash via pointer
if(result = Ox5A){ }

The original data in flash 0x40000 is Oxff; the result of the first reading operation
is Oxff; then Ox5A is written into flash 0x40000 by the following writing operation;
in theory, the result of the second reading operation should be the new value
“Ox5A”, but the actual result is still the old data buffered in the cache, i.e. “Oxff”.
Therefore, in the case of multiple reading of the same address, if its value will be
modified, use the API “flash_read_page” rather than pointer, to ensure the result
of reading operation is the new value written into this address rather than the old
value in the cache.

The following format is correct:
u8 result;
flash_read_page(0x40000, 1, &result); // read flash via API
u8 data = Ox5A;
flash_write_page(0x40000, 1, &data);
flash_read_page(0x40000, 1, &result); // read flash via API
if(result != Ox5A){ }

2.1.4 SDK FLASH space allocation

Flash uses a sector (4K bytes) as unit to store and erase information (Note: Erase
function is “flash_erase_sector”). In theory, information of the same type should be
stored in a sector, and different information types should be stored in different sectors
to avoid unexpected erasing. It's recommended for user to follow this rule to store
customized information in Flash.

Two allocation methods of Flash space are supported depending on flash size:
one method is for 512kB flash (8266/8267/8269), while the other method is for 128kB
flash (8261).

AN-17092700-E4 46 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

2.1.4.1 Space allocation for 512kB Flash
0x80000 0x80000
User Data Area User Data Area
0x78000 0x78000
Customed value Customed value
0x77000 0x77000
MAC address MAC address
0x76000 0x76000
Pair&Sec info Pair&Sec info
0x74000 0x74000
ota boot_flag
0x73000
ota_boot.bin
0x72000
User Data Area
User Data Area
0x40000 0x40000
OTA New bin OTA New bin
storage Area storage Area
0x20000 0x20000
Old Firmware Old Firmware
bin bin
0x00000 0x00000
8266 8267/8269

Figure2-5 512kB FLASH address space allocation

The figure above shows the default address allocation for the 512K flash of
8266/8267/8269. Corresponding interfaces are supplied for user to modify flash
address allocation.

1. The sector from 0x76000 to 0x76fff serves to store MAC address. Actually the 6-
byte MAC address is stored in flash area from 0x76000 (for lower byte of MAC
address) to 0x76005 (for higher byte of MAC address). For example, if “Ox11 0x22
0x33 0x44 0x55 0x66” are stored in FLASH 0x76000~0x76005, the MAC address is
“0Ox665544332211".

AN-17092700-E4 47 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Corresponding to SDK, MAC address of actual product will be downloaded into its
flash starting from 0x76000 by Telink jig system. If it’s needed to modify this
starting address to store MAC address, user should ensure the consistency. The
“user_init” function in the SDK will read MAC address from flash area starting from
the macro “CFG_ADR_MAC”. This macro is modifiable in the
“proj_lib/ble/blt_config.h”.

#ifndef CFG_ADR MAC
#define CFG_ADR MAC 0x76000
#endif

2. The sector from O0x77000 to Ox77fff serves store customized calibration
information for Telink MCU. Only this sector does not follow the rule that puts
different information types into different sectors; the 4096 bytes in this sector are
divided into 64 units with 64 bytes each, and each unit stores one type of
calibration information. Since calibration information are burned to
corresponding addresses by jig, they can be stored in the same sector; when
firmware is running, these calibration information are read only and they’re not
allowed to be written or erased.

1) The first 64-byte unit serves to store frequency offset calibration information.
Actually this calibration value is 1 byte stored in 0x77000.

2) The second 64-byte unit serves to store calibration value of TP value. Actually
this calibration information is 2 bytes (TPO, TP1) stored in 0x77040 and
0x77041.

3) The third 64-byte unit serves to store capacitance calibration value of external
32kHz crystal.

4) Following units are reserved for other potential calibration values.

Calibration values of actual product will be downloaded into its flash area
corresponding to SDK by Telink jig system. If it’s needed to modify the starting
address to store calibration value, user should ensure the consistency. In the
“user_init” function of SDK, the “rf_customized_param_load()” function will read
calibration values from flash area starting from the following macros. These
macros are modifiable in the “proj_lib/ble/blt_config.h”.

#ifndef CUST CAP INFO ADDR

#define CUST CAP INFO ADDR 0x77000
#endif

#ifndef CUST TP INFO ADDR

AN-17092700-E4 48 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
#define CUST TP _INFO ADDR 0x77040
#endif
#ifndef CUST 32KPAD CAP INFO ADDR
#define CUST 32KPAD CAP INFO ADDR 0x77080
#endif

3. Thetwo sectors 0x74000 ~ Ox75FFF are occupied by BLE stack system, and the 8kB
area is used to store pairing and security information. User can modify the starting
address of this 8k area to store pairing and security information by invoking the
function below:

proj_lib/ble/blt_smp_nv.h
void bls_smp_configParingSecuritylnfoStorageAddr (int addr);

4. For 8266, the sector 0x73000 ~ 0x73FFF is occupied by BLE stack system, and it
serves to store the ota boot_flag for OTA firmware upgrade. User can follow the
instructions in section 6.2.4.3 to modify the starting address to store the boot_flag.

For 8267/8269 which supports flash multi-address booting, ota flag is not needed,
therefore, the sector 0x73000 ~ 0x73FFF is not occupied by system, and it can be
used as user data space.

5. For 8266, the sector 0x72000 ~ 0x72FFF is occupied by BLE stack system, and it
serves to store the ota_826x_boot.bin for OTA firmware upgrade. User can follow

the instructions in section 6.2.4.2 to modify the starting address to store the boot
bin.

For 8267/8269 which supports flash multi-address booting, the sector 0x72000 ~
0x72FFF is not occupied by system, and it can be used as user data space.

6. The 256kB area 0x00000 ~ Ox3FFFF is used as program space by default:

<> The first 128kB area 0x00000 ~ Ox1FFFF is used as storage space for old
firmware.

<> The second 128kB area 0x20000 ~ Ox3FFFF is used as storage space for OTA
new firmware.

< If firmware doesn’t need to occupy the whole 128kB space 0x00000 ~ Ox3FFFF,
user can use corresponding APl to modify the allocation as needed, thus the
remaining space can be used as data storage space. Please refer to section

AN-17092700-E4 49 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

6.1.3 and 6.2.4.1 for details.

7. The remaining flash space are all used as user data area (storage space for user
data).

2.1.4.2 Space allocation for 128kB Flash

0x20000 0x20000

MAC address
0x1f000
Customed value
0x1e000
System use ir&Sec inf
Area(24K) Pair&Sec info
Ox1c000
ota boot_flag
0x1b000
ota_boot.bin
0x1a000 0x1a000
OTA New bin
storage Area
0x10000
User Area User Data Area
0x0a000
Old Firmware
bin
0x00000 0x00000

Figure2-6 128kB Flash address space allocation

The figure above shows the default address allocation for the 128kB flash of 8261
The 24kB area Ox1A000 ~ Ox1FFFF is occupied by system, while the 104kB area
0x00000 ~ Ox19FFF is used as storage space for user code and user data.
Corresponding interfaces are supplied for user to modify flash address allocation.

1. The sector Ox1FOO0~0x1FFFF serves to store MAC address. Actually the 6-byte
MAC address is stored in area from Ox1F000 (for lower byte of MAC address) to
0x1FO005 (for higher byte of MAC address). For example, if “Ox11 0x22 0x33 0x44
0x55 0x66” are stored in FLASH Ox1FO00~0x1F005, the MAC address is
“0x665544332211".

Corresponding to SDK, MAC address of actual product will be downloaded into its
flash starting from Ox1F000 by Telink jig system. If it’s needed to modify this

AN-17092700-E4 50 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

starting address to store MAC address, user should ensure the consistency. The
“user_init” function in the SDK will read MAC address from flash area starting from
the macro “CFG_ADR_MAC”. This macro is modifiable in the
“proj_lib/ble/blt_config.h”.

#ifndef CFG_ADR MAC
#define CFG_ADR_MAC 0x1F000
#endif

2. The sector Ox1EOOO~Ox1EFFF serves store customized calibration information for
Telink MCU. Only this sector does not follow the rule that puts different
information types into different sectors; the 4096 bytes in this sector are divided
into 64 units with 64 bytes each, and each unit stores one type of calibration
information. Since calibration information are burned to corresponding addresses
by jig, they can be stored in the same sector; when firmware is running, these
calibration information are read only and they’re not allowed to be written or
erased.

1) The first 64-byte unit serves to store frequency offset calibration information.
Actually this calibration value is 1 byte stored in Ox1E0QO.

2) The second 64-byte unit serves to store calibration value of TP value. Actually
this calibration information is 2 bytes (TPO, TP1) stored in Ox1E040 and
Ox1E041.

3) The third 64-byte unit serves to store capacitance calibration value of 32kHz
RC (reserved in current 8261 BLE SDK).

4) Following units are reserved for other potential calibration values.

Calibration values of actual product will be downloaded into its flash area
corresponding to SDK by Telink jig system. If it’s needed to modify the starting
address to store calibration value, user should ensure the consistency. In the
“user_init” function of SDK, the “rf _customized_param_load()” function will read
calibration values from flash area starting from the following macros. These
macros are modifiable in the “proj_lib/ble/blt_config.h”.

#ifndef CUST CAP INFO ADDR

#define CUST CAP INFO ADDR 0x1E000
#endif

#ifndef CUST TP INFO ADDR

#define CUST TP INFO ADDR 0x1E040
#endif

AN-17092700-E4 51 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
#ifndef CUST RC32K_CAP_INFO ADDR
#define CUST RC32K_CAP_INFO ADDR 0x1E080
#endif

3. The two sectors Ox1C000 ~ Ox1DFFF are occupied by BLE stack system, and the
8kB area is used to store pairing and security information. User can modify the
starting address of the 8K area to store pairing and security information by
invoking the function below:

void bls_smp_configParingSecuritylnfoStorageAddr (int addr);

4. The sector 0x1B00O ~ Ox1BFFF is occupied by BLE stack system, and it serves to
store the ota boot_flag for OTA firmware upgrade. User can follow the instructions
in section 6.3.4.3 to modify the starting address to store the boot_flag.

5. The sector Ox1A000 ~ Ox1AFFF is occupied by BLE stack system, and it serves to
store the ota_826x_boot.bin for OTA firmware upgrade. User can follow the
instructions in section 6.3.4.2 to modify the starting address to store the boot bin.

6. Theremaining 104kB space 0x00000 ~ 0x19FFF are configurable area for user code
and user data. The default allocation is shown as below:

<> The 40kB area 0x00000 ~ 0x09FFF is used as storage space for old firmware.

<> The 40kB area 0x10000 ~ Ox19FFF is used as storage space for OTA new
firmware.

<> The 24kB area 0xOA000 ~ OxOFFFF is used as storage space for user data.

< If the default space allocation does not meet user’s requirement, e.g.
firmware size exceeds 40kB, or user data need more than 24kB space,
corresponding APls are supplied to modify the allocation as needed. Please
refer to section 6.3.4.1 for details.

2.2 Clock module

System clock is the clock reference for MCU firmware running. The 826x system
clock supports multiple sources (PLL, internal OSC, internal RC), but only the most
accurate PLL source is used in the 826x BLE SDK. The 192M PLL clock is derived from
external 16MHz/12MHz crystal oscillator by automatical process of the internal PLL
module. Then lower-frequency system clock can be obtained by configuring related
frequency dividing register.

External crystal oscillators including 16M and 12M are supported in 826x BLE SDK.
Currently 12M crystal oscillator is used by default, and it’s configurable in app_config.h.

AN-17092700-E4 52 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

/111771777777 /////Extern Crystal Type///////////////////////

#define CRYSTAL TYPE XTAL 12M // extern 12M crystal

By setting the value as shown below, the configured crystal type will take effect
during RF initialization of main function. “XTAL_12M"” indicates 12M crystal type and
BLE 1M mode by default.

enum {
XTAL 12M RF 1m MODE
XTAL 12M RF 2m MODE
XTAL 16M RF 1m MODE =
XTAL 16M RF 2m MODE

~

Il
@® N
~

XTAL 12M = XTAL 12M RF 1m MODE,
XTAL 16M = XTAL 16M RF 1m MODE,

bi
rf_drv_init(CRYSTAL_TYPE);

*Note: External crystal type (12M/16M) indicates specification for hardware crystal,
while system clock (16M) indicates machine cycle for MCU running. No matter which
crystal type is configured, a 192M basic clock will be derived from frequency
multiplication by internal PLL circuit. According to the system clock frequency
configured in app_config, a lower frequency is available from the 192M basic clock by
frequency division during clock_init() of main function.

2.2.1 System clock configuration

The “clock_init” function is invoked in the main.c (refer to proj/mcu/clock.c) to
configure registers related to clock source and frequency dividing factor. User only
needs to configure the following two parameters in the app_config.h.

[117777077777777777 Clock [///// /1777777777777 7777177777777

#define CLOCK SYS TYPE CLOCK_TYPE PLL // Set clock source as
PLL
#define CLOCK SYS CLOCK HZ 16000000 //system clock 16M

The 16M clock frequency is recommended considering BLE timing sequence and
power consumption.

Current 826x BLE SDK supports multiple system clock options: 16M (default), 32M
and 48M. To use 32M or 48M options, user needs to configure system clock and select

AN-17092700-E4 53 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

lib library correspondingly. Take 8267 for example: The libraries for 16M/32M/48M
system clock are It_8267 (default), It_8267_32m and It_8267_48m, respectively.

= Properties for ble_sdk_It I. G | S|
type filter text Settings & T
Resource o
Builders
€/C++ Build Configuration: [8267_b|e_remote [Active] '] [Manage Configurations..

Build Variables
Discovery Options
Environment) Tool Settings | # Build Siepsl Build Artifact | Binary Parsers | @ Error Parser5|
Loaai
Sntgtlglng (2 Additional Tools in Toolchain 288
ettings
—g‘ﬁ . 4 [TC32 CCfAssembler
Tool Chain Editor @
(2 General
C/C++ General
. (2 Paths
Project References 4 .
(# Debugging
4 B3 TC32 Compiler
(2 Directories
(2 Symbols
(22 Warnings

Refactoring History
Run/Debug Settings

m,

Task Repository
Telink Toals

WikiText
rate (2 Debugging

(# Optimization
(2 Language Standard
(2 Miscellaneous

4 i j TC32 C Linker
(2 General
(2 Libraries Libraries Path (-L) & w §
(2 Objects

4 3 TC32 Create Extended Listing
(2 General

4 3 TC32 Create Flash image
(2 General

4 3 Print Size
(2 General

@:‘ oK] [Cancel

Figure2-7 Modify lib library

2.2.2 system tick usage

The configured 16M system clock starts running after clock initialization
(clock_init). The 32-bit system clock counter value (i.e. system clock tick, system tick in
brief) will be increased by 1 for each clock cycle (i.e. 1/16us). It takes 268 seconds or
so (i.e. (1/16) us * (2732)) for the system tick to loop from the initial value 0x00000000
to the maximum value Oxffffffff.

Similarly, if the system clock is 32M, the system tick will be increased by 1 for
every 1/32us, and it loops with cycle of 134s or so (i.e. (1/32) us * (2/32)).

The system tick won’t stop counting during firmware running process.
The function “clock_time()” serves to read system tick value.

u32 current_tick = clock_time();

In 826x BLE SDK, the whole BLE timing sequence is based on system tick. It’s highly
recommended for user to follow the usage in firmware, i.e. use system tick to

AN-17092700-E4 54 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

implement simple software timer and timeout judgment.

The software timer based on query mechanism generally applies to applications

without high real-time and small error requirement. The usage of the software timer
is shown as below:

1)

2)

Start timing: Set an u32 variable, read and record current system clock tick.
u32 start_tick = clock_time(); // clock_time() returns system tick value

At somewhere of the firmware, continuously query and compare (current system
clock tick - start_tick) with timing value. If the difference exceeds the timing value,
the timer is trigger to execute corresponding operation, and clear timer or start a
new timing cycle as needed.

Suppose timing value is 100ms, for 16M system clock, the following sentence can
be used to query the timer:

if((u32) (clock_time() - start_tick) > 100 * 1000 * 16)

The difference is switched to u32 type considering the case when system clock tick
counts from Oxffffffff to 0.

The following sentence shows how to query timer for 32M system clock:
if((u32) (clock_time() - start_tick) > 100 * 1000 * 32)

In SDK, a unified invoking function is provided irrespective of system clock
frequency:

if(clock_time_exceed(start_tick,100 * 1000)) // The unit of the second parameter is us

*Note: For 16M/32M clock, this function only applies to timing within 268s/134s,
if exceeds, it’s needed to add timer correspondingly.

Application example: If condition A is triggered (only once), after 2 seconds, B()
operation is executed.

u32 a_trig_tick;
int a_trig flg=0;
while(1)
{
if(A){
a_trig_tick = clock_time();

a_trig flg=1;
}
if(a_trig_flg &&clock_time_exceed(a_trig_tick,2 *1000 * 1000)){

AN-17092700-E4 55 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

a_trig flg=0;
B();

2.3 GPIO module

For details about GPIO module, please refer to source code in
“proj/mcu_spec/gpio_826x.h", “gpio_default_826x.h” and “gpio_826x.c”.

To understand register operation, please refer to the two documents including
“8266_gpio_lookuptable” and “8267_gpio_lookuptable”, which are available by
reading the instruction in “Getting Started with Telink BLE SDK”.

2.3.1 GPIO definition
Telink 826x SDK supports 42 GPIOs divided into six groups, including:
GPIO_PAO ~ GPIO_PA7, GPIO_PBO ~ GPIO_PB7, GPIO_PCO ~ GPIO_PC7,
GPIO_PDO ~ GPIO_PD7, GPIO_PEO ~ GPIO_PE7, GPIO_PFO ~ GPIO_PF1.

Note: Not all of the 42 GPIOs in IC core have corresponding external pins in actual IC
packages (e.g. 8261). Please refer to the corresponding pin layout.

Please follow the format above to wuse GPIO, and refer to
“proj/mcu_spec/gpio_826x.h" for details.

There are 7 special GPIOs:

1) MSPI pins: The four GPIOs are dedicated for Flash memory access and correspond
to Master SPI bus lines. They are used as MSPI function by default, and it’s not
recommended to use them as GPIO function or operate them in firmware. For
8266, MSPI pins are PA2, PA3, PB2 and PB3; for 8261/8267/8269, MSPI pins are
PE4~ PE7.

2) SWS (Single Wire Slave): It’s used as SWS function by default for debugging and
firmware burning. Generally it is not used in firmware. For 8266, SWS pin is PAQ;
for 8261/8267/8269, SWS pin is PBO.

3) DM and DP: They are used as USB DM and DP function by default. If USB function
is not needed, the two pins can be used as GPIO function. For 8266, DM and DP
pins are PB5~ PB6; for 8261/8267/8269, DM and DP pins are PE2~PE3.

AN-17092700-E4 56 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2.3.2 GPIO state control

1)

2)

3)

In this section only the basic GPIO states are listed.
All GPIO pins contain the following states:

func: Configure pin as special function or general GPIO. To use input/output
function, the pin should be configured as general GPIO.

void gpio_set_func(u32 pin, u32 func);

Note: “pin” indicates GPIO pin (e.g. GPIO_PAQ). “func” can be configured as
“AS_GPIO” or other special multiplexed function, as shown below.

#define AS GPIO 0
#define AS MSPI 1
#define AS SWIRE 2

#define AS UART 3
#define AS PWM 4
#define AS I2C 5
#define AS SPI 6
#define AS I2S 8
#define AS SDM 9
#define AS DMIC 10
#define AS USB 11
#define AS SWS 12
#define AS SWM 13
#define AS ADC 15

ie: Input enable.

void gpio_set input en(u32 pin, u32 value);

Note: “value”: 1-enable, O-disable.

datai: Data input. When input is enabled for some GPIO pin, the datai value
indicates its current input level.

u32 gpio read(u32 pin);
Note: If GPIO input is low level, 0 is returned; if GPIO input is high level, non-zero
value (may not be 1) is returned.

static inline u32 gpio_read(u32 pin)

{
return BM IS SET(reg gpio_ in(pin), pin & Oxff);

AN-17092700-E4 57 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4)

5)

6)

In firmware, it's recommended to invert the read values rather than use the
format such as “if(gpio_read(GPIO_PAOQ) == 1)". Inverted values will be either 1 or
0.

if('gpio_read(GPIO_PAQ)) // high/low level judgment

oe: Output enable.

void gpio_set output en(u32 pin, u32 value);

Note: “value”: 1-enable, O-disable.

dataO: Data output.

void gpio write(u32 pin, u32 value)

Note: “value”: When output is enabled, “1” indicates high-level output, while “0”
indicates low-level output.

Internal analog pull-up/pull-down resistor: Configurable as 1M pull-up, 10K pull-
up, 100K pull-down or float.

void gpio_setup up down resistor (u32 gpio, u32 up down);
Note: “up_down” is configurable as shown below:
PM_PIN_PULLUP_1M

¢

< PM_PIN_PULLUP_10K

< PM_PIN_PULLDOWN_100K
¢

PM_PIN_UP_DOWN_FLOAT

Analog resistor has a feature: In deepsleep, all states of digital modules are
invalidated, including input/output state (cannot output level in deepsleep).
However, the configured analog resistor can still take effect in deepsleep.

Note: It's not recommended to use 1M pull-up resistor for PC2~PC5 of
8261/8267/8269, since it cannot pull up these pins to stable high level. Therefore,
user should try to use 10K pull-up resistor for actual application.

AN-17092700-E4 58 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

GPIO configuration examples:

1)

2)

3)

Configure GPIO_PA4 as high level output.

gpio_set_func(GPIO_PA4, AS_GPIO); //PA4is used as general GPIO function by
default, so this step to configure “func” can be skipped.

gpio_set_input_en(GPIO_PA4, 0);
gpio_set_output_en(GPIO_PA4, 1);
gpio_write(GPIO_PA4,1)

Configure GPIO_PC6 as input, and check if it’s low-level input. Enable 10K pull up
resistor to avoid influence of float level.

gpio_set_func(GPIO_PC6, AS_GPIO); //PC6is used as general GPIO function by
default, so this step to configure “func” can be skipped.

gpio_setup_up_down_resistor(GPIO_PC6, PM_PIN_PULLUP_10K);
gpio_set_input_en(GPIO_PC6, 1)

gpio_set_output_en(GPIO_PC6, 0);

if(!gpio_read(GPIO_PC6)){ // check if PC6 input is low level

Configure USB DM and DP pins of 8261/8267/8269 as general GPIO function.
gpio_set_func(GPIO_PE2, AS_GPIO);
gpio_set_func(GPIO_PE3, AS_GPIO);

2.3.3 GPIO initialization

The “gpio_init” function is invoked in the main.c file to initialize states of all GPIOs.

Each 10 will be initialized to its default states by the “gpio_init” function, unless related
GPIO parameters are pre-configured in the app_config.h.

1)

2)

Default GPIO states are shown as below:
func

Except for the seven special GPIOs (Flash MSPI pins, USB pins, SWS) introduced in
Section 2.3.1, all other GPIOs are used as general GPIO function by default.

ie
For the seven special GPIOs, the default “ie” state is 1; for other GPIOs, the default
“ie” state is 0. User doesn’t need to configure “ie” of unused GPIOs as 0; however,

to enable input of a general GPIO, corresponding “ie” should be set as 1. Input
function needs to be enabled in following cases: scan pin gpio during key scan,

AN-17092700-E4 59 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

core/pad wakeup gpio, irq gpio and etc.
3) oe: all 0 by default.
4) dataO: all 0 by default.
5) Internal pull-up/pull-down resistor: all float by default.

Please refer to “proj/mcu_spec/gpio_826x.h” and
“proj/mcu_spec/gpio_default_826x.h” for details.

GPIO default states are indicated by corresponding macros. Take PA7 ie for
example:

#ifndef PA7_INPUT_ENABLE
#define PA7 INPUT ENABLE 1
#endif

If some macros are pre-configured in the app_config.h, the “gpio_init” function
will initialize the corresponding GPIO to the configured value rather than the default
value. PA7 is taken as an example to show how to configure GPIO states in app_config.h.

1) Configure func: #define PA7_FUNC AS_GPIO
2) Configure ie: #define PA7_INPUT_ENABLE 1

3) Configure oe: #define PA7_OUTPUT_ENABLE 0

4) Configure dataO: #define PA7_DATA_OUT 0

5) Configure internal pull-up/pull-down resistor:

#define PULL_WAKEUP_SRC_PA7 PM_PIN_UP_DOWN_FLOAT

Conclusion: User can pre-define GPIO initial state in the app_config.h, and initialize
corresponding GPIO to the configured value by the gpio_init; or set the GPIO state by
the GPIO state control function in the user_init; or combine the two methods to
configure the GPIO state. Note that if some state of one GPIO is configured to different
values by the app_config.h and user_init, the configuration in the user_init will take
effect finally according to firmware timing sequence.

AN-17092700-E4 60 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2.3.4 Configure SWS pull-up to avoid MCU error

Telink MCU uses the SWS (Single Wire Slave) pin for debugging and firmware
burning. In final application code, the state of SWS is shown as below:

1) Set as SWS function rather than general GPIO.
2) ie=1:setas “input enable” so as to receive commands from EVK to operate MCU.

3) Both “oe” and “dataO” are set as 0.

The settings above may bring a risk: since SWS is in float state, large jitter of
system power (e.g. transient current may approach 100mA when IR command is sent)
may lead to incorrect command reception and firmware malfunction.

By enabling internal 1M pull-up resistor for SWS to replace its float state, this
problem can be solved.

<> For 8266, SWS is multiplexed with GPIO_PAQ. Enable the 1M pull-up resistor for
PAO in the “proj/mcu_spec/gpio_default_8266.h", as shown below.

#ifndef PULL WAKEUP SRC_PAO
#define PULL WAKEUP_ SRC_PAO PM_PIN PULLUP 1M //sws pullup

#endif

<> For 8261/8267/8269, SWS is multiplexed with GPIO_PBO. Enable the 1M pull-up
resistor for PBO in the “proj/mcu_spec/gpio_default_8267.h”, as shown below.

#ifndef PULL_WAKEUP_SRC_PBO
#define PULL WAKEUP SRC_PBO PM_PIN PULLUP 1M //sws pullup
#endif

AN-17092700-E4 61 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3 BLE Module

3.1 BLE SDK software architecture

3.1.1 Standard BLE SDK architecture

Figure3-1 shows standard BLE SDK software architecture compliant with BLE spec.

Application

App

Profile 1 Profile 2 Profile n

]

Generic Access Profile

Generic Attribute Profile

Host

Attribute Protocol Security Manager

Logical Link Control and Adaption Protocol

HCI

Link Layer Controller

Physical Layer

Figure3-1 BLE SDK standard architecture

As shown above, BLE protocol stack includes two parts including Host and
Controller.

<> As BLE bottom-layer protocol, the “Controller” contains Physical Layer (PHY) and
Link Layer (LL). Host Controller Inter (HCI) is the sole communication interface for
all data transfer between Controller and Host.

<> As BLE upper-layer protocol, the “Host” contains protocols including Logic Link
Control and Adaption Protocol (L2CAP), Attribute Protocol (ATT), Security
Manager Protocol (SMP), as well as Profiles including Generic Access Profile (GAP)

AN-17092700-E4 62 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

and Generic Attribute Profile (GATT).

<> The “Application” (APP) layer contains user application codes and Profiles
corresponding to various Services. User controls and accesses Host via “GAP”,
while Host transfers data with Controller via “HCI”.

BLE Host

HCI HCI
cmd data

HCI
HCI HCI
data event

BLE Controller

Figure3-2 HCI data transfer between Host and Controller

1) BLE Host will use HCI cmd to operate and set Controller. Controller API
corresponding to each HCl cmd will be introduced in section 0.

2) Controller will report various HCI events to Host via HCI.

3) Host will send target data to Controller via HCI, while Controller will directly load
data to Physical Layer for transfer.

4) When Contoller receives RF data in Physical Layer, it will first check whether the
data belong to Link Layer or Host, and then process correspondingly: If the data
belong to LL, the data will be processed directly; if the data belong to Host, the
data will be sent to Host via HCI.

3.1.2 Telink BLE SDK architecture
3.1.2.1 Telink BLE controller

Telink BLE SDK supports standard BLE Controller, including HCI, PHY (Physical
Layer) and LL (Link Layer).

Telink BLE SDK contains five standard states of Link Layer (standby, advertising,
scanning, initiating, and connection), and supports Slave role and Master role in
connection state. Currently both Slave role and Master role only support single
connection, i.e. LL can only sustain single connection, concurrent existence of multiple
Slave/Master or Slave and Master is not supported.

AN-17092700-E4 63 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

In SDK, 826x HCl is a Controller of BLE Slave, to form a standard BLE Slave system,
another MCU running BLE Host is needed.

BLE
Other MCU Host
UART/USB
|
HCI
. BLE
Link Layer Controller
Physical Layer

Figure3-3 826x HCI architecture

Link Layer connection state supports Slave and Master of single connection, thus
826x HCl can also be used as BLE Master Controller actually. However, when a BLE Host
is running in a complex system (Linux/Android), Master Controller of single connection
can only connect with a single device, which is almost meaningless. Therefore, SDK
does not include Master role initialization in 826x HCI.

3.1.2.2 Telink BLE Slave

Telink BLE SDK in BLE Host fully supports stack of Slave; for Master with complex
SDP (Service Discovery), it’s not fully supported yet.

When user only needs to use standard BLE Slave, and Telink BLE SDK runs Host
(Slave part) + standard Controller, the actual stack architecture will be simplified based
on the standard artchitecture, so as to minimize system resource consumption of the
whole SDK (including SRAM, running time, power consumption, and etc.). Following
shows Telink BLE Slave architecture. In SDK, 826x hid sample, 826x remote and 826x
module are all based on this architecture.

AN-17092700-E4 64 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Application
. App
GAP | | HiDs| | BAs | |aupio| | omA | - Profile
‘ Generic Attribute Profile ‘
il Host 826x
‘ Attribute Protocol }CZD{ Security Manager ‘ BLE
‘ Logical Link Control and Adaption Protocol ‘ Stack
| HCl |
@ Power
| Link Layer (= Controller
@ Management
‘ Physical Layer k:

Figure3-4 Telink BLE Slave architecture

In Figure3-4, solid arrows indicate data transfer controllable via user APls, while
hollow arrows indicate data transfer within the protocol stack independent of user.

Controller can still communicate with Host (L2CAP layer) via HCI; however, the
HCl is no longer the sole interface, and the APP layer can directly transfer data with
Link Layer of the Controller. Power Manager (PM) is embedded in the Link Layer, and
the APP layer can invoke related PM interfaces to set power management.

The implementation of Generic Access Profile is deleted from the Host layer, only
the service declaration of the GAP profile is retained in the APP layer. Data transfer
between the APP layer and the Host is no longer controlled via GAP; the ATT, SMP and
L2CAP can directly communicate with the APP layer via corresponding interface.

Generic Attribute Profile (GATT) is implemented in the Host layer based on
Attribute Protocol. Various Profiles and Services can be defined in the APP layer based
on GATT. Basic Profiles including HIDS, BAS, AUDIO and OTA are provided in 826x BLE
SDK demo code.

Physical Layer is totally controlled by Link Layer, and it does not involve the APP
layer.

Though HCI still implements part of data transfer between Host and Controller, it
is basically implemented by the protocol stack of Host and Controller with few
involvement of the APP layer. User only needs to resgiter HCI data callback processing
function in the L2CAP layer.

AN-17092700-E4 65 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.1.2.3 Telink BLE master

Implementation of Telink BLE Master is different from that of Slave: Standard
Controller is supplied in SDK and assembled in library, while the APP layer implements
Host and user application.

Application

|

Host
GAP App

SDP (simple
reference)

SMP ATT

L2CAP

HCI

Link Layer Controller

Physical Layer

Figure3-5 Telink BLE Master architecture

In SDK, demo code of “826x master kma dongle” project is implemented based
on this architecture. Almost all code of Host layer are implemented in APP, and SDK
supplies various standard interfaces for user to use these functions.

Standard |2cap and att processing are implemented in APP layer, while the SMP
only supplies the basic “just work” method. In the “826x master kma dongle”, SMP is
disabled by default, so user needs to enable the corresponding macro to enable SMP.
Since SMP implementation is complex, the code is assembled in the library, and the
APP layer only needs to invoke related interface. User can search for the corresponding
code via the key word “BLE_HOST_SMP_ENABLE”.

#define BLE_HOST _SMP_ENABLE 0

//1 for standard security management,

AN-17092700-E4 66 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

// 0 for telink referenced paring&bonding(no security)

Telink BLE Master does not supply standard implementation for the most complex
SDP part, but only gives a simple reference: service discovery of 826x remote. In the
“826x master kma dongle”, this simple reference SDP is enabled by default.

#define BLE_HOST_SIMPLE_SDP_ENABLE 1 //simple service discovery

In SDK, standard interfaces are supplied for all ATT operations related to service
discovery. User can refer to service discovery of 826x remote to implement his own
service discovery, or disable “BLE_HOST_SIMPLE_SDP_ENABLE”, and use the service
ATT handle agreed by Slave to implement data access.

Since suspend processing is not included for scanning and connection master role
of Link Layer, Telink BLE Master does not support Power Management.

3.2 BLE controller

3.2.1 BLE controller introduction
BLE Controller contains Physical Layer, Link Layer, HCl and Power Management.

Telink BLE SDK fully assembles Physical Layer in the library (corresponding to c file
of rf_drv_826x in driver file), while user does not need to learn about it. Power
Management will be introduced in detail in section 4.

This section will focus on Link Layer, and also introduce HCI related interfaces to
operate Link Layer and obtain data of Link Layer.

3.2.2 Link Layer state machine

Figure3-6 shows Link Layer state machine in BLE spec. Please refer to “Core_v4.2"”
Page2574 1.1 LINK LAYER STATES.

AN-17092700-E4 67 Verl.3.0

‘55"”"°"’"“C"°"b Telink TLSR826x BLE SDK Developer Handbook

\
\ /'

| Advemsmg |-1—I-| Standby = |-t— Initiating

\
e

T b-l Connection I-\l —

__/

Figure3-6 State diagram of the Link Layer state machine in BLE Spec

Telink BLE SDK Link Layer state machine is shown as below.

Adverts

Power (Master
Slave role

Management ' role

Figure3-7 Telink Link Layer state machine

initiating

Telink BLE SDK Link Layer state machine is consistent with BLE spec, and it
contains five basic states: Idle (Standby), Scanning, Advertising, Initiating, and
Connection. Connection state contains Slave Role and Master Role.

As introduced above, currently both Slave Role and Master Role design are based

AN-17092700-E4 68 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

on single connection. Slave Role is single connection by default; while Master Role is
marked as “Master role single connection”, so as to differentiate from “Master Role
multi connection” which will be supported in the future.

In this document, Slave Role will be marked as “Conn state Slave role” or
“ConnSlaveRole/Connection Slave Role”, or “ConnSlaveRole” in brief; while Master
Role will be marked as “Conn state Master role” or “ConnMasterRole/Connection
Master Role”, or “ConnMasterRole” in brief.

“Power Management” in Figure3-7 is not a state of LL, but a functional module
which indicates SDK only implements low power processing for Advertising and
Connection Slave Role. If Idle state needs low power, user can invoke related APls in
the APP layer. For the other states, SDK does not manage low power, while user cannot
implement low power in the APP layer.

Based on the five states above, corresponding state machine names are defined
in “proj_lib/ble/Il/ll.h”. “ConnSlaveRole” and “ConnMasterRole” correspond to state
name “BLS_LINK_STATE_CONN".

//ble link layer state

#define BLS_LINK STATE IDLE 0

#define BLS_LINK STATE ADV BIT (0)
#define BLS_LINK STATE SCAN BIT (1)
#define BLS_LINK STATE INIT BIT (2)
#define BLS_LINK STATE CONN BIT (3)

Link Layer state machine switch is automatically implemented in BLE stack bottom
layer. Therefore, user cannot modify state in APP layer, but can obtain current state by
invoking the APl below. The return value will be one of the five states.

u8 blc_11 getCurrentState (void);

3.2.3 Link Layer state machine combined application

3.23.1 Link Layer state machine initialization

Telink BLE SDK Link Layer fully supports all states, however, it’s flexible in design.
Each state can be assembled as a module; be default there’s only the basic Idle module,
and user needs to add modules and establish state machine combination for his
application.

For example, for BLE Slave application, user needs to add Advertising module and
ConnSlaveRole, while the remaining Scanning/Initiating modules are not included so
as to save code size and ramcode. The code of unused states won’t be compiled.

Following is the API to add the basic Idle module. This API is necessary, since all

AN-17092700-E4 69 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

BLE applications need initialization.

void blc_11 initBasicMCU (u8 *public_adr);

Following are initialization APIs of modules corresponding to the other states
(Scanning, Advertising, Initiating, Slave Role, Master Role Single Connection).

void blc_11 initAdvertising module (u8 *public_ adr);
void blc_11 initScanning module (u8 *public adr);
void blc_11 initInitiating module (void) ;

void blc_11 initSlaveRole module (void) ;

void blc_11 initMasterRoleSingleConn_module (void) ;

The actual parameter “public_adr” is the pointer of BLE public mac address.

User can flexibly establish Link Layer state machine combination by using the APIs
above. Following shows some common combination methods and corresponding
application scenes.

3.2.3.2 Idle + Advtersing

bls_Il_setAdvEnable(0)
Advertising | "l Idle

bls_Il_setAdvEnable(1)

Figure3-8 Idle + Advertising

As shown above, only Idle and Advertising module are initialized, and it applies
to applications which use basic advertising function to advertise product information
in single direction, e.g. beacon.

Following is module initialization code of Link Layer state machine.
u8 tbl mac [6] = {...};
blc 11 initBasicMCU(tbl mac);

blc 11 initAdvertising module (tbl mac);

State switch of Idel and Advertising is implemented via “bls_Il_setAdvEnable”.

AN-17092700-E4 70 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.233 Idle + Scannning

blc_Il_setScanEnable(1,x)
blc_ll_setScanEnable(0,x)

Figure3-9 Idle + Scanning

As shown above, only Idle and Scanning module are initialized, and it applies to
applications which use basic scanning function to implement scanning discovery of
product advertising information, e.g. beacon.

Following is module initialization code of Link Layer state machine.
u8 tbl mac [6] = {... I
blc 11 initBasicMCU(tbl mac);

blc 11 initScanning module(tbl mac);

State switch of Idel and Scanning is implemented via “blc_IlI_setScanEnable”.

AN-17092700-E4 71 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.3.4 Idle + Advtersing + ConnSlaveRole

bls_Il_setAdvEnable(0)

Advertising |

bls_Il_setAdvEnable(1)

Connection
Slave role

Figure3-10 BLE Slave LL state

The figure above shows a Link Layer state machine combination for a basic BLE
Slave application. In SDK, 826x hci/826x hid sample/826x remote/826x module are all
based on this combination.

Following is module initialization code of Link Layer state machine.
u8 tbl mac [6] = {...};
blc 11 initBasicMCU(tbl mac) ;
blc 11 initAdvertising module (tbl mac) ;

blc 11 initSlaveRole module();

State switch in this combination is shown as below:

1) After power on, 826x MCU enters Idle state. In Idle state, adv is enabled, and Link
Layer switches to Advertising state; when adv is disabled, it will return to Idle state.

The API “bls_Il_setAdvEnable” serves to enable/disable Adv.

After power on, Link Layer is in Idle state by default. Generally it’s needed to
enable Adv in “user_init” so as to enter Advertising state.

2) When Link Layer is in Idle state, Physical Layer won’t take any RF operation

AN-17092700-E4 72 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3)

4)

including packet transmission and reception.

When Link Layer is in Advertising state, advertising packets are transmitted in adv
channels. Master will send conneciton request if it receives adv packet. After Link
Layer receives this connection request, it will respond, establish connection and
enter ConnSlaveRole.

When Link Layer is in ConnSlaveRole, it will return to Idle State or Advertising state
in any of the following cases:

a) Master sends “terminate” command to Slave and requests disconnection.
Slave will exit ConnSlaveRole after it receives this command.

b) By sending “terminate” command to Master, Slave actively terminates the
connection and exits ConnSlaveRole.

c) If Slave fails to receive any packet due to Slave RF Rx abnormity or Master Tx
abnormity until BLE connection supervision timeout is triggered, Slave will
exit ConnSlaveRole.

When Link Layer exits ConnSlaveRole state, it will switch to Adv/Idle state
according to whether Adv is enabled or disabled which depends on the value
configured during last invoking of “bls_|l_setAdvEnable” in APP layer. If Adv is
enabled, Link Layer returns to Advertising state; if Adv is disabled, Link Layer
returns to Idle state.

AN-17092700-E4 73 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.35 Idle + Scannning + Initiating + ConnMasterRole

blc_Il_setScanEnable(1,x)

blc_lI_setScanEnable(0,x)

blc_lI_createConnection

Initiating

create connection timeout

Connection
Master role

Figure3-11 BLE Master LL state

The figure above shows a Link Layer state machine combination for a basic BLE
Master application. In SDK, 826x master kma dongle is based on this combination.

Following is module initialization code of Link Layer state machine.
u8 tbl mac [6] = {... I

blc 11 initBasicMCU(tbl mac) ;
blc 11 initScanning module(tbl mac);

blc 11 initInitiating module() ;

blc 11 initMasterRoleSingleConn module () ;

State switch in this combination is shown as below:

1) After power on, 826x MCU enters Idle state. In Idle state, scan is enabled, and Link
Layer switches to Scanning State; in Scanning State, when scan is disabled, it will
return to Idle state.

The API “blc_Il_setScanEnable” serves to enable/disable scan.

After power on, Link Layer is in Idle state by default. Generally it’s needed to

AN-17092700-E4 74 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2)

3)

enable Scan in “user_init” so as to enter Scanning state.

When Link Layer is in Scanning state, the scanned adv packet will be reported to
BLE Host via the event “HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

In Idle and Scanning state, Link Layer can be triggered to enter Initiating state via
the API “blc_II_createConnection”.

“blc_II_createConnection” specifies MAC address of one or multiple BLE devices
to be connected. After Link Layer enters Initiating state, it will continuously scan
specific BLE device; after it receives a correct and connectable adv packet, it will
send connection request and enter ConnMasterRole. If specific BLE device is not
scanned in Initiating state, and fails to initiate connecton until “create connection
timeout” is triggered, it will return to Idle state or Scanning state.

Note that Link Layer can enter Initiating state from Idle state or Scanning state (for
example, in the “826x master kma dongle”, LL directly enters Initiating state from
Scanning state). After create connection timeout, it will return to previous Idle
state or Scanning state.

When Link Layer is in ConnMasterRole, it will return to Idle State in any of the
following cases:

a) Slave sends “terminate” command to Master and requests disconnection.
Master will exit ConnMasterRole after it receives this command.

b) By sending “terminate” command to Slave, Master actively terminates the
connection and exits ConnMasterRole.

c) If Master fails to receive any packet due to Master RF Rx abnormity or Slave
Tx abnormity until BLE connection supervision timeout is triggered, Master
will exit ConnMasterRole.

When Link Layer exits ConnMasterRole state, it will switch to Idle state. If it’s
needed to continue scanning, the APl “blc_Il_setScanEnable” should be used to
set Link Layer to re-enter Scanning state.

3.2.4 Link Layer timing sequence

In this section, Link Layer timing sequence in various states will be illustrated

combining with irq_handler and mainloop of 826x BLE SDK.

_attribute ram code wvoid irq handler (void)

—_~

irg blt sdk handler ();

AN-17092700-E4 75 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

void main loop (void)

{
/171777777777 //7//// BLE entxy ////////////////////////////
blt sdk main loop();
/7171777777777 7/77/7/7/ UL entxey /////////7////7////7//77/777///

The “blt_sdk_main_loop” function at BLE entry serves to process data and events
related to BLE protocol stack. Ul entry is for user application code.

3.24.1 Timing sequence in Idle state

When Link Layer is in Idle state, no task is processed in Link Layer and Physical
Layer, the “blt_sdk_main_loop” function doesn’t act and won’t generate any interrupt,
i.e. the whole timing sequence of mainloop is occupied by Ul entry.

3.2.4.2 Timing sequence in Advertising state

chn 37 chn 38 chn 39

TX‘ RX TX‘ RX TX‘ RX

Adv event ‘ UI task/suspend Adv event Ul task/suspend

|
|
Adv interval ——m— :
|
|

Figure3-12 Timing sequence chart in Advertising State

As shown in Figure3-12, an Adv event is triggered by Link Layer during each adv
interval. A typical Adv event with three active adv channels will send an advertising
packet in channel 37, 38 and 39, respectively. After an adv packet is sent, Slave enters
Rx state, and waits for response from Master: If Slave receives a scan request from
Master, it will send a scan response to Master; if Slave receives a connect request from
Master, it will establish BLE connection with Master and enter Connection state Slave
Role.

Code execution of adv event has some differences in different SDK versions:
1) In BLE SDK 3.0 and 3.1, code of the whole adv event is executed in interrupt irq.

MCU will enter interrupt every other adv interval to send and receive packets in

AN-17092700-E4 76 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

three channels. Adv event will be triggered by system tick irg to enter irq handler.

2) InBLE SDK 3.2, code of adv event is executed in the “blt_sdk_main_loop” function
of mainloop instead of interrupt irq. Therefore, adv event won’t occupy irq time
and lead to failure in real-time irq response.

Code of Ul entry in mainloop is executed during Ul task/suspend part in
Figure3-12. This duration can be used for Ul task only, or MCU can enter suspend for
the redundant time so as to reduce power consumption.

In Advertising state, the “blt_sdk_main_loop” function does not need to process
many tasks, only some callback events related to Adv will be triggered, including
BLT_EV_FLAG_ADV_DURATION_TIMEOUT, BLT_EV_FLAG_SCAN_RSP,
BLT_EV_FLAG_CONNECT, and etc.

3.24.3 Timing sequence in Scanning state

t«——— Scanning/Ul task ———|«——— Scanning/Ul task ———— |+——— Scanning/Ul task ———

|
Scan interval ———
|

Channel 37 Channel 38 Channel 39

Figure3-13 Timing sequence chart in Scanning state

Scan interval is configured by the API “blc_IlI_setScanParameter”. During a whole
Scan interval, packet reception is implemented in one channel, and Scan window is
not designed in SDK. Therefore, SDK won’t process the setting of Scan window in
“blc_IlI_setScanParameter”.

After the end of each Scan interval, it will switch to the next listening channel,
and start a new Scan interval. Channel switch action is triggered by interrupt, and it’s
executed in irq which takes very short time.

In Scanning interval, PHY Layer of Scan state is always in RX state, and it depends
on MCU hardware to implement packet reception. Therefore, all timing in software
are for Ul task.

After correct BLE packet is received in Scan interval, the data are first buffered in
software RX fifo (corresponding to “my fifo t blt_rxfifo” in code), and the
“blt_sdk_main_loop” function will check if there are data in software RX fifo. If correct
adv data are discovered, the data will be reported to BLE Host via the event
“HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

AN-17092700-E4 77 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.4.4 Timing sequence in Initiating state

}47 Scanning/UI task 4>‘<7 Scanning/Ul task —————[«———— Scanning/Ul task ————

|
<«——Scan interval ——

Channel 37 Channel 38 Channel 39

Figure3-14 Timing sequence chart in Initiating state

Timing sequence of Initiating state is similar to that of Scanning state, except that
Scan interval is configured by the APl “blc_ll_createConnection”. During a whole Scan
interval, packet reception is implemented in one channel, and Scan window is not
designed in SDK. Therefore, SDK won’t process the setting of Scan window in
“blc_Il_createConnection”.

After the end of each Scan interval, it will switch to the next listening channel,
and start a new Scan interval. Channel switch action is triggered by interrupt, and it’s
executed in irg which takes very short time.

In Scanning state, BLE Controller will report the received adv packet to BLE Host;
however, in Initiating state, adv won’t be reported to BLE Host, it only scans for the
device specified by the “blc_II_createConnection”. If the specific device is scanned, it
will send connection_request and establish connection, then Link Layer enters
ConnMasterRole.

3.2.4.5 Timing sequence in Conn state Slave role

brx brx brx
start | working| pos

(AWUI task{w UI task/suspend (1 Ul task(} UI task/suspend
‘ brx ; ! brx :
event | ‘kevent |

Conn interval

Figure3-15 Timing sequence chart in Conn state Slave role

As shown in Figure3-15, each conn interval starts with a brx event, i.e. transfer
process of BLE RF packets by Link Layer: PHY enters Rx state, and an ack packet will be
sent to respond to each received data packet from Master.

In 826x BLE SDK, each brx process consists of three phases.
1) brx start phase

When Master needs to send packet, an interrupt is triggered by system tick irq to
enter brx start phase. During this interrupt, MCU sets BLE state machine of PHY to

AN-17092700-E4 78 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

enter brx state, hardware in bottom layer prepares for packet transfer, and then
MCU exits from the interrupt irq.

2) brx working phase

After brx start phase ends and MCU exits from irg, hardware in bottom layer
enters Rx state first and waits for packet from Master. An ack packet will be sent
to respond to each received data packet from Master. During the brx working
phase, all packet reception and transmission are implemented automatically
without involvement of software.

3) brx post phase

After packet transfer is finished, the brx working phase is finished. System tick irq
triggeres an interrupt to switch to the brx post phase. During this phase, protocol
stack will process BLE data and timing sequence according to packet transfer in
the brx working phase.

During the three phases, brx start and brx post are implemented in interrupt,
while brx working phase does not need the involvement of software, and Ul task can
be executed normally. During the brx working phase, MCU can’t enter suspend since
hardware needs to transfer packets.

Within each conn interval, the duration except for brx event can be used for Ul
task only, or MCU can enter suspend for the redundant time so as to reduce power
consumption.

In the ConnSlaveRole, “blt_sdk_main_loop” needs to process the data received
during the brx process. During the brx working phase, the data packet received from
Master will be copied out during RX interrupt irq handler; these data won’t be
processed immediately, but buffered in software RX fifo (corresponding to my_fifo_t
blt_rxfifo in code). The “blt_sdk_main_loop” function will check if there are data in
software RX fifo, and process the detected data packet correspondingly:

1) Decrypt data packet
2) Analyze data packet

If the analyzed data belongs to the control command sent by Master to Link Layer,
this command will be executed immediately; if it’s the data sent by Master to Host
layer, the data will be transferred to L2CAP layer via HCl interface.

AN-17092700-E4 79 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.24.6 Timing sequence in Conn state Master role

btx btx
Xﬂrt ?/

(AWEI task{w UI task (1 Ul task{w UI task

btx
working

Conn interval

Figure3-16 Timing sequence chart in ConnMasterRole

As shown in Figure3-16, each conn interval starts with a btx event, i.e. transfer
process of BLE RF packets by Link Layer: PHY enters Tx state, and waits for an ack packet
from Slave for each transmitted data packet.

In 826x BLE SDK, each btx process consists of three phases.
1) btx start phase

When Master needs to send packet, an interrupt is triggered by system tick irq to
enter btx start phase. During this interrupt, MCU sets BLE state machine of PHY to
enter btx state, hardware in bottom layer prepares for packet transfer, and then
MCU exits from the interrupt irq.

2) btx working phase

After btx start phase ends and MCU exits from irq, hardware in bottom layer
enters Tx state first. Master will send packet to Slave and wait for an ack packet
from Slave for each transmitted packet. During the btx working phase, all packet
reception and transmission are implemented automatically without involvement
of software.

3) btx post phase

After packet transfer is finished, the btx working phase is finished. System tick irq
triggeres an interrupt to switch to the btx post phase. During this phase, protocol
stack will process BLE data and timing sequence according to packet transfer in
the btx working phase.

During the three phases, btx start and btx post are implemented in interrupt,
while btx working phase does not need the involvement of software, and Ul task can
be executed normally.

In the ConnMasterRole, “blt_sdk_main_loop” needs to process the data received
during the btx process. During the btx working phase, the data packet received from
Master will be copied out during RX interrupt irq handler; these data won’t be
processed immediately, but buffered in software RX fifo. The “blt_sdk _main_loop”
function will check if there are data in software RX fifo, and process the detected data
packet correspondingly:

AN-17092700-E4 80 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1) Decrypt data packet
2) Analyze data packet

If the analyzed data belongs to the control command sent by Slave to Link Layer,
this command will be executed immediately; if it’s the data sent by Master to Host
layer, the data will be transferred to L2CAP layer via HCl interface.

3.2.4.7 Conn state Slave role timing protection

In ConnSlaveRole state, each interval contains a Brx Event to transfer BLE RF
packets. In 826x SDK, since Brx Event is triggered by interrupt, it’s needed to enable
MCU system interrupt all the time. If user needs to process some time-consuming
tasks and must disable system interrupt in Conn state (e.g. erase flash), Brx Event will
be stopped, BLE timing sequence will be disturbed, thus connection is terminated.

A timing sequence protection mechanism is supplied in 826x SDK. User should
strictly follow this mechanism, so that BLE timing sequence won’t be disturbed when
Brx Event is stopped. Corresponding APls are shown as below:

int bls 11 requestConnBrxEventDisable (void);
void bls 11 disableConnBrxEvent (void) ;
void bls 11 restoreConnBrxEvent (void) ;

The API “bls_II_requestConnBrxEventDisable” serves to send a request to disable
Brx Event.

1) If the return value is 0, it indicates the request to disable Brx Event is rejected.
During Brx working phase in Conn state, the return value must be 0; this request
won’t be accepted until a whole Brx Event is finished, i.e. it can be accepted only
during the remaining Ul task/suspend duration.

2) If the return value is not zero, it indicates this request can be accepted, and the
returned non-zero value indicates the time (unit: ms) allowed to stop Brx Event.

A. If Link Layer is in Advertising state or Idle state without Brx Event, the return
value is “Oxffff”. In this case, user can disable system interrupt at will.

B. If Link Layer is in Conn state, and Slave receives “update map” or “update
connection parameter” request from Master but does not start updating yet,
the retun value should be the difference value of the time to start updating
and current time, i.e. it’s only allowed to stop Brx Event before the time to
start updating, otherwise all following packets won' be received and it will
result in disconnection.

C. If Link Layer is in Conn state, and no update request is received from Master,
the return value should be half of the current connection supervision timeout

AN-17092700-E4 81 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

value. For example, suppose current timeout is 1s, the return value should be
500ms.

After the APl “bls_IlI_requestConnBrxEventDisable” is invoked and the request is
accepted, if the time (ms) corresponding to the return value is enough to process user
task, the task will be executed. Before the task starts, the API
“bls_II_disableConnBrxEvent” should be invoked to disable Brx Event. After the task is
finished, the APl “bls_Il_restoreConnBrxEvent” should be invoked to enable Brx Event
and restore BLE timing sequence.

The reference code is shown as below. Time values in the code depend on actual
task.

if(bls 11 requestConnBrzxEventDisable() > 300)
{

bls 11 disableConnBrxEvent ():

I#1if 0 S/test 1

E irg disable():
DEG CHN3 HIGH:
sleep us= (287*1000) ;
DEG_CHN3_LOW;
irg_enable(};

iffelse [/test 2

' DBEG CHN3 HIGH:

flash erase sector(0x40000):

L DEG CHN3 LOW:

! fendif

bls_11 restoreConnBrxEvent ():

3.2.5 Link Layer state machine extension

The sections about BLE Link Layer state machine and timing sequence introduced
some basic states, which can meet requirements of basic BLE Slave/Master
applications.

However, considering the requirement of some special applications (e.g.
advertising is needed in Conn sate Slave role), some special extended functions are
added to Link Layer state machine in Telink BLE SDK.

3.2.5.1 Scanning in Advertising state

When Link Layer is in Advertising state, Scanning feature can be added.

AN-17092700-E4 82 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The APl below serves to add Scanning feature:

ble sts t blc_11 addScanningInAdvState (void);
The APl below serves to remove Scanning feature:
ble sts t blc_ 11 removeScanningFromAdvState (void);

For the two APIs above, the return value of ble_sts_t type should be BLE_SUCCESS.

By combining timing sequence chart of Advertising state and Scanning state,
when Scanning feature is added to Advertising state, the extended timing sequence is
shown as below.

Set Scan Set Scan

Adv event }47 Scanning/UI task %W Scanning/UI task %

|
|
Adv interval 4’:
|
|

Figure3-17 Timing sequence chart with Scanning in Advertising state

Curretnly Link Layer is still in Advertising state (BLS_LINK_STATE_ADV). During
each Adv interval, the remaining time except for Adv event is used for Scanning.

During each “Set Scan”, the difference of current time and previous “Set Scan”
will be checked whether it exceeds a Scan interval (setting from
“blc_II_setScanParameter”). If the difference exceeds a Scan interval, Scan channel
(channel 37/38/39) will be switched.

For usage of Scanning in Advertising state, please refer to
“TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE” in 826x feature test.

3.2.5.2 Scanning in ConnSlaveRole

When Link Layer is in ConnSlaveRole state, Scanning feature can be added.
The APl below serves to add Scanning feature:
ble sts t blc_11 addScanningInConnSlaveRole (void);
The APl below serves to remove Scanning feature:
ble sts t blc_11 removeScanningFromConnSLaveRole (void) ;
For the two APIs above, the return value of ble_sts_t type should be BLE_SUCCESS.

By combining timing sequence chart of Scanning state and ConnSlaveRole, when
Scanning feature is added to ConnSlaveRole, the extended timing sequence is shown
as below.

AN-17092700-E4 83 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Set Scan Set Scan

(AWUT Lask{1<44444447 Scanning/UI task 444444444>(4‘UI task{w<44444447 Scanning/Ul task ———»
[brx : !
event44>

brx

| Conn interval

Figure3-18 Timing sequence chart with Scanning in ConnSlaveRole

Curretnly Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). During
each Conn interval, the remaining time except for brx event is used for Scanning.

During each “Set Scan”, the difference of current time and previous “Set Scan”
will be checked whether it exceeds a Scan interval (setting from
“blc_IlI_setScanParameter”). If the difference exceeds a Scan interval, Scan channel
(channel 37/38/39) will be switched.

For usage of Scanning in ConnSlaveRole, please refer to
“TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE” in 826x feature test.

3.2.5.3 Advertising in ConnSlaveRole

When Link Layer is in ConnSlaveRole, Advertising feature can be added.
The APl below serves to add Advertising feature:
ble sts t blc_1ll addAdvertisingInConnSlaveRole (void) ;
The APl below serves to remove Advertising feature:
ble sts t blc_ll removeAdvertisingFromConnSLaveRole (void) ;
For the two APIs above, the return value of ble_sts_t type should be BLE_SUCCESS.

By combining timing sequence chart of Advertising state and ConnSlaveRole,
when Advertising feature is added to ConnSlaveRole, the extended timing sequence is
shown as below.

HUI taskﬂ Adv event «—————— UI task/suspend >
\ brx |

f— —
| event [

| -

| Conn interval

|

Figure3-19 Timing sequence chart with Advertising in ConnSlaveRole

Curretnly Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). During
each Conn interval, after a brx event is finished, an adv event is executed immediately,
and the remaining time is used for Ul task or suspend to save power.

For usage of Advertising in ConnSlaveRole, please refer to
AN-17092700-E4 84 Ver1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

“TEST_ADVERTISING_IN_CONN_SLAVE_ROLE” in 826x feature test.

3.2.5.4 Advertising and Scanning in ConnSlaveRole

By combining usage of Scanning in ConnSlaveRole and Advertising in
ConnSlaveRole, Scanning and Advertising can be added to ConnSlaveRole. Timing
sequence is shown as below.

Set Scan

HUI taskﬂ Adv event &= Scanning/UI task -
| brx

——
| event

- Conn interval

Y

Figure3-20 Timing sequence chart with Advertising and Scanning in
ConnSlaveRole

Curretnly Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). During
each Conn interval, after a brx event is finished, an adv event is executed immediately,
and the remaining time is used for Scanning.

During each “Set Scan”, the difference of current time and previous “Set Scan”
will be checked whether it exceeds a Scan interval (setting from
“blc_II_setScanParameter”). If the difference exceeds a Scan interval, Scan channel
(channel 37/38/39) will be switched.

For usage of Advertising and Scanning in ConnSlaveRole , please refer to
“TEST_ADVERTISING_SCANNING_IN_CONN_SLAVE_ROLE” in 826x feature test.

3.2.6 Link Layer TX fifo & RX fifo

All RF data of APP layer and BLE Host should be transmitted via Link Layer of
Controller. A BLE TX fifo is designed in Link Layer, which can be used to buffer the
received data and send data after brx/btx starts.

All data received from peer device during Link Layer brx/btx will be buffered in a
BLE RX fifo, and then transmitted to BLE Host or APP layer for processing.

BLE TX fifo and BLE RX fifo of Slave role and Master role have some differences in
processing, as shown below.

AN-17092700-E4 85 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.6.1 Slave role fifo

Both BLE TX fifo and BLE RX fifo in Slave role are defined in APP layer:
MYFIFO_INIT(blt_rxfifo, 64, 8);
MYFIFO_INIT(blt_txfifo, 40, 16);

By default, RX fifo size is 64, and TX fifo size is 40. It’s not allowed to modify the
two size values unless it’s needed to use “data length extension” in core 4.2.

Both TX fifo number and RX fifo number must be configured as a power of 2, i.e.
2, 4,8, 16, and etc. User can modify as needed.

Default RX fifo number is 8, which is a reasonable value to ensure up to 8 data
packets can be buffered in Link Layer bottom layer. If it’s set as large value, it will
occupy large SRAM area. If it’s set as small value, it may bring the risk of data coverage.
During brx event, Link Layer is likely to be in more data mode in an interval and
continuously reveive multiple packets; if RX fifo number is set as 4, there may be five
or six packets in an interval (e.g. in cases such as OTA, play Master audio data),
however, due to long decryption time, response to these data by upper layer cannot
be processed in real time, then some data may be overflowed. Similarly, if there are
more than 8 valid packets in an interval, the default number 8 is not enough.

Below is an example for RX overflow, suppose:
1) RXfifo numberis 8;

2) Read/write pointer of RX fifo is 0/2 respectively before brx_event(n) is
enabled

3) There are tasks blocked in main_loop during bothbrx_event(n) and
brx_event(n+1) stage, and RX fifo is not read in time;

4) Both brx_event stages receive multiple packets.

As described in above “Timing Sequence in Conn State Slave Role”, during
brx_working stage, the received BLE packets will only be copied into RX fifo(RX fifo
write pointer++), while reading RX fifo data(RX fifo read pointer++) is executed during
main_loop stage, so, the 6" data packet will cover read pointer 0 area. Please be noted,
the Ul task time interval during brx working stage is the time exclude interrupt time
like RX, TX, system timer and ect.

AN-17092700-E4 86 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

brx brx brx brx
tart| brx working iii}// \Q{jit brx working post,

~_UI task UI task

LA PER Do pea o o s R s A

XL, (TX1} RK?) X2} RX3 1X3 UI task/sleep | |RX4 X4 RXS (T8 ®X6 M6 || (] ;o) /o] eep

1<—Brx event (rﬁ—'} 1<—Brx event (n+B—J‘
rptr:0

rptr:0
wptr (2+6)&(8-1)=0

If the RX fifo rptr is 0 before the
pkt is received, assuming that
there are multiple pkts in one brx
event and main_loop does not
process RX fifo(means rptr not ++),
then after receiving the 6th RX
data, the RX fifo wptr will cross

the rptr area, causing lst pkt to
p ‘\wptr:Z Q» be covered.

RX overflow diagram 1
This is an extreme example, because there is a connection interval, and tasks are
blocked for a long enough time. Below is a more frequently-seen case: duiring a brx-
event, master write multiple data packets into slave, and slave can not process these
data in time. As shown below, read pointer shifts 2 bits while write pointer shift 8 bits,
this will result in data overflow.

brx brx
tart brx working post
UI task
I__:I__ll__:l__:l__:l__ll__:I__:l__:: _:|“:l__:l__: _‘:f__ l__:
H RXITXLRX2 2R3 :TX:’J Ri4 :TX4J:RX5J EXE' IRY6| TG RXT, X7 RA8/TX8 H UT task/sleep
l«<——— Brxeventn) ——
rptr:0

wptr (2+8) & (8-1)=2

If the RX fifo rptr is 0 before the

pkt is received, assuming that

there is multiple pkts in one brx

event and main loop does process 2

RX pkts(means rptr point to 2),
then after receiving the 8th RX
data, the RX fifo wptr will cross
the rptr area, causing 2nd pkt to

‘\wptr:Z be covered.
p rptr:2

RX overflow Diagram 2

Overflow will result in data loss, and will thus cause connection termination of
MIC failure for encryption system. (In former version of SDK, brx event Rx IRQ staffs
data to RX fifo without overflow checking, so, if main_loop process RX fifo too slow
there will be overflow. To avoid this risk, master should avoid sending too many data

AN-17092700-E4 87 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

packets during one connection interval, and Ul task processing time should be as short
as possible to avoid task blocking).

In new SDK version, we add RX overflow checking: check the difference between
write pointer and read pointer of RX fifo and compare it with RX fifo number, if RX fifo
is full, then RF will not ACK it, BLE protocol will guarantee re-transmiting the data. SDK
also offers RX overflow callback function to acknowledge user, please refer to “Telink
defined event” for detail.

If there are more than 8 effective data packets in one interval, the default 8 is not
enough.

Default TX fifo number is 16, which is enough to process common audio remote
control function with large data volume. User can modify this number as 8 to save fifo
space.

If it’s set as large value (e.g. 32), it will occupy large SRAM area.

In TX fifo, stack in SDK bottom layer needs two fifos, while APP layer can use the
remaing fifos. If TX fifo number is 16, APP layer can use 14 fifos; if TX fifo number is 8,
APP layer can use 6 fifos.

To send data in APP layer (e.g. invoke “bls_att_pushNotifyData”), user should
check current number of TX fifo available for Link Layer.

The API below serves to check current occupied number of TX fifo (note that it’s
not the remaining fifo number).

u8 bls 11 getTxFifoNumber (void);

For example, TX fifo number is the default value 16, among which 14 fifos are
available for user. Therefore, as long as the return value is less than 14, there are still
fifos available for user: if the return value is 13, there is 1 fifo remaining; if the return
value is 0, there are 14 fifos remaining.

In audio processing of 826x remote, since a sum of audio data (128-byte) is
disassembled into five packets, five TX fifos are needed. Implementation is shown as
below (the number of occupied fifos should not exceed 9).

if (blc 11 getTxFifoNumber () < 10)

To deal with data overflow issue, beside pre-overflow auto-processing
mechanism, SDK bottom provides the following API to limit the more data receiving
number during 1 interval(users can use this APl when they want to limit the data when
RX fifo has enough space).

AN-17092700-E4 88 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

void blc_ll_init_max_md_nums (u8 num) ;

The range of more data number for parameter num should not exceed RX fifo
number.

Please be noted, the APl will enable more data limit function only when be called
in APP layer (num > 0).

3.2.6.2 Master role fifo

The design of BLE TX fifo and BLE RX fifo in Master role is similar to that of Slave
role.

RX fifo is defined in APP layer:
MYFIFO_INIT(blt_rxfifo, 64, 8);

However, user cannot modify TX fifo pre-defined in library. TX fifo number is 8:
two fifos are used for stack, while the remaining six fifos are used for APP layer.

2 gdefine BLM TX FIFO NUM 8
3 #define STACK FIFO NUM 2 [ffuser &, stack 2
S fdefine BLM TX FIFO SIZE 40

=

T typedef struct {
8 u32 tx fifo[BLM TX FIFC NUM] [BLM TX FIFO SIZE>>2]:

The APl below serves to check current occupied number of TX fifo (note that it’s
not the remaining fifo number).

u8 blm 11 getTxFifoNumber (ul6 connHandle);
“connHandle” specifies connection.
Master RX overflow is the same with that in slave. Please refer to RX overflow.
3.2.7 Controller HCI Event

Considering user may need to record and process some key actions of BLE stack
bottom layer in APP layer, Telink BLE SDK supplies two types of event: standard HCI
event defined by BLE Controller; Telink defined event.

Basically the two sets of event are independent of each other, except for the
connect and disconnet event of Link Layer.

User can select one set or use both as needed. In Telink BLE SDK, 826x
remote/826x module/826x hid sample use Telink defined event, while 826x hci/826x
master kma dongle use Controller HCI event.

AN-17092700-E4 89 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

As shown in the “Host + Controller” architecture below, Controller HCI event
indicates all events of Controller are reported to Host via HCI.

BLE Host
HCI Host
cmd data

HCI

Controller HCI
data event

BLE Controller

Figure3-21 HCl event

For definition of Controller HCI event, please refer to “Core_v4.2” Page 1152 7.7
“Event”. “LE Meta Event” in 7.7.65 indicates HCI LE (low energy) Event, while the others
are commom HCl events. As defined in Spec, Telink BLE SDK also divides Controller HCI
event into two types: HCI Event and HCI LE event. Since Telink BLE SDK focuses on BLE,
it supports most HCI LE events and only a few basic HCI events.

For the definition of macros and interfaces related to Controller HCI event, please
refer to head files under “proj_lib/ble/hci”.

To receive Controller HCI event in Host or APP layer, user should register callback
function of Controller HCl event, and then enable mask of corresponding event.

Following are callback function prototype and register interface of Controller HCI
event:

typedef int (*hci event handler t) (u32 h, u8 *para, int n);
void blc_hci_registerControllerEventHandler (

hci event handler t handler);

In the callback function prototype, “u32 h” is a mark which will be used frequently
in bottom-layer stack, and user only needs to know the following:

#define HCI_FLAG EVENT TLK MODULE (1<<24)
#define HCI_FLAG EVENT BT STD (1<<25)

“HCI_FLAG_EVENT_TLK_MODULE” will be introduced in “Telink defined event”,
while “HCI_FLAG_EVENT_BT_STD” indicates current event is Controller HCI event.

AN-17092700-E4 90 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

In the callback function prototype, “para” and “n” indicate data and data length
of event. The data is consistent with the definition in BLE spec. User can refer to usage
in 826x master kma dongle as well as implementation of “app_event_callback”
function.

blc hci registerControllerEventHandler (app event callback);

3.2.7.1 HCI event

Telink BLE SDK supports a few HCI events. Following lists some events for user.

Note: In BLE SDK 3.2.0, “HCI_EVT_DISCONNECTION_COMPLETE” is actually named as
“HCI_CMD_DISCONNECTION_COMPLETE”, which is not very reasonable and will be
revised in following SDK versions. This document uses
“HCI_EVT_DISCONNECTION_COMPLETE” for illustration.

#define HCI EVT DISCONNECTION COMPLETE 0x05
#define HCI EVT ENCRYPTION CHANGE 0x08
#define HCI EVT READ REMOTE VER INFO COMPLETE 0x0C
#define HCI EVT ENCRYPTION KEY REFRESH 0x30
#define HCI EVT LE META 0x3E

1) HCI_EVT_DISCONNECTION_COMPLETE

Please refer to “Core_v4.2” Page 1158 7.7.5 “Disconnection Complete
Event”. Total data length of this event is 7, and 1-byte “param len” is 4, as
shown below. Please refer to BLE spec for data definition.

hci event event param status |connection handle| reason
code len
0x04 0x05 4 0x00

Figure3-22 Disconnection Complete Event

2) HCI_EVT_ENCRYPTION_CHANGE and HCI_EVT_ENCRYPTION_KEY_ REFRESH

The two events (available in 826x master kma dongle) are related to
Controller encryption, and the processing is assembled in library.

3) HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE

When Host uses “HCI_ CMD_READ_REMOTE_VER_INFO” command to
exchange version information between Controller and BLE peer device, and
version of peer device is received, this event will be reported to Host.

AN-17092700-E4 91 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Please refer to “Core_v4.2” Page 1158 7.7.12 “Read Remote Version
Information Complete Event”. Total data length of this event is 11, and 1-byte
“param len” is 8, as shown below. Please refer to BLE spec for data definition.

. event aram . . .
hci event code plen status |connection handle| version |manufacture name subversion
0x04 0x0c 8 0x00

Figure3-23 Read Remote Version Information Complete Event

4) HCI_EVT_LE_META

It indicates current event is HCI LE event, and event type can be checked
according to sub event code.

Except for HCI_EVT_LE_META, other HCI events should use the interface below
to enable corresponding mask.

ble sts t blc_hci_setEventMask _cmd(u32 evtMask); //eventMask:
BT/EDR

Following is definition of mask:

#define HCI EVT MASK DISCONNECTION COMPLETE 0x0000000010

#define HCI EVT MASK ENCRYPTION CHANGE 0x0000000080

#define HCI EVT MASK READ REMOTE VERSION INFORMATION COMPLETE
0x0000000800

If user does not set HCl event mask via this API, by default only the mask
corresponding to “HCI_CMD_DISCONNECTION_COMPLETE” is enabled in SDK, i.e. SDK
only ensures report of “Controller disconnect event” by default.

3.2.7.2 HCI LE event

When event code in HCI event is “HCI_EVT_LE_META” to indicate HCI LE event,
common subevent code are shown as below:

#define HCI SUB EVT LE CONNECTION COMPLETE 0x01
#define HCI SUB EVT LE ADVERTISING REPORT 0x02
#define HCI SUB EVT LE CONNECTION UPDATE COMPLETE
0x03

#define HCI SUB EVT LE CONNECTION ESTABLISH 0x20 //telink private

1) HCl_SUB_EVT_LE_CONNECTION_COMPLETE

AN-17092700-E4 92 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

When Controller Link Layer establishes connection with peer device, this
event will be reported. Please refer to “Core_v4.2” Pagel238 7.7.65.1 “LE
Connection Complete Event”. Total data length of this event is 22, and 1-byte
“paramlen” is 19, as shown below. Please refer to BLE spec for data definition.

0x04 Ox3e 19 0x01
. event aram b t . Addrt
hci event P subeven status | connection handle| Role |Pe¢™94"
code len code ype
peer addr conn interval
supervision master
conn latecncy . clock
timeout

accuracy

Figure3-24 LE Connection Complete Event

2) HCI_SUB_EVT_LE_ADVERTISING_REPORT

When Controller Link Layer scans right adv packet, it will be reported to Host
via “HCI_SUB_EVT_LE_ADVERTISING_REPORT”. Please refer to “Core_v4.2”
Pagel241 7.7.65.2 “LE Advertising Report Event”. Data length of this event is
not fixed and it depends on payload of adv packet, as shown below. Please
refer to BLE spec for data definition.

0x04 0x3e 0x02
. event param | subevent num event .
hci event code len code report type address typel1...i]
address[1...i] length[1..i]
data[1...i] rssi[1..i]

Figure3-25 LE Advertising Report Event

Note: In Telink BLE SDK, each “LE Advertising Report Event” only reports an

o

adv packet, i.e. “i” in Figure3-25is 1.

3) HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

When “connection update” in Controller takes effect,
“HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE” will be reported to
Host. Please refer to “Core_v4.2” Pagel243 7.7.65.3 “LE Connection Update
Complete Event”. Total data length of this event is 13, and 1-byte “param
len” is 10, as shown below. Please refer to BLE spec for data definition.

AN-17092700-E4 93 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

0x04 Ox3e 10 0x03
. event aram | subevent .
hci event P status | connection handle
code len code
. supervision
conn interval conn latency .
timeout

Figure3-26 LE Connection Update Complete Event

4) HCI_SUB_EVT_LE_CONNECTION_ESTABLISH

“HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” is a supplement to
“HCI_SUB_EVT_LE_CONNECTION_COMPLETE”, so all the parameters except
for subevent is the same. In SDK, 826x master kma dongle uses this event.

This Telink private defined event is the sole event which is not standard in
BLE spec. This event is only used in 826x master kma dongle.

Following illustrates the reason for Telink to define this event.

When BLE Controller in Initiating state scans adv packet from specific device
to be connected, it will send connection request packet to peer device; no
matter whether this connection request is received, it will be considered as
“Connection complete”, “LE Connection Complete Event” will be reported to
Host, and Link Layer immediately enters Master role. Since this packet does
not support ack/retry mechanism, Slave may miss the connection request,
thus it cannot enter Slave role, and won’t enter brx mode to transfer packets.
In this case, Master Controller will process according to the mechanism
below: After it enters Master role, it will check whether any packet is
received from Slave during the beginning 6~10 conn intervals (CRC check is
negligible). If no packet is received, it's considered that Slave does not
receive connection request, suppose “LE Connection Complete Event” has
already been reported, it must report a “Disconnection Complete Event”
quickly, and indicate disconnect reason is “Ox3E
(HCI_ERR_CONN_FAILED _TO_ESTABLISH)”. If there’s packet received from
Slave, it can determine Connection Established, thus Master can continue
the following flow.

According to the description above, the processing method of BLE Host
should be: After it receives “Connection Complete Event” of Controller, it
cannot consider connection has already been established, but starts a timer
based on conn interval (timing value should be configured as 10 intervals or
above to cover the longest time). After the timer is started, it will check
whether there is “Disconnection Complete Event” with disconnect reason of
Ox3E; if there is no such event, it will be considered as “connection
Established”.

AN-17092700-E4 94 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Considering this processing of BLE Host is very complex and error prone, SDK
defines “HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” in the bottom layer.
When Host receives this event, it indicates that Controller has determined
connection is OK on Slave side and can continue the following flow.

“HCI LE event” needs the interface below to enable mask.

ble sts t blc_hci_le setEventMask cmd(u32 evtMask);

//eventMask: LE

Following lists some evtMask definitions. User can view the other events in the
“hci_const.h”.

#define HCI LE EVT MASK CONNECTION COMPLETE 0x00000001
#define HCI LE EVT MASK ADVERTISING REPORT 0x00000002
#define HCI LE EVT MASK CONNECTION UPDATE COMPLETE 0x00000004
#define HCI LE EVT MASK CONNECTION ESTABLISH 0x80000000

//telink private

If user does not set HCI LE event mask via this APIl, mask of all HCI LE events in
SDK are disabled by default.

3.2.8 Telink defined event
Besides standard Controller HCI event, SDK also supplies Telink defined event.

In terms of user application, events are from two parts including Host and
Controller (equivalent to the whole BLE stack). Most events are from Controller, and
will be introduced in this section. The Host part will introduce a few events from Host.

Application
emd Telink
data data defined
event

BLE Host +

BLE Controller

Figure3-27 Architecture of Telink defined event

Up to 20 Telink defined events are supported, which are defined by using macros
in “proj_lib/ble/1l/Il.h".

AN-17092700-E4 95 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Current new SDK supports the following callback events.
“BLT_EV_FLAG_CONNECT/BLT_EV_FLAG_TERMINATE” has the same function as
“HCI_SUB_EVT_LE_CONNECTION_COMPLETE”
/“HCI_EVT_DISCONNECTION_COMPLETE” in HCI event, but data definition of these
events are different.

#define BLT EV_FLAG ADV 0
#define BLT EV_FLAG ADV DURATION TIMEOUT 1
#define BLT EV_FLAG SCAN RSP 2
#define BLT EV_FLAG CONNECT 3
#define BLT EV_FLAG TERMINATE 4
#define BLT EV_FLAG PAIRING BEGIN 5
#define BLT EV_FLAG PAIRING END 6
#define BLT EV_FLAG ENCRYPTION CONN DONE 7
#define BLT EV_FLAG DATA LENGTH EXCHANGE 8
#define BLT EV_FLAG GPIO EARLY WAKEUP 9
#define BLT EV_FLAG CHN MAP REQ 10
#define BLT EV_FLAG CONN_PARA REQ 11
#define BLT EV_FLAG CHN MAP UPDATE 12
#define BLT EV_FLAG CONN_PARA UPDATE 13
#define BLT EV_FLAG SUSPEND ENTER 14
#define BLT EV_FLAG SUSPEND EXIT 15
#define BLT EV_FLAG READ P256 KEY 16
#define BLT EV_FLAG GENERATE DHKEY 17

Telink defined event is only used in BLE Slave applications (remote/module), and
won’t be triggered in BLE Master. Libraries of BLE Slave can be divided into “Control
Core + Bluetooth” type and “SPP” type (826x module, Bluetooth only), which
correspond to different event callback processing in SDK by APP layer.

For libraries of “Control Core + Bluetooth” type, e.g. lib_8267/lib_8269,
prototype of callback function is shown as below:

typedef void (*blt_event_callback_t)(u8 e, u8 *p, int n);

“w_ n,

e”: event number.

“"

p”: It’s the pointer to the data transmitted from the bottom layer when callback
function is executed, and it varies with the callback function.

“n”: length of valid data pointed by pointer.

The APl below serves to register callback function:

void bls_app registerEventCallback (u8 e, blt event callback t

AN-17092700-E4 96 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

p);

Whether each event will respond depends on whether corresponding callback
function is registered in APP layer.

Take “BLT_EV_FLAG_CONNECT” as an example to illustrate the usage of register
function. When advertising device sends adv packet, Master sends “connection
request” to request connection; after this request is received, advertising device
processes correspondingly and enters Conn state Slave role. Then stack checks
whether the callback function of the event “BLT_EV_FLAG_CONNECT” is registered: if
registered, the registered function will be invoked to implement user-defined
operations (e.g. recording or related setting when device enters connection).

void task_connect (u8 e, u8 *p, intn)

{
// add your code

}
bls_app_registerEventCallback (BLT_EV_FLAG_CONNECT, &task_connect);

The setting above will invoke the “task_connect” function each time when BLE
slave receives connection request and enters connection state.

For libraries of “SPP” type, e.g. lib_8261_mod/lib_8266_mod, function prototype
and the interface to register callback function is the similar to HCI event.

typedef int (*hci event handler t) (u32 h, u8 *para, int n);
void blc_hci_registerControllerEventHandler (hci event handler t
handler) ;

The difference is actual value of “u32 h”:
h =HCI_FLAG_EVENT_TLK_MODULE | e

#define HCI FLAG_EVENT TLK MODULE (1<<24)

“_n,

e”: event number of Telink defined event.

Similar to mask of HCI event, the API below serves to set the mask to determine
whether each event will be responded.

ble sts t bls hci mod_setEventMask _cmd (u32 evtMask)

The relationship between evtMask and event number is shown as below:
evtMask = BIT(e);

User can refer to processing of Telink defined event in 826x module to help

AN-17092700-E4 97 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

understanding.

In the following sub-sections, all events, event trigger condition and parameters
of corresponding callback function for Controller will be introduced in detail.
“BLT_EV_FLAG_PAIRING_BEGIN” and “BLT_EV_FLAG_PAIRING_END” event, which do
not belong to Controller, will be introduced in Host SMP.

3.2.8.1 BLT_EV_FLAG_ADV

This event is not used in current SDK.

3.2.8.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT

1) Event trigger condition: If the API “bls_ll_setAdvDuration” is invoked to set
advertising duration, a timer will be started in BLE stack bottom layer. When the
timer reaches the specified duration, advertising is stopped, and this event is
triggered. In the callback function of this event, user can implement operations
such as modifying adv event type, re-enabling advertising, re-configuring
advertising duration and etc.

2) Pointer “p”: null pointer.

3) Datalength “n”: 0.

Note: This event won’t be triggered in “advertising in ConnSlaveRole” which is an
extended state of Link Layer.

3.2.8.3 BLT_EV_FLAG_SCAN_RSP

1) Event trigger condition: When Slave is in advertising state, this event will be
triggered if Slave responds with scan response to the scan request from Master.

2) Pointer “p”: null pointer.

3) Datalength “n”: 0.

3.2.8.4 BLT_EV_FLAG_CONNECT

1) Event trigger condition: When Link Layer is in advertising state, this event will be
triggered if it responds to connect reqeust from Master and enters Conn state
Slave role.

AN-17092700-E4 98 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

2) Datalength “n”: 34.

3) Pointer “p”: p points to one 34-byte RAM area, corresponding to the “connect
request PDU” below.

Payload
Init&, AdvA LLData
(6 octets) (6 octets) (22 octets)

Figure 2.10: CONNECT_REQ PDU payload

The format of the LLData field is shown in Figure 2.11.

LLData

AA CRClnit

(4 octets) [(3 octets)

WinSize | WinOffset
(1 octet) | (2 octets)

Interval | Latency
(2 octets) | (2 octets)

Timeout
(2 octets)

ChM
(5 octets)

Hop
(5 bits)

SCA
(3 bits)

Figure 2.11: LLData field structure in CONNECT_REQ PDU's payload

Figure3-28 Connect request PDU

Please refer to “rf_packet_connect_t” defined in “ble_common.h”. In the
structure below, the connect request PDU is from scanA[6] (corresponding to InitA in

Figure3-28) to hop.

typedef struct({

u32 dma_len;

u8 type;

u8 rf len;

u8 scanA[6];
u8 advA[o6];

u8 accessCode(4];

u8 crcinit([3];

u8 winSize;

ul6é winOffset;

ul6é interval;

ul6 latency;

ulo timeout;
u8 chm([5];

u8 hop;

}rf packet

connect t;

3.2.8.5 BLT_EV_FLAG_TERMINATE

1) Eventtrigger condition: This event will be triggered when Link Layer state machine
exits Conn state Slave role in any of the three specific cases.

2) Pointer “p”: p points to an u8-type variable “terminate_reason”. This variable

AN-17092700-E4

99

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

indicates the reason for disconnection of Link Layer.
3) Data length “n”: 1.

Three cases to exit Conn state Slave role and corresponding reasons are listed as
below:

1) If Slave fails to receive packet from Master for a duration due to RF communication
problem (e.g. bad RF or Master is powered off), and “connection supervision
timeout” expires, this event will be triggered to terminate connection and return
to None Conn state. The terminate reason is HCI_ERR_CONN_TIMEOUT (0x08).

2) If Master sends “terminate” command to actively terminate connection, after
Slave responds to the command with an ack, this event will be triggered to
terminate connection and return to None Conn state. The terminate reason is the
Error Code in the “LL_TERMINATE_IND” control packet received in Slave Link Layer.
The Error Code is determined by Master. Common Error Codes include
HCI_ERR_REMOTE_USER_TERM_CONN (0x13),
HCI_ERR_CONN_TERM_MIC_FAILURE (0x3D), and etc.

3) If Slave invokes the APl “bls_II_terminateConnection(u8 reason)” to actively
terminate connection, this event will be triggered. The terminate reason is the
actual parameter “reason” of this API.

3.2.8.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE

1) Event trigger condition: This event will be triggered when encryption of Link Layer
is finished (i.e. Link Layer receives “start encryption response” from Master).

2) Pointer “p”: p points to an u8-type variable “smp_flag”, which indicates current
encryption of Link Layer is triggered during first pairing or auto re-connection. If
“smp_flag” is O, it indicates first pairing; if “smp_flag” is 1, it indicates auto re-

connection.
#define SMP STANDARD PAIR 0
#define SMP FAST CONNECT 1

3) Datalength “n”: 1.

3.2.8.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

1) Event trigger condition: This event will be triggered when Slave and Master
exchange max data length of Link Layer, i.e. one side sends “ll_length_req”, while
the other side responds with “Il_length_rsp”. If Slave actively sends
“Il_length_req”, this event won’t be triggered until “ll_length_rsp” is received. If
Master initiates “Il_length_req”, this event will be triggered immediately after

AN-17092700-E4 100 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Slave responds with “Il_length_rsp”.
2) Datalength “n”: 12.

3) Pointer “p”: p points to data of a memory area, corresponding to the beginning
six ul6-type variables in the structure below.

typedef struct ({

ulé connEffectiveMaxRxOctets;
ulé connEffectiveMaxTxOctets;
ulé connMaxRxOctets;

ulé connMaxTxOctets;

ul6 connRemoteMaxRxOctets;
ul6 connRemoteMaxTxOctets;
ul6 supportedMaxRxOctets;

ul6 supportedMaxTxOctets;

ul6 connInitialMaxTxOctets;
u8 connMaxTxRxOctets req;

}11 data_extension t;

“connEffectiveMaxRxOctets” and “connEffectiveMaxTxOctets” are max RX and TX
data length finally allowed in current connection;

“connMaxRxOctets” and “connMaxTxOctets” are max RX and TX data length of
the device;

“connRemoteMaxRxOctets” and “connRemoteMaxTxOctets” are max RX and TX
data length of peer device.

connEffectiveMaxRxOctets = min(supportedMaxRxOctets,connRemoteMaxTxOctets);

connEffectiveMaxTxOctets = min(supportedMaxTxOctets, connRemoteMaxRxOctets);

3.2.8.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP

1) Event trigger condition: Slave will calculate wakeup time before it enters suspend,
so that it can wake up when the wakeup time is due (It’s realized via timer in
suspend state). Since user tasks won’t be processed until wakeup from suspend,
long suspend time may bring problem for real-time demanding applications. Take
keyboard scanning as an example, if user presses keys fast, to avoid key press loss
and process debouncing, it’s recommended to set the scan interval as 10~20ms;
longer suspend time (e.g. 400ms or 1s, which may be reached when latency is
enabled) will lead to key press loss. So it’s needed to judge current suspend time
before MCU enters suspend; if it’s too long, the wakeup method of user key press
should be enabled, so that MCU can wake up from suspend in advance (i.e. before
timer timeout) if any key press is detected. This will be introduced in details in

AN-17092700-E4 101 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

following PM module section.

The event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP” will be triggered if MCU is woke
up from suspend by GPIO in advance before wakeup timer expires.

2) Data length “n”: 1.

3) Pointer “p”: p points to an u8-type variable “wakeup_status”. This variable
indicates valid wakeup source status for current suspend. Following types of
wakeup status are defined in “proj_lib/pm_826x.h” (“WAKEUP_STATUS_COMP” is
not used in SDK).

14

enum {
WAKEUP STATUS COMP = BIT(0Q),
WAKEUP STATUS TIMER = BIT(1),
WAKEUP STATUS CORE = BIT(2),
WAKEUP STATUS PAD = BIT(3)

STATUS GPIO ERR NO ENTER PM = BIT(7),

For parameter definition above, please refer to the return value “int” of the API
in “Power Management”:

int cpu_sleep_wakeup (int deepsleep, int wakeup_src, u32 wakeup_tick);

3.2.8.9 BLT_EV_FLAG_CHN_MAP_REQ

1) Event trigger condition: When Slave is in Conn state, if Master needs to update
current connection channel list, it will send a “LL_CHANNEL_MAP_REQ”
command to Slave; this event will be triggered after Slave receives this request
from Master and has not processed the request yet.

2) Datalength “n”: 5.
3) Pointer “p”: p points to the starting address of the following channel list array.
unsigned char type bltc.conn_chn_map|[5]

Note: When the callback function is executed, p points to the old channel map before
update.

Five bytes are used in “conn_chn_map” to indicate current channel list by
mapping. Each bit indicates a channel:

conn_chn_map[0] bit0-bit7 indicate channel0~channel7, respectively.
conn_chn_mapl[1] bit0-bit7 indicate channel8~channell5, respectively.

conn_chn_map([2] bit0-bit7 indicate channell16~channel23, respectively.

AN-17092700-E4 102 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

conn_chn_map[3] bit0-bit7 indicate channel24~channel31, respectively.

conn_chn_map[4] bit0-bit4 indicate channel32~channel36, respectively.

3.2.8.10 BLT_EV_FLAG_CHN_MAP_UPDATE

1) Event trigger condition: When Slave is in connection state, this event will be
triggered if Slave has updated channel map after it receives the
“LL_CHANNEL_MAP_REQ” command from Master.

2) Pointer “p”: p points to the starting address of the new channel map
conn_chn_mapl5] after update.

3) Datalength “n”: 5.

3.2.8.11 BLT_EV_FLAG_CONN_PARA_REQ

1)

2)
3)

Event trigger condition: When Slave is in connection state (Conn state Slave role),
if Master needs to update current connection parameters, it will send a
“LL_CONNECTION_UPDATE_REQ” command to Slave; this event will be triggered
after Slave receives this request from Master and has not processed the request
yet.

Data length “n”: 11.
Pointer “p”: p points to the 11-byte PDU of the LL_CONNECTION_UPDATE_REQ.

CtrData

WinSize
(1 octet)

WinOffset
(2 octets)

Interval
(2 octets)

Latency
(2 octets)

Timeout
(2 octets)

Instant
(2 octets)

Figure 2.15: CirData field of the LI CONNECTION_UPDATE_REQ PDU

Figure3-29 LL_CONNECTION_UPDATE_REQ format in BLE stack

3.2.8.12 BLT_EV_FLAG_CONN_PARA_UPDATE

1) Event trigger condition: When Slave is in connection state, this event will be
triggered if Slave has updated connection parameters after it receives the
“LL_CONNECTION_UPDATE_REQ” from Master.

2) Datalength “n”: 6.

3) Pointer “p”: p points to the new connection parameters after update, as shown

AN-17092700-E4 103

below.

p[0] | p[1]<<8: new connection interval in unit of 1.25ms.

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

p[2] | p[3]<<8: new connection latency.

p[4] | p[5]<<8: new connection timeout in unit of 10ms.

3.2.8.13 BLT_EV_FLAG_SUSPEND_ENETR

1) Event trigger condition: When Slave executes the function “blt_sdk_main_loop”,
this event will be triggered before Slave enters suspend.

2) Pointer “p”: Null pointer.
3) Datalength “n”: 0.

3.2.8.14 BLT_EV_FLAG_SUSPEND_EXIT

1) Event trigger condition: When Slave executes the function “blt_sdk_main_loop”,
this event will be triggered after Slave is woke up from suspend.

2) Pointer “p”: Null pointer.
3) Data length “n”: 0.

Note: This callback is executed after SDK bottom layer executes “cpu_sleep_wakeup”
and Slave is woke up, and this event will be triggered no matter whether the actual
wakeup source is gpio or timer. If the event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP”
occurs at the same time, for the sequence to execute the two events, please refer to
pseudo code in “Power Management — PM Working Mechanism”.

3.2.8.15 BLT_EV_FLAG_READ_P256_KEY

To be added.

3.2.8.16 BLT_EV_FLAG_GENERATE_DHKEY
To be added.
3.2.8.17 BLT_EV_FLAG_LL_REJECT_IND

1) Eventtrigger condition: when master send LL_ENC_REQ(encryption request) in link
layer, and claim using the allocated LTK, and slave can not find the respective LTK,
send LL_REJECT_IND(or LL_REJECT_EXT_IND).

2) Pointer ”p”: point to sending command (LL_REJECT IND or LL_REJECT_EXT _IND).
3) Data length “n”: 0.
Please referto {Core_v5.0) (Vol 6/Part B/2.4.2) for more information.

AN-17092700-E4 104 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.8.18 BLT_EV_FLAG_RX_DATA_ABANDOM

1) Event trigger condition: when BLE RX fifo overflow(refer to “Link Layer TX fifo & RX
fifo”), or in a continuous interval, received packet number > set packet number
threshold(when user call API: blc_Il_init_max_md_nums, and the parameter is not
0, SDK bottom layer will check the packet number), trigger
BLT_EV_FLAG_RX_DATA_ABANDOM.

2) Pointer ”p”:Null pointer.
3) Data length “n”: 0.

3.2.8.19 BLT_EV_FLAG_PHY_UPDATE

1) Event trigger condition: when PHY(BLE1M/BLE2M) reaches update time, trigger
this even.

2) Pointer ”"p”: Point to updated PHY, PHY values are the emumeration value, listed as

following:
BLE _PHY_ 1M = BIT(®),
BLE_PHY 2M = BIT(1),

AN-17092700-E4 105 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.9 Controller API
3.2.9.1 Controller API brief

In standard BLE stack architecture (see Figure3-1), APP layer cannot directly
communicate with Link Layer of Controller, i.e. data of APP layer must be first
transferred to Host, and then Host can transfer control command to Link Layer via HCI.
All control commands from Host to LL via HCI follow the definition in BLE spec
“Core_v4.2", please refer to Vol2: Core System Package[BR/EDR Controller volume],
Part E: Host Controller Interface Functional Specification.

Telink BLE SDK based on standard BLE architecture can serve as a Controller and
work together with Host system. Therefore, all APls to operate Link Layer strictly follow
the data format of Host commands in the spec.

Although the architecture in Figure3-4 is used in Telink BLE SDK, during which APP
layer can directly operate Link Layer, it still use the standard APIs of HCI part.

The APIs below correspond to Host commands in Spec.

In BLE spec, all HCI commands to operate Controller have corresponding “HClI
command complete event” or “HCl command status event” as response to Host layer.
However, in Telink BLE SDK, the following cases apply:

1) For applications such as 826x_hci, Telink IC only serves as BLE controller, and
needs to work together with BLE Host MCU. Each HCI command will generate
corresponding “HClI command complete event” or “HCI command status
event”.

2) For applications such as 826x master kma dongle, both BLE Host and
Controller run on Telink IC, when Host invokes interface to send HCI
command to Controller, Controller can receive all data correctly without loss.
Therefore, when Controller processes HCI command, it won’t reply with “HCI
command complete event” or “HClI command status event”.

Controller API declaration is available in head files under “proj_lib/ble/IlI” and
“proj_lib/ble/hci”. Corresponding to Link Layer state machine functions, the “II”
directory contains Il.h, Il_adv.h, Il_scan.h, Il_init.h, I|_slave.h and |l|_master.h, e.g. APIs
related to advertising function should be in I|_adv.h.

3.2.9.2 APl return type ble_sts_t

An enum type “ble_sts_t” defined in “proj_lib/ble/ble_common.h” is used as
return value type for most APls in SDK. When API invoking with right parameter setting
is accepted by the protocol stack, it will return “0” to indicate BLE_SUCCESS; if any non-
zero value is returned, it indicates a unique error type. All possible return values and

AN-17092700-E4 106 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

corresponding error reason will be listed in the subsections below for each API.

The “ble_sts_t” applies to APIs of all layers, including the Link Layer.

3.2.9.3 MAC address initialization

In this document, “BLE MAC address” indicates “public address” by default.

As introduced above, the 6-byte BLE MAC address will be downloaded into

specific flash area of the actual product by Telink jig system. User needs to obtain the
MAC address from the Bluetooth SIG.

Take 8267 512K Flash for example: Currently during debugging phase, the MAC
address is processed by SDK as shown below. When it’s first time to power on Slave, if
the MAC address read from flash 0x76000 is null, the MAC address will be set as
“OxC7E4E3E2E1xx” (The former five bytes are fixed, and the final one byte is randomly
generated); then the six bytes will be written into flash 0x76000~0x76005. After power
cycle, the MAC address read from flash 0x76000 already exists and it can be used
directly to ensure MAC address consistency of Slave.

Related code sample is shown below for reference, and user can refer to flash
access introduction to understand the code. User can also modify the code as needed.

u8 tbl mac [] = {Oxel, Oxel, Oxe2, Oxe3, Oxed, 0xc7};
u32 *pmac = (u32 *) CFG_ADR MAC;
if (*pmac != Oxffffffff)

{
memcpy (tbl mac, pmac, 6);
}
else/{
tbl mac[0] = (u8)rand();
flash write page (CFG_ADR MAC, 6, tbl mac);

The Link Layer initialization API can be invoked to load the obtained MAC address
into BLE prototol stack.

blc 11 initBasicMCU(tbl mac); //mandatory

In order to use Advertising state or Scanning state in Link Layer state machine, it’s
also needed to load MAC address, as shown below:

blc 11 initAdvertising module (tbl mac) ;
blc 11 initScanning module (tbl mac) ;

AN-17092700-E4 107 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.29.4 Link Layer state machine initialization

The APIs below serve to configure initializaiont of each module when BLE state
machine is established. Please refer to introduction of Link Layer state machine.

void blc_ 11 initBasicMCU (u8 *public adr)

void blc_11 initAdvertising module (u8 *public adr);
void blc_11 initScanning module (u8 *public adr);
void blc_11 initInitiating module (void);

void blc_11 initSlaveRole module (void);

void blc_11 initMasterRoleSingleConn_module (void) ;

3.2.9.5 bls_IllI_setAdvData

Please refer to “Core_v4.2” Page1282 LE Set Advertising Data Command.

LSB MSB
Header Payload
(16 bits) {(as per the Length field in the Header)

Figure3-30 Adv packet format in BLE stack

As shown above, an Adv packet in BLE stack contains 2-byte header, and Payload
(PDU). The maximum length of Payload is 31 bytes.

The APl below serves to set PDU data of adv packet:
ble sts t bls 11 setAdvData(u8 *data, u8 len);
Note: The “data” pointer points to the starting address of the PDU, while the “len”

indicates data length. The table below lists possible results for the return type
“ble_sts_t”.

ble_sts_t Value ERR Reason
BLE_SUCCESS 0
L ds th
HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12 en exceeds e
maximum length 31.

This API can be invoked during initialization to set adv data, or invoked in
mainloop to modify adv data when firmware is running.

AN-17092700-E4 108 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

In “826x ble remote” project of 826x BLE SDK, Adv PDU definition is shown as
below. Please refer to “Data Type Specifcation” in BLE Spec “CSS v6” (Core Specification
Supplement v6.0) for introduction to various fields.

u8 tbl advDatal] = {
0x05, 0x09, 't', 'h', 'i', 'd',
0x02, 0x01, 0x05,
0x03, 0x19, 0x80, 0x01,
0x05, 0x02, 0x12, 0x18, OxOF, 0x18,

}i

As shown in the adv data above, the adv device name is set as "thid".

3.2.9.6 bls_llI_setScanRspData

Please refer to “Core_v4.2” Page1283 LE Set Scan response Data Command.
The APl below serves to set PDU data of scan response packet.

ble sts t bls 1l setScanRspData(u8 *data, u8 len);

Note: The “data” pointer points to the starting address of the PDU, while the “len”
indicates data length. The table below lists possible results for the return type
“ble_sts_t”".

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

Len exceeds the

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12 .
- - - - - maximum length 31.

This APl can be invoked during initialization to set Scan response data, or invoked
in mainloop to modify Scan response data when firmware is running.

In “826x ble remote” project of 826x BLE SDK, definition of Scan response data is
shown as below. Please refer to “Data Type Specifcation” in BLE Spec “CSS v6” (Core
Specification Supplement v6.0) for introduction to various fields.

u8 tbl scanRsp [] = {

0x08, 0x09, 't', 'R', 'e', 'm', 'o', 't', 'e',
b

As shown in the Scan response data above, the scan device name is set as
"tRemote".

AN-17092700-E4 109 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Since device name configured in Adv data and scan response data differ, the
device name scanned by a mobile phone or I0S system may be different:

1) If some device only listens for Adv packets, the scanned device name is "thid".

2) If some device sends scan request after Adv packet is received, and reads the scan
response, the scanned device name may be "tRemote".

User can configure device name in the two packets (Adv packet & scan response
packet) as the same name, so that the scanned device name is consistent. Actually
when Master reads device’s Attribute Table after connection is established, the
obtained “gap device name” of device will be shown according to the configuration in
Attribute Table. Please refer to Attribute Table section for details.

3.2.9.7 bls_IllI_setAdvParam

Please refer to “Core_v4.2” Pagel1277 LE Set Advertising Parameters Command.

Advertising Advertising Advertising
Event Event Event

T_advEvent - T_advEvent o

L I L

advinterval - : advinterval 1
A aduD!?a 14 amee.'a?
Advertising
State
entered

Figure3-31 Advertising Event in BLE stack

The figure above shows Advertising Event (Adv Event in brief) in BLE stack. It
indicates during each T_advEvent, Slave implements one advertising process, and
sends one packet in three advertising channels (channel 37, 38 and 39) respectively.

The APl below serves to set parameters related to Adv Event.

ble sts t bls_1l1l setAdvParam(ul6 intervalMin, ul6 intervalMax,
u8 advType, u8 ownAddrType,

u8 peerAddrType, u8 *peerAddr,

u8 adv_channelMap, u8 advFilterPolicy);

1) intervalMin & intervalMax:

The two parameters serve to set the range of advertising interval in unit of
0.625ms. The valid range is from 20ms to 10.24s, and intervalMin should not
exceed intervalMax.

As required by BLE spec, it’s not recommended to set adv interval as fixed value;

AN-17092700-E4 110 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

in Telink BLE SDK, the eventual adv interval is random variable within the range of
intervalMin ~ intervalMax. If intervalMin and intervalMax are set as same value,
adv interval will be fixed as the intervalMin.

Adv packet type has limits to the setting of intervalMin and intervalMax. Please
refer to “Core_v4.2” Page2609 4.4.2.2 Advertising Interval for details.

2) advType

As specified in “Core_v4.2” Page2607 Advertising State, the following four basic
advertising event types are supported.

Advertising Event | PDU used in this advertising | Allowable response PDUs for

Type event type advertising event
SCAN_REQ | CONNECT_REQ
Connectable Undi- ADV_IND YES YES

rected Event

Connectable ADV_DIRECT_IND NO YES*
Directed Event

Non-connectable ADV_NONCONN_IND NO NO
Undirected Event

Scannable Undi- ADV_SCAN_IND YES NO
rected Event

Table 4.1: Advertising event types, PDUs used and allowable response PDUs

Figure3-32 Four adv events in BLE stack

In the “Allowable response PDUs for advertising event” column, “YES” and “NO”
indicate whether corresponding adv event type can respond to “Scan request”
and “Connect Request” from other device. For example, “Connectable Undirected
Event” can respond to both “Scan request” and “Connect Request”, while “Non-
connectable Undireted Event” will respond to neither “Scan request” nor
“Connect Request”.

For “Connectable Directed Event”, “YES” marked with an asterisk indicates the
matched “Connect Request” received won't be filtered by whitelist and this event
will surely respond to it. Other “YES” not marked with asterisk indicate
corresponding request can be responded depending on the setting of whitelist
filter.

The “Connectable Directed Event” supports two sub-types including “Low Duty
Cycle Directed Advertising” and “High Duty Cycle Directed Advertising”. Therefore,
five types of adv events are supported in all, as defined in
“proj_lib/ble/ble_common.h”. Please refer to “Core_v4.2” Page2609 ~ Page2615.

/* Advertisement Type */

AN-17092700-E4 111 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

typedef enum{
ADV TYPE CONNECTABLE UNDIRECTED = 0x00, // ADV_IND
ADV _TYPE CONNECTABLE DIRECTED HIGH DUTY = 0x01,
//ADV_INDIRECT IND (high duty cycle)

ADV TYPE SCANNABLE UNDIRECTED = 0x02 //ADV_SCAN IND

ADV TYPE NONCONNECTABLE UNDIRECTED = 0x03,
//ADV_NONCONN IND

ADV TYPE CONNECTABLE DIRECTED LOW DUTY = 0x04,

//ADV_INDIRECT IND (low duty cycle)

}advertising type;

By default, the most common adv event type is
“ADV TYPE CONNECTABLE UNDIRECTED".

3) ownAddrType
It serves to specify MAC address type in adv packet.

There are two basic address types: public and random.

/* Device Address Type */
#define BLE ADDR PUBLIC 0
#define BLE ADDR RANDOM 1

There are four optional values for “ownAddrType” to specify adv address type.
Please refer to “Core_v4.2” Pagel279 for address generation method.

typedef enum{
OWN_ADDRESS PUBLIC = 0,
OWN_ADDRESS RANDOM = 1,
OWN_ADDRESS RESOLVE PRIVATE PUBLIC = 2,
OWN_ ADDRESS RESOLVE PRIVATE RANDOM

I
w
~

}own addr type t;

Only the most basic “OWN_ADDRESS_PUBLIC” is introduced herein. Actually the
eventual address is the setting from APl “blc_II_initAdvertising_module(u8
*public_adr)” during MAC address initialization.

AN-17092700-E4 112 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4)

5)

6)

peerAddrType & *peerAddr

When advType is set as directed adv type
(ADV_TYPE CONNECTABLE DIRECTED HIGH DUTY or
ADV_TYPE CONNECTABLE DIRECTED LOW DUTY), the “peerAddrType” and
“*peerAddr” serve to specify the type and address of peer device MAC Address.

When advType is set as type other than directed adv, the two parameters are
invalid, and they can be set as “0” and “NULL".

adv_channelMap

The “adv_channelMap” serves to set advertising channel. It can be selectable
from channel 37, 38, 39 or combination.

#define BLT ENABLE ADV 37 BIT (0)
#define BLT ENABLE ADV 38 BIT (1)
#define BLT ENABLE ADV_ 39 BIT (2)
#define BLT ENABLE ADV ALL

(BLT _ENABLE ADV_37 | BLT ENABLE ADV 38 | BLT ENABLE ADV_39)

advFilterPolicy

The “advFilterPolicy” serves to set filtering policy for scan request/connect
request from other device when adv packet is transmitted. Address to be filtered
needs to be pre-loaded in whitelist.

Filtering type options are shown as below. The “ADV_FP_NONE” can be selected
if whitelist filter is not needed.

#define ADV_FP ALLOW SCAN ANY ALLOW CONN ANY 0x00
#define ADV FP ALLOW SCAN WL ALLOW CONN ANY 0x01
#define ADV FP ALLOW SCAN ANY ALLOW CONN WL 0x02
#define ADV FP ALLOW SCAN WL ALLOW CONN WL 0x03

#define ADV_FP NONE ADV _FP ALLOW SCAN ANY ALLOW CONN ANY

The table below lists possible values and reasons for the return value “ble_sts_t”.

ble_sts_t Value | ERR Reason

BLE SUCCESS 0

The intervalMin or intervalMax
HCI ERR INVALID HCI CMD PARAMS 0Ox12 value does not meet the
requirement of BLE spec.

AN-17092700-E4 113 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

According to Host command design in HCI part of BLE spec, eight parameters are
configured simultaneously by the “bls_IlI_setAdvParam” API. This setting also
takes some coupling parameters into consideration. For example, the “advType”
has limits to the setting of intervalMin and intervalMax, and range check depends
on the advType; if advType and advinterval are set in two APIs, the range check is
uncontrollable.

Since user often needs to modify some parameters, three independent APIs are
supplied, so that user can directly invoke one API to modify corresponding
parameter(s), rather than invoking the “bls_Il_setAdvParam” to set eight
parameters simultaneously.

ble sts tbls_11 setAdvInterval (ul6 intervalMin, ul6 intervalMax);
ble sts t bls_ 11 setAdvChannelMap (u8 adv_channelMap) ;

ble sts t bls_ 11 setAdvFilterPolicy(u8 advFilterPolicy);

Please refer to the “bls_II_setAdvParam” API for the parameters of the three APIs
above.

Return value ble sts t:

1) “bls_IlI_setAdvChannelMap” and “bls_Il_setAdvFilterPolicy” will always return
“BLE_SUCCESS".

2) “bls_IlI_setAdvinterval” will return “BLE_SUCCESS” or
“HCI_ERR_INVALID_HCI_CMD_PARAMS”.

3.2.9.8 bls_lI_setAdvEnable

Please refer to “Core_v4.2” Pagel1284 LE Set Advertising Enable Command.

ble sts t bls_ll setAdvEnable (u8 en);

en”: 1 - Enable Advertising; O - Disable Advertising.

1) InIdle state, by enabling Advertising, Link Layer will enter Advertising state.
2) In Advertising state, by disabling Advertising, Link Layer will enter Idle state.

3) In other states, Link Layer state won’t be influenced by enabling or disabling
Advertising.

4) ble sts_t will always return “BLE_SUCCESS”".

AN-17092700-E4 114 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.2.9.9 bls_llI_setAdvDuration

ble sts t bls 1l setAdvDuration (u32 duration us, u8 duration en);

After the “bls_II_setAdvParam” is invoked to set all adv parameters successfully,
and the “bls_Il_setAdvEnable (1)” is invoked to start advertising, the API
“bls_Il_setAdvDuration” can be invoked to set duration of adv event, so that
advertising will be automatically disabled after this duration.

“duration_en”: 1-enable timing function; 0-disable timing function.

“duration_us”: The “duration_us” is valid only when the “duration_en” issetas 1,
and it indicates the advertising duration in unit of us. When this duration expires,
“AdvEnable” becomes unvalid, and advertising is stopped. None Conn state will swtich
to Idle State. The Link Layer event “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be
triggered.

As specified in BLE spec, for the adv type
“ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY”, the duration time is fixed as
1.28s, i.e. advertising will be stopped after the 1.28s duration. Therefore, for this adv
type, the setting of “bls_IlI_setAdvDuration” won’t take effect.

The return value “ble_sts_t” is shown as below.

ble_sts_t Value | ERR Reason

BLE_SUCCESS 0

Duration Time can’t be configured for
HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12 “ADV_TYPE_CONNECTABLE_DIRECTED_HIGH
_DUTY”.

When Adv Duratrion Time expires, advertising is stopped, if user needs to re-
configure adv parameters (such as AdvType, Advinterval, AdvChannelMap), first the
parameters should be set in the callback function of the event
“BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, then the “bls_II_setAdvEnable (1)”
should be invoked to start new advertising.

To trigger the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, a special case should
be noted:

Suppose the “duration_us” is set as “2000000” (i.e. 2s).

- If Slave stays in advertising state, when adv time reaches the preset 2s timeout,
the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered to execute
corresponding callback function.

- If Slave is connected with Master when adv time is less than the 2s timeout

AN-17092700-E4 115 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

(suppose adv time is 0.5s), the timeout timing is not cleared but cached in bottom
layer. When Slave stays in connection state for 1.5s (i.e. the preset 2s timeout
moment is reached), since Slave won’t check adv event timeout in connection
state, the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” won’t be
triggered. When Slave stays in connection state for certain duration (e.g. 10s),
then terminates connection and returns to adv state, before it sends out the first
adv packet, the Stack will regard current time exceeds the preset 2s timeout and
trigger the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT". In this case,
the callback triggering time largely exceeds the preset timeout moment.

3.2.9.10 blc_Ill_setAdvCustomedChannel

The API below serves to customize special advertising channel/scanning channel,
and it only applies some special applications such as BLE mesh. It’s not recommended
to use this API for other conventional application cases.

void blc_1ll setAdvCustomedChannel (u8 chnO, u8 chnl, u8 chn2);

chn0/chn1/chn2: customized channel. Default standard channel is 37/38/39.

For example, to set three advertising channels as 2420MHz, 2430MHz and
2450MHz, the API below should be invoked:

blc_ll_setAdvCustomedChannel (8, 12, 22);

3.2.9.11 rf_set_power_level_index

826x BLE SDK supplies the API to set output power for BLE RF packet, as shown
below.

void rf_set_power_level_index (int level);

The “level” is selectable from the corresponding enum variable in the
“proj_lib/rf_drv_826x.h”". Take 8267 for example:

enum {
RF _POWER 8dBm = 0
RF_POWER 4dBm = 1,
RF_POWER 0dBm = 2
RF_POWER m4dBm = 3
RF_POWER ml0dBm = 4
RF_POWER ml4dBm = 5
RF_POWER m20dBm = 6,
RF_POWER m24dBm = 8
RF_POWER m28dBm = 9

AN-17092700-E4 116 Verl.3.0

/TELINIG

OSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook
RF_POWER m30dBm = 10,
RF_POWER m37dBm = 11,
RF_POWER OFF = 16,

}i
Suppose it’s needed to set the Tx power as the maximum value 8dbm:
rf_set_power_level_index(RF POWER 8dBm);

The Tx power configured by this API will take effect for both adv packet and conn
packet, and it can be set freely in firmware. The actual Tx power will be determined by
the latest setting.

3.2.9.12 blc_Ill_setScanParameter

Please refer to “Core_v4.2” Page1286 LE Set Scan Parameters Command.

ble sts t blc_ll setScanParameter (u8 scan type,
ul6 scan interval, ul6 scan window,

u8 ownAddrType, u8 filter policy);

Parameters:
1) scan_type

This parameter can be set as “passive scan” or “active scan”. The difference is: For
active scan, when adv packet is received, scan_req will be sent to obtain more
information of scan_rsp, and scan rsp packet will also be transmitted to BLE Host
via adv report event. For passive scan, scan req won’t be sent.

typedef enum {
SCAN TYPE PASSIVE = 0x00,
SCAN TYPE ACTIVE,

} scan_type t;

2) scan_inetrval/scan window

IH

“scan_interval” serves to set channel switch time in Scanning state (unit: 0.625ms).

“scan_window” is not processed in current Telink BLE SDK. Actual scan window is
set as scan_interval.

3) ownAddrType

This parameter serves to specify MAC address type in adv packet.

/* Device Address Type */
#define BLE ADDR PUBLIC 0

AN-17092700-E4 117 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4)

#define BLE ADDR RANDOM 1

There are four optional values for “ownAddrType” to specify address type of scan
req packet. Please refer to “Core_v4.2” Page1287 for address generation method.

typedef enum{
OWN ADDRESS PUBLIC = 0,
OWN ADDRESS RANDOM 1,
OWN ADDRESS RESOLVE PRIVATE PUBLIC
OWN ADDRESS RESOLVE PRIVATE RANDOM = 3,

Il
N
~

}own addr type t;

Only the most basic “OWN_ADDRESS_PUBLIC” is introduced herein. Actually the
eventual address is the setting from APl “blc_Il_initScanning_module(u8
*public_adr)” during MAC address initialization.

filter_policy
Currently supported scan filter policies include:
#define SCAN _FP ALLOW ADV_ANY 0x00

#define SCAN FP ALLOW ADV WL 0x01

“SCAN_FP_ALLOW_ADV_ANY” indicates Link Layer won’t filter scanned adv
packet, but directly report it to BLE Host.

“SCAN_FP_ALLOW_ADV_WL” indicates scanned adv packet must be in whitelist
so that it can be reported to BLE Host.

The return value “ble_sts_t” is always “BLE_SUCCESS”. Since APl won’t check
rationality of parameters, user should pay attention to this point when setting
parameters.

3.2.9.13 blc_lI_setScanEnable

Please refer to “Core_v4.2” Page1289 LE Set Scan Enable Command.

ble sts t blc_1ll setScanEnable (u8 scan enable, u8 filter duplicate);

“scan_enable”: 1 - Enable Scanning; O - Disable Scanning.
1) InIdle state, by enabling Scanning, Link Layer will enter Scanning state.
2) In Scanning state, by disabling Scanning, Link Layer will enter Idle state.

“filter_duplicate”: If it’s set as 1, it indicates enabling filter for repeated packet,

i.e. for each different adv packet, Controller only reports one “adv report event” to
Host. If it’s set as 0, it indicates disabling filter for repeated packet, i.e. all scanned adv

AN-17092700-E4 118 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

packets will be reported to Host.

The return value “ble_sts_t" is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_CONTROLLER_BUSY 0x3A

Link Layer is in BLS_LINK_STATE_ADV
/BLS_LINK_STATE_CONN state.

When “scan_type” is set as “active scan”, and Scanning is enabled, for each device,

scan_rsp will be read only once and reported to Host. Since after each “enable
scanning”, Controller will record and store scan_resp of different devices in a scan_rsp
list, thus scan_req won’t be sent to the device repeatedly.

In order to report scan_rsp of a device for multiple times, user can use

“blc_lI_setScanEnable” to repeatedly set “Enable Scanning”, since scan_rsp list will be
cleared for each “Enable/Disable Scanning”.

3.2.9.14 blc_Ill_createConnection

Please refer to “Core_v4.2” Page1291 LE Create Connection Command.

ble sts t ble 11 createConnection (ul6 scan interval, ul6 scan window,

1)

2)

u8 initiator filter policy,
u8 adr type, u8 *mac,
u8 own_ adr_ type,
ul6 conn min, ul6é conn max, ul6 conn latency, ul6 timeout,

ul6 ce min, ul6 ce max);

scan_inetrval/scan window

“scan_interval” serves to set Scan channel switch time in Initiating state (unit:
0.625ms).

“scan_window” is not processed in current Telink BLE SDK. Actual scan window is
set as scan_interval.

initiator_filter_policy

This parameter serves to specify device filter policy for current connection, and it
has two options as shown below:

#define INITIATE FP ADV_SPECIFY 0x00 //adv specified by host

#define INITIATE FP ADV WL 0x01 //adv in whitelist

AN-17092700-E4 119 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3)

4)

5)

6)

“INITIATE_FP_ADV_SPECIFY” indicates device address of connection is
adr_type/mac;

“INITIATE_FP_ADV_WL” device connection depends on whitelist rather than
adr_type/mac.

adr_type/ mac

When “initiator_filter_policy” is set as “INITIATE_FP_ADV_SPECIFY”, the device
with address type of adr_type (BLE_ADDR_PUBLIC or BLE_ADDR_RANDOM) and
address of mac[5...0] will be connected.

own_adr_type

This parameter serves to specify MAC address type used by Master role to
establish connection. “ownAddrType” has four optional values, as shown below.

typedef enum({
OWN_ ADDRESS PUBLIC 0,
OWN _ADDRESS RANDOM 1,
OWN_ ADDRESS RESOLVE PRIVATE PUBLIC = 2,
OWN ADDRESS RESOLVE PRIVATE RANDOM

Il
w
N

}own addr type t;

Only the most basic “OWN_ADDRESS_PUBLIC” is introduced herein. Actually the
eventual address is the setting from APl “blc_Il_initBasicMCU(u8 *public_adr)”
during MAC address initialization.

conn_min/ conn_max/ conn_latency/ timeout

The four parameters specify connection parameters of Master role after
connection is established. Since these parameters will be sent to Slave via
“connection request”, Slave will use the same connection parameters.

“conn_min” and “conn_max” specify the range of conn interval. In Telink BLE SDK,
Master role Single Connection directly uses the value of “conn_min”. Unit is
0.625ms.

“conn_latency” specifies connection latency, and generally it’s set as 0.

“timeout” specifies connection supervision timeout in unit of 10ms.

ce_min/ ce_max

“ce_min”/“ce_max” are not processed in current SDK.

AN-17092700-E4 120 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The return value is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

Link Layer is already in Initiating state,
HCI_ERR_CONN_REJ_LIMITED_RESOURCES | 0x0D and won’t receive new “create
connection”.

Link Layer is in Advertising state or
HCI_ERR_CONTROLLER_BUSY 0x3A .
Connection state.

3.2.9.15 blc_Ill_setCreateConnectionTimeout
ble sts t blec_1ll1l setCreateConnectionTimeout (u32 timeout ms);

The return value is “BLE_SUCCESS”, and the unit of “timeout_ms” is ms.

As introduced in Link Layer state machine, when “blc_Il_createConnection”
triggers Idle state/Scanning state to enter Initiating state, if if connection fails to be
established until “Initiate timeout” is triggered, it will exit Initiating state.

Whenever “blc_Il_createConnection” is invoked, by default current “Initiate
timeout” is set as “connection supervision timeout *2” in SDK. User can modify this
“Initiate timeout” as needed by invoking “blc_Il_setCreateConnectionTimeout”
following “blc_Il_createConnection”.

3.2.9.16 bim_Ill_updateConnection

Please refer to “Core_v4.2” Page1302 LE Connection Update Command.

ble sts t blm 11 updateConnection (ul6 connHandle,
ul6 conn min, ul6é conn max, ul6 conn latency, ul6 timeout,

ul6 ce min, ul6 ce max);

1) connection handle
This parameter serves to specify connection to updata connection parameters.

2) conn_min/ conn_max/ conn_latency/ timeout

The four parameters serve to specify new connection parameters. Currently
“Master role single connection” directly use “conn_min” as new interval.

3) ce_min/ce_max

AN-17092700-E4 121 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The two parameters are not processed currently.

The return value “ble_sts_t” is always “BLE_SUCCESS”. Since APl won’t check
rationality of parameters, user should pay attention to this point when setting
parameters.

3.2.9.17 bls_Ill_terminateConnection

Please refer to “Core_v4.2” Page2593 LL_TERMINATE_IND.

ble sts t bls 1l terminateConnection (u8 reason);

This APl is used for BLE Slave device, and it only applies to Connection state Slave
role.

In order to actively terminate connection, this APl can be invoked by APP Layer to
send a “Terminate” to Master in Link Layer. “reason” indicates reason for
disconnection and it corresponds to the “ble_sts_t” defined in “ble_common.h”.
Please refer to “Core_v4.2” Page680 Error Code Descriptions.

If connection is not terminated due to system operation abnormity, generally
APP layer specifies the “reason” as:

HCI_ERR_REMOTE_USER_TERM_CONN =0x13
bls 11 terminateConnection (HCI_ERR_REMOTE_USER_TERM_CONN) ;

In bottom-layer stack of Telink BLE SDK, this API is invoked only in one case to
actively terminate connection: When data packets from peer device are decrpted, if
an authentication data MIC error is detected, the
“bls_II_terminateConnection(HCI_ERR_CONN_TERM_MIC_FAILURE)” will be invoked
to inform the peer device of the decryption error, and connection is terminated.

After Slave invokes this APl to actively initiate disconnection, the event
“BLT_EV_FLAG_TERMINATE” will be triggered. The terminate reason in the callback
function of this event will be consistent with the reason manually configured in this
API.

In Connection state Slave role, generally connection will be terminated
successfully by invoking this APIl; however, in some special cases, the APl may fail to
terminate connection, and the error reason will be indicated by the return value
“ple sts_ t”. It’'s recommended to check whether the return value is “BLE_SUCCESS”
when this API is invoked by APP layer.

ble sts t Value | ERR Reason

BLE_SUCCESS 0

AN-17092700-E4 122 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

ble sts_t Value | ERR Reason

HCI_ERR_CONN_NOT_ESTABLISH O0x3E Link Layer is not in Connection state Slave role.

Controller busy (mass data are being
HCl_ERR_CONTROLLER_BUSY 0x3A transferred), this command cannot be
accepted for the moment.

3.2.9.18 bim_Il_disconnect

Please refer to “Core_v4.2” Page2593 LL_TERMINATE_IND.

ble sts t blm 11 disconnect (ul6 handle, u8 reason);

This APl is used for BLE Master device and it only applies to Connection Master
role.

This APl is similar to the function of the API “API bls_Il_terminateConnection” of
Slave role, except that a conn handle parameter is added. Since in Telink BLE SDK, Slave
role design can only sustain single connection, while Master role supports multi
connection, it’s necessary to specify connection handle of disconnect.

The return value is shown as below:

ble sts_t Value | ERR Reason

BLE_SUCCESS 0

Handle error, cannot find corresponding
HCI_ERR_UNKNOWN_CONN_ID 0x02)
connection.

Controller busy (mass data are being
HCI_ERR_CONTROLLER_BUSY 0x3A transferred), this command cannot be
accepted for the moment.

3.2.9.19 Get Connection Parameters

The following APIs serves to obtain current connection paramters including
Connection Interval, Connection Latency and Connection Timeout (only apply to Slave
role).

ulo bls 11 getConnectionInterval (void);

ulé bls 11 getConnectionlLatency (void);

AN-17092700-E4 123 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

ul6 bls 11 getConnectionTimeout (void) ;

1) Ifreturnvalueis O, it indicates current Link Layer state is None Conn state without
connection parameters available.

2) The returned non-zero value indicates the corresponding parameter value.

<> Actual conn interval divided by 1.25ms will be returned by the API
“bls_II_getConnectioninterval”. Suppose current conn interval is 10ms, the
return value should be 10ms/1.25ms=8.

<> Acutal Latency value will be returned by the API
“bls_II_getConnectionLatency”.

<> Actual conn timeout divided by 10ms will be returned by the API
“bls_II_getConnectionTimeout”. Suppose current conn timeout is 1000ms,
the return value would be 1000ms/10ms=100.

3.2.9.20 blc_Ill_getCurrentState

The API below serves to obtain current Link Layer state.

u8 blc_1ll getCurrentState(void);

User can invoke the “bls_II_getCurrentState()” in APP layer to judge current state,
e.g.

if(bls_Il_getCurrentState() == BLS_LINK_STATE_ADV)

if(bls_Il_getCurrentState() == BLS_LINK_STATE_CONN)

3.2.9.21 blc_Ill_getLatestAvgRSSI

The API serves to obtain latest average RSSI of connected peer device after Link
Layer enters Slave role or Master role.

u8 blc 11 getLatestAvgRSSI (void)

The return value is u8-type rssi_raw, and the real RSSI should be: rssi_real =
rssi_raw- 110. Suppose the return value is 50, rssi = -60 db.

3.2.9.22 Whitelist & Resolvinglist

As introduced above, “filter_policy” of Advertising/Scanning/Initiating state

AN-17092700-E4 124 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

involves Whitelist, and actual operation may depend on devices in Whitelist. Actually
Whitelist contains two parts: Whitelist and Resolvinglist.

User can check whether address type of peer device is RPA (Resolvable Private
Address) via “peer_addr_type” and “peer_addr”. The APl below can be invoked

directly.

#define IS NON RESOLVABLE PRIVATE ADDR (type, addr)
((type)==BLE ADDR RANDOM && (addr[5] & 0xCO) == 0x00)

Only non-RPA address can be stored in whitelist. In current SDK, whitelist can
store up to four devices.

#define MAX WHITE LIST SIZE 4

The API below serves to reset whitelist:

ble sts t 11 whiteList_reset(void);

The return value is “BLE_SUCCESS”.

The API below serves to add a device into whitelist:

ble sts t 11 whitelList_add(u8 type, u8 *addr);

The return value is shown as below.

ble sts_t Value | ERR Reason

BLE_SUCCESS 0 Add success

HCI_ERR_MEM_CAP_EXCEEDED 0x07 | Whitelist is already full, add failure

The APl below serves to delete a device from whitelist:

ble sts t 11 whiteList delete (u8 type, u8 *addr);

The return value is “BLE_SUCCESS”.

RPA (Resolvable Private Address) device needs to use Resolvinglist. To save RAM
space, “Resolvinglist” can store up to two devices in current SDK.

#define MAX WHITE IRK LIST SIZE 2

The APl below serves to reset Resolvinglist.

ble sts t 11 resolvingList reset (void);

AN-17092700-E4 125 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The return value is “BLE_SUCCESS”.

The APl below serves to enable/disable device address resolving for Resolvinglist.

ble sts t 11 resolvingList_setAddrResolutionEnable (u8 resolutionEn);

The APl below serves to add device using RPA address into Resolvinglist.
ble sts t 11 resolvingList_add(u8 peerIdAddrType, u8 *peerIdAddr,

u8 *peer irk, u8 *local irk);

peerldAddrType/ peerldAddr and peer-irk indicate identity address and irk
declared by peer device. These information will be stored into flash during pairing
encryption process, and corresponding interfaces to obtain the info are available in
SMP part. “local_irk” is not processed in current SDK, and it can be set as “NULL".

The APl below serves to delete a RPA device from Resolvinglist.
ble sts t 11 resolvingList_delete (u8 peerIdAddrType, u8 *peerIdAddr);

For usage of address filter based on Whitelist/Resolvinglist, please refer to
“TEST_WHITELIST” in 826x feature test.

smp param save t bondInfo:

uf bond number = blc smp param getCurrentBondingDeviceNumber(): //get bonded device number
if (bond number) //get latest device info
{
blc_smp_param loadByIndex(bond number - 1, &bondInfo); //get the latest bonding device (index: bond number-1)

}

11 _whiteList_reset():
11 resolvingList _resec(}:; //cl

if (bond number) f/use whitelist to filter master device
i
app whiltelist enable = 1;

//if master device use RPA(resclvable private address), must add irk to resolving list
if{ IS_RESCLVABLE_PRIVATE_ADDR (bondInfo.peer_addr type, bondInfo.peer_addr)){
f/resolvable private address, should add peer irk to resolving list
11_resolvingList_add (bondInfo.peer id adrType, bondInfo.peer id addr, bondInfo.peer irk, NULL): //no local IRK
11 resolvingList sethddrResolutionEnable (1) ;
}
else{
/fif not resolvable random address, add peer address to whitelist
11 whitelList add(bondInfo.peer addr type, bondInfo.peer addr):;

bls_11_setAdvParam(ADV_INTERVAL 30MS, ADV_INTERVAL 30MS, \
ADV_TYPE CONNECTABLE UNDIRECTED, OWN_ADDRESS PUBLIC, \
0, NULL, BLT ENABLE ADV_37, ADV_FP_ALLOW_SCAN WL ALLOW_CONN_WL):

H
else{

bls 11 setAdvParam(ADV_INTERVAL 30MS, ADV INTERVAL 30MS,
ADV_TYPE CONNECTABLE UNDIRECTED, OWN_ADDRESS PUBLIC,
0, NULL, BLT ENABLE ADV_ 37, ADV_FP_NONE);

Figure3-33 Whitelist/Resolvinglist address filter
3.2.9.23 blc_lI_set_CustomedAdvScanAccessCode
In some snerio, user need to modify accesscode, SDK now provides API

AN-17092700-E4 126 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

blc_11_set CustomedAdvScanAccessCode() for this.
Original function:

static inline void blc_11_ set_CustomedAdvScanAccessCode(u32 accss_code);

User can call this function when accesscode need to be modified.

3.2.10 2M PHY Supported

2M PHY is a new Link layer feature supported since BLE Core 5.0. Please refer to
BLE Spec {Core_v5.0) (Vol 6/Part B/ Link Layer Specification) for detail.

2M PHY use 3 PDU(LL_PHY_REQ/LL_PHY_RSP/LL_PHY_UPDATE_IND) to interact
between master and slave contollers, and to set the transmit frenquency of RF
transceiver. 2M PHY feature is only avialble when the connection is estabilished.
Both master and slave can enable this process, when master enables this process,
master will send LL_PHY_REQ PDU, slave will send LL_PHY_RSP PDU to answer, this is
master and slave change the first priority PHY they support, then, master will sent
LL_PHY_UPDATE_IND, when the instance reaches, master and slave will use new PHY
to send/receive data; if slave enable this process, slave will send LL_PHY_REQ PDU,
master will send LL_PHY_UPDATE_IND to answer, and when instance reaches, master
and slave will use new PHY to send/receive data.

SDK3.3.0 also supports 2M PHY, but it is only applicable for 8269 SoC series. The
function is default enabled. SDK provides APIs for users to support 2M PHY function,
details as following. Please be noted, SDK supports only symmetrical PHY, i.e., RX PHY
and TX PHY should be set as the same.

€ For Slave, please refer to Demo “8269_feature_test”,
Define macro in vendor/8269_feature_test/app_config.h
#define FEATURE TEST MODE TEST 2M PHY CONNECTION
¢ For master, please refer to Demo “8269_master_kma_dongle”.

All equipments supporting 2M PHY are compatible with Telink Slave equipment,
users can choose freely.

If user use Telink SDK, please add API
blc_11 init2MPhy feature ();

in function void user init (veid) in
vendor/8269_master_kma_dongle/app.c(disabled by default in SDK).

2M PHY API detail as following:

1. void blc_11_init2MPhy_feature(void);

AN-17092700-E4 127 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

This APl initialize 2M PHY related parameters.

If PHY Update is started by master, user only need to call this initialization function,
and BLE stack will do the rest.

2. void blc_11_setPhy()
ble sts_t blc_11_setPhy(ul6 connHandle,

le_phy_prefer_mask_t all phys,
le_phy_prefer_type_t tx_phys,
le_phy prefer_type_t rx_phys);

Function description as following:

connHandle Connection Handle, for slave, it is BLS_CONN_HANDLE, for master,
it is BLM_CONN_HANDLE

all_phys Set if there are preferred TX and RX PHY. This is emumerated
parameter, common value is PHY_TRX _PREFER. Refer to
le_phy_prefer_mask_t definition for other value.

tx_phys
Preferred TX PHY. This is emumerated parameter, available values are
PHY_PREFER_1M and PHY_PREFER 2M. Whether this parameter is
used depends on whether all_phys defines preferred tx phy.

rx_phys Preferred RX PHY. This is emumerated parameter, available values are

PHY_PREFER_1IM and PHY_PREFER_2M. Whether this parameter is
used depends on whether all_phys defines preferred rx phy.

If PHY update is started by slave, then user need to call this API to set preferred PHY.
3. void bls_app_registerEventCallback(u8 e, blt event callback t p)

If user want to execute some user-defined operation after PHY Update, they can
register callback function. Parameter: BLT_EV_FLAG_PHY_UPDATE. Check ”Telink
defined event” for detail of this APl usage.

3.2.11 Data Length Extension
BLE spec supports data length extension (DLE) for core_4.2 and abover verison.

This BLE SDK supports data length extension on Link Layer, and rf_len supports up
to BLE spec max length 251 bytes.

Please refer to { Core v5.0) (Vol 6/Part B/2.4.2.21 “LL_LENGTH_REQ and

AN-17092700-E4 128 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

LL_LENGTH_RSP”) for detail.
Please follow the following steps to use data length extension function.
1) Set suitable TX & RX fifo size

Long packets need bigger TX&RX fifo size, these fifo will take large SRAM space,
sol user should set suitable fifo size to avoid wasting SRAM space.

Sending long packet need bigger TX fifo size. TX fifo size should be at least bigger
than TX rf_len plus 12, and it must be configured as 4 KB aligned. E.g.:

TX rf_len = 56 bytes: MYFIFO_INIT(blt_txfifo, 68, 8);
TX rf_len =141 bytes: MYFIFO_INIT(blt_txfifo, 156, 8);
TXrf_len =191 bytes: MYFIFO_INIT(blt_txfifo, 204, 8);

Recieving long packet need bigger RX fifo size. RX fifo size should be at least bigger
than TX rf_len plus 24, and it must be configured as 16 KB aligned. E.g.:

RX rf_len = 56 bytes: MYFIFO_INIT(blt_rxfifo, 80, 8);

RX rf_len =141 bytes: MYFIFO_INIT(blt_rxfifo, 176, 8);

RX rf_len =191 bytes: MYFIFO_INIT(blt_rxfifo, 224, 8);
If both TX and RX max supporting length is 200 bytes, the configuration should be:
MYFIFO_INIT(blt_txfifo, 212, 8);
MYFIFO_INIT(blt_rxfifo, 224, 8);

2) data length exchange

Before sending/receiving long packet, data length exchange operation must
succeed in BLE connection.

data length exchange operation is the interaction of LL_ LENGTH_REQ and
LL_LENGTH_RSP on Link Layer. Either slave or master can start this by sending
LL_LENGTH_REQ, and the other part will answer LL LENGTH_RSP. By this
interaction of the 2 packets, master and slave will be acknowledged of the max
length of TX and RX packet of each other, the smaller value will define the max
sending/receiving packet length.

No matter which side start LL_LENGTH_REQ, when data length exchange
operation succeeds, SDK will generate BLT_EV_FLAG_DATA_LENGTH_EXCHANGE
callback (in case the callback has been registered), users can refer to "Telink
defined event” for the definition of this callback function’s parameters.

In this BLT_EV_FLAG_DATA_LENGTH_EXCHANGE callback functions, user can
get the final max length of TX packet and RX packet respectively.

AN-17092700-E4 129 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

When 826x severs as BLE slave equipment, master may or may not actively
start LL_LENGTH_REQ. If master does not actively start LL_LENGTH_REQ, then
slave need to start LL_LENGTH_REQ. SDK provides the following APl to start
LL_LENGTH_REQ.

ble_sts_t blc_11_exchangeDataLength (u8 opcode, ul6 maxTxOct);

in which, configure opcode as LL_LENGTH_REQ, configure maxTxOct as the
max supported TX packet length, e.g, when max TX packet length is 200 bytes, the
configuration is as following:

blc_11_exchangeDataLength(LL_LENGTH_REQ , 200);

Slave is unaware of whether master start LL_LENGTH_REQ, here is one way
to check: register BLT_EV_FLAG_DATA_LENGTH_EXCHANGE callback, after
connention is established, enable a software timer (e.g, 25) to time, if the callback
is not triggered when the timing is over, it means master does not start
LL_LENGTH_REQ, in this case, slave need to call API blc_II_exchangeDatalength to
start LL_LENGTH_REQ actively.

3) MTU size exchange

MTU size exchange operation must also succeed to ensure max MTU size is
effective, so that to guarantee the opposite equipment can deal with long packet.
MTU size should be equal or bigger than max TX&RX packet length. User can set
MTU size by calling blc_att_setRxMtuSize() when initialazition, otherwise the
default value is 23 bytes.

For MTU size exchange realization, please refer to " ATT & GATT” section, or
826x_feature_test demo.

4) Sending/receiving long packet operation

Please refer to “ATT & GATT” first, including Handle Value Notification and Handle
Value Indication, Write request and Write Command.

After the 3 operation described above succeed, user can sending/receiving long
packet.

To send long packet, call Handle Value Notification and Handle Value Indication
related APl in ATT layer, as shown below, just input the sending data address and length
in formal parameter *p” and "len” respectively.

ble sts t bls_att pushNotifyData (ul6 handle, u8 *p, int len);

ble sts t bls_att pushIndicateData (ul6 handle, u8 *p, int len);

To receive long packet, call callback function "w” of Write request and Write
Command, use the data that the formal parameter pointer point to.

AN-17092700-E4 130 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.3 L2CAP

As specified in BLE Spec, L2CAP is mainly used for data transfer between Controller
and Host. Most work are finished in stack bottom layer with little involvement of user.
User only needs to invoke the following APIs to set correspondingly.

3.3.1 Register L2CAP data processing function

In BLE SDK architecture, Controller transfers data with Host via HCI. Data from HCI
to Host will be processed in L2CAP layer first. The APl below serves to register this
processing function.

void blc _1l2cap_register_ handler (void *p);

In BLE Slave applications such as 826x remote/826x module, the function to
process data of Controller in L2CAP layer of SDK is shown as below:

int blc_1l2cap_packet receive (ul6 connHandle, u8 * p);

This function is already implemented in stack, which it will analyze the received
data and transfer the data to ATT or SMP.

Initialization:

blc 1l2cap register handler (blc l2cap packet receive);

In 826x master kma dongle, APP layer contains BLE Host function, and its
processing function is supplied in source code for user reference:

int app_l2cap_handler (ul6 conn handle, u8 *raw pkt);

Initialization:

blc 1l2cap register handler (app_lZ2cap_handler);

In 826x hci, only Slave controller is implemented. The function
“blc_hci_sendACLData2Host” serves to transmit data of controller to BLE Host device
via hardware interface such as UART/USB.

int blc_hci_sendACLData2Host (ul6 handle, u8 *p)

Initialization: blc_I2cap_register_handler (blc_hci_sendACLData2Host);

3.3.2 Update connection parameters

3.3.2.1 Slave requests for connection parameter update

In BLE stack, Slave can actively apply for a new set of connection parameters by

AN-17092700-E4 131 Verl.3.0

/TELIN
‘55"”"°"’"“C"°"b Telink TLSR826x BLE SDK Developer Handbook

sending a “CONNECTION PARAMETER UPDATE REQUEST” command to Master in
L2CAP layer. The figure below shows the command format. Please refer to “Core_v4.2”
Page 1775 CONNECTION PARAMETER UPDATE REQUEST.

LSB octet 0 octet 1 octet 2 octet 3 MSB
Code=0x12| |dentifier Length
Interval Min Interval Max

Slave Latency Timeout Multiplier

Figure 4.22: Connection Parameters Update Request Packet

Figure3-34 Connection Para update Req format in BLE stack

826x BLE SDK supplies an APl in L2CAP layer for Slave to send a “CONNECTION
PARAMETER UPDATE REQUEST” command to Master and actively apply for a new set
of connection parameters.

void bls_l2cap requestConnParamUpdate (ul6 min interval,
ul6 max interval,

ul6e latency, ul6 timeout);

*Note: The four parameters of this API correspond to the parameters in the “data”
field of the “CONNECTION PARAMETER UPDATE REQUEST”. The “min_interval” and
“max_interval” are the actual interval time divided by 1.25ms (e.g. for 7.5ms
connection interval, the value should be 6); the “timeout” is actual supervision
timeout divided by 10ms (e.g. for 1s timeout, the value should be 100).

Application example: Slave requests for new connection parameters when connection
is established.

void task_connect (u8 e, u8 *p)

{
bls 1l2cap requestConnParamUpdate (6, 6, 99, 400) ;
//interval=7.5ms latency=99 timeout=4s
}
] Data Header L2CAP Header —r SIG Pkt Header SIG_Connection_Param_Update_Req
tus|\Data TYP€ ||/ /1) MESN SN MD EDU-Lengch ||L2CAP-Length Chenld [|[Code Id Date-Length ||IntervalMin IntcrvalMax SlaveLabemcy TimeoutMultiplier| Chv
LICAE-S || 2 1 0 0 16 0x000C 0x0005 |[0x12 0x01 020008 0x0006 0%0006 0x0063 0x0130 0x28D8
] Data Header L2CAP Header SIG Pkt Header SIG_Connection_Param_Update_Rs R3Sl
tus|\DataType ||\ - \FsN SN MD PDU-Length ||L2CAP-Tength Chanld||Code Id Data—Length ||Result Bl cre (@Bm) [|FC*
LaCAE-S || 2 1 1 0 10 0x0006 0x0005 |[0x13 0x01 0x0002 0x0000 ox2oE4e3 || —3e || ok |
PN [P | Data Header [P -
Figure3-35 BLE sniffer packet sample: conn para update request & response
3.3.2.2 Master responds to connection parameter update request

After Master receives the “CONNECTION PARAMETER UPDATE REQUEST”

AN-17092700-E4

132

Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

command from Slave, it will respond with a “CONNECTION PARAMETER UPDATE
RESPONSE” command. Please refer to “Core_v4.2” Page 1776 CONNECTION
PARAMETER UPDATE RESPONSE.

The figure below shows the command format: if “result” is “0x0000”, it indicates
the request command is accepted; if “result” is “Ox0001”, it indicates the request
command is rejected. Whether actual Android/iOS device will accept or reject the
connection parameter update request is determined by corresponding BLE Master.
User can refer to Master compatibility test.

As shown in Figure3-35, Master accepts the request.

LSB

octet 0 octet 1 octet 2 octet 3 MSB

Code=0x13| Identifier Length

Result

Figure 4.23: Connection Parameters Update Response Packef

The data field is:
« Result (2 octets)

The result field indicates the response to the Connection Parameter Update
Request. The result value of 0x0000 indicates that the LE master Host has
accepted the connection parameters while 0x0001 indicates that the LE
master Host has rejected the connection parameters.

Result Description
0x0000 Connection Parameters accepted
0x0001 Connection Parameters rejected
Other Reserved
Figure3-36 conn para update rsp format in BLE stack

Following shows demo code to process connection parameter update request of
Slave in Telink 826x master kma dongle.

AN-17092700-E4

133

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

el=ze if (ptrl2cap->chanld == L2CAP CID SIG CHANMNEL) //=signal
1
if (ptrl2cap->opcode == L2CAP CHMD CONN_UFPD PARA REQ) f/fslave send conn param update regqg on l1l2cap
i
rf packet_l2cap connParalUpReq t * req = (rf_packet_l2cap connParaUpReq t *)ptrL2cap;
u32 interval us = reqg->min interval*1250; //1.25ms unit
u32 timeout us = reg->timeout*10000; //10m= unit
u32 long suspend us = interval us * (reg->latency+l):

terval < 200ms

ng suspend < 115

/ nterval * (latency +1)*2 <= timeout
if(interval us < 200000 && long suspend us < 20000000 && (long suspend us*2<=timeout_wus))

f/fif accept, master host should mark this, add will send update conn param req on link la
ff3et a flag here, then send update conn param req in mainloop

host_update conn param req = clock time() | 1 ; //in case zero value

host_update conn min = reqg->min interval: //backup update param

host_update_conn_latency = reg->latency;
host_update conn_ timeout = reg->timeout:
¥
else
{
blc_12cap SendConnParamlUpdateResponse (current connHandle, CONN PARAM DUPDATE REJECT): //se:
H

After “L2CAP_CMD_CONN_UPD_PARA_REQ” is received in
“L2CAP_CID_SIG_CHANNEL", it will read interval_min (used as eventual interval),
supervision timeout and long suspend time (interval * (latency +1)), and check the
rationality of these data. If interval < 200ms, long suspend time<20s and supervision
timeout >= 2* long suspend time, this request will be accepted; otherwise this request
will be rejected. User can modify as needed based on this simple demo design.

No matter whether parameter request of Slave is accepted, the APl below can be
invoked to respond to this request.

void Dblc_l2cap_SendConnParamUpdateResponse (ul6 connHandle,
int result);
“connHandle” indicates current connection ID.

“result” has two options to indicate “accept” and “reject”, respectively.

typedef enum{

CONN_PARAM UPDATE ACCEPT = 0x0000,

CONN_ PARAM UPDATE REJECT = 0x0001,
}conn para up rsp;

If 826x Master accepts request of Slave, it must send a update cmd to Controller
via the APl “blm_Il_updateConnection” within certain duration. In demo code,
“host_update_conn_param_req” is used as mark, and a 50ms delay is set in mainloop
to initiate this update.

AN-17092700-E4 134 Verl.3.0

LIN

"EM"o""’”C"o”b Telink TLSR826x BLE SDK Developer Handbook

J//proc master update
ffat least 50ms later and make sure smp/sdp is finished
if(host update conn param req && clock time exceed(host update conn param req, 50000) &£& !app host_ smp =sdp pe
{
host_update_conn_param req = 0;

if (blc 11 getCurrentState(} = BLS_LINK STATE CONN){ //still in connection state
blm 11 updateConnection (current connHandle,
host_update conn min, host update conn min, host update conn latency, host_update_conn timeou
O, O }):

3.3.23 Master updates connection parameters in Link Layer

After Master responds with “conn para update rsp” to accept the “conn para
update req” from Slave, Master will send a “LL_CONNECTION_UPDATE_REQ”

command in Link Layer.

Data Header RSSI
Data Ty CRC FCs
YP® |ILID NESN SN MD PDU-Length (dBm)
Erpry PDO| 1 0 1 o 0 oxerEQ0F |0 || oK |

Data Header
LLID NESN SN MD FDU-Length
Contrel || 3 1 1 0 12

@ J

Data Type

|

Figure3-37 BLE sniffer packet sample: 1l conn update req

Slave will mark the final parameter as the instant value of Master after it receives
the update request. When the instant value of Slave reaches this value, connection
parameters are updated, and the callback of the event
“BLT_EV_FLAG_CONN_PARA_UPDATE” is triggered.

The “instant” indicates connection event count value maintained by Master and
Slave, and it ranges from 0x0000 to Oxffff. During a connection, Master and Slave
should always have consistent “instant” value. When Master sends “conn_req” and
establishes connection with Slave, Master switches state from scanning to connection,
and clears the “instant” of Master to “0”. When Slave receives the “conn_req”, it
switches state from advertising to connection, and clears the instant of Slave to “0”".
Each connection packet of Master and Slave is a connection event. For the first
connection event after the “conn_req”, the instant value is “1”; for the second
connection event, the instant value is 2, and so on.

When Master sends a “LL_CONNECTION_UPDATE_REQ”, the final parameter
“instant” indicates during the connection event marked with “instant”, Master will use
the values corresponding to the former connection parameters of the
“LL_CONNECTION_UPDATE_REQ” packet. After the “LL_CONNECTION_UPDATE_REQ”
is received, the new connection parameters will be used during the connection event
when the instant of Slave equals the declared instant of Master, thus Slave and Master
can finish switch of connection parameters synchronously.

AN-17092700-E4 135 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.4 ATT & GATT

3.4.1 GATT basic unit “Attribute”

GATT defines two roles: Server and Client. In 826x BLE SDK, Slave is Server, and
corresponding Android/iOS device is Client. Server needs to supply multiple Services
for Client to access.

Each Service of GATT consists of multiple Attributes, and each Attribute contains
certain information.

GATT Server

Service

Attribute

Attribute

Service

Attribute

Attribute

Attribute

Figure3-38 GATT service containing Attribute group
The basic contents of Attribute are shown as below:
1) Attribute Type: UUID

The UUID is used to identify Attribute type, and its total length is 16 bytes. In BLE
standard protocol, the UUID length is defined as two bytes, since Master devices follow
the same method to transform 2-byte UUID into 16 bytes.

When standard 2-byte UUID is directly used, Master should know device types
indicated by various UUIDs. 826x BLE stack defines some standard UUIDs in
“proj_lib/ble_l2cap/hids.h”, “proj_lib/ble_I2cap/gatt_uuid.h” and
“proj_lib/ble_l2cap/service.h”.

Telink proprietary profiles (OTA, MIC, SPEAKER, and etc.) are not supported in

AN-17092700-E4 136 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

standard Bluetooth. The 16-byte proprietary device UUIDs are defined in
“proj_lib/ble_l2cap/service.h”.

2) Attribute Handle

Slave supports multiple Attributes which compose an Attribute Table. In Attribute
Table, each Attribute is identified by an Attribute Handle value. After connection is
established, Master will analyze and obtain the Attribute Table of Slave via “Service
Discovery” process, then it can identify Attribute data via the Attribute Handle during
data transfer.

3) Attribute Value

Attribute Value corresponding to each Attribute is used as request, response,
notification and indication data. In 826x BLE stack, Attribute Value is indicated by one
pointer and the length of the area pointed by the pointer.

3.4.2 Attribute and ATT Table

To implement GATT Service on Slave, an Attribute Table is defined in 826x BLE SDK
and it consists of multiple basic Attributes. Attribute definition is shown as below.

typedef struct attribute
{
ul6o attNum;
u8 perm;
u8 uuidLen;
u32 attrlen; //4 bytes aligned
u8* uuid;
u8* pAttrValue;
att readwrite callback t w;

att readwrite callback t «r;

} attribute t;

Attribute Table code is available in “app_att.c”, as shown below:

AN-17092700-E4 137 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
lgonst attribute_t my Attributesz[] = {

{50,0,0,0,0,0}, //f total num of attribute
S/ 0001 - 0007 gap
{7,ATT PEBMISSIONS READ, 2,2, (ug®) (amy primaryServiceUUID), (ug8*) (&my gapServiceUUID), 0},
{0,ATT PEFMISSIONS READ,2,1, (u8*®) (&my characterUUID), (uB8*) (&my devNameCharacter), 0},
{0,ATT PERMISSIONS READ, 2,sizeof (my devName), (u8*) (émy devNameUUID), (u8*) (my devName), O},
{0,ATT PEPMISSICNS READ, 2,1, (ug®) (&my characterUUID), (ug8*) (&my_ appearanceCharacter),
{0,ATT PEEMISSIONS READ,2,sizeof (my appearance), (ug¥) (émy appearanceUIID), (uB*) (&my aj
{0,ATT PERMISSIONS READ, 2,1, (u8*%) (&my characterUUID), (u8*) (&my periConnParamChar), 0O

{0,ATT_PEPMISSICNS READ,2,sizecf (my periConnParameters), (U8*) (&my periConnParamUuiDl), {ug

S/ 0008 - 000a device Information Service
{3,ATT PEBMISSIONS READ, 2,2, (ug®) (émy primaryServiceUUID), (ug8*) (&my devServiceUUID), 0},
{0,ATT PEFMISSIONS READ,2,1, (u8*®) (&my characterUUID), (u8*) (&émy PnPCharacter), 0},

{0,ATT_PERMISSTONS READ, 2,=sizeof (my PnPtrs), (uf+*) (émy PnPUUID), (u8*) (my PnPtrs), 0},

! b

{27,ATT PERMISSIONS READ, 2,2, (uB¥) (émy primaryServiceUUID), (uB8*) (&my hidServiceUUID), {
f/f 000c — 000e include battery service

{0,ATT PERMISSTONS READ, 2,=sizeof (include), (ug*) (¢hidIncludeUUID), (u8*) (include), 0},

S/ 000d - 000e protocol mode

{0,ATT PEBMISSIONS READ, 2,1, (u8*®) (&my characterUUID), {ud*) (sprotocolModeProp), 0},
{0,ATT PEBMISSIONS RDWR,2, sizeof (protocolMode}, (ug*) (éhidProtocolModeUUID), {u8*) {E&prot

Figure3-39 Attribute Table in 826x BLE SDK

*Note: The key word “const” is added before Attribute Table definition:
const attribute_t my_Attributes[] ={... };

By adding the “const”, the compiler will store the array data to flash rather than
RAM, while all contents of the Attribute Table defined in flash are read only and not
modifiable.

3.4.2.1 attNum

The “attNum” supports two functions.

1) The “attNum” can be used to indicate the number of valid Attributes in current
Attribute Table, i.e. the maximum Attribute Handle value. This number is only used
in the invalid Attribute item O of Attribute Table array.

{50,0,0,0,0,0},
“attNum = 50” indicates there are 50 valid Attributes in current Attribute Table.

In BLE, Attribute Handle value starts from 0x0001 with increment step of 1, while
the array index starts from 0. When this virtual Attribute is added to the Attribute Table,
each Attribute index equals its Attribute Handle value. After the Attribute Table is
defined, Attribute Handle value of an Attribute can be obtained by counting its index
in current Attribute Table array.

AN-17092700-E4 138 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The final index is the number of valid Attributes (i.e. attNum) in current Attribute
Table. In current SDK, the attNum is set as 50; if user adds or deletes any Attribute, the
attNum needs to be modified correspondingly.

2) The “attNum” can also be used to specify Attributes constituting current Service.

The UUID of the first Attribute for each Service must be
“GATT_UUID_PRIMARY_SERVICE(0x2800)”; the first Attribute of a Service sets
“attNum” and it indicates following “attNum” Attributes constitute current Service.

As shown in Figure3-39, for the gap service, the Attribute with UUID of
“GATT_UUID_PRIMARY_SERVICE” sets the “attNum” as 7, it indicates the seven
Attributes from Attribute Handle 1 to Attribute Handle 7 constitute the gap service.

Similarly, for the HID service, the “attNum” of the first Attribute is set as 27, and it
indicates the following 27 Attributes constitute the HID service.

Except for Attribute item 0 and the first Attribute of each Service, attNum values
of all Attributes must be set as 0.

3.4.2.2 perm

The “perm” is the simplified form of “permission” and it serves to specify access
permission of current Attribute by Client.

The “perm” of each Attribute is configurable as one or combination of following
values.

#define ATT PERMISSIONS READ 0x01
#define ATT PERMISSIONS WRITE 0x02
#define ATT PERMISSIONS AUTHEN READ 0x04
#define ATT PERMISSIONS AUTHEN WRITE 0x08
#define ATT PERMISSIONS AUTHOR READ 0x10
#define ATT PERMISSIONS AUTHOR WRITE 0x20
#define ATT PERMISSIONS ENCRYPT READ 0x40
#define ATT PERMISSIONS ENCRYPT WRITE 0x80

3.4.2.3 uuid and uuidLen

As introduced above, UUID supports two types: BLE standard 2-byte UUID, and
Telink proprietary 16-byte UUID. The “uuid” and “uuidLen” can be used to describe the
two UUID types simultaneously.

The “uuid” is an u8-type pointer, and “uuidLen” specifies current UUID length, i.e.
the uuidLen bytes starting from the pointer are current UUID. Since Attribute Table
and all UUIDs are stored in flash, the “uuid” is a pointer pointing to flash.

AN-17092700-E4 139 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1) BLE standard 2-byte UUID:

E.g. For the Attribute “devNameCharacter” with Attribute Handle of 2, related
code is shown as below:

#define GATT_UUID_CHARACTER 0x2803
static const u16 my_characterUUID = GATT_UUID_CHARACTER;
{0,2,1,1,(u8*)(&my_characteruuiD), (u8*)(&my_devNameCharacter), 0},

“UUID=0x2803" indicates “character” in BLE and the “uuid” points to the address
of “my_devNameCharacter” in flash. The “uuidLen” is 2. When Master reads this
Attribute, the UUID would be “0x2803".

2) Telink proprietary 16-byte UUID:
E.g. For the Attribute MIC of audio, related code is shown as below:
#define TELINK_MIC_DATA
{0x18,0%x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01,0x00}
const u8 my_MicUUID[16] = TELINK_MIC_DATA;
{0,16,1,1,(u8*)(&my_MicUUID), (u8*)(&my_MicData), 0},

The “uuid” points to the address of “my_MicData” in flash, and the “uuidLen” is
16. When Master reads this Attribute, the UUID would be
“0x000102030405060708090a0b0c0d2b18".

3.4.24 pAttrValue and attrLen

Each Attribute corresponds to an Attribute Value. The “pAttrValue” is an u8-type
pointer which points to starting address of Attribute Value in RAM/Flash, while the
“attrLen” specifies the data length. When Master reads the Attribute Value of certain
Attribute from Slave, the “attrLen” bytes of data starting from the area (RAM/Flash)
pointed by the “pAttrValue” will be read by 826x BLE SDK to Master.

Since UUID is read only, the “uuid” is a pointer pointing to flash; while Attribute
Value may involve write operation into RAM, so the “pAttrValue” may points to RAM
or flash.

E.g. For the Attribute hid Information with Attribute Handle of 35, related code is
as shown below:

const u8 hidInformation[] =

{
Ul6_LO(0x0111), Ul6_HI(0x0111), //bcdHID (USB HID version), 0x11,0x01

AN-17092700-E4 140 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
0x00, // bCountryCode
0x01 // Flags

|3

{0,2, sizeof(hidInformation), sizeof(hidInformation),(u8*)(&hidinformationUUID),
(u8*)(hidInformation), 0},

In actual application, the key word “const” can be used to store the read-only 4-
byte hid information “0x01 0x00 0x01 0x11” into flash. The “pAttrValue” points to the
starting address of hidInformation in flash, while the “attrLen” is the actual length of
hidInformation. When Master reads this Attribute, “0x01000111” will be returned to
Master correspondingly.

Figure3-40 shows a packet example captured by BLE sniffer when Master reads
this Attribute. Master uses the “ATT_Read_Req” command to set the target AttHandle
as 0x23 (35), corresponding to the hid information in Attribute Table of SDK.

Data Header 5 L2CAP Header ATT_Read_Req RSSI
us || Data T 5 Enabled —Read_ CRC FCSs
us YPe (777D WESN SN MD PDU-Tength || Scour Enabled |l e Tength Chanld ||Opcode AttHandle (dBm)
L2cAP-5 || 2 1 0 o 11 Yes 00003 0x0004 ||0x02 0x0023 oxescecs || o || o
Data Header 5 RS5SI
us || DataTy 5 Enabled| CRC FCs
us YPe |l;TTh WESW SN MD FPDU-Length || SocuntY Enable (dBm)
Erpty FOU|| 1 1 1 o0 0 Yes ox2as7ea| o0 | ox
Data Header 5 RS5SI
us || DataTy 5 Enabled| CRC FCs
us YPe ||I11D NESN SN MD POU-Length | ScCuriy Enable (dBm)
Erpty FOU|| 1 0 1 o 0 Yes 0x2a5189 || o0 | ox
Data Header 5 L2CAP Header ATT_Read_Rsp RSSI
us || Data T 5 Enabled —Read_ CRC FCS
us YPe (777D WESN SN MD PDU-Length || ScourY Enabled | e Tength Chanid ||Opcode AttValue (dBm)
L2cAP-5 || 2 1 0 o 13 Yes 0x0005 0x0004 |[0x0B 11 01 00 01 || ox9BFeR0|_ o || oK |

Figure3-40 BLE sniffer packet sample when Master reads hidInformation

E.g. For the Attribute “battery value” with Attribute Handle of 40, related code is
as shown below:

us my_batVal[1] ={99};

{0,2,1,1,(u8*)(&my_batCharuUulD), (u8*)(my_batVal), 0},

II’

In actual application, the “my_batVal” indicates current battery level and it will be
updated according to ADC sampling result; then Slave will actively notify or Master will
actively read to transfer the “my_batVal” to Master. The starting address of the
“my_batVal” stored in RAM will be pointed by the “pAttrValue”.

3.4.2.5 Callback function w

The callback function w is write function with prototype as below:
typedef int (*att_readwrite_callback_t)(void* p);

User must follow the format above to define callback write function. The callback
function w is optional, i.e. for an Attribute, user can select whether to set the callback
write function as needed (null pointer 0 indicates not setting callback write function).

AN-17092700-E4 141 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The trigger condition for callback function w is: When Slave receives any Attribute
PDU with Attribute Opcode as shown below, Slave will check whether the callback
function w is set.

1) opcode = 0x12, Write Request, refer to “Core_v4.2” Page2191.
2) opcode = 0x52, Write Command, refer to “Core_v4.2” Page2193.

After Slave receives a write command above, if the callback function w is not set,
Slave will automatically write the area pointed by the “pAttrValue” with the value sent
from Master, and the data length equals the “I2capLen” in Master packet format minus
3; if the callback function w is set, Slave will execute user-defined callback function w
after it receives the write command, rather than writing data into the area pointed by
the “pAttrValue”. Note: Only one of the two write operations is allowed to take effect.

By setting the callback function w, user can process Write Request and Write
Command in ATT layer of Master. If the callback function w is not set, user needs to
evaluate whether the area pointed by the “pAttrValue” can process the command (e.g.
If the “pAttrValue” points to flash, write operation is not allowed; or if the “attrLen” is
not long enough for Master write operation, some data will be modified unexpectedly.)

3.4.5.1 Write Request

The Wiite Reguest is used to request the server to write the value of an attri-
bute and acknowledge that this has been achieved in a Wrife Response.

Parameter Size (octets) Description
Aftribute Opcode 1 0x12 = Write Request
Attribute Handle = The handle of the attribute fo be
wiritten
Aftribute Value 0 to (ATT_MTU-3) &e value to be written fo the atiri-
fe

Tahla 2 98- Crrmad nf Wirtn Domnncd

Figure3-41 Write Request in BLE stack

3.4.5.3 Write Command

The Write Gommand is used to request the server to write the value of an attri-
bute, typically into a control-point attribute.

Parameter Size |octets) Description
Aftribute Opcode 1 0x52 = Write Command
Attribute Handle 2 The handle of the attribute o be
set
Afttribute Value 0 to (ATT_MTU-3) ge value of be written fo the atiri-
te

T R R P I S

Figure3-42 Write Command in BLE stack

o n

The void-type pointer “p” of the callback function w points to the value of Master

write command. Actually “p” points to a memory area, the value of which is shown as
the following structure.

AN-17092700-E4 142 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

typedef struct({

u32
u8

dma len;

type;

u8 rf len;

ulé6
ulé6

u8
u8
u8
u8

12cap; //12cap_length

chanid;

att; //opcode

hl; //low byte of Atthandle
hh; //high byte of Atthandle
dat[20];

}rf packet att data t;

o _n

p

int

{

}
The

points to “dma_len”, valid length of data is [2cap minus 3, and the first valid
datais pw->dat [0].

my WriteCallback (void *p)

rf packet att data t *pw = (rf packet att data t *)p;
int len = pw->12cap - 3;

//add your code
//valid data is pw->dat[0] ~ pw->dat[len-1]

return 1;

structure “rf_packet_att_data_t” above is available

“proj_lib/ble/ble_common.h”.

3.4.2.6

The

Callback function r

callback function r is read function with prototype as below:

typedef int (*att_readwrite_callback_t)(void* p);

in

User must follow the format above to define callback read function. The callback
function r is also optional, i.e. for an Attribute, user can select whether to set the
callback read function as needed (null pointer 0 indicates not setting callback read

function).

The trigger condition for callback function r is: When Slave receives any Attribute
PDU with Attribute Opcode as shown below, Slave will check whether the callback

function r is set.

AN-17092700-E4

143 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1) opcode = 0x0A, Read Request, refer to “Core_v4.2” Page2184.
2) opcode = 0x0C, Read Blob Request, refer to “Core_v4.2” Page2185.
After Slave receives a read command above,

1) If the callback read function is set, Slave will execute this function, and determine
whether to respond with “Read Response/Read Blob Response” according to the
return value of this function.

A. If the return value is 1, Slave won’t respond with “Read Response/Read Blob
Response” to Master.

B. If the return value is not 1, Slave will automatically read “attrLen” bytes of
data from the area pointed by the “pAttrValue”, and the data will be
responded to Master via “Read Response/Read Blob Response”.

2) Ifthe callback read function is not set, Slave will automatically read “attrLen” bytes
of data from the area pointed by the “pAttrValue”, and the data will be responded
to Master via “Read Response/Read Blob Response”.

Therefore, after a Read Request/Read Blob Request is received from Master, if it’s
needed to modify the content of Read Response/Read Blob Response, user can
register corresponding callback function r, modify contents in RAM pointed by the
“pAttrValue” in this callback function, and the return value must be 0.

3.4.2.7 Attribute Table layout

Figure3-43 shows Service/Attribute layout based on Attribute Table. The “attnum”
of the first Attribute indicates the number of valid Attributes in current ATT Table; the
remaining Attributes are assigned to different Services, the first Attribute of each
Service is the “declaration”, and the following “attnum” Attributes constitute current
Service. Actually the first item of each Service is a Primary Service.

const ule my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;
#define GATT_UUID_PRIMARY_SERVICE 0x2800 //< Primary Service

AN-17092700-E4 144 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

Index

Index
1«

Index
24

Index

IndexN+

Index
N+1+

Index
N+2+

Index
N+3+

Index+
N+M-

Total number of attribute items that excludes itself.+

Servicel declaration attribute and it has N attributes
including itself service declaration attribute.+

Attribute#ls

Attribute#2«

Attribute#N-1+

Service2 declaration attribute and it has M atiributes
including itself service declaration attribute.«

Attribute#ls

Attribute#2.

Attribute#M-1+

Figure3-43 Service/Attribute Layout

3.4.2.8 ATT table Initialization

GATT & ATT initialization only needs to transfer the pointer of Attribute Table in
APP layer to protocol stack, and the API below is supplied:

void bls_att_setAttributeTable (u8 *p);

“p” is the pointer of Attribute Table.

AN-17092700-E4

145 Verl.3.0

.SEMICONDUCTORb

3.4.3 Attribute PDU & GATT API

Telink TLSR826x BLE SDK Developer Handbook

As required by BLE spec, the following Attribute PDU types are supported in
current 826x BLE SDK.

1) Requests: Data request sent from Client to Server.

2) Responses: Data response sent by Server after it receives request from Client.
3) Commands: Command sent from Client to Server.

4) Notifications: Data sent from Server to Client.

5) Indications: Data sent from Server to Client.

6) Confirmations: Confirmation sent from Client after it receives data from Server.

The subsections below will introduce all ATT PDUs in ATT layer. Please refer to
structure of Attribute and Attribute Table to help understanding.

3.43.1 Read by Group Type Request, Read by Group Type Response

The “Read by Group Type Request” command sent by Master specifies starting
and ending attHandle, as well as attGroupType. After the request is received, Slave will
check through current Attribute Table according to the specified starting and ending
attHandle, and find the Attribute Group that matches the specified attGroupType.
Then Slave will respond to Master with Attribute Group information via the “Read by
Group Type Response” command.

Data Header L2CAP Header ATT_Read_By_Group_Type_Req RSl

Data T cRC FCs
YP|lLI1D WESN SN D PDU-Length [L2CAP-Length Chanld |Opcode StartingHandle EndingHandle AttGrouplype {dBm)
L2caps | 2 0 1 o0 m 020007 0x0004 [|0x10__oxpo01 OxFFEF 00 28 oxgasers | 38 || oK
Data Header RssI
Data T Fes
¥Pe |ILTD NEsW s MD PDU Length (dBm)
Ewpry PO 1 0 0 o oxaE00Ds ||_—38 | oK
R Data Header LZCAF Header ATT Read_By_Group_Type Rsp . RS [cg
yp LLID HMESN SN MD PDU-Length ||L2CAP-Length ChanId |[Opcode Length AttData (dBm)
L2caps |2 00 o0 2 %0014 0x0004 [[0x11 _ 0x06 D1 00 07 00 00 18 08 00 OA 00 0A 18 OB 00 25 00 12 18 |_OxSeFCe7| 38 | OK
Data Type Data Header L2CAP Header ATT_Read_By_Group_Type_Req che 7551 |[rcs
YP®|I1ID WESH SN MD EDU-Length ||L2CAP-Length Chanld |Opcode StartingHandle EndingHandle & (dBm)
LacaE-s | 2 10 o0 11 %0007 %0004 [|0x10__ 00026 OXFFEF 00 28 oxseaTs | _-ae || oK
Data Header RSSI
Data Ty
¥Pe |LLID NESN SN MD PDU-Length (dBm)
Empry F00 [1 11 0o txAE0BAD || 38
Data Header RSSI
L0 LLID NESN SN MD PDU-Length (dBm)
Ewpry 20U 1 0 1 o0« 0x8E0073 ||_—38
p— Data Header L2CAP Header ATT_Read_By_Group_Type_Rsp cre RSl s
ILID WESH SF MD FDU-Lengch ||L2CAP-Length Chanld ||Opcode Length AtcData (d6m)
LacaE-s | 2 0 0 o 1z %0008 %0004 [[0x11__ 006 26 00 28 00 OF 18 | Oxisseeé | a8 || OK
— Data Header LZCAF Header ATT Read By Group_Typs Req e Rssl (g
"PElLIID WESW SN MD PDU-Length [L2CAP-Length Chanld [Opcode StartingHandle EndingHandle AttGrouplype (dBm)
LacaE-5 || 2 10 0 11 %0007 %0004 [|0x10__ 00029 O%FFEF 00 28 ox055C4D ||_-38 || oK
Data Header RSSI
LTOEED LLID NESN SN MD FPDU-Length (dBm)
Ewpry 20U _1 11 0« oxaE0Ea0 || 38
Data Header RssI
DataType 1170 mesw sw D PDU Lengin|| SR (sm) ||FC3
Empry F00 | 1 o 1 o txaE0D73 || -3 | oK
o— Data Header LZCAF Header ATT Read_By_Group_Type_Rsp P RSS |[oo
LLID NESH SN MD PDU-Length ||L2CAP-Length Chanld (|Opcode Length Attbata {dBm)
LacaE-s |2 0 0 o 2 %0016 0x0004 [[0x11__ox14__ 29 00 32 00 11 16 0D 0C 0B OA 09 0& 07 06 05 04 03 02 01 00 || oxaganss || -3 | ok
et Tome Data Header LZCAF Header ATT Read By Group_Typs Req onc 758 |[ros
YPe|lt11n WESH SN WD EDU-Length |L2CAE-Length ChanTd |Opeode StartingHandle Endingfandle ArtéroupType {dBm)
L2cap—s |2 10 o0 m %0007 0x0004 [|0x10__ox0033 ORFEEF 00 28 oxscs7oL | 38 || oK
Data Header RssI
Data T cRe cs
¥Pe |ITTID NESN SM MD PDU Length (dBm)
Empry F0 | 1 11 o oxAE0BAD || 38 | oK
Data Header RSSI
Data Ty
Y€ |iLio vEsy sw mp PDU-Lengtn {dBm)
Empry F0 | 1 o 1 0 o DxAE0DT3 ||_—38
Dot Tome Data Header L2CAF Header ATT Error_Response P RsS1 | cs
YPS|lt1Tn WESH SN WD EDU-Length |L2CAE-Length ChanTd |Opeode ReaOpCode AtcHandle ErrorCods {dBm)
T2CRP-8 2 n n n 9 NxNnns nxnnng linen1 neln Nwnn3z ATT NOT FOUNDINxNZY NuANNFRR -3R 0K

Figure3-44 Read by Group Type Request/Read by Group Type Response

AN-17092700-E4 146 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

As shown above, Master requests from Slave for Attribute Group information of
the “primaryServiceUUID” with UUID of 0x2800.

#define GATT_UUID_PRIMARY_SERVICE 0x2800
const ule my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

The following groups in Slave Attribute Table meet the requirement according to
current demo code.

1) Attribute Group with attHandle from 0x0001 to 0x0007, Attribute Value is
SERVICE_UUID_GENERIC_ACCESS (0x1800).

2) Attribute Group with attHandle from 0x0008 to 0x000a, Attribute Value is
SERVICE_UUID_DEVICE_INFORMATION (0x180A).

3) Attribute Group with attHandle from Ox000B to 0x0025, Attribute Value is
SERVICE_UUID_HUMAN_INTERFACE_DEVICE (0x1812).

4) Attribute Group with attHandle from 0x0026 to 0x0028, Attribute Value is
SERVICE_UUID_BATTERY (0x180F).

5) Attribute Group with attHandle from 0x0029 to 0x0032, Attribute Value is
TELINK_AUDIO_UUID_SERVICE(0x11,0x19,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,
0x06,0x05,0x04,0x03,0x02,0x01,0x00).

Slave responds to Master with the attHandle and attValue information of the five
Groups above via the “Read by Group Type Response” command. The final
ATT_Error_Response indicates end of response. When Master receives this packet, it
will stop sending “Read by Group Type Request”. Please refer to “Core_v4.2” Page2188
for details about the “Read by Group Type Request” and “Read by Group Type
Response” commands.

3.43.2 Find by Type Value Request, Find by Type Value Response

The “Find by Type Value Request” command sent by Master specifies starting and
ending attHandle, as well as AttributeType and Attribute Value. After the request is
received, Slave will check through current Attribute Table according to the specified
starting and ending attHandle, and find the Attribute that matches the specified
AttributeType and Attribute Value. Then Slave will respond to Master with the
Attribute via the “Find by Type Value Response” command.

Please refer to “Core_v4.2” Page2179 for details about the “Find by Type Value
Request” and “Find by Type Value Response” commands.

AN-17092700-E4 147 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

e Data Header L2CAP Header ATT_Find_By_Type_Value_Req e 7551 |[rcs
LLID NESN SN MD FDU-Length | L2CAP-Length Chanld |Opcode StartingHandle EndingHandle AttIype Attvalue (dBm)
L2CAP-S 2 1 1 0 13 0x0009 0x0004 || 0x06 0x0001 OxXFFFF 0x2800 OA 18 0x4CEAl2 -54 | oK |
7] Data Header RSSI
DataType ||;775 Wesw s Mp Poo-Lengeh| °°C | |@emy| €S
1|{Ezpry 0O 1 0 0 0 o oxcacoes || -s4 || ok |
7 Data Header L2CAP Header ATT_Find_By_Type_Value_Rsp RSSI
Data T CRC FCS
AWPE|II1ID NESN SN MD FDU-Length |L2CAP-Length Chanld |Opcode Handlelnfo (dBm)
| zacae-s| 2 1 0 o 8 020005 0x0004 || 0x07___0C 00 OE 00 0x£92£09 || -54 || ok |

Figure3-45 Find by Type Value Request/Find by Type Value Response

3433 Read by Type Request, Read by Type Response

The “Read by Type Request” command sent by Master specifies starting and
ending attHandle, as well as AttributeType. After the request is received, Slave will
check through current Attribute Table according to the specified starting and ending
attHandle, and find the Attribute that matches the specified AttributeType. Then Slave
will respond to Master with the Attribute via the “Read by Type Response”.

) Data Type Data Header L2CAP Header ATT_Read_By_Type_Req
L LLID NESN SN MD FPDU-Length ||[L2CAP-Length Chanld |(Opcode StartingHandle EndingHandle RttType
L2CAP-S || 2 1 o0 1 11 020007 020001 [[0x08 0x0001 0xFFFF 00 2a 0
1 Data Header RSSI
Data T CRC FCS
YPE ||ILID HESN SN MD PDU-Length (dBm)
Empty FOU|| 1 1 0 0 0 0x298717|| 0 | ox
i Data Header RSSI
Data T CRC FCS
YPE |IIILID NESN SN MD PDU-Length (dBm)
Empty POU|| 1 1 1 a0 0 oxeosRBl|| o0 | ox
i Data Header RSSI
Data Ty CRC FCS
YP® |ITIID NESN SN MD PDU-Length (dBm)
Empty FOU|| 1 0 1 o 0 oxagecez|| o | ox
1 Data Header RSSI
Data T CRC FCS
YP® |L1ID NESN SN MD EDU-Length (dBm)
Empty PDU|| 1 0 0 o 0 nxaseice|| o | ox
1 S Data Header L2ZCAP Header ATT_Read_By_Type_Rsp J—
YPElLLID MNESN SN MD EDU-Length ||L2CAP-Length Chanld |Cpcode Length AtctData
L2CAP-S || 2 1 0 o 14 %0005 020004 |[0x09 0x08 03 00 74 53 &5 6C 66 9| OxDB&0Z
ar T [— . r L=y | m—]

Figure3-46 Read by Type Request/Read by Type Response

As shown above, Master reads the Attribute with attType of 0x2A00, i.e. the
Attribute with Attribute Handle of 00 03 in Slave.

const u8 my_devName [] ={'t','S','e", ', 'f', "i'};
#define GATT_UUID_DEVICE_NAME 0x2a00
const ul6 my_devNameUUID = GATT_UUID_DEVICE_NAME;

{0,2,sizeof (my_devName), sizeof (my_devName),(u8*)(&my_devNameUUID),
(u8*)(my_devName), 0},

In the “Read by Type response”, attData length is 8, the first two bytes are current
attHandle “0003”, followed by 6-byte Attribute Value.

Please refer to “Core_v4.2” Page2181 for details about the “Read by Type Request”
and “Read by Type Response” commands.

AN-17092700-E4 148 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.434 Find information Request, Find information Response

The “Find information request” command sent by Master specifies starting and
ending attHandle. After the request is received, Slave will respond to Master with
Attribute UUIDs according to the specified starting and ending attHandle via the “Find
information response”.

As shown below, Master requests for information of three Attributes with
attHandle of 0x0016~0x0018, and Slave responds with corresponding UUIDs.

Data Type Data Header L2CAP Header ATT_Find_Info_Req CRC RSS5I ;
LLID NESN SN MD FPDU-Length ||L2CAP-Length ChanId ||Opcode StartingHandle EndingHandle (dBm)
L2CRP-5 || 2 0 1 o0 9 0x0005 0x0004 ||0x04 0x0016 0x0018 0x36282F || -3a || ¢
T Data Header RSSI
Data Ty CRC FCS
YBE |ITTID NESN SN MD PDU-Length (dBm)
Empty EOU|| 1 0 0 0 0 0xRE00DS || -38 || ox
T Data Header RSSI
Data Ty CRC FCS
YP€ 177D NESN SN MD EDU-Length {dBm)
Empty POU|| 1 1 0 o 0 0xRE0G06 || -32 || ox
T I Data Header LZCAP Header ATT_Find_Info_Rsp [
LE LLID NWESN SN MD FDU-Length ||L2CAP-Length ChanId ||Cpcode Format InfoData
L2CAP-5 || 2 1 1 0 12 0x000E 0x0004 |[0x05 0x01 16 00 02 29 17 00 08 29 18 00 03 28| 0

Figure3-47 Find information request/Find information response

Please refer to “Core_v4.2” Page2177 for details about the “Find information
request” and “Find information response” commands.

3.4.35 Read Request, Read Response

The “Read Request” command sent by Master specifies certain attHandle. After
the request is received, Slave will respond to Master with the Attribute Value of the
specified Attribute via the “Read Response” command (If the callback function r is set,
this function will be executed), as shown below.

Data Header L2CAP Header ATT_Read_Req RS5I
Data T —Read_ CRC FCS
L LLID NESH SN MD PLU-Length ||L2CAP-Length ChanId ||Opecde AttHandle (dBm)
L2CAP-5 || 2 0 1 o 7 0%0003 0x0004 ||0x02 o0x0017 0x99CsED || -38 || oK |
Data Header RSSI
Data T CRC FCS
YPE ||TTTD NESN SN MD FODU-Length (dBm)
Empty BOU|| 1 0 0 o 0 0xAE0ODS || —38 || ox
Data Header RSSI
Data T CRC FCS
YPE ||77Th WESN SN MD POU-Length (dBm)
Empty EOU|| 1 1 0 o 0 0xAE0606 || 38 || ok
Data Header L2CAP Header ATT_Read Rsp RSS!
Data T _Read_ CRC FCS
YPE|T7TD WESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opeode AttValue (dBm)
L2CAP-5 || 2 1 1 o 7 0%0003 0x0004 |[0x0B 02 01 0x908227 || -38 || ox

Figure3-48 Read Request/Read Response

Please refer to “Core_v4.2” Page2184 for details about the “Read Request” and
“Read Response” commands.

AN-17092700-E4 149 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3.4.3.6 Read Blob Request, Read Blob Response

If some Slave Attribute corresponds to Attribute Value with length exceeding
MTU_SIZE (It’s set as 23 in current SDK), Master needs to read the Attribute Value via
the “Read Blob Request” command, so that the Attribute Value can be sent in packets.
This command specifies the attHandle and ValueOffset. After the request is received,
Slave will find corresponding Attribute, and respond to Master with the Attribute Value
via the “Read Blob Response” command according to the specified ValueOffset. (If the
callback function r is set, this function will be executed.)

As shown below, when Master needs the HID report map of Slave (report map
length largely exceeds 23), first Master sends “Read Request”, then Slave responds to
Master with part of the report map data via “Read response”; Master sends “Read
Blob Request”, and then Slave responds to Master with data via “Read Blob Response”.

Data Header L2CAP Header ATT_Read_Req RSSI

Data Ty CRC FCS
YPE|II1ID NESNW 5N MD EDU-Length ||LZCAP-Iength Chanld ||Opcode ActHandle (dBm)
1acaps | 2 1 1 0 7 %0003 0x0004 || 0x02__ 00020 oaFanca7 | -8 || oK
Data Header RS5I
Data Type LLID NESN SN MD PDU-Length E= (dBm) FE
Empty PDU|| 1 0 1] 1] 0 0xAE00DS -38 OK
Data Header RSSI
Data Ty CRC FCS
YPe |ILLTD NESN SN MD EDU-Length (dBm)
Empty PDUJ[1 1 Q 0 0 0xAEDE06 -38 OK
Data Header L2CAP Header ATT_Read_Rsp RSSI
LoD LLID NESN SN MD PDU-Length ||L2CAP-Length ChanId ||Opcode AttValue CRC (dBm) Fcs
Lacap-s | 2 11 0 27 0x0017 0x0004 ||0x0B__ 05 01 08 02 AL 01 85 01 09 01 Al 00 05 08 18 01 29 03 15 00 25 01 || 0xEEG9DD|| 32 || oK
Data Header L2CAP Header ATT_Read_Blob_Req RSSI
Data Ty —Read_Blob| CRC FCS
YPe|ITIID NESNW SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ValueOffset (dBm)
L2CAP-5 2 1] 1 0 9 0x0005 0x0004 || 0x0C 0x0020 0x0016 0x8F3E95 -38
Data Header RSSI
DataType |70 NESN SN MD PDU-Length Eis (aBm) | F¢5
Empry POU||_L 0 0 o o oxaE0aDs || 38 | oK
Data Header RS55I
Data Type LLID NESN SN MD PDU-Length ELE (dBm) e
Empty PDUJ[1 1 a 0 0 0xAE0D606 -38 OK
Data Header L2CAP Header ATT_Read_Blob_Rsp RSSI
Data Ty = = = CRC FCS
YPEIIIID NESNW 5N MD EDU-Length ||LZCAP-Iength Chanld ||Opcode FarchAtcvalue (dBm)
1acaps | 2 1 1 0 27 1x0017 0x0004 || 0x0D__ 75 01 95 03 &1 02 75 05 95 01 B1 01 05 0L 08 30 09 31 09 38 15 81 || ox20EéFz || 32 || 0K
Data Header L2CAP Header ATT_Read_Blob_Req RSSI
LCOTER LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ValueOffset CRC (dBm) Fcs
L2CAP-5 2 a 1 o 9 0x0005 0x0004 |l0x0C 0x0020 0x002C 0xS57DEE -38

Figure3-49 Read Blob Request/Read Blob Response

Please refer to “Core_v4.2"” Page2185 for details about the “Read Blob Request”
and “Read Blob Response” commands.

3.43.7 Exchange MTU Request, Exchange MTU Response

As shown below, Master and Slave obtain MTU size of each other via the
“Exchange MTU Request” and “Exchange MTU Response” commands.

[E3 Data Type

Data Header L2CAP Header ATT_Exchange_MTU_Req CRC RSSI FCS
LLID NESH SN MD PDU-Length ||L2CAP-Length ChanId |Cpcode ClientRaMTO (dBm)
zsn || T2cap-—s || 2 o 1 o 7 020003 0x0004 ||0x02 0x009E oxc7o102 || 38 | oK |
) Data Header L2CAP Header ATT_Exchange_MTU_Rsp RSS!
Data T - _MTL CRC FCS
YPE|TTTD WESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opcede ServerRzMTU {dBm)
L2CAR-S || 2 0 0 0 7 120003 0x0004 ||0x03 0x0017 nx1DesEl || 32 || ok

Figure3-50 Exchange MTU Request/Exchange MTU Response

AN-17092700-E4 150 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Please refer to “Core_v4.2” Page2175 for details about the “Exchange MTU

Request” and “Exchange MTU Response” commands.

During data access process of Telink BLE Slave GATT layer, if there’s data exceeding

a RF packet length, which involves packet assembly and disassembly in GATT layer,
Slave and Master need to exchange RX MTU size of each other in advance. Transfer of
long packet data in GATT layer can be implemented via MTU size exchange.

1) Callback function of MTU size exchange
Function prototype:
typedef int (*att mtuSizeExchange callback t) (ul6, ulé6);
The first ul6 is current connection handle, and it should be “BLS_CONN_HANDLE”
in Slave applications.
The second ul6 is ClientRxMTU of Master, based on which Slave can determine
the maximum length for data transfer.
The APl below serves to register this callback function:
void blc_att registerMtuSizeExchangeCb
(att _mtuSizeExchange callback t cb);
2) Processing of long Rx packet data in 826x Slave GATT layer
826x Slave ServerRxMTU is set as 23 by default. Actually maximum ServerRxMTU
can reach 241, i.e. 241-byte packet data on Master can be correctly re-assembled
on Slave. When it’s needed to use packet re-assembly of Master in an application,
the APl below should be invoked to modify RX size of Slave first.
ble sts t blc_att_setRxMtuSize (ul6 mtu size);
The return value is shown as below:
ble_sts_t Value | ERR Reason
BLE SUCCESS 0

ATT ERR INVALID PARAMETER | 0x12 mtu_size exceeds the max value 241.

When Master GATT layer needs to send long packet data to Slave, Master will
actively initiate “ATT_Exchange_MTU req”, and Slave will respond with
“ATT_Exchange_MTU rsp”. “ServerRxMTU” is the configured value of the API
“blc_att_setRxMtuSize”. The callback function registered via
“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second

AN-17092700-E4 151 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

parameter of the callback is “ClientRxMTU” of Master.

3) Processing of long Tx packet data in 826x Slave GATT layer

When 826x Slave needs to send long packet data in GATT layer, it should obtain
Client RXMTU of Master first, and the eventual data length should not exceed
ClientRxMTU.

First Slave should invoke the API “blc_att_setRxMtuSize” to set its ServerRxMTU.
Suppose it’s set as 158.

blc_att_setRxMtuSize (158);

Then the APl below should be invoked to actively initiate an
“ATT_Exchange_MTU_req”.

ble sts t blc_att requestMtuSizeExchange (

ul6 connHandle, ul6 mtu size);

“connHandle” is ID of Slave conection, i.e. “BLS_CONN_HANDLE”, while “mtu_size”
is ServerRxMTU.

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 158);

After the “ATT_Exchange_ MTU req” is received, Master will respond with
“ATT_Exchange_MTU rsp”. Then the callback function registered via
“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second
parameter of the callback function is ClientRxMTU of Master.

3.4.3.8 Write Request, Write Response

The “Write Request” command sent by Master specifies certain attHandle and
attaches related data. After the request is received, Slave will find the specified
Attribute, determine whether to process the data by using the callback function w or
directly write the data into corresponding Attribute Value depending on whether the
callback function w is set by user. Finally Slave will respond to Master via “Write
Response”.

As shown in below, by sending “Write Request”, Master writes Attribute Value of
0x0001 to the Slave Attribute with the attHandle of 0x0016. Then Slave will execute
the write operation and respond to Master via “Write Response”.

AN-17092700-E4 152 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Data Header L2CAP Header ATT_Write_Req RSSI
DataType || ;771 WESN SN MD PDU-Length ||L2CAP-Length Chanld |/Opcode AttHandle AttValue EE (@8m || 7S
L2CAP-S || 2 g 1 o 9 0x0005 0x0004 ||0x12 0x0016 01 a0 oxDce4TE || -38 || ox |
Data Header R55I
Data T CRC FCs
YP® ||LLID NESN SN MD EDU-Length (dBm)
Empty POU|| 1 g 0 o o OxRE0ODS || —38 || 0K
Data Header R55I
Data T CRC FCs
YP® ||ILID NESN SN MD EDU-Length (dBm)
Empty POU|| 1 1 0 o o OxRE060G || —38 || OK
Data Header L2CAP Header ATT_Write_Rsp RSSI
Data T irite_| CRC FCS
YPEILLID NESN SN MD EDU-Length ||L2CAP-Length Chanld ||Cpcode (dBm)
L2CAP-S || 2 1 1 a0 5 0x0001 0x0004 ||0x13 oxrEoB12 || -38 || ox |

Figure3-51 Write Request/Write Respons

Please refer to “Core_v4.2” Page2191 for details about the “Write Request” and
“Write Response” commands.

3.4.3.9 Write Command

The “Write Command” sent by Master specifies certain attHandle and attaches
related data. After the command is received, Slave will find the specified Attribute,
determine whether to process the data by using the callback function w or directly
write the data into corresponding Attribute Value depending on whether the callback
function w is set by user. Slave won’t respond to Master with any information.

Please refer to “Core_v4.2” Page2193 for details about the “Write Command”.

3.4.3.10 Handle Value Notification

Please refer to “Core_v4.2” Page2199.

Parameter Size [octets) Description

Attrbute Opcode 1 0x1B = Handle Value Notification
Attribute Handle 2 The handle of the attrbute
Attribute Value 0to (ATT_MTU-3) The cumrent value of the attribute

Table 3.34: Format of Handle Value Notification

Figure3-52 Handle Value Notification in BLE Spec
The figure above shows the format of “Handle Value Notification” in BLE Spec.

826x BLE SDK supplies an API for Handle Value Notification of an Attribute. By
invoking this API, user can push the notify data into bottom-layer BLE software fifo.
Stack will push the data of software fifo into hardware fifo during the latest packet
transfer interval, and finally send the data out via RF.

AN-17092700-E4 153 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

ble sts t bls_att_pushNotifyData (ul6 handle, u8 *p, int len);

“handle” is attHandle of Attribute, “p” is the head pointer of successive memory
data to be sent, while “len” specifies byte number of data to be sent. Since this API
supports auto packet disassembly, long notify data to be sent can be disassembled into
multiple BLE RF packets, large “len” is supported.

When Link Layer is in Conn state, generally data can be successfully pushed into
bottom-layer software fifo by invoking this APl. However, some special cases may
result in invoking failure, and the return value “ble_sts t” will indicate the
corresponding error reason.

When this API is invoked in APP layer, it’s recommended to check whether the
return value is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is
needed to re-push the data. The return value is shown as below:

ble_sts_t Value ERR reason

BLE_SUCCESS 0

HCI_ERR_CONN_NOT_ESTABLISH 0x3E Link Layer is in None Conn state.
Data cannot be sent during pairing

SMP_EER_PAIRING_IS_GOING_ON Ox8F
phase.
Since task with mass data is being

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUGH | 0x3A executed, software Tx fifo is not
enough.

3.4.3.11 Handle Value Indication
Please refer to “Core_v4.2” Page2199.
Parameter Size (octets) Description
Attribute Opcode 1 0x1D = Handle Value Indication

Attribute Handle

Attribute Value

2

0 to (ATT_MTU-3)

The handle of the attribute

The current value of the attribute

Table 3.35: Format of Handle Value Indication

Figure3-53 Handle Value Indication in BLE spec

The figure above shows the format of “Handle Value Indication” in BLE Spec.

AN-17092700-E4

154

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

826x BLE SDK supplies an APl for Handle Value Indication of an Attribute. By
invoking this API, user can push the indicate data into bottom-layer BLE software fifo.
Stack will push the data of software fifo into hardware fifo during the latest packet
transfer interval, and finally send the data out via RF.

ble sts t bls_att_pushIndicateData (ul6 handle, u8 *p, int len);

“u_ n

“handle” is attHandle corresponding to Attribute, “p” is the head pointer of
successive memory data to be sent, while “len” specifies byte number of data to be
sent. Since this APl supports auto packet disassembly, long indicate data to be sent can
be disassembled into multiple BLE RF packets, large “len” is supported.

As specified in BLE Spec, Slave won’t regard data indication as success until
Master confirms the data, and the next indicate data won’t be sent until the previous
data indication is successful.

When Link Layer is in Conn state, generally data will be successfully pushed into
bottom-layer software FIFO by invoking this APl; however, some special cases may
result in invoking failure, and the return value “ble_sts t” will indicate the
corresponding error reason.

When this API is invoked in APP layer, it’s recommended to check whether the
return value is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is
needed to re-push the data. The return value is shown as below:

ble_sts_t Value | ERR reason
BLE_SUCCESS 0
HCI_ERR_CONN_NOT_ESTABLISH Ox3E Link Layer is in None Conn state.

Data cannot be sent during pairing
SMP_EER_PAIRING_IS_GOING_ON 0x8F h
phase.

Task with mass data is being
HCl_ERR_CONTROLLER_TX_FIFO_NOT_ENOUGH 0x3A executed, and software Tx fifo is

not enough.
ATT_ERR_PREVIOUS_INDICATE_DATA HAS NOT_ OXEB The previous indicate data has not
X
CONFIRMED been confirmed by Master.

3.4.3.12 Handle Value Confirmation

Please refer to “Core_v4.2” Page2200.

Whenever the API “bls_att_pushindicateData” is invoked by APP layer to send an

AN-17092700-E4 155 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

indicate data to Master, Master will respond with “Confirmation” to confirm the data,
then Slave can continue to send the next indicate data.

Parameter Size (octets) Description

Attribute Opcode 1 0x1E = Handle Value Confirmation

Table 3.36: Format of Handle Value Confirmation
Figure3-54 Handle Value Confirmation in BLE Spec

As shown above, “Confirmation” is not specific to indicate data of certain handle,
and the same “Confirmation” will be responded irrespective of handle.

A callback function is supplied in SDK for the APP layer to check whether the
indicate data has already been confirmed by Master. The registered callback function
will be executed once when a Handle Value Confirmation is received.

Type definition of the callback function is shown as below:

typedef int (*att handleValueConfirm callback t) (void);

The API below serves to register the callback function:

void bls_att registerHandleValueConfirmCb
(att _handleValueConfirm callback t cb);

3.4.4 826x master GATT

In 826x master kma dongle, the following GATT APIs are supplied for simple
service discovery or other data access functions.

void att req find info (u8 *dat, uléb start attHandle, uléb
end attHandle);

Actual length (byte) of dat: 11.

void att_req find by type (u8 *dat, ul6 start attHandle, ulé

end attHandle, u8 *uuid, u8* attr value, int len);

Actual length (byte) of dat: 13 + attr_value length.

void att_req read by type (u8 *dat, ul6 start attHandle, ulé6

end attHandle, u8 *uuid, int uuid len);

Actual length (byte) of dat: 11 + uuid length.

void att_req read (u8 *dat, ul6 attHandle);

Actual length (byte) of dat: 9.

AN-17092700-E4 156 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

void att _req read blob (u8 *dat, ul6 attHandle, ul6 offset);

Actual length (byte) of dat: 11.

void att req read by group_ type (u8 *dat, ul6 start attHandle, ulé6

end attHandle, u8 *uuid, int uuid len);

Actual length (byte) of dat: 11 + uuid length.

void att req write (u8 *dat, ul6 attHandle, u8 *buf, int len);

Actual length (byte) of dat: 9 + buf data length.

void att req write cmd (u8 *dat, ulé attHandle, u8 *buf, int len);

Actual length (byte) of dat: 9 + buf data length.

For the APIs above, it’s needed to pre-define memory space *dat, then invoke
corresponding APl to assemble data, finally invoke “blm_push_fifo” to send “dat” to
Controller for transmission. Note that it’s needed to check whether the return value is

TRUE. The APl “att_req_find_info” is taken as an example for user reference.
u8 cmd[12];
att_req_find_info(cmmd, 0x0001, 0x0003);

if (blm push fifo (BLM CONN_HANDLE, cmd)) {
//cmd send OK

}

As shown above, after a cmd (e.g. “find info req”/“read req”) is received, Slave
will respond with corresponding response information (e.g. “find info rsp”/“read rsp”)
soon. It’s only needed to process in “int app_l2cap_handler (u16 conn_handle, u8
*raw_pkt)” according to the frame below:

if (ptrL2cap->chanId == L2CAP CID ATTR PROTOCOL) //att data
{
if (pAtt->opcode == ATT OP EXCHANGE MTU RSP) {
//add your code
}
if (pAtt->opcode == ATT OP FIND INFO RSP) {
//add your code
}
else if (pAtt->opcode == ATT OP FIND BY TYPE VALUE RSP) {
//add your code

AN-17092700-E4 157 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

}

else if (pAtt->opcode == ATT OP READ BY TYPE RSP) {
//add your code

}

else if (pAtt->opcode == ATT OP READ RSP) {
//add your code

}

else if (pAtt->opcode == ATT OP READ BLOB_RSP) {
//add your code

}

else if (pAtt->opcode == ATT OP READ BY GROUP TYPE RSP)
//add your code

}
else if (pAtt->opcode == ATT OP WRITE RSP) {
//add your code

3.5 SMP

3.5.1 SMP parameter configuration

Parameter configuration related to SMP initialization include device bonding and
OOB (Out-Of-Band) data verification.

3.5.1.1 Device bonding

When it’s needed to bond peer device information after pairing, the function
below should be invoked to enable current device bonding request.

int blc_smp_enableBonding (int en);
*Note: “en” =0, disable current device bonding;

“en”=1 (default), enable current device bonding.

3.5.1.2 Device OOB data verification

The function below is used for OOB data verification.
void blc_smp_enableOobFlag (int en, u8 *oobData);
*Notes: en: enable (en=1) or disable (en=0, default) OOB data verification.

oobData: OOB data verification value, pointer to a group of 16-byte data.

AN-17092700-E4 158 Verl.3.0

OSEMICONDUCTORb

3.5.2 SMP enable

int bls_smp enableParing (smp paringTrriger t encrypt en);

Telink TLSR826x BLE SDK Developer Handbook

Following introduces the definition of the enum-type “smp_paringTrriger_t” and
each parameter.

typedef enum{
SMP PARING DISABLE TRRIGER = O,
SMP PARING CONN TRRIGER ,
SMP PARING PEER TRRIGER,

}smp_paringTrriger t;

1) encrypt_en= SMP_PARING_DISABLE_TRRIGER;

It indicates pairing encryption is disabled for current device connection. Even if
peer device requests for pairing encryption, the device will reject this request.

It applies to the case when current device does not support encrypted pairing.

As shown below, Master sends pairing request, and then Slave responds with
“SM_Pairing_Failed”.
= ok |[Empry eou| 1 1 0 o o | “oxoooo1t |[e |[ox |

Data Header L2CAP Header || SM_Pairing_Req |
ACK Status || Data Ty = CRC
" YPEI1LID NESW SN MD PDU-Length [[LOCAP Length Chanld [|Opcede I0Cap OOBDataFlag RuthReq ize InicKeyDist st (
02000014

L2CAF-5 1 1 0 11 00007 050006 J|0x01__ 0x04 _0x00 0x05 0x10 0x07 0x07 |
S =t s

Data Header RSSI
LLID NESN SN MD PDU-Length cre aem) | 75
1 01 o [0x000014 || -51 | 0K

E]
F
o &
g

Direction || ACK Status || Data Type

Empty PDO

0K

Data Header RSSI
tcess Address || Direction || ACK Status || DataTy FCs
rection us YP¢ lltLio WESW Sw MD PDU-Length (dBm)
lox2ac798CS ok |[Empey oo 1 0 o o o 0x000015 || -62_||_0K.
" Data Header | L2CAPHeader || SM_Pairing_Failed | RSSI
gess Address | Direction || ACK Status || Data T¥Pe || 770 ey sy wp PDU-Lengrh ||L2CAP-Length Chanid| L2CAP Length Chanld [|opcede Reason | (dBm)
lox2ac795C5 ok__||zecap-s| 2 10 o 0x0002 00006 |[0x05__0x05 0200000E ||_—54 OK

I Ir r L T Nata Heanar r

Figure3-55 Pairing Disable

2) encrypt_en= SMP_PARING_CONN_TRRIGER;

It indicates current device will actively initiate pairing encryption request once it’s
connected with peer device. If peer device initiates pairing request first, current
device will still send pairing request and also respond to the request from peer
device. As shown below, Slave actively sends the “SM_Security _Req”.

592 ||=2az1634 ||_0x03 | NURCOEIZEG| v->5 || 0% lcemezsl]3 0 0 o 9 [I T

Time (us) Data Header L2CAP Header SM_Security_Req RSSI
P.nbr. Chi 1 || Access Address || Directi ACK Stat Data Ty CRC FCS
i =T annel irection us YPENIIID NESN SN MD EDU-Lengch ||L2CAP-Length Chanld ||Opcode AuthReq (dBm)
533 ||—e3z1095 || 009 || OmacmelzEs | s> ok ||tacazs| 2 1 0 0 020002 0x0006 [0x03__ 01 0x000041 || -54 | 0%
Zoiiia || e 1 faatnpiend e e e

Time (us) Data Header L2CAP Header SM_Pairing_Req
Poer [l 3aggg | CManne! Direction || ACK Status (|Data IVB€ ||/ 1y weoy s§ D PDU-Length ||L2CAP-Length Chanid ||(Opcode I0Cap OQEDataFlag AuchRea e InitKeyDis

594 ||=8361694 |[_0x12 0x4CD612E9 M->5 0K LacAR-5 || 2 11 0 11 0x0007 0x0006 |[0x01 _ 0x04 0x00 0x0D 0x10 0x0F

|| T 250 [channe: | Reease Adarenel] viection [ack status [[pata type [/ Petnkesder | N (NS sl

Figure3-56 Pairing Conn Trigger

3) encrypt_en= SMP_PARING_PEER_TRRIGER;

It indicates current device won’t actively intiate pairing request, and it will only
respond to the pairing request from peer device. If peer device does not send
pairing request, current device won’t implement encrypted pairing.

As shown below, Slave will respond to the “SM_Pairing_Req” from Master, but

AN-17092700-E4 159 Verl.3.0

“5"”"0""’”""’”b Telink TLSR826x BLE SDK Developer Handbook

won’t actively initiate pairing request.

v || v (| LHD WESH sH WD EDU-Length . dBm)
4T14E5 5->M Empty PDO 10 o a 0x00000D 0K

Data Header L2CAP Header Il SM_Pairing_Req Il RSS

== EsS | Direction || ACK Status || Data T¥Pe | 77— \rey su mp PDU- Length || L2CAP-Length Chanld ||Opcode IOCap OOBDataFlag AuthReq e InitKeyDist RespHeyDist || GxE (dBm

4T14E5 oK LaCRP-5 || 2 i1 o0 11 0x0007 0x0006 |[0x01 __ 0x04 _0x00 0x05 0x10 0x07 0x07 || _oxoooooe || 78

Data Header

ss Address. LLID NESN SN MD PDU-Length

Direction || ACK Status || Data Type

RSS!
(dBm)
-54 OK

4714E5 0K Empty PDU|| 1 01 o i 0x00001C
Data Header RSSI
ss Address | Direction || ACK Status || DataType |/ oo oy oy wp pou-Tengen (dBm)
4714E5 0K Empty PDU|| 1 00 o i ox00000C ||_-78_|| 0K

Data Header L2CAP Header SM_Pairing_Rsp Il RSS
SSASAIESSY | Direction || ACK Status (| Data Type || 77y — sy sn }m PDL' Langth L2CAP-Length ChanId”Gpcode T0Cap 00BDataFlag RuthReq = InitKeyDist = R (dBm
4714E5 L2CAP-S || 2 1 0x0007 0x0006 |[0x02__0%03 __0x00 0x01 0x10 0x03 0x03 0x000012 || -54

Figure3-57 Pairing Peer Trigger

Note: This function can only be invoked before connection. It’s recommended to
invoke this function during initialization.

3.5.3 SMP event

As introduced in Controller part, except for Telink defined events, there are some
SMP events, e.g. “BLT_EV_FLAG_PAIRING_BEGIN”, “BLT_EV_FLAG_PAIRING_END”.

3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN

1) Event trigger condition: When Slave just establishes connection with Master and
enters connection state, Slave sends “SM_Security_Req” command, and then
Master sends “SM_Pairing_Req” to request for pairing. After Slave receives this
pairing request, this event will be triggered to indicate pairing starts.

Data Type Data Header L2CAP Header SM_Security_Req
LLID NESN SN MD PDU-Length |L2CAP-Length Chanld fOpcode AuthReq
LICAP=3 || 2 1 0 0 [0x0002 0x0006 JOx0B 01
Data Type Data Header L2CAP Header SM_Pairing_Req
LLID NESH SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode IOCap 0OBDataFlag AuthReg MaxEncHeySize InitHeyDist RespHeyDist
L2CAP-3 || 2 1 1 L] 11 0x0007 0x0006 || 0x01 0x03 0x00 0x01 0x10 0x02 0x03

Figure3-58 Pairing Req sent from Master

2) Pointer “p”: Null pointer.
3) Datalength “n”:

3.5.3.2 BLT_EV_FLAG_PAIRING_END

1) Event trigger condition: This event will be triggered when pairing is finished with
success or failure. If Slave or Master fails to follow standard pairing procedure, or
communication abnormity occurs (e.g. report error), pairing will fail.

2) Datalength “n”:

3) Pointer “p”: It points to a flag variable, which should be either 0 (pairing success)

AN-17092700-E4 160 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

or non-zero value (pairing failure).

3.5.4 SMP bonding information
Please refer to the code of “set direct adv” during initialization of 826x remote.

ug b;nd_nu.ml;er = blc:smp_para.m_get,CuIIentEiondingDeviceNu.mbeI(]; /fget bonded device number

smp_param save t bondInfo;
if (bond number) f/fat least 1 bonding dewvice exist
{
blc smp param loadByIndex(bond number - 1, &bondInfo):; //get the latest bonding device (inde:
}
if (bond number) ffset direct adwv

{
//=set direct adyv
ug =tatus = bls_11 setAdvParam(MY ADV INTERVAL MIN, MY ADV INTERVAL MAX,
ADV TYPE CONNECTABLE DIRECTED LOW DUTY, OWN ADDRESS PUBLIC,
bondInfo.peer addr type, bondInfo.peer addr,
MY APP ADV CHANNEL,
ADV_FP NONE) ;
if(status != BLE SUCCESS) { write_ reg8 (0x8000, 0x11): while(l); } //debug: adv setting err
f/it is recommended that direct adv only last for several seconds, then switch to indirect adwv
bls 11 setRdvDuration (MY DIRECT ADV TMIE, 1):
bls_app registerEventCallback (BELT EV FLAG ADV DURATION TIMEOUT, &app switch to indirect_adwv):

Slave can store pairing information of up to four Master devices at the same time.
All of the four devices can be re-connected successfully.

The API below serves to set the maximum device number for current storage,
which should not exceed 4 (SMP_BONDING_DEVICE_MAX_NUM). The default value is
4.

#define SMP BONDING DEVICE MAX NUM 4

ble sts t blc_smp param setBondingDeviceMaxNumber (int device num);

Suppose it’s set as “blc_smp_param_setBondingDeviceMaxNumber (4)”: When
pairing information of four paired devices are stored, if the 5% device is paired, the
pairing info of the oldest device will be deleted automatically, so that the pairing info
of the 5% device can be stored.

Suppose it’s set as “blc_smp_param_setBondingDeviceMaxNumber (2)”: When
pairing information of two paired devices are stored, if the 3™ device is paired, the
pairing info of the oldest device will be deleted automatically, so that the pairing info
of the 3™ device can be stored.

The APl below serves to obtain the number of successfully paired Master devices
with pairing info stored in Slave flash.

u8 blc_smp param getCurrentBondingDeviceNumber (void) ;

If the return value is 3, it indicates three paired devices are stored in flash

AN-17092700-E4 161 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

currently, and all of the three devices can be re-connected successfully.

“index” is related to “BondingDeviceNumber”: If “BondingDeviceNumber” is 1,
there is only one bonding device, and its index is 0. If “BondingDeviceNumber” is 2,
there are two bonding devices, and the index of the two devices are 0 and 1,
respectively. The index sequence is determined by the latest successful connection
rather than the latest pairing: Suppose Slave is successfully paired with MasterA and
MasterB, successively, since MasterB is the latest device at this moment, in Slave flash
storage, MasterA is index 0, while MasterB is index 1. Then Slave is re-connected with
MasterA successfully, since the latest device is MasterA at this moment, MasterB is
index 0, while MasterA is index 1.

If “BondingDeviceNumber” is 3, the index of the three devices are 0 (the first
connected device), 1, 2 (the latest connected device).

If “BondingDeviceNumber” is 4, the index of the four devices are 0 (the first
connected device), 1, 2, 3 (the latest connected device). As introduced above, if Slave
is successively paired with MasterA, B, C and D, since MasterD is the latest device at
this moment, MasterD is index 3. Then Slave is re-connected with MaserB, since the
latest device at this moment, MasterB is index 3.

Please pay attention to the case when more than four Master devices are paired:
When Slave is successively paired with MasterA, B, C and D, if it’s paired with a new
device MasterkE, the first paired device MasterA will be deleted automatically. When
Slave is successively paired with MasterA, B, C and D, if Slave is re-connected with
MasterA (the index sequence is B, C, D, A) and then paired with MasterE, pairing info
of MasterB will be deleted.

Master device bonding information are stored in flash with format below:

typedef struct {
ug flag;
ug peer addr type; //address used in link layer connection
usg peer addr[€]:

peer_key size;

peer id adrType; //peer identity address information in key distribution, used to identify
ug peer id addr[&]:
ug own_ltk[16]; ffown 1tk[16]

peer irk[16]:
usg peer csrk[16]:

}smp_param save t:
Bonding info contains 64 bytes:

<~ “peer_addr_type” and “peer_addr” indicate connection address of Master in Link
Layer, which will be used during device direct adv.

< “peer_id_adrType”/“peer_id_addr” and “peer_irk” indicate identity address and
irk declared by Master during “key distribution” phase. Related info won’t be
added to resolving list, unless “peer_addr_type” and “peer_addr” are PRA
(Resolvable Private Addr) and user needs to use adderess filter (Please refer to
“TEST_WHITELIST” in 8267 feature test).

AN-17092700-E4 162 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

<> Other parameters are negligible to user.

The API below serves to obtain device information from flash via “index”.

u32 blc _smp param loadByIndex (u8 index,

smp_ param_save t* smp param load);

If the return value is 0, it indicates info obtaining failure; if the return value is
non-zero value, it indicates the starting address of the info in flash.

E.g. There are three bonding devices currently, to obtain info of the latest
connected device, “index” should be set as “2”:

blc_smp_param_loadBylIndex(2, ...)

The API below serves to obtain information of bonding device from flash via
Master address (connection addr in Link Layer).

u32 blc_smp param loadByAddr (u8 addr type,

u8* addr, smp param save t* smp param load);

If the return value is O, it indicates info obtaining failure; if the return value is
non-zero value, it indicates the starting address of the info in flash.

3.6 826x master customized pairing management

In 826x master kma dongle, if SMP is disabled, SDK cannot automatically
implement operations such as pairing/un-pairing. Therefore, it’s needed to add pairing
management in APP layer.

#define BLE_HOST_SMP_ENABLE 0

A set of demo code is supplied in current SDK, based on which user can extend
and modify as needed.

3.6.1 Design of Flash storage method

By default, sector of flash data area is 0x78000~0x78FFF, which is modifiable in
“app_config.h”.

#define FLASH ADR PARING 0x78000

Starting from flash 0x78000, every 8 bytes constitute an area (8 bytes area). Each
area can store one Slave MAC address: 1-byte mark, 1-byte address type, 6-byte MAC

AN-17092700-E4 163 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

address.

typedef struct {
u8 bond mark;
u8 adr type;
u8 address|[6];

} macAddr_ t;

All valid Slave MAC addresses are stored in 8 bytes areas successively: The first
valid MAC adderss is stored in 0x78000~0x78007, and the first byte mark of 0x78000
should be set as “Ox5A” to indicate current addr is valid; the second valid MAC address
should be stored in 0x78008~0x7800f, and the mark of 0x78008 should be set as
“Ox5A”; the third valid MAC address should be stored in 0x78010~0x78017, and the
mark of 0x78010 should be set as “Ox5A”......

To un-pair some Slave device, it’s needed to erase its MAC address in Dongle by
setting the mark of the corresponding 8 bytes area as “Ox00”. For example, to erase
the MAC address of the first device as shown above, user should set 0x78000 as “0x00”.

When firmware is being executed, it's not allowed to invoke the function
“flash_erase_sector” to erase flash, since this operation takes 20~200ms to erase a 4K
sector of flash and will result in BLE timing error. Therefore, the storage method of 8
bytes areas above is used to store MAC address.

Mark of “Ox5A” and “0x00” are used to indicate pairing storage and un-pairing
erasing of all Slave MAC addresses. Considering 8 bytes areas may occupy the whole
sector 4K flash and thus result in error, a special processing is added during
initialization: read valid MAC address information from 8 bytes areas starting from
0x78000, and deliver them to slave mac table in RAM. During this process, it will check
whether there are too many 8 bytes areas. If so, the whole sector will be erased, the
slave mac table in RAM will be re-writen into 8 bytes areas starting from 0x78000.

3.6.2 Slave Mac table

* define pair =slave max num,
if exceed this max num, two methods to process new sSlave pairing
method 1: overwrite the oldest one(telink use this method)
method 2: not allow paring unness unpair happend */f
#define USER PATR SLAVE MAX NUM 1 /J/telink use max 1

typedef strunct {
uf bond mark;
uf adr type;
ud address[é&]:
} machddr t;

typedef struct {
132 bond flash idx[USER_PAIR SLAVE MAX NUM]; /fmark paired slave mac address in flash
machddr_t bond_device[USER_PAIR_SLAVE_HEX_NUH]; fﬁmacédd:_: alreay defined in ble stack
ud curNum;

} user =salveMac t;

AN-17092700-E4 164 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

user salveMac t user tbl slaveMac;

The structure above serves to use slave mac table in RAM to maintain all paired
devices.

The macro “USER_PAIR_SLAVE_MAX_NUM” serves to set the number of
maintainable paired devices. Its default value is 1, which indicates one paired device is
maintainable. User can modify this value as needed.

Suppose user needs to maintain three devices, “USER_PAIR_SLAVE_MAX_NUM"

n o«

should be set as 3. In “user_tbl_slaveMac”, “curNum” indicates the number of current
valid Slave devices in flash; “bond_flash_idx” array records corresponding offset based
on 0x78000 for starting address of each 8 bytes area in flash (during device un-pairing,
based on corresponding offset, the mark of 8 bytes area can be found and it should be
set as “0x00”); “bond_device” array record MAC addresses.

3.6.3 API

Based on the design of flash storage method and slave mac table, a few APIs are
supplied, as shown below.

3.6.3.1 user_tbl_slave_mac_add

int user_tbl slave mac_add(u8 adr type, u8 *adr);

The APl above should be invoked when there’s new device paired, and it serves
to add a Slave MAC address.

The return value should be either 1 (success) or 0O (failure).

First this function will check whether current number of devices in flash and
slave mac table has reached the maximum.

<> If not, the MAC address of new device will be added into slave mac table, and
stored in an 8 bytes area of flash.

<> If the number has reached the maximum, the processing policy can be “pairing is
not allowed” or “the oldest device is directly deleted”. In Telink demo, the latter
policy is adopted, since the maximum number of paired device is set as 1, the
“user_tbl_slave_mac_delete_by_index(0)” should be used to delete current
paired device, then the new device can be added into slave mac table.

User can modify the implementation of this function according to his policy.

3.6.3.2 user_tbl_slave_mac_search

int user_tbl_slave mac_search(u8 adr type, u8 * adr)

The APl above serves to search device according to device address of adv report,

AN-17092700-E4 165 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

and check whether slave mac table contains this device. That is: It will check whether
current device sending adv packet is ever paired with Master; if the device is ever
paired, it can be directly connected.

3.6.3.3 user_tbl_slave_mac_delete_by_adr

int user_tbl slave mac _delete by adr (u8 adr type, u8 *adr)

The APl above serves to delete a paired device from slave mac table by a specified
address.

3.6.3.4 user_tbl_slave_mac_delete_by_index

void user_tbl_ slave_mac_delete_by index (int index)

The APl above serves to delete a paired device from slave mac table by a specified
index. “Index” value indicates device pairing sequence. If the maximum pairing
number is 1, the index of paired device is always 0; if the maximum pairing number is
2, the index of the first paired device is 0, and the index of the second paired device is

3.6.3.5 user_tbl_slave_mac_delete_all

void user tbl slave mac_delete_all (void)

The APl above serves to delete all paired devices from slave mac table.

3.6.3.6 user_tbl_salve_mac_unpair_proc

void user_tbl salve_mac_unpair proc (void)

The API above serves to process un-pairing command. The processing method in
reference code about “delete all paired devices” corresponds to the default maximum
pairing number (1).

3.6.4 Connection and pairing

When Master receives adv packet reported by Controller, it will connect with
Slave in the following cases:

1) The function “user_tbl_slave_mac_search” is invoked to check whether current
device is already paired with Master and un-pairing is not implemented. If yes,
connection can be established automatically.

master_auto_connect = user_tbl_slave_mac_search(pa->adr_type, pa->mac);

if(master_auto_connect) { create connection }

AN-17092700-E4 166 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2) If current adv device is not in slave mac table, auto connection won’t be initiated,
thus it’s needed to check whether the manual pairing condition is met. In SDK, if
current adv device is near enough, two manual pairing solutions are supported by
default: pairing button on Master dongle is pressed; current adv data is Telink-
defined pairing adv packet data. Following is the reference code:

//user design manual paring methods

user manual paring = dongle pairing enable && (rssi > -56); //button trigger pairing(rssi threshold, short distance)
if(!user manual paring){ //special adv pair data can also trigger pairing
user manual paring = (memcmp(pa->data, telink adv_trigger paring, sizeof(telink adv_trigger paring)) = 0) && (rssi > -56

}

if(user_manual_paring) { create connection }

If connection is triggered by manual pairing, after connection is established
successfully, i.e. when “HCI LE CONECTION ESTABLISHED EVENT” is reported, current
device will be added into slave mac table.

// 1f this connection establish is a new device manual paring, should
add this device to slave table
if (user manual paring && !master auto connect) {

user tbl slave mac add(pc->peer adr type, pc->mac);

3.6.5 Un-pairing

void host unpalr proc(void)

R
//terminate and unpair proc
static int master disconnect flag;
if (dongle unpair enable){

if ('master disconnect flag && blc_ 11 getCurrentState() == BLS_LINK STATE CONN) {
if (blm 11 disconnect (current_connHandle, ECI_ERR REMOTE USER TERM CONN) == BLE SUCCESS){
master disconnect flag = 1;
dongle unpair enable = 0;

#if (BLE HOST SMP_ ENABLE)

tbl bond slave unpair proc(current conn adr type, current conn address); //by telin
#else
user tbl salve mac_unpair proc():
#endif
H
}
}
if (master disconnect_flag && blc_ 11 getCurrentState() != BL5_LINK STATE CONN){

master disconnect flag = 0:

H

As shown in the reference code above, when un-pairing condition is triggered,
Master will invoke “blm_ll_disconnect” to terminate connection, then invoke
“user_tbl_salve_mac_unpair_proc” to process un-pairing. Demo code will directly
delete all paired devices, since the maximum number of paired devices is 1 by default,
only one device will be deleted. If the configured maximum number exceeds 1,

AN-17092700-E4 167 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

an

“user_tbl_slave_mac_delete_by _adr” or “” should be invoked to delete specific device.
In Demo code, un-pairing condition will be triggered in the following two cases:

<> Un-pairing button on Master dongle is pressed;

<> Un-pairing key value “OxFF” is received in “HID keyboard report service”.

User can modify the trigger condition of un-pairing as needed.

AN-17092700-E4 168 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4 Power Management (PM)

4.1

PM driver

Driver files related to PM are available in proj_lib/pm_826x.h, proj_lib/pm_826x.c,

proj/mcu_spec/gpio_826x.h and proj/mcu_spec/gpio_826x.c.

4.1.1 Low power modes

1)

2)

3)

826x MCU supports three basic modes.

Working mode: In this mode, MCU executes firmware, hardware digital modules
work normally, related analog modules and BLE RF transceiver can be enabled
depending on firmware. The current in this mode is about 10~30mA.

Suspend mode: Low power mode 1. In this mode, firmware stops running, similar
to suspend function. Most hardware modules in IC are powered down, while the
PM module still works normally. All digital registers, analog registers and memory
are non-volatile in this mode, i.e. all data and states are held and won’t be lost.
The pure IC current in this mode is about 7~8uA. After wakeup from suspend,
firmware continues running from the break point.

Deepsleep mode: Low power mode 2. In this mode, firmware stops running, the
vast majority of hardware modules in IC are powered down, while the PM module
still works. Only a few retention analog registers are non-volatile in this mode;
other (digital and analog) registers and memory are volatile, i.e. all data won’t be
held. The retention analog registers (DEEP_ANA_REG in pm_826x.h) can be used
to store some necessary information. After wakeup from deepsleep, MCU is
rebooted, and it’s equivalent to power cycle (power cycle will reset all registers);
firmware restarts running and enters initialization. User can store some
information in DEEP_ANA_REG before MCU enters deepsleep. Then user can
judge whether it’s pure power cycle or wakeup from deepsleep, by reading
retention analog registers during initialization and checking whether there’re pre-
configured information. The pure IC current in this mode is about 0.7uA; if internal
flash current (~1uA) is added, the total current is about 1.7uA.

As introduced in Link Layer timing sequence, during each Adv Interval /

Connection Interval, MCU works with low duty cycle and enters suspend after tasks
are processed. Since MCU stays in suspend state at most time and current in suspend
is very low, the average current is decreased largely to enable low power.

When MCU does not need to work, it can be configured to enter deepsleep to

minimize power, and certain sources can be configured to wake up MCU.

AN-17092700-E4 169 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4.1.2 Hardware wakeup sources

Figure4-1 shows wakeup sources available for 826x MCU: In suspend mode, it can
be woke up by CORE and timer sources; while in deepsleep mode, it can be woke up

by PAD and timer sources. In 826x BLE SDK, the following three types of wakeup
sources are selectable.

enum {
PM WAKEUP PAD = BIT(4),
PM WAKEUP CORE = BIT(S),

PM WAKEUP TIMER = BIT(6),

PAO
PA1
. CORE wakeup
Suspend wakeup
-————— |
Mode
GPIO
WAKEUP
: wakeu i
MODULE P 32k timer
» PAD
wakeup | Deepsleep | wakeup
Mode
PFO
PF1

Figure4-1 Hardware wakeup sources for 826x MCU

As shown above, MCU can be woke up from low-power mode (suspend or
deepsleep) by hardware wakeup source TIMER, CORE or PAD.

The wakeup source “PM_WAKEUP_TIMER” is derived from hardware 32kHz RC
timer. This timer is correctly initialized in SDK, and user only needs to set this wakeup
source in “cpu_sleep_wakeup()”.

The two wakeup sources including “PM_WAKEUP_CORE” and “PM_WAKEUP_PAD”
are derived from GPIO. High/Low level of all GPIOs can be configured to wakeup MCU
from suspend/deepsleep via the CORE/PAD module. The CORE module can only
wakeup MCU from suspend, while the PAD module can wakeup MCU from both
suspend and deepsleep. However, in 826x BLE SDK, GPIO CORE is appointed as wakeup

AN-17092700-E4 170 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

source for suspend, while GPIO PAD is appointed as wakeup source for deepsleep.

The APIs below can be invoked to enable high or low level wakeup of certain GPIO
source.

1) Configure GPIO CORE as wakeup source for suspend:
void gpio_set_wakeup(u32 pin, u32 level, int en);

Note: “pin” indicates GPIO pin; “level” indicates wakeup trigger level, 1-high level
wakeup, 0-low level wakeup; “en”: 1-enable, O-disable.

Examples:
gpio_set_wakeup(GPIO_PC2, 1, 1); //Enable GPIO_PC2 CORE high level wakeup
gpio_set_wakeup(GPIO_PC2, 1, 0); // Disable GPIO_PC2 CORE wakeup
gpio_set_wakeup(GPIO_PB5, 0, 1); //Enable GPIO_PB5 CORE low level wakeup

gpio_set_wakeup(GPIO_PB5, 0, 0); //Disable GPIO_PB5 CORE wakeup

2) Configure GPIO PAD as wakeup source for deepsleep:
void cpu_set_gpio_wakeup (int pin, int pol, int en);
Note: “pin” indicates GPIO pin; “pol” indicates wakeup trigger polarity, 1-high level
wakeup, O-low level wakeup; en: 1-enable, O-disable.
Examples:
cpu_set_gpio_wakeup (GPIO_PC2, 1, 1); //Enable GPIO_PC2 PAD high level wakeup
cpu_set_gpio_wakeup (GPIO_PC2, 1, 0); // Disable GPIO_PC2 PAD wakeup
cpu_set_gpio_wakeup (GPIO_PB5, 0, 1); //Enable GPIO_PB5 PAD low level wakeup

cpu_set_gpio_wakeup (GPIO_PB5, 0, 0); //Disable GPIO_PB5 PAD wakeup

4.1.3 Low power mode entry and wakeup

The API “cpu_sleep_wakeup” in “proj_lb/pm_826x.h” can be invoked to
configure MCU to enter low power mode and set wakeup source(s).

int cpu_sleep_wakeup (int deepsleep, int wakeup_src, u32 wakeup_tick);
Notes:
1) “deepsleep”: 0-enter suspend, 1-enter deepsleep.

2) “wakeup_src”: It's used to configure wakeup source(s) for current
suspend/deepsleep, and it's selectable from PM_WAKEUP_PAD,
PM_WAKEUP_CORE and PM_WAKEUP_TIMER correspondingly. Note that

AN-17092700-E4 171 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3)

PM_WAKEUP_TIMER and PM_WAKEUP_CORE can be used as wakeup source for
suspend, while PM_WAKEUP_TIMER and PM_WAKEUP_PAD can be used as
wakeup source for deepsleep. If wakeup_src is set as 0, MCU can’t be woke up
after it enters low power mode.

“wakeup_tick”: If the PM_WAKEUP_TIMER is not configured, this parameter is
invalid. Only when the PM_WAKEUP_TIMER is configured in the wakeup_src, the
wakeup_tick (absolute value) needs to be configured as current system tick plus
sleep time tick, and it determines when MCU will be woke up by timer. When
system tick value matches the configured wakeup_tick, MCU is woke up from low
power mode. If the wakeup _tick is directly configured not considering system tick,
wakeup time can’t be effectively controlled.

The absolute wakeup_tick value must be within the range of 32-bit system tick,

the maximum sleep time configured by this APl is limited. In current design, maximum
sleep time is set as 32bit max system tick * 3/4. For 16MHz clock, max system tick is
268s, the maximum suspend/deepsleep should be 268s*3/4=201s

1)
2)

3)

4)

The int return value is one or “logic or” result of the five values in the enum below.

enum {
WAKEUP STATUS COMP = BIT(0Q),
WAKEUP STATUS TIMER = BIT(1l),
WAKEUP STATUS CORE = BIT(2),
WAKEUP STATUS PAD = BIT(3),

STATUS GPIO ERR NO ENTER PM = BIT(7),
bi
WAKEUP_STATUS_COMP is never used in BLE SDK, and it’s negligible to user.
WAKEUP STATUS TIMER/ WAKEUP STATUS CORE/ WAKEUP STATUS PAD

correspond to PM WAKEUP TIMER/ PM WAKEUP CORE/ PM WAKEUP PAD, Which
indicate wakeup source to trigger current low power mode.

STATUS GPIO ERR NO ENTER PM is a special state, and indicates a GPIO wakeup
error occurs currently. E.g. When a GPIO CORE high level wakeup is configured,
when this GPIO is high level, it tries to invoke “cpu_sleep wakeup” to enter
suspend and wakeup source is set as “PM_WAKEUP_CORE”. In this case, MCU
cannot enter suspend, but will exit “cpu_sleep_wakeup” immediately and return
the value “sTATUS GPIO ERR NO ENTER PM'.

Note: The return value may be (WAKEUP STATUS TIMER | WAKEUP STATUS CORE)
and it indicates two wakeup sources take effect simultaneously.

Generally the following method is used to control sleep time:

cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() + delta_Tick);

AN-17092700-E4 172 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

“delta_Tick” is a relative time (e.g. 100*CLOCK_SYS_CLOCK_1MS). The result of

“clock_time()” plus “delta_Tick” is absolute time.

1)

2)

3)

4)

5)

6)

cpu_sleep_wakeup usage examples:
cpu_sleep_wakeup (0, PM_WAKEUP_CORE, 0);

MCU enters suspend mode when this function is executed, and it can be woke up
by GPIO CORE only.

cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() +
10*CLOCK SYS CLOCK 1MS);

MCU enters suspend mode when this function is executed, and it can be woke up
by TIMER only; suspend time is 10ms, i.e. wakeup time is function execution
moment plus 10ms.

cpu_sleep_wakeup (0, PM_WAKEUP_CORE | PM_WAKEUP_TIMER,clock_time() +
50*cLock SySs CLOCK 1Ms);

MCU enters suspend mode when this function is executed, and it can be woke up
by GPIO CORE and TIMER. Timer wakeup time is set as 50ms relative to function
execution moment; if GPIO CORE wakeup is triggered before 50ms expires, MCU
will be woke up by GPIO, otherwise MCU will be woke up by Timer.

cpu_sleep_wakeup (1, PM_WAKEUP_PAD, 0);

MCU enters deepsleep mode when this function is executed, and it can be woke
up by GPIO PAD.

cpu_sleep_wakeup (1, PM_WAKEUP_TIMER, clock_time() + 8*
CLOCK SYS CLOCK 15);

MCU enters deepsleep mode when this function is executed, and it can be woke
up by Timer. Deep sleep time is 8s.

cpu_sleep_wakeup (1, PM_WAKEUP_PAD | PM_WAKEUP_TIMER,clock_time() +
10*CLOCK SYS CLOCK 15);

MCU enters deepsleep mode when this function is executed, and it can be woke
up by GPIO PAD and Timer. Timer wakeup time is 10s relative to function execution
moment. If GPIO PAD wakeup is triggered before 10s expires, MCU will be woke
up by GPIO, otherwise MCU will be woke up by Timer.

AN-17092700-E4 173 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4.2 BLE low power management

In 826x BLE SDK, low power management is implemented via power management
of Link Layer.

In current Telink BLE SDK, stack bottom layer only implements low power
management for Advertising state and Connection state Slave role, and a set of APIs
are supplied for user. As for other states, low power management is not directly
supplied, or it’s needed to invoke PM driver to implement PM, e.g. PM in Idle state.

4.2.1 PMin Idle state

When Link Layer is in Idle state, the “blt_sdk_main_loop” does not execute any
operation, and low power management is not supplied in SDK. User needs to invoke
the APl “cpu_sleep_wakeup()” to implement low power management, i.e. configure
MCU to enter suspend or deepsleep mode, and set wakeup source correspondingly.

volid main loop ()

{
tick loop ++:
-- BLE entry S/ /A 700 rirrirrisrrirrirrirrirrss
blt slave main loop ():
S rrdf i fffrrryidir Ay O encey A0 AP FFAFAAAFErEfiririidfiiiriidilss
[fadd user task
if (bls 11 getCurrentState() = BLS_LINK STATE IDLE){ //Idle state
cpu sleep wakeup (0, PM FAKEUP TIMER, clock time()} + 10 *{LOCK S¥YS CLOCK 1MS);
H
else{
blt pm proc(): //BLE ARdv & Conn state
¥
¥

Figure4-2 PM in Link Layer Idle state

The figure above shows simple reference code: When Link Layer is in Idle state,
there’s 10ms suspend during each mainloop.

In Idle state, MCU can also enter deepsleep mode directly.

4.2.2 PM in BLE Adv state & Conn state
When Link Layer is in Advertising state or Conn state Slave role:

1) In Advertising state, during each Adv Interval, the remaining time except for Adv
Event can be used to process Ul task or enter suspend.

AN-17092700-E4 174 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2) In Conn state Slave role, during each Conn interval, the remaining time except for
Brx Event (brx start + brx working + brx post) can be used to process Ul task or
enter suspend.

Actually BLE PM includes the management of the Ul task/suspend duration. User
can manage this duration, and determine whether to run Ul task or enter suspend to
save powetr.

BLE PM does not include the management of deepsleep. User can directly invoke
“cpu_sleep_wakeup” in Ul layer to enter deepsleep.

BLE PM does not need user to directly invoke the APl “cpu_sleep_wakeup” in PM
driver layer. In BLE stack part of 826x BLE SDK, according to states and low power
modes of Link Layer, a PM mechanism is supplied (code is in “blt_sdk_main_loop”).
User only needs to invoke corresponding API to configure and manage low power.

4.3 BLE PM configuration

4.3.1 PM module initialization

Similar to the design of Link Layer state machine, it’'s needed to enable PM
module during initialization by invoking the APl below.

void blc_11 initPowerManagement module (void) ;

Applications without the need of PM won’t invoke this API, thus PM related code
and variables won’t be compiled to firmeware, and resources can be saved.

4.3.2 Set low power mode via “bls_pm_setSuspendMask”

The API below serves to configure PM for Link Layer Advertising state and Conn
state in 826x BLE SDK:

void bls pm setSuspendMask (u8 mask);

u8 bls pm getSuspendMask (void);

By using the “bls_pm_setSuspendMask”, a bottom-layer variable “SuspendMask”
is set to configure low power mode. Actually the variable in code is
“bls_pm.suspend_mask”, and its default value is “SUSPEND_DISABLE".

The “bls_pm_getSuspendMask” serves to obtain current SuspendMask value,
which equals the value configured by previous invoked “bls_pm_setSuspendMask”. If
the variable is not configured, the value equals the default “SUSPEND_DISABLE".

The SuspendMask is selectable from the values below.

/11771117717 ////// Power Management ///////////////////////

AN-17092700-E4 175 Verl.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook
#define SUSPEND DISABLE 0
#define SUSPEND_ADV BIT (0)
#define SUSPEND_CONN BIT (1)
#define MCU_STALL BIT (6)

MCU_STALL is a special mode and it will be introduced later.

Please refer to Link Layer timing sequence (section 3.2.4) and working mechanism
of low power management (section 4.3.4) to help understand the configuration of
“bls_pm_setSuspendMask”.

SuspendMask can be selectable as any one of the values above, or combination
value (“or” operation) of Advertising state and Conn state, as shown below:

bls_pm_setSuspendMask(suspEND ADV);
bls_pm_setSuspendMask(susPEND CONN);
bls_pm_setSuspendMask(Mcu sTaALL);
bls_pm_setSuspendMask(SuSPEND DISABLE);

bls_pm_setSuspendMask(SUSPEND ADV | SUSPEND CONN);

4.3.3 Set low power wakeup source via “bls_pm_setWakeupSource”

MCU can enter suspend or deepsleep by invoking the “bls_pm_setSuspendMask”.
The APl below serves to set corresponding wakeup souce.

void bls pm setWakeupSource (u8 source);

This APl sets a bottom-layer variable “WakeupSource”. Actually the variable in
code is “bls_pm.wakeup_src”.

The WakeupSource is selectable from PM_WAKEUP_PAD, PM_WAKEUP_CORE,
PM_WAKEUP_TIMER or corresponding combination (“or” operation).

If MCU enters suspend mode from Advertising state or Conn state Slave role,
actual system wakeup source should be:

WakeupSource | PM_WAKEUP_TIMER

The “PM_WAKEUP_TIMER” is necessary and it does not depend on user
configuration, which ensures MCU can be woke up to process Adv Event or Brx Event.

The wakeup source configured by “bls_pm_setWakeupSource” only applies to
current low power mode; once MCU is woke up from suspend/deepsleep, the
WakeupSource will be cleared in bottom layer and become invalid. It’s needed to re-
configure the wakeup source for each subsequent low power mode.

AN-17092700-E4 176 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4.3.4 Working mechanism of low power managment

To help understand the configuration of “SuspendMask” and “WakeupSource”,
this section will introduce the principle of low power management mechanism.

In SDK, mainloop is a structure of while(1):
while(1)
{
blt_sdk_main_loop();
//Ul task
}

As long as Ul task does not take especially long time, the “blt_sdk_main_loop”
including the code of BLE low power management mechanism will always be executed.

Corresponding to BLE Link Layer timing sequence (section 3.2.4), two time
parameters are defined: “T_advertising” indicates the start time of Link Layer Adv
Event in Advertising state; “T_brx” indicates the start time of Link Layer Brx Event in
Conn state Slave role.

In blt_sdk_main_loop, the pseudo code corresponding to low power management
is shown as below:

int blt_sdk_main_loop (void)

if(SuspendMask == SUSPEND_DISABLE) // SUSPEND DISABLE, not enter low

power mode

{

return O;

if(Link Layer State is in Advertising state or Conn state Slave role)

{

if(Link Layer is in Adv Event or Brx Event) // BLE packet transfer is

onging, not enter low power mode

{

return O;

AN-17092700-E4 177 Verl.3.0

ATELIN
b Telink TLSR826x BLE SDK Developer Handbook

O SEMICONDUCTOR,

else

blt_brx_sleep ();//suspend & wakeup processing function

}

return 1;

void blt_brx_sleep (void)

{
if((Link Layer state == Adv state) && (SuspendMask&SUSPEND ADV))

// Enter suspend from current Adv state

{
Execute callback function of event “BLT EV_FLAG SUSPEND ENTER”

(0, PM WAKEUP TIMER | WakeupSource,

cpu_sleep wakeup
//suspend

T advertising + advInterval);

Execute callback function of event “BLT EV FLAG SUSPEND EXIT”

if (current suspend is woke up by GPIO CORE in advance)

{

Execute callback function of event

“BLT EV_FLAG GPIO EARLY WAKEUP”

until wakeup at

Re-enter suspend,

“T advertising+advInterval”

}
}

else i1if((Link Layer state
(SuspendMask&SUSPEND CONN)

== Conn state Slave role) &&
)// Enter suspend from current Conn

state

u32 wakeup tick;

if (conn latency is not 0) //conn latency != 0
AN-17092700-E4 178 Ver1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

// refer to section 4.4 for latency use
ul6 latency use = bls calculateLatency();
wakeup tick = T brx + (latency use+l) * conn interval;

}

else //conn latency == 0

wakeup tick = T brx + conn_interval;

Execute callback function of event “BLT EV FLAG SUSPEND ENTER”
cpu_sleep wakeup (0, PM WAKEUP TIMER|WakeupSource, wakeup tick);

Execute callback function of event “BLT EV FLAG SUSPEND EXIT”

if (current suspend is woke up by GPIO CORE in advance)

{

Execute callback function of event

“BLT EV_FLAG GPIO EARLY WAKEUP”

BLE timing sequence adjustment related processing

// clear low power configuration parameters related to user

WakeupSource= 0;// clear wakeup source configuration

user latecny = Oxffff;

4.4 “latency_use” configuration and calculation

As introduced in working mechanism of low power management (section 4.3.4),
if the “suspendMask” is set as “SUSPEND_CONN” in Conn state Slave role, the actual
wakeup time should be:

wakeup_tick =T_brx + (latency_use+1) * conn_interval;

AN-17092700-E4 179 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

“T_brx”: Brx Event Rx time during current interval.

If “latency_use” is 0, MCU must be woke up during next interval to listen for
packets; if “latency_use” is not 0, MCU can skip “latency_use” intervals to save power.

latency_use = bls_calculateLatency();
The calculation of “latency_use” involves a “user_latency” with configurable value:

void bls pm setManuallatency (ul6 latency)
{
user_latency = latency;

}
“latency_use” calculation process is shown as below.
First calculate system latency:

1) If connection latency in current connection parameters is 0, system latency would
be 0.

2) If connection latency in current connection parameters is not O:

A. If current system has unfinished task (e.g. there are data to be sent, or there
are data received from Master to be processed), MCU must be woke up during
next interval to continue the task, so system latency should be 0.

B. If current system has no task to process, system latency should equal
connection latency except in the case below: If “update map request” or
“update connection parameter request” is received from Master, and the
actual update moment is earlier than (connection latency+1) intervals, the
actual system latency would ensure MCU is woke up during the interval before
the actual update moment, so as not to disturb BLE timing sequence.

Acutally the eventual latency_use equals min(system latency, user_latency), i.e.
the minimum value of system latency and user_latency.

If the latency manually configured by invoking “bls_pm_setManuallLatency”
during Ul entry is smaller than system latency, it can be used as the eventual
latency_use. It only applies to non-zero system latency.

Note that the final sentence of each “blt_sdk_main_loop” will set “user_latency”
as “Oxffff”. Therefore, the user latency configured by invoking
“bls_pm_setManuallatency” only applies to the current suspend.

AN-17092700-E4 180 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4.5 Other APIs

4.5.1 bls_pm_getSystemWakeupTick

The API below serves to obtain suspend wakeup time (system tick value)
calculated by PM module.

u32 bls_pm_getSystemWakeupTick(void);

According to section 4.3.4, this APl can be invoked only in the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event.

When the “blt_brx_sleep” function is executed by PM module, the suspend
wakeup time is calculated according to current Link Layer state and the “SuspendMask”
set in APP layer. APP layer can read this value only via the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event.

For example, MCU needs to enter suspend from Conn state, and conn latency is
not O:

ul6 latency use = bls calculatelatency();
wakeup tick = T brx + (latency use+l) * conn interval;

cpu_sleep wakeup (0, PM WAKEUP TIMER|WakeupSource, wakeup tick);

APP layer can’'t predict in advance the Ilatency use calculated by
“bls_calculateLatency” and thus does not know the actual wakeup_tick; the wakeup
time can be obtained only by invoking “bls_pm_getSystemWakeupTick” in the callback
function of “BLT_EV_FLAG_SUSPEND_ENTER” event.

Following is a key scan application example to illustrate the usage of
“BLT_EV_FLAG_SUSPEND_ENTER” callback function and
“bls_pm_getSystemWakeupTick”.

bls_app_registerEventCallback(BLT_EV_FLAG_SUSPEND_ENTER,
&ble_remote_set_sleep_wakeup);

voidble remote_ set sleep wakeup (u8 e, u8 *p, int n)

{
if (bls 11 getCurrentState() == BLS LINK STATE CONN &&
((u32) (bls_pm getSystemWakeupTick() - clock time())) >
80 * CLOCK SYS CLOCK 1MS)

//gpio CORE wakeup suspend

bls pm setWakeupSource (PM WAKEUP CORE) ;

AN-17092700-E4 181 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The callback function is used to avoid key press loss. Generally, a key press lasts
for hundreds of milliseconds~100ms. When “bls_pm_setSuspendMask” configures
MCU to enter suspend from both Advertising state and Conn state, if “Conn Latency”
is not enabled (0), as long as Adv interval and Conn interval is not especially large
(generally set as a value not exceeding 100ms), suspend time won’t exceed Adv
interval and Conn interval; since it can ensure key scan frequency, key press loss can
be avoided. In this case, GPIO wakeup is not configured, so that key press won’t
wakeup MCU.

However, if latency is enabled, (e.g. conn_interval is 10ms, latency is 99), suspend
may last for 1s in Conn state. During this process, there may be key press lost. Check
in the “BLT_EV_FLAG_SUSPEND_ENTER” callback, if current state is Conn state, and
wakeup time for the following suspend is more than 80ms from current time, GPIO
CORE wakeup will be added. If timer wakeup is not triggered yet, and GPIO level
changes due to key press, MCU wakeup is triggered in advance, so that key press won’t
be lost and key scan task can be processed.

4.5.2 bls_pm_enableAdvMcusStall
The API below serves to decrease peak current during advertising.
void bls_pm enableAdvMcuStall (u8 en);
“en”: 1-Enable MCU stall; 0-Disable MCU stall.

Note: Timer0 is used in stack bottom layer to implement MCU stall during advertising.
If this power optimization is added, APP layer should use Timerl/Timer2 rather than
TimerO.

4.5.3 cpu_sleep_wakeup2

The API below serves to set long deep or suspend time, and wake up automatically when
setting time is over. The max time interval supports by this APl is 71 minutes.

int cpu_sleep_wakeup?2(int deepsleep,
int wakeup_src,
unsigned long SleepDurationUs);

Please be noted, the unit of parameter SleepDurationUs is us, and it is an abosulte value,
i.e., just input sleep duration (differ from relatively value of cpu_sleep_wakeup). E.g., if
the sleep duration is 10 min,

cpu_sleep_wakeup2(DEEPSLEEP_MODE, PM_WAKEUP_TIMER, 10*60*1000*1000);

AN-17092700-E4 182 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

4.6 Notes about GPIO wakeup

4.6.1 Fail to enter suspend/deepsleep when wakeup level is valid

Since 826x CORE/PAD wakeup is triggered by high/low level rather than
positive/negative edge, after GPIO CORE or PAD source is configured, e.g. MCU is
configured to wake up from suspend by high level of certain GPIO CORE, the GPIO
input must be low level when MCU invokes “cpu_wakeup_sleep” to enter suspend. If
the GPIO is already high level input currently, the configuration won’t take effect, and
Slave doesn’t enter suspend. This also applies to GPIO PAD wakeup.

The situation above may lead to unexpected problems. For example, MCU is
expected to enter deepsleep and execute firmware after wakeup; however, MCU can’t
enter deepsleep and continues to execute the code unexpectedly, thus firmware
running flow may be messed.

In code of 826x ble remote, a solution is given to solve the problem.

Via configuration in “BLT_EV_FLAG_SUSPEND_ENTER”, GPIO CORE wakeup won’t
be enabled unless suspend time exceeds the specified time (e.g. 80ms).

void ble_remote_ set_sleep wakeup (u8 e, u8 *p, int n)
{
if (bls 11 getCurrentState() == BLS LINK STATE CONN ¢&&
((u32) (bls_pm getSystemWakeupTick() - clock time())) >
80 * CLOCK SYS CLOCK 1MS)

bls pm setWakeupSource (PM WAKEUP CORE) ;

When there’s key not released, user can ensure suspend time won’t exceed 80ms
by manually setting latency as 0 or a small value, thus GPIO CORE high-level wakeup
won’t be enabled with key held (high level in drive pin). The sample code is shown as
below:

AN-17092700-E4 183 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

user task flg = scan pin need || key not released || DEVICE LED BUSY;

if {user task flg){
#1f (LONG PRESS KEY POWER OFTIMIZE)
extern int key matrix same as last_cnt;
if (key matrix =same as last cnt > 5){

bl=z pm setManuallatency(ul manual latency when key press() }:
}
elzef
bl=z pm setManuallatency(0): fflatency off: O
}
felse
bls pm setManuallatency (0} ;
#endif

MCU will enter deepsleep in following cases:

1) There is no task (including key press task) for successive 60s duration. In this case,
the problem MCU can’t enter deepsleep due to high level from drive pin can be
avoided.

2) Some button is stuck for 60s. In this case, though high level is input in drive pin,
by inverting the polarity of the stuck drive pin to low-level wakeup, MCU is allowed
to enter deepsleep (refer to section 7.7).

User should pay attention to this problem when using Telink GPIO CORE/PAD
wakeup.

4.7 BLE system PM reference

As introduced above, user can flexibly configure low power management in Ul
entry.

In this section, low power management code sample of 826x remote (audio RC)
is given for user reference.

AN-17092700-E4 184 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

|void blt pm proec(void)

1§
if{ui mic enable){
bls_pm setSuspendMask (MCU_ STALL):
}
else
{
bls_pm setSuspendMask (SUSPEND ADV | SUSPEND CONN) ;
user task flg = ota iz working || scan pin need || key not released || DEVICE LED BUSY;
if (user_task flg){
#if (LONG PRESS_KEY POWER OPTIMIZE)
extern int key matrix same as_last_cnt;
if('ota_is working && key matrix same as_last_cnt > 5){ //key matrix stable can gptize
bls_pm setManuallatency(3);
}
else{
bls _pm setManuallatency(0); [/ flatency off: 0
}
f#else
bls_pm setManualLatency (0);
#endif
}
if (sendTerminate before enterDeep = 1){ //sending Terminate and wait for ack before enter deepsleep
if {user task flg){ //detect key Press again, can not enter deep now
sendTerminate before enterDeep = 0:
bls 11 setAdvEnable(1}; //enable adv again
}
}
else if(sendTerminate before enterDeep == 2}{ //Terminate OK
analog write (DEEF ANA REGO, CONN DEEF FLG):
cpu_sleep wakeup (DEEPSLEEF MODE, PM WAKEUP PAD, 0): //deepsleep
}
/fadv &0s, deepsleep
if(blc 11 getCurrentState () == BLS_LINK STATE ADV && !sendTerminate before enterDeep && A
clock time exceed(advertise begin tick , ADV IDLE ENTER DEEFP TIME * 1000000))
{
cpu_sleep wakeup (DEEPSLEEF MODE, PM WAKEUP PAD, 0); //deespsleep
}
//fconn 603 no event (key/voice/led), enter deepsleep
else if(device_in connection state && 'user task flg && M\
clock time exceed(latest user event tick, CONN_IDLE ENTER DEEP TIME * 1000000))}
{
bls 11 terminateConnection (HCI ERR REMOTE USER TERM CONN); //push terminate cmd into ble TX buffer
bls 11 sethAdvEnable (0); [/fdisable adv
sendTerminate before enterDeep = 1;
}
! }
B

Figure4-3 Reference code of 8267 remote low power management

The “blt_pm_proc()” function is included in Ul entry of main_loop.

Note: If Ul entry needs to process multiple tasks, the “blt_pm_proc()” should be close
to the “blt_sdk_main_loop”, since its setting depends on processing result of other
tasks in Ul entry.

Conclusions about low power management are shown as below:

1) |Ifit’s needed to disable suspend for task such as audio (ui_mic_enable) or IR, the
“SuspendMask” should be set as “SUSPEND_DISABLE".

2) In Advertising state, if Slave continuous adv time reaches 60s, it should be

AN-17092700-E4 185 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3)

4)

5)

configured to enter deepsleep in current main_loop, and wakeup source should
be set as “GPIO PAD” (enable key press wakeup in advance). Software timer is used
to check whether adv time exceeds 60s, and the variable “advertise_begin_tick”
serves to record the system tick when adv starts.

Slave is configured to enter deepsleep after 60s of no advertising, so as to save
power and avoid Slave from advertising when Master fails to respond. Actually
user needs to evaluate power consumption and then determine how to process
time for Adv state.

In Conn state, if Slave has no audio task or LED task, and all keys are released, Slave
is configured to enter deepsleep in current main_loop when it exceeds 60s away
from the latest valid task, and wakeup source is set as “GPIO PAD” (enable key
press wakeup in advance). It will be recorded in the retention register
DEEP_ANA_REGO it’s the Conn state from which MCU enters current deepsleep.
After wakeup, Slave can configure fast adv packet to establish connection with
Master as soon as possible.

Slave is configured to enter deepsleep after 60s of no valid task, so as to save
power. Actually MCU can be configured not to enter deepsleep, as long as its
power consumption is very low to maintain connection. User needs to determine
the implementation considering actual requirement and power consumption.

When MCU enters deepsleep from Conn state, first Slave should invoke the
“bls_lI_terminateConnection” to send a “TERMINATE” command to Master, and
enter deepsleep after this command is acked or the “BLT_EV_FLAG_TERMINATE”
is triggered by timeout.

User needs to manually set latency as 0, if long time sleep (long suspend duration)
is not allowed for task processing, such as key_not_released, DEVICE_LED_BUSY
(LONG_PRESS_KEY_POWER_OPTIMIZE is 0).

Based on step 4), after latency is disabled manually, MCU will wake up in each
conn_interval, thus power consumption is increased; since it’s not needed to
detect key press and process LED task in every conn_interval, user can manually
set latency as other value and further optimize power consumption.

When the” LONG_PRESS_KEY_POWER_OPTIMIZE” is 1, after key press is stabilized
(key_matrix_same_as_last_cnt > 5), user can set latency value manually. If it’s
configured as “bls_pm_setManuallatency (4)”, suspend will last for 5
conn_intervals. When conn_interval is 10 ms, MCU will wake up for every 50 ms
(10*(4+1) = 50ms) to process LED task and detect key press. Actually user needs
to consider the conn_interval value and task response time, and optimize power

AN-17092700-E4 186 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

consumption without influencing function correspondingly.

4.8 Timer wakeup of APP layer

In Advertising state or Conn state Slave role, once MCU enters suspend, it can be
woke up by stack only in specific moment, and user can hardly wake up MCU in
advance. To add flexibility of PM, a timer wakeup API in APP layer and corresponding
callback function are supplied in SDK. Following is the timer wakeup APl in APP layer:

void bls_pm_ setAppWakeupLowPower (u32 wakeup tick, u8 enable);
“wakeup_tick” indicates absolute system tick value for timer wakeup.
“enable”: 1-enable this wakeup function; 0-disable this wakeup function.

When timer wakeup in APP layer is triggered, the callback function registerd by
“bls_pm_registerAppWakeupLowPowerCb” is executed.

typedef void (*pm appWakeupLowPower callback t) (int);
void bls pm registerAppWakeupLowPowerCb (

pm_appWakeupLowPower callback t cb);

When “bls_pm_setAppWakeupLowPower” is used to set app wakeup_tick for
timer wakeup in APP layer, before SDK bottom enters suspend, it will check whether
this app wakeup tick is within current suspend time. If yes, suspend will be triggered
to wake up in advance at app wakeup_tick (as shown in Figure4-4). If not, this
wakeup_tick is negligible to bottom layer, and wakeup time depends on BLE timing
sequence.

app wakeup tick

suspend >

A

(AWUI task{i
| brx !

— —»
| event [

- Conn interval

Y

Figure4-4 Trigger app wakup tick in advance

5 Audio Processing
In SDK, only 8267 and 8269 support audio processing function.
5.1 Audio initialization

Figure5-1 shows hardware connection about audio MIC.

AN-17092700-E4 187 Verl.3.0

/TELINIG

OSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook
ET Mems Mic
35) L1uF TL_AmicEiz
AVDD3 3= w5 —OTLAVDD nicBias T
XC1 g TL %C02 GA-BF A4 AR5
G4§$§ 33 TL LED] C18 . W
| 32 TL_IRin TL AmicSP Il 1 4
GIDM] 737 TL_IRconirol T ir OUTRLT DD
gfg{?% 0 TL_LED?Z - e g iy
! TL A a5 === 5 C
AVDD3 757 TL_AmicSP TL_S T AsmicSN ”_u J| 1 1
UCTE/PSICS] |=5g TL_AmicsN 9 ks |
URTSIP4/C[4] |55 L a3K0s . — = =
URX/P3IC[3] - 1uF Anf
u1 i C17/C1%9 close to main chip
TLSRE267F512ET48 =

Figure5-1 Audio circuit

Note: The audio circuit shown in Figure5-1 is just supplied for reference. Please refer
to actual schematic.

Software Initialization:
config_mic_buffer ((u32)buffer_mic, TL_MIC_BUFFER_SIZE); // configure audio buffer

audio_amic_init(DIFF_MODE, 26, 9, R2, CLOCK_SYS TYPE); // configure MIC module
sampling rate as 16K

audio_finetune_sample_rate(2);

audio_amic_input_set(PGA_CH); //audio input set, ighore the input parameter

The APl below serves to configure hardware MIC:

void audio_amic_init(enum audio mode t mode flag,
unsigned short misc sys tick,
unsigned short left sys tick,
enum audio deci t d samp,

unsigned char fhs source);

“audio_amic_init” is used to configure parameters of ADC module, decimation
filter, LPF (low pass filter), HPF (high pass filter) and ALC (volume control). For function
of each module, please refer to corresponding Datasheet. Parameters in various cases
are configured in SDK, and user can select as needed. Except for a few interface
parameters, most parameters are assembled in functions (User does not need to
modify this tested part).

Hardware block diagram of MIC configuration is shown as below.

AN-17092700-E4 188 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
ANA_C<3>Vip- ADC module.:
TS — .
ANA_C<2>Vim-:| amplifier-
—_—
o Vipe | Vop-
R Bl p:| decimation fiter-
ANA_C<5> Vipe Vime Vome A
—_— >
ANA_C<4> Vime / *
T
LPF(low pass filter)-
ANA A<Q= Dk HPF(high pass filter) «

ANA A<= CLZJ chip read data from digital microphone automatically-
_—>

v

DMIC. ALC(adjust volume)-

processing: compress audio dafa - :
using audio compression algorthm g i software equalizerfoptional): g [RAME
andtransmit data via RF module.~

1)

2)

3)

4)

Figure5-2 MIC configuration HW block diagram

mode_flag

ADC sampling mode includes differential mode and single-end. Please configure
according to descripton of AMIC sensor.

misc_sys_tick, left_sys_tick

They are used to configure output rate of ADC module combining the parameter
of “audio_finetune_sample_rate(unsigned char fine_tune)”.

tem clock
adc_out_rate = SYEEm ot

misc_sys_tick+4+left_sys_tick+16+fine_tune

d_samp

It’s used to configure ratio of decimation filter, so that adc_out_rate can be down-
sampled to the needed rate. In SDK, there are two optional rate including 16K and
32K, which can meet most requirements. If user has other requirements of rate,
please refer to the formula above for configuration, or contact Telink for support.

fhs_source

It’s used to select clock source of FHS (see Datasheet). Generally it’s not needed
to modify it.

void audio_amic_input set(enum audio input t adc ch);

This function serves to configure amplifier and select AMIC input pin. User can

directly set amplifier as the supplied value, and select AMIC input pin as
ANA_C<3>/ANA_C<2> or ANA _C<5>/ANA _C<4> (default) as needed. To select

AN-17092700-E4 189 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

ANA_C<3>/ANA_C<2>, it's needed to set the parameter of “setChannel(0)” in pgalnit
function as 0.

“audio_amic_input_set()” also configures whether to bypass HPF, LPF and ALC.
Current setting is bypass LPF, enable HPF and ALC.

When audio starts, PC6 AMIC BIAS needs to output high level to drive audio. After
audio ends, it’s needed to disable AMIC BIAS to avoid current leakage during suspend.

void ui_enable mic (u8 en)
{
uli mic enable = en;
gpio_set output en (GPIO_PC6, en); //RAMIC Bias output

gpio write (GPIO PC6, en);

VA

Audio task should be executed in Ul entry of mainloop.

#if (BLE_AUDIO ENABLE)
if (ui mic enable){ //audio
task audio();

}

#endif

5.2 Processing of MIC sampled audio data

5.2.1 Audio data compression and RF transfer

The raw data sampled by hardware MIC adopt pcm format. The pcm-to-adpcm
algorithm can be used to compress the raw data into adpcm format with compression
ratio of 25%, thus BLE RF data volume will be decreased largely. Master will
decompress the received adpcm-format audio data back to pcm format.

Sampling rate of 8267 hardware MIC is 16K*16bit, so 16K samples of raw data are
generated per second, i.e. 16 samples per millisecond (16*16bit=32byte per ms).

For every 15.5ms, 496-byte (15.5%*16=248 samples) raw data are generated. Via
pcm-to-adpcm transformation with compression ratio of 1/4, the 496-byte data are
compressed into 124 bytes. The 128-byte data including 4-byte header and 124-byte
compressed data will be disassembled into five packets and sent to Master in L2CAP
layer; since the maximum length of each packet is 27 bytes, the first packet must

AN-17092700-E4 190 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

contain 7-byte [2cap information, including: 2-byte 12caplen, 2-byte chanid, 1-byte
opcode and 2-byte AttHandle.

Figure5-3 shows the audio data captured by sniffer. The first packet contains 7-
byte extra information and 20-byte audio data, followed by four packets with 27-byte
audio data each. As a result, total audio data length is 20 + 27*4 = 128 bytes.

Data Header RSSI

Datalype (/770 wesN s MD PDU-Lengen | C°C [laBm|[PES
Empty POU|| 1 T I 0 0 0x8FEFDC || —38 || 0K
e Data Header (2CAPHeader ||
LLID NESN SN MD PDU-Length |[LOCAP-Length Chanid (|Opcode AtcHandle Atcvalue =
L2cAP-s || 2 o 1 1 27 0x0083 0x0004 [|0x18 00028 3F 03 07 7C A9 BE 13 65 21 43 51 B1 43 22 14 10 C3 40 22 25
Data Header RSS!
Datalype |7 11D NESN SN MD PDU-Lengtn|| o C [|(asm [|FCS
Empty P0U|| 1 0 0 0 o0 oxeFE4RS || —38 || oK
Data Header "~ GenericL2CAPPayload RSS!
DataType || ;17D NESN SN MD PDU-Length |80 94 38 33 73 08 11 28 32 61 94 11 99 53| R€ |\(aBm) | S
L2caEC || 1 i 27 41 92 99 A9 E9 81 8B 1C 9A 09 AA DI 8B ox132361 || -38 || OK
Data Header RSSI
DataType | ;77D WESN SN MD PDU-Length| CRC (asm) ||F€S
Empty PDU| 1 1 % .0 0xBFEFDC || —38 || oK
Data Header = “Generic L2CAP Payload _ RSSI
DataType ||, 7ID NESN SN MD PDU-Length ||AC BB C9 B9 C9 8A 8D CB 4B oC 09 2B 99 29| °°C |/(asm) [|FCS
L2cAPC || 1 a r 3 27 F AB 0B 12 OF 04 15 21 53 30 C8 17 90 0x368693 || -38 || OK
Data Header RSSI
DataType ||;770 NESN SN MD PDU-Length| O°C [|wsm["3
Empty POU|| 1 0 0 o 0 0xBFE4AS || —38 || OK
Data Header Generic L2CAP Payload RSSI
DataTyPe ||/ 71D NESN SN MD PDU-Length |[19 09 89 89 89 A8 08 8A 50 E9 19 #a Ba bo|| " |[(aBm [|FCS
L2cAPC || 1 1 0 1 27 08 AA F9 88 C1 A0 92 Bl 1B 9A 9E CA C9 0x441600 || =38 || oK
Data Header RSSI
Data®ype ||/ 77D WESN SN MD PDU-Lengen| OC [|wBm[FCS
Empty POU|| 1 T & 0 0 0x8FEFDC || —38 || OK
Data Header ~ GenericL2CAPPayload RSSI
DataType ||;770 NESW SN MD PDU-Lengeh |[EQ 61 0B 09 1A DB B3 99 A9 D2 99 OF B3 1| °C [l@em[S
L2cap-C || 1 0 1 o 27 C9 BO Bl CB B2 E1 1A AR 13 OF 3A 47 32 oxF0sAcH || -38 || o |
Data Header RSS!
DataType | ;770 WESN SN MD PDU-Length CRC |l aBm) ||FCS
Empty POU|| 1 0 0 o 0 oxeFE4as || _-38 || oK |
Data Header RSS!
Datalype |\/7Th NESN SN MD PDU-Length| C°C [|aBm)[[FCS
Empty 20Ul 1 im0 00 oxere27a || -38 || oK

Figure5-3 Audio data sample

According to “Exchange MTU size” in ATT & GATT (section 3.4) of BLE Module,
since 128-byte long audio data packet are disassembled on Slave side, if peer device is
expected to re-assemble these received packets, “Exchange MTU size” should be used
to determine maximum ClientRxMTU of peer device. Only when “ClientRxMTU” is 128
or above, can the 128-byte long packet of Slave be correctly processed by peer device.

In 826x remote demo, if audio is started, to send 128-byte long packe,
“blc_att_requestMtuSizeExchange” will be invoked to Exchange MTU size.

void voice press proc (void)

{

AN-

key voice press =

ui enable mi

c (1);

0;

if (ui mtu size exchange req &&

blc 11 getCurrentState()

ui mtu size exchange req

17092700-E4

191

:O;

BLS LINK STATE CONN) {

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

blc att requestMtuSizeExchange (BLS CONN HANDLE, 0x009e);

}

Standard method is shown as below: It's also needed to invoke
“blc_att_registerMtuSizeExchangeCb” to register the callback function of MTU size
Exchange, check in the callback whether “ClientRxMTU” of peer device exceeds or
equals 128. Generally ClientRxMTU of Master device is larger than 128, “826x remote”
does not check actual ClientRxMTU via callback.

Following is the audio MIC service in Attribute Table:

'/ 002a - 002c MIC
{0,ATT PERMISSIONS READ,2,1, (ug8*) (émy characterUUID}, (ug*) (émy MicProp), 0},
{0,ATT PERMISSIONS READ,16,sizeof (my MicData), (ug*) (&my MicUUID), (ug*) (emy MicData), 0},

{0,ATT PERMISSIONS RDWR,2,sizeof (my MicName), (u8*) (guserdesc UUID), (ug*) (my MicName), 0},

Figure5-4 MIC service in Attribute Table

The Attribute in the middle is used to transfer audio data. Currently its AttHandle
value in the Attribute Table is 43 (0Ox2B) and may be updated in following versions.
Data are sent to Master via “Handle Value Notification”; if it’s the notification
corresponding to the AttHandle of 0x2B, the Attribute Value will be assembled into
128 bytes, and transferred to pre-configured buffer. Then the data are decompressed
back to the pcm-format audio data.

Both packet disassembly on Slave and assembly on Master follow BLE stack
standard.

5.2.2 Audio data compression processing

Related macros are defined in “app_config.h”, as shown below:

#define ADPCM PACKET LEN 128
#define TL MIC ADPCM UNIT SIZE 248
#define TL SDM BUFFER SIZE 992
#define TL MIC 32K FIR 16K 1

#if TL MIC 32K FIR 16K

#define TL MIC BUFFER SIZE 1984
#else

#define TL MIC BUFFER SIZE 992
#endif

AN-17092700-E4 192 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

config_mic_buffer ((u32)buffer_mic, TL_MIC_BUFFER_SIZE);

Each compression needs to process 248-sample, i.e. 496-byte data. Since
hardware MIC continuously samples audio data and transfers the processed pcm-
format data into buffer_mic, considering data buffering and preservation, this buffer
should be pre-configured so that it can store result of two compressions, i.e. 496
samples.

If 16K sampling rate is directly used, then 496 samples correspond to 992 bytes,
i.e. “TL_MIC_BUFFER_SIZE” should be configured as 992.

If MIC adopts 32K sampling rate and transfers the data into buffer with 16K speed
after FIR processing, each sample corresponds to four bytes (during compression, the
former two bytes are processed as one 16bit raw data, and the latter two bytes are
discarded), and the buffer size “TL_MIC_BUFFER_SIZE” should be configured as 1984.

The following example shows the T MIC BUFFER SIZE is configured as 1984
when the macro T MIC 32K FIR 16K is enabled (enable FIR).

buffer_mic is defined as below:

s16 buffer_mic[TL_MIC_BUFFER_SIZE>>1]; // Totally 496 samples, 1984
bytes

config mic buffer ((u32)buffer mic, TL MIC BUFFER SIZE);

Buffer is configured for hardware MIC data output, and the sampled data are
transferred into memory starting from buffer_mic address with 16K speed; once the
maximum length 1984 is reached, data transfer address returns to the buffer_mic
address, the old data will be replaced directly without checking whether it’s read.

It’s needed to maintain a write pointer “reg_audio_wr_ptr” (hardware register
value) when transferring data into RAM; the pointer is used to indicate the address in
RAM for current newest audio data.

The “buffer_mic_enc” is defined to store the compressed 128-byte data; buffer
number is configured as 4 to indicate result of four compressions can be buffered at
most.

int buffer_mic_enc[BUFFER_PACKET_SIZE];

Since “BUFFER_PACKET_SIZE” is 128, and “int” occupies four bytes, it’s equivalent
to 128*4 signed char.

AN-17092700-E4 193 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
buffer mic buffer mic _enc
Read pointer -«—— Read pointer
Write pointer| 128 byte
248 | | T~0 N0 New location

sample for read pointer

128 byte
v
Write pointer 248 New location ~ New location for 128 byte
Hardware auto maintain for read pointer write pointer
sample

128 byte

Figure5-5 Compression processing

The figure above shows the compression processing method:

The buffer_mic automatically maintains a write pointer by hardware, and
maintains a read pointer by software. Whenever the write pointer is beyond 248
samples away from the read pointer via software detection, the compression
processing function is invoked to read 248-sample data starting from the read pointer
and compress them into 128 bytes; the read pointer moves to a new location to
indicate following data are new and not read.

The buffer_mic is continuously checked whether there’re enough 248-sample
data; if so, the data are compressed and transferred into the buffer_mic_enc. Since
248-sample data are generated for every 15.5ms, the firmware must check the
buffer_mic with maximum frequency of 1/15.5ms. The firmware only executes the
task_audio once during each main_loop, so the main_loop duration must be less than
15.5ms to avoid audio data loss. In Conn state, the main_loop duration equals
connection interval; so for applications with audio task, connection interval must be
less than 15.5ms. It’s recommended to configure connection interval as 10ms or 7.5ms;
in current SDK, 7.5ms connection interval is used.

The buffer_mic_enc maintains the write pointer and read pointer by software:
after the 248-sample data are compressed into 128 bytes, the compressed data are
copied into the buffer address starting from the write pointer, and the buffer_mic_enc
is checked whether there’s overflow; if so, the oldest 128-byte data are discarded and
the read pointer switches to the next 128 bytes.

The compressed data are copied into the BLE RF data Tx buffer as below: The
buffer_mic_enc is checked if it’s non-empty (when writer pointer equals read pointer,
it indicates “empty”, otherwise it indicates “non-empty); if the buffer is non-empty,
the 128-byte data starting from the read pointer are copied into the BLE RF data Tx
buffer (if security is enabled, encryption step is also needed), then the read pointer
moves to the new location.

Following is the sample code for audio data compression processing:

AN-17092700-E4 194 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

void proc_mic_encoder (void)

{

staticul6 buffer mic rptr;

ulé mic wptr = reg audio wr ptr;
ule 1 = ((mic wptr<<l) >= buffer mic rptr) ? ((mic wptr<<l) -
buffer mic rptr) : Oxffff;

if (1 >=(TL MIC BUFFER SIZE>>2)) ({
log task begin (TR T adpcm);
sl6 *ps = buffer mic + buffer mic rptr;
mic_to adpcm split (ps, TL MIC ADPCM UNIT SIZE,
(s16 *) (buffer mic enc + (ADPCM PACKET LEN>>2) *

(buffer mic pkt wptr & (TL_MIC PACKET BUFFER NUM

buffer mic rptr = buffer mic rptr ? 0 : (TL MIC BUFFER SIZE>>2);
buffer mic pkt wptr++;

int pkts = (buffer mic pkt wptr - buffer mic pkt rptr) &
(TL_MIC PACKET BUFFER NUM*2-1);

if (pkts > TL MIC PACKET BUFFER NUM) ({
buffer mic pkt rptr++;
log event (TR T adpcm enc overflow);

}

log _task end (TR T adpcm);

5.3 Compression and decompression algorithm

The following function is used to invoke the compression algorithm:
void mic_to_adpcm_split (signed short *ps, int len, signed short *pds, int start);

Notes:

AN-17092700-E4 195 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

< “ps” points to the starting storage address for data before compression, which
corresponds to the read pointer location of the buffer_mic as shown in Figure5-5;

< “len” is configured as TL_MIC_ADPCM_UNIT_SIZE (248), which indicates 248
samples;

< “pds” points to the starting storage address for compressed data, which
corresponds to the write pointer location of the buffer_mic_enc as shown in
Figure5-5.

? predict
2 |predict idx
3 124 audio data len
4
1/4 compression
248 sample
196 bytes 124 bytes
127

Figure5-6 Data corresponding to compression algorithm

The memory space for compressed data stores 2-byte predict, 1-byte predict_idx,
1-byte length of current valid adpcm-format audio data (i.e. 124), and followed by 124-
byte data compressed from the 496-byte raw data with compression ratio of 1/4.

The following function is used to invoke the decompression algorithm:
void adpcm_to_pcm (signed short *ps, signed short *pd, int len);
Notes:

<> “ps” points to the starting storage address for data to be decompressed (i.e. 128-
byte adpcm-format data). This address needs user to define a buffer to store 128-
byte data copied from BLE RF.

< “pd” points to the starting storage address for decompressed 496-byte pcm-
format audio data. This address needs user to define a buffer to store data to be
transferred when playing audio.

< “len” is 248, same as the “len” during compression.

As shown in Figure5-6, during decompression, the data read from the buffer are
two-byte predict, 1-byte predict_idx, 1-byte valid audio data length “124”, and the
124-byte adpcm-format data which will be decompressed into 496-byte pcm-format
audio data.

AN-17092700-E4 196 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

6 OTA

Since 8267 and 8269 support 512K flash, as well as flash multi-address booting
from multiples of 128KB offsets (e.g. boot from 0, 0x20000 or other address), they
have the same flash architecture and OTA procedure.

Since 8261/8266 can only boot from address 0 without flash multi-address
booting support, they have the same OTA procedure. Flash size for 8261 and 8266 is
128K and 512K, respectively; they have similar flash architecture.

To implement OTA for 826x Slave, a device is needed to act as BLE OTA Master,
which can be the Bluetooth device (supporting OTA in APP) combined with Slave, or
simply Telink BLE Master Dongle.

In this section, Telink kma dongle is taken as an example of OTA Master to
illustrate how 826x BLE OTA is realized.

6.1 8267/8269 Flash architecture and OTA procedure

6.1.1 8267/8269 FLASH storage architecture

In SDK, by default firmware size should not exceed 128K, i.e. the flash area
0~0x20000 serves to store firmware.

0x80000 0x80000
0x40000 0x40000 0x40000 0x40000
RF
ransfer
i 14 . :
New_firmware Firmware_2. bin Firmware 2.bin ;& Firmware_3.bin
storage area 2]
&
&
0x20000 0x20000 0x20000 @ 0x20000
Firmware_1.bin New fi
Ota_master. bin ev_{irmvare Ota_master. bin
storage area
0x00000 0x00000 0x00000 0x00000
8267 slave ota_master 8267 slave ota_master
OTA of the (2n+l)-th time OTA of the (2n+2)-th time

Figure6-1 8267/8269 default Flash storage structure

1) OTA Master burns new firmware2 into the Master flash area starting from
0x20000.

2) OTA for the first time:

AN-17092700-E4 197 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

A. When power on, Slave starts booting and executing firmwarel from flash
0~0x20000.

B. When firmwarel is running, the area of Slave flash starting from 0x20000 (i.e.
flash 0x20000~0x40000) is cleared during initialization and will be used as
storage area for new firmware.

C. OTA process starts, Master transfers firmware2 into Slave flash area starting
from 0x20000 via RF. Then Slave sets bootloader to boot from the new
firmware offset and reboots (similar to power cycle).

3) For subsequent OTA updates, OTA Master first burns new firmware3 into the
Master flash area starting from 0x20000.

4) OTA for the second time:

A. When power on, Slave starts booting and executing firmware2 from flash
0x20000~0x40000.

B. When firmware2 is running, the area of Slave flash starting from 0x0 (i.e. flash
0~0x20000) is cleared during initialization and will be used as storage area for
new firmware.

C. OTA process starts, Master transfers firmware3 into Slave flash area starting
from 0x0 via RF. Then Slave sets bootloader to boot from the new firmware
offset and reboots.

5) Subsequent OTA process repeats steps 1)~4): 1)~2) represents OTA of the (2n+1)-
th time, while 3)~4) represents OTA of the (2n+2)-th time.

6.1.2 8267/8269 OTA update procedure

Based on the flash storage structure introduced in Section 6.1.1, the OTA update
procedure is illustrated as below:

8267/8269 multi-address booting mechanism: OTA only uses two addresses
booting (boot from 0 or 0x20000). After MCU is powered on, Slave boots from flash
address 0 by default. First flash address 0x8 is read, if its value is Ox4b, the code starting
from 0 are transferred to RAM, and the following instruction fetch address equals 0
plus PC pointer value; if the value of flash 0x8 is not Ox4b, MCU directly reads flash
address 0x20008, if its value is Ox4b, the code starting from 0x20000 are transferred
to RAM, and the following instruction fetch address equals 0x20000 plus PC pointer
value. By modifying flag bit value of flash 0x8 and 0x20008, the part of flash code to
be executed will be determined.

In 8267/8269 SDK with OTA function support, the OTA upgrade process of the
(2n+1)-th or (2n+2)-th time is shown as below:

1) After MCU is powered on, read flash address 0x8 and 0x20008, and compare the
value with Ox4b to determine the booting address; then Slave boots from

AN-17092700-E4 198 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

corresponding address (0 or 0x20000) and starts executing the code. This function
is automatically completed by MCU hardware.

During firmware initialization, read MCU hardware register to judge the booting
address.

a) Ifbootingaddressis O, the ota_program_offset is set as 0x20000, and the area
of Slave flash starting from 0x20000 (i.e. 0x20000~0x40000) will be all erased
to “Oxff”, which indicates the new firmware will be transferred into this area
by Master during the following OTA process.

b) If booting address is 0x20000, the ota_program_offset is set as 0x0, and the
area of Slave flash starting from 0x0 (i.e. 0~0x20000) will be all erased to 0xff,
which indicates the new firmware will be transferred into this area by Master
during the following OTA process.

Slave MCU executes the firmware after booting; OTA Master is powered on and
establishes BLE connection with Slave.

Trigger OTA Master to enter OTA mode by Ul (e.g. button press, write memory by
PC tool, etc.). After entering OTA mode, OTA Master needs to obtain Handle value
of Slave OTA Service Data Attribute (The handle value can be pre-appointed by
Slave and Master, or obtained via “read_by_type”.)

After the Atrribute Handle value is obtained, OTA Master may need to obtain
version number of current Slave Flash firmware, and compare it with the version
number of local stored new firmware. This step is determined by user.

To enable OTA upgrade, OTA Master will send an OTA_start command to inform
Slave to enter OTA mode.

After the OTA_start command is received, Slave enters OTA mode and waits for
OTA data to be sent from Master.

Master reads the firmware stored in the flash area starting from 0x20000, and
continuously sends OTA data to Slave until the whole firmware is sent.

After the OTA data are received, Slave stores the data into the area starting from
ota_program_offset.

After the OTA data are sent, Master will check if all data are correctly received by
Slave (invoke related BLE function in bottom layer to judge whether Link Layer
data are all correctly acked).

After Master confirms all OTA data are correctly received by Slave, it will send an
OTA_END command.

After Slave receives the OTA_END command, offset address 8 based on the new
firmware starting address (i.e. ota_program_offset+8) is written with “Ox4b”, and
offset address 8 based on the old firmware starting address is written with “0x00”.
This indicates Slave will execute the firmware from the new area after the next

AN-17092700-E4 199 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

booting.
13) Slave reboots, and the new firmware will take effect.

14) During the whole OTA upgrade process, Slave will continuously check whether
there’s packet error, packet loss or timeout (A timer is started when OTA starts).
Once packet error, packet loss or timeout is detected, Slave will determine the OTA
process fails. Then Slave reboots, and executes the old firmware.

The OTA related operations on Slave side described above have been realized in
826x BLE SDK and can be used by user directly. On Master side, extra firmware design
is needed and it will be introduced later.

6.1.3 Modify Flash storage architecture

Since 8267/8269 uses booting address of 0x00000 and 0x20000 alternately, the
starting address of flash area to store new firmware during an OTA upgrade is fixed,
user can only modify firmware size.

By default, maximum firmware size is 128KB, and the flash space 0x00000 ~
0x40000 can only be used to store firmware. If firmware does not need such a large
storage area, e.g. maximum firmware size does not exceed 30KB, only part of the two
128KB space (0x00000 ~ 0x20000, 0x20000 ~ 0x40000) are used.

To use the redundant space as data storage area, the API below can be invoked
to configure the maximum firmware size as needed.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k,
u32 ota_offset);
The API declaration is available in “proj_lib/ble/service/ble_Il_ota.h”.
For 8267/8269, the parameter “ota_offset” in this APl is invalid.

“firmware_size_k”: This parameter indicates the maximum firmware size in KB,
and it must be configured as 4KB aligned. For example, suppose the maximum
firmware size is 57KB, this parameter should be configured as “60”. This APl can only
be invoked before the cpu_wakeup_init() of main.c to take effect, as shown below.

int main (wvolid) {

bls ota setFirmwareSizeAndOffset (60, 0);
cpu_wakeup init(};

clock init():
set tick per us(CLCCE S5YS5 CLOCE HZ/1000000):

gpic init():

AN-17092700-E4 200 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

By configuration above, the two 60K flash areas 0x00000 ~ 0xOF000 and 0x20000
~ 0x2F000 can be used as firmware storage space, while the two 68K flash areas
0x0F000 ~ 0x20000 and 0x2F000 ~ 0x40000 can be used as user data storage space.

6.2 8266 Flash architecture and OTA procedure

6.2.1 8266 FLASH storage architecture

0x80000

0x74000
0x73000
0x72000

ota boot_flag

ota_boot. bin

0x40000 0x40000

RF transfer
| OTA New bin Newflomare.
storage Area in

Code 020000 0x20000
transfer

0ld Firmvare ota_master. bin
E bin

0x00000 0x00000
8266 ota_master

Figure6-2 8266 default Flash storage structure

In SDK, by default firmware size should not exceed 128K, i.e. the area 0~0x20000
in flash serves to store firmware.

On Slave side, current old firmware is stored in the flash starting from 0 (128K area
0~0x20000), ota_boot.bin is stored in the flash starting from 0x72000 (1.5K area
0x72000~0x72600); flash starting from 0x20000 (the 128K area 0x20000~0x40000) is
used to store the New_firmware.bin obtained from OTA_Master via RF transfer, 1-byte
boot_flag in address 0x73000 is used as check flag during booting.

On OTA_Master side, ota_master.bin is stored in the flash starting from 0 (128K
area 0~0x20000), while the new firmware of Slave is stored in the flash starting from
0x20000 (128K area 0x20000~0x40000).

AN-17092700-E4 201 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

6.2.2 8266 OTA upgrade procedure

Based on the flash storage structure introduced in Section 6.2.1, the OTA update

procedure is illustrated as below:

1)

2)

3)

4)

5)

6)

Power on Slave normally

After Slave flash is burned with Old_firmware.bin and ota_boot.bin, the boot_flag
in flash 0x73000 is Oxff.

After power on, Slave MCU transfers beginning instructions of Old_firmware.bin
starting from flash 0x00000 into SRAM address starting from 0x808000, and
executes starting code corresponding to cstartup_8266.S. The starting code
checks boot_flag value; since the value is not Oxa5, it serves as normal Slave
function and executes c code of “Old_firmware.bin”.

Power on OTA_Master normally

Power on sequence for OTA_Master and Slave does not matter. After Master and
Slave are powered on and booted normally, BLE connection is established to
ensure normal communication.

Trigger OTA mode

Trigger OTA_Master to enter OTA mode (by button press or memory writting via
PC tool). Send “OTA start” command by Master to make Slave enter OTA mode.

Transfer New_firmware.bin from OTA_Master to Slave via RF.

After OTA_Master and Slave enter OTA mode, OTA_Master sends OTA packets with
New_firmware data to Slave via RF. Slave will burn the analyzed data into its flash
area starting from 0x20000 (new_firmware storage area 0x20000~0x40000).

After all OTA data are sent, OTA_Master sends “OTA End” command, and Slave is
rebooted.

After OTA process is finished successfully, New_firmware.bin is already stored in
Slave flash starting from 0x20000. Slave will set the boot_flag value in flash
0x73000 as “Oxa5”, then reboot MCU.

Slave executes ota_boot.bin.

After Slave is rebooted, MCU transfers beginning instructions of Old_firmware.bin
starting from flash 0x00000 into SRAM starting from 0x808000, and executes the
starting code corresponding to cstartup_8266.S in Old_firmware.bin. The starting
code checks boot_flag value in flash 0x73000; since the value is “Oxa5”, Slave does
not execute code of Old_firmware.bin, but transfers ota_boot.bin from 1.5K flash
area 0x72000~0x72600 into SRAM starting from 0x808000. After data transfer is
finished, reset MCU so that MCU will execute code starting from SRAM 0x808000
(equivalent to executing ota_boot.bin) rather than re-transfer code from flash into
SRAM.

AN-17092700-E4 202 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

7) ota_boot updates code, and Slave is rebooted.

After the ota_boot.bin is executed, contents of New_firmware.bin will be read
page by page starting from flash 0x20000 and written into flash starting from
0x00000. It’s equivalent to updating New_firmware.bin to flash starting from 0.
Slave will set boot_flag value in flash 0x73000 as “0x00”, then reboot MCU.

8) New_firmware.bin is executed normally.

After Slave MCU is rebooted, it transfers code starting from flash 0 into SRAM
starting from 0x808000, and checks the boot_flag. Since the value is not “Oxa5”, it
serves as normal Slave function.

Similar to Old_firmware.bin, the New_firmware.bin supports OTA function, and
user can restart OTA mode to upgrade firmware (the new code should be burned
into OTA_Master flash starting from 0x20000 before OTA process).

6.2.3 cstartup_8266.S, reset, reboot, code transfer

6.2.3.1 boot_flag detect and process by cstartup_8266.S

The ota_master.bin is executed on OTA_Master side and its starting file has no
special requirement.

Old_firmware.bin, New_firmware.bin and ota_boot.bin are all executed on Slave
side; they must have the same cstartup_8266.S in corresponding project, and
consistent locations of iCache and iTag. Since New_firmware.bin is the update
firmware to replace Old_firmware.bin, they have the same starting code of course.
Old_firmware.bin differs from ota_boot.bin in starting code as shown below:

1) Old_firmware sets iCache and iTag; when ota_boot is executed, MCU is still
powered on, and configuration of Old_firmware can be used directly.

2) ota_boot does not check boot_flag value; while Old_firmware will check boot_flag
and process accordingly: if it’s not Oxa5, the Old_firmware is normally executed;
if it’s Oxa5, ota_boot.bin from flash area 0x72000~0x72600 will be copied into
SRAM starting from 0x808000, and MCU is reset.

According to the two points above, configurations in cstartup_8266.S from SETIC
to COPY_DATA should be modified as below.

First define “MCU_CORE_8266_OTA_BOOT” in the bottom layer of ota_boot
compile option (It can’t be defined in other projects).

AN-17092700-E4 203 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

type filter text
Resource
Builders
Build Vanables
Discovery Options
Environment
Logging
Tool Chain Editor
C/C++ General
Project References
Refactoring Histary
Run/Debug Settings
Task Repository
Telink Toals

Settings

Cmnﬁguratimn:lISZﬁﬁ_ota_bDol |

- £d

7| | Manage Configurations..

) Tool Settings ‘_ﬂ‘ Build Stepsl

Build Artifact | Binary Parsers | @ Error Parsers

(# Additional Tools in Toolchain
B3 TC32 CC/Assembler

(% General

(% Paths

(# Debugging
) TC32 Compiler

(£ Directories

B Symbols

(2 Warnings

(# Debugging

=) Suppress warnings (-W)

(-Xassembler) options

&

WikiText (& Optimization

% Language Standard
(2 Miscellaneous

B3 TC32 C Linker
(& General
B Uibrarles
(# Objects

B3 TC32 Create Extended Listing
(5 General

B3 TC32 Create Flash image
General

@3 Print Size
(& General

Other GCC Flags -DMCU_CORE_szsfi -DMCU_CORE_8266_OTA_BOOT -Iil_LOAD_RAM_SIZE_:B

Figure6-3 8266_ota_boot project setting

SETIC:
tloadr rl, DATO + 24
tloadr r0, DATO + 36 @ IC tag start
#ifdefMCU_CORE 8266 _OTA BOOT

tloadr r0, DATO + 36 @ The three sentences are only for
aligning.

tloadr r0, DATO + 36
tloadr r0, DATO + 36
#else

tstorerb r0, [rl, #0]
tadd r0, #1 @ IC tag end
tstorerb r0, [rl, #1]
#endif
@tmov r0, #0;
Qtstorerb r0, [rl, #2]

AN-17092700-E4 204 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

COPY CODE_INIT:

tmov r3, #115 @ OTA FW ready flag at 0x73000;
(0x73000 = #115<< 12)

tshftl r3, r3, #12 @ 0x73<<12 = 0x73000
tloadr r3, [r3, #0] @ read wvalue of flash 0x73000
into R3

#ifdefMCU CORE_8266_ OTA BOOT

tcmp r3, #0 @ when ota boot starts, compare R3 with 0 (only
for aligning)

#else

tcmp r3, #165 @ when firmware starts, compare R3 with
Oxab
#endif

tine COPY DATA INIT @ if not equal, directly Jjump to

COPY DATA INIT,start executing firmware noramlly; if equeal,
execute the following sentences, transfer the contents of flash
0x72000~0x72600 (i.e. ota boot.bin) to SRAM 0x8000~0x8600.

tmov r2, #114Q@ OTA boot code at: 0x72000
tloadr r3, COPY CODE_DAT

tloadr r0, COPY CODE DAT + 4

tshftl r2, r2, #12 @ 0x72<<12

COPY_CODE_START:
tloadm r2!, {rl}
tstorem r3!, {rl}
tcmp r3, r0

tine COPY CODE_START

After data transfer, write register “core 602” with “0x88",
reset MCU, restart to execute ota boot.bin.

tloadr r3, COPY CODE DAT + 8
tmov r2, #136 @0x88

tstorerb r2, [r3, #0]

COPY_CODE_END:

AN-17092700-E4 205 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

t3 COPY CODE_END

.balign 4
COPY_CODE DAT:

.word (0x808000)

.word (0x808600)

.word (0x800602)

COPY_ DATA INIT:
tloadr rl, DATA I
tloadr r2, DATA I+4
tloadr r3, DATA I+8

COPY_DATA:

6.2.3.2 Firmware size
After OTA_Master enters OTA mode, New_firmware.bin is read from flash
0x20000. The size value of the bin file is stored in cstartup_8266.S 0x18~0x1b.
cstartup 8266. S:
.org 0x18
.word (_bin size)
boot.link:

PROVIDE(_bin_size = code_size_ + _end_data_ - start_data_);

Thus 4-byte data in firmware starting from 0x18 indicates firmware size. Since
New_firmware.bin starts from 0x20000, the firmware size is stored in 0x20018. When
New_firmware.bin is read by OTA_Master, the firmware size is read first.

As shown in Figure6-4 and Figure6-5, the firmware size is 0x5570, and the bin file
actually ranges from flash 0x0000 to Ox556f.

000a0000 0Oe 80 f£5 08 00 00 00 00 4b 4e 4c 54 20 01 885 00 .«
Q0000010 Y6 80 00 00 OO0 00 00 00 70 55 00 00 00 00 00 00 ¢

Figure6-4 firmware size inforamtion

AN-17092700-E4 206 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

00005540 00 00O OO OO OO OO OO OO 0O OO 00 OO0 02 12 00 00 ..
Q0005550 kf 01 £k 9d 4e £3 bc 36 4d5 74 £3 39 41 38 68 4o 7%
00005560 90 78 56 34 12 ef cd ab 74 24 00 00 00 00 OO0 00 .=

|Hex Edit View nb char : 21872 Ln:8& Col:13

Figure6-5 firmware ending

6.2.3.3 Reset and reboot

1) Reset MCU: Write “core_0x602” with “Ox88”. MCU starts to execute the firmware
in SRAM with PC pointer starting from 0.

2) Reboot MCU: MCU enters deepsleep, and it’s woke up by timer after 5ms. MCU
starts to load firmware from flash, and executes firmware with PC pointer staring
from 0.

3) Slave obtains “New_firmware.bin” via RF in OTA mode, and stores the firmware in
flash starting from 0x20000. Then Slave sets “boot_flag” as “Oxa5”, and reboots
MCU.

flash erase sector (0x73000);
u32 flag = 0Oxab;
flash write page (0x73000, 4, &flag); // set boot flag Oxab

start reboot () ;

void start_ reboot (void)
{
irg disable ();

cpu_sleep wakeup (1, PM WAKEUP TIMER, clock time() +
5*CLOCK SYS CLOCK 1MS) ;

}

4) ota_boot transfers New_firmware.bin starting from flash 0x20000 to location
starting from 0O, clears boot_flag and reboots MCU.

buff[0] = 0;
flash write page (0x73000, 1, buff);

REG ADDRS8 (0x6f) = 0x20;// "writing core 6f with 0x20” is reboot

equivalent to ”“start reboot()”, need to load flash.

while (1) ;

AN-17092700-E4 207 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

No other modifications are needed for starting code since all necessary contents
are already added to Cstartup_8266.S of 8266. 8266 ota_boot can use the compiled
firmware of 8266_ota_boot branch in SDK.

6.2.4 Modify Flash storage architecture

In SDK, by default maximum firmware size should not exceed 128K, the 128K flash
area 0x00000~0x20000 serves to store firmware, 0x20000~0x40000 serves to store
OTA new firmware, the sector starting from 0x72000 serves to store
8266_ota_boot.bin, and 0x73000 serves to store 1-byte ota boot_flag. All the
addresses and firmware size above are modifiable via corresponding API.

6.2.4.1 Modify firmware size and OTA FW storage address

The API below serves to modify maximum firmware size and the starting address
to store OTA new firmware.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size k,
u32 ota_offset);
The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.

“ota_offset”: This parameter indicates the starting address to store OTA new
firmware.

“firmware_size_k”: This parameter indicates the maximum firmware size in KB,
and it must be configured as 4KB aligned. For example, suppose the maximum
firmware size is 57KB, this parameter should be configured as “60”. This APl can only
be invoked before the cpu_wakeup_init() of main.c to take effect.

Suppose maximum firmware size is 64K, the 64K flash space 0x00000~0x10000 is
used to store firmware, and the 64K space 0x10000 ~ 0x20000 is used to store OTA
new firmware, the configuration is shown as below:

int main (void) {

bls ota setFirmwareSizelndOffset (64, O0x10000);
cpu wakeup init();

clock init{):
set tick per us(CLOCK 5¥Y5 CLOCE HZ/1000000) ;

By configuration above, the redundant 128K flash space 0x20000 ~ 0x40000 can
be used to store user data.

Note: The value of “NEW_FW_SIZE” and “NEW_FW_ADR” in
vendor/826x_ota_boot/main.c of SDK must be modified correspondingly, as shown
below.

AN-17092700-E4 208 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
#1f({ PROJECT 8286 OTA BOOT) f/8266

#ifndef NEW FW SIZE

fdefine HNEW FW SIZE a4 f 84k

fendif

#ifndef NEW FW ADR

#define NEW FW ADR 010000 Sf/Sfota offset

fendif

6.2.4.2 Modify storage address of OTA boot bin

In SDK, 8266_ota_boot.bin is stored in the flash sector starting from 0x72000 by
default, and its maximum size is 1.5K. The starting address to store 8266_ota_boot.bin
is modifiable in cstartup_8266.S.

Suppose the sector starting from 0x40000 serves to store 8266 _ota_boot.bin,
replace “114” with “64” (64=0x40, 0x40<<12=0x40000) in the code below
(proj/mcu_spec/cstartup_8266.S).

139 tmowv r2, #114 @ OTR boot code at: 0xX72000
14C tloadr r3, COPY CODE DAT

141 tloadr r0, COPY CODE DAT + 4

1432 tshfrl r2, r2, #12 B OxT2<<12

6.2.4.3 Modify storage addrss of OTA boot flag

In SDK, 1-byte ota boot flag is stored in flash address 0x73000 by default. The
address to store ota boot flag is modifiable.

Suppose the address 0x41000 serves to store ota boot flag, follow the
modifications below:

1) Invoke the APl below during initialization:
void bls_ota_setBootFlagAddr(u32 bootFlag_addr);
The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.
bls_ota_setBootFlagAddr(0x41000);
2) Modify proj/mcu_spec/cstartup_8266.S:
Replace “115” with “65” (65=0x41, 0x41<<12=0x41000) in the code below.

AN-17092700-E4 209 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

COPY CODE INIT:

1 @

0x41000

tmow r3, #115

tshftl r3, r©3, #12 @

tloadr r3, [r3, #0]
#ifdef MCU CORE 8266 OTA BOOT

tcmp r3, #0 @

3) Modify “vendor/826x_ota_boot/main.c” correspondingly:
Modify the value of OTA_FLG_ADR as 0x41000.
#ifndef OTA_FLG_ADR
#define OTA_FLG_ADR
#endif

6.3

6.3.1 8261 FLASH storage architecture

0x20000

0x1C000
0x1B000
0x1A000

Code
transfer

I

0x10000

0x0A000

0x00000

Figure6-6

ota boot_flag

ota_boot. bin

OTA New bin
storage Area

RF transfer

—

0l1d Firmware
bin

8261

8261 Flash architecture and OTA procedure

New firmware.
bin

ota_master. bin

ota master

8261 default Flash storage structure

0x20000

0x00000

In SDK, 104K flash space 0x00000 ~ 0x1A000 of 8261 is allocated as “40K+24K
+40K” by default.

AN-17092700-E4

210

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Figure6-6 shows the default Flash storage structure in 8261 BLE SDK. To realize
OTA based on this structure, firmware size should not exceed 40K.

On Slave side, current old firmware is stored in the flash starting from 0 (40K area
0~0x0A000), ota_boot.bin is stored in the flash starting from 0x1A000 (1.5K area
0x1A000~0x1A600); flash starting from 0x10000 (40K area 0x10000~0x1A000) is used
to store the New_firmware.bin obtained from OTA_Master via RF transfer, 1-byte
boot_flag in address 0x1B0O0O is used as check flag during booting.

On OTA_Master side, ota_master.bin is stored in the flash starting from 0 (128K
area 0~0x20000), while the new firmware of Slave is stored in the flash starting from
0x20000.

6.3.2 8261 OTA update procedure

Based on the flash storage structure introduced in Section 6.3.1, the OTA update
procedure is illustrated as below:

1) Power on Slave normally

After Slave flash is burned with Old_firmware.bin and ota_boot.bin, the boot_flag
in flash Ox1B00O is Oxff.

After power on, Slave MCU transfers beginning instructions of Old_firmware.bin
starting from flash 0x00000 into SRAM address starting from 0x808000, and
executes starting code corresponding to cstartup_8261.S. The starting code
checks boot_flag value; since the value is not 0xa5, it serves as normal Slave
function and executes c code of “Old_firmware.bin”.

2) Power on OTA_Master normally

Power on sequence for OTA_Master and Slave does not matter. After OTA_Master
and Slave are powered on and booted normally, BLE connection is established to
ensure normal communication.

3) Trigger OTA mode

Trigger OTA_Master to enter OTA mode (by button press or memory writting via
PC tool). Send “OTA start” command by Master to make Slave enter OTA mode.

4) Transfer New_firmware.bin from OTA_Master to Slave via RF.

After OTA_Master and Slave enter OTA mode, OTA_Master sends OTA packets with
New_firmware data to Slave via RF. Slave will burn the analyzed data into its flash
starting from 0x10000 (new_firmware storage area 0x10000~0x1A000).

5) After all OTA data are sent, OTA_Master sends “OTA End” command, and Slave is
rebooted.

After OTA process is finished successfully, New_firmware.bin is already stored in
Slave flash starting from 0x10000. Slave will set the boot_flag value in flash

AN-17092700-E4 211 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

0x1BO000 as “Oxa5”, then reboot MCU.
6) Slave executes ota_boot.bin.

After Slave is rebooted, MCU transfers beginning instructions of Old_firmware.bin
starting from flash 0x00000 into SRAM starting from 0x808000, and executes the
starting code corresponding to cstartup_8261.S in Old_firmware.bin. The starting
code checks boot_flag value in flash 0x1B0O0O; since the value is “Oxa5”, Slave does
not execute code of Old_firmware.bin, but transfers ota_boot.bin from 1.5K flash
area 0x1A000~0x1A600 to SRAM starting from 0x808000 (0x808000~0x808600).
After data transfer is finished, reset MCU so that MCU will execute code starting
from SRAM 0x808000 (equivalent to executing ota_boot.bin) rather than re-
transfer code from flash to SRAM.

7) ota_boot updates code, and Slave is rebooted.

After the ota_boot.bin is executed, contents of New_firmware.bin will be read
page by page starting from flash 0x10000 and written into flash starting from
0x00000. It’s equivalent to updating New_firmware.bin to flash starting from 0.
Slave will set boot_flag value in flash 0x1B00O0 as “0x00”, then reboot MCU.

8) New_firmware.bin is executed normally.

After Slave MCU is rebooted, it transfers code starting from flash 0 to SRAM
starting from 0x808000, and checks the boot_flag. Since the value is not “Oxa5”, it
serves as normal Slave function.

Similar to previous Old_firmware.bin, the New_firmware.bin supports OTA
function, and user can restart OTA mode to upgrade firmware (the new code
should be burned into OTA Master flash starting from 0x20000 before OTA
process).

The OTA related operations on Slave side decribed above have been realized in
8261 BLE SDK and can be used by user directly. On Master side, extra firmware design
is needed and it will be introduced later.

6.3.3 cstartup_8261.S, reset, reboot , code transfer

6.3.3.1 boot_flag detect and process by cstartup_8261.S

The ota_master.bin is executed on OTA_Master side and its starting file has no
special requirement.

Old_firmware.bin, New_firmware.bin and ota_boot.bin are all executed on Slave
side; they must have the same cstartup_8261.S in corresponding project, and
consistent locations of iCache and iTag. Since New_firmware.bin is the update
firmware to replace Old_firmware.bin, they have the same starting code of course.
Old_firmware.bin differs from ota_boot.bin in starting code as shown below:

AN-17092700-E4 212 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1) Old_firmware sets iCache and iTag; when ota_boot is executed, MCU is still
powered on, and configuration of Old_firmware can be used directly.

2) ota_boot does not check boot_flag value; while Old_firmware will check boot_flag
and process accordingly: if it’s not 0xa5, the Old_firmware is normally executed;
if it’s Oxa5, ota_boot.bin in flash 1.5K area starting from 0x1A000 will be copied
into SRAM starting from 0x808000, and MCU is reset.

According to the two points above, configurations in cstartup_8261.S from SETIC
to COPY_DATA should be modified as below.

First define “MCU_CORE_8261_OTA_BOOT” in the bottom layer of ota_boot
compile option (It can’t be defined in other projects).

= Properties for ble_sdk_lt_release - = ﬂhl
type filter text Settings o T
Resource 3
Builders W
C/C=+ Buid Conﬁguraticn:l [3261,ota,boot I 'l [Manage Configurations..
Build Variables
Discovery Options
Environment & Tool Settings ‘ # Build Steps | Build Artifac‘(l Binary Parsers | @ Error Parsers
Logging .
& Additional Tools in Toolchain || Suppress warnings (-\W]
ettings
Tool Cham Editor 4 % TC32 CC/Assembler (-Xassembler) options £
(2 General
C/C++ General -
. (2 Paths
Project References - .
X 22 Debugging
Run/Debug Settings .
R 4 I TC32 Compiler
Task Repository - 0 R
K 2 Directories
Telink Toals p
. (2 Symbols
WikiText = .
2 Warnings
Debugging
(22 Optimization
(# Language Standard 3
(# Miscellaneous
4 1% TC32 C Linker
General
Libraries
(% Objects
4 % TC32 Create Extended Listing
General
4 3 TC32 Create Flash image
(22 General
4 I Print Size
General
Other GCC Flags -DMCU_CORE_8261 |>DMCU_CORE_8261_DTA_BDOT W
< [m d
Figure6-7 8261_ota_boot project setting
SETIC:
tloadr rl, DATO + 24
tloadr r0, DATO + 36 @ IC tag start

#ifdefMCU CORE_8261 OTA BOOT

AN-17092700-E4 213 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
tloadr r0, DATO + 36 @ The three sentences are only for
aligning.
tloadr r0, DATO + 36
tloadr r0, DATO + 36
#felse

tstorerb r0, [rl, #0]
tadd r0, #1 @ IC tag end
tstorerb r0, [rl, #1]

#endif

COPY_CODE_INIT:

tmov r3, #27 @ OTA FW ready flag at 0x1B00O;

tshftl r3, r3, #12 @ 0x1B<<12 = 0x1B00O

tloadr r3, [r3, #0] @ read value of flash 0x1B00O
into R3

#ifdefMCU_CORE_8261_OTA_ BOOT

tcmp r3, #0 @ when ota boot starts, compare R3 with 0 (only
for aligning)

#else

tcmp r3, #165 @ when firmware starts, compare R3 with
Oxab
#endif

tine COPY DATA INIT @ if not equal, directly Jjump to

COPY DATA INIT,start executing firmware normally; if equeal,
execute the following sentences, transfer the contents of flash
0x1A000~0x1A600 (i.e. ota boot.bin) to SRAM 0x8000~0x8600.

tmov r2, #26 @ OTA boot code at: 0x1A000
tloadr r3, COPY CODE DAT

tloadr r0, COPY CODE DAT + 4

tshftl r2, r2, #12 @ Ox1A<<12 = 0x1A000

COPY_CODE_START:
tloadm r2!, {rl}
tstorem r3!, {rl}

tcmp r3, r0

AN-17092700-E4 214 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

tine COPY CODE_ START

After data transfer, write register “core 602” with “0x88",
reset MCU, restart to execute ota boot.bin.

tloadr r3, COPY CODE DAT + 8
tmov r2, #136 @0x88

tstorerb r2, [r3, #0]

COPY_CODE_END:
t] COPY CODE END
.balign 4
COPY_CODE_DAT:
.word (0x808000)
.word (0x808600)

.word (0x800602)

COPY_DATA INIT:
tloadr rl, DATA I
tloadr r2, DATA I+4
tloadr r3, DATA I+8

COPY_DATA:

6.3.3.2 Firmware size, reset and reboot

Please refer to section 6.2.3.2 and 6.2.3.3 for details about firmware size, reset
and reboot.

6.3.4 Modify Flash storage architecture

In SDK, by default maximum firmware size should not exceed 40K, the 40K flash
area 0x00000~0x0A000 serves to store firmware, 0x10000~0x1A000 serves to store
OTA new firmware, the sector starting from O0x1A000 serves to store
8261_ota_boot.bin, and 0x1B00O0 serves to store 1-byte ota boot_flag. The remaining
24K space 0xOA000~0x10000 is used as user data storage area.

AN-17092700-E4 215 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

All the addresses and firmware size above are modifiable via corresponding API.
6.3.4.1 Modify firmware size and OTA FW storage address

The API below serves to modify maximum firmware size and the starting address
to store OTA new firmware.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k,
u32 ota_offset);
The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.

“ota_offset”: This parameter indicates the starting address to store OTA new
firmware.

“firmware_size_k”: This parameter indicates the maximum firmware size in KB,
and it must be configured as 4KB aligned. For example, suppose the maximum
firmware size is 25KB, this parameter should be configured as “28”. This APl can only
be invoked before the cpu_wakeup_init() of main.c to take effect.

Suppose maximum firmware size is 25K, the 28K flash space 0x00000~0x07000 is
used to store firmware, and the 28K space 0x07000 ~ OxOEOQO is used to store OTA
new firmware, the remaining 48K space OxOEOOO ~ Ox1A000 is used to store user data,
the configuration is shown as below:

int main (wvoid) {
]::nlc_pm_select_internal_BZk_cr‘_.,rstal {):
bls ota setFirmwareSizeAndOffset (28, 0xT7000):
cpu_wakeup init (CERYSTAL TYFE):

set tick per us (CLOCK SYS CLOCE HZ/1000000);
clock init():

Note that the value of “NEW_FW_SIZE” and “NEW_FW_ADR” in
vendor/826x_ota_boot/main.c of SDK must be modified correspondingly, as shown
below.

felse /S 8261
#1fndef NEW FW SIZE
#define NEW FW SIZE 28 fF28k
fendif
#1ifndef HNEW FW ADR
#define HEW _FW_ADRE 0x7000
fendif

AN-17092700-E4 216 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

6.3.4.2 Modify storage address of OTA boot bin

In SDK, 8261_ota_boot.bin is stored in the flash sector starting from 0x1A000 by
default, and its maximum size is 1.5K. The starting address to store 8261_ota_boot.bin
is modifiable in cstartup_8261.S.

Suppose the sector starting from 0x18000 serves to store 8261 ota_boot.bin,
replace “26” with “24” (24=0x18, 0x18<<12=0x18000) in the code below
(proj/mcu_spec/cstartup_8261.S).

140 tmow r2, #26 @ OTA boot code at: O0x1A000 |
141 tloadr r3, COPY CODE DAT

142 tloadr rd, COPY CODE DAT + 4

143 tshftl r2, r2, #1z B Oxlh<<l2

A FUMATIRF AUOTRTE SR T -

6.3.4.3 Modify storage addrss of OTA boot flag

In SDK, 1-byte ota boot flag is stored in flash address 0x1B0O0O by default. The
address to store ota boot flag is modifiable.

Suppose the address 0x19000 serves to store ota boot flag, follow the
modifications below:

1) Invoke the APl below during initialization:
void bls_ota_setBootFlagAddr(u32 bootFlag_addr);
The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.
bls_ota_setBootFlagAddr(0x19000);
2) Modify proj/mcu_spec/cstartup_8261.S:
Replace “27” with “25” (25=0x19, 0x19<<12=0x19000) in the code below.

125 COPY CODE INIT:

130 tmow r3, #27 @ OTA FW ready flag at Ox1B000;
131 tshftl r3, r3, #12 @ 0x1B<<12

132 tloadr r3, [r3, #0]

133 #ifdef MCU CORE_8261 OTA BOOT

134 tcmp r3, #0 @ O=0

w
—

Modify vendor/826x_ota_boot/main.c:
Modify the value of OTA_FLG_ADR as 0x19000.

#ifndef OTA_FLG_ADR
#define OTA FLG ADR 0x19000
#endif

AN-17092700-E4 217 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

6.4 RF data proceesing for OTA mode

6.4.1 OTA processing in Attribute Table on Slave side

First, it’s needed to add ota reference in app_att.c which contains the Attribute
Table:

#include "../../proj_lib/ble/service/ble_Il_ota.h".

Second, add OTA related contents in the Attribute Table. The
“att_readwrite_callback_t r” and “att_readwrite_callback_t w” of the OTA data
Attribute should be set as otaRead and otaWrite, respectively; the attribute should be
set as Read and Write_without_Rsp (Master sends data via Write Command, and does
not need Slave to respond with ack to enable faster speed).

static u8 my_OtaProp= CHAR_PROP_READ | CHAR_PROP_WRITE_WITHOUT_RSP;

{0,2,1,1,(u8*)(&my_characterUuID), (u8*)(&my_OtaProp), 0},
{0,2,1,1,(u8*)(&my_0OtaUUID), (&my_OtaData), &otaWrite, &otaRead},

{0,2,sizeof (my_OtaName), sizeof (my_OtaName),(u8*)(&userdesc_UUID),
(u8*)(my_OtaName), 0},

When Master sends OTA data to Slave, it actually writes data to the second
Attribute as shown above, so Master needs to know the Attribute Handle of this
Attribute in the Attribute Table. To use the Attribute Handle value pre-appointed by
Master and Slave, user needs to count the Attribute Handle value, and then define it
on Master side.

6.4.2 OTA data packet format

Master sends command and data to Slave via “Write Command” in L2CAP layer.

3.4.5.3 Write Command

The Write Command is used to request the server to write the value of an attri-
bute, typically into a control-point attribute.

Parameter Size (octets) Description

Attribute Opcode 1 Dx52 = Write Command

Attribute Handle 2 The handle of the attribute to be
set

Aftribute Value 0 to (ATT_MTU-3) The value of be written to the attri-
bute

Figure6-8 Write Command format in BLE stack

AN-17092700-E4 218 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The Attribute Handle value is the handle_value of OTA data on Slave side.

The Attribute Value length is set as 20, and its format is shown as below.

OTA cmd
0 1 19
OTA_CMD invalid data
o 1 2 OTA_data 17 18 19
adr index firmware data:adr index*16 — adr index*16+15 CRC

Figure6-9 Format of OTA command and data

When the first two bytes are 0xff00 ~0xff10, it indicates it’'s an OTA command,
and the command type is determined by the two bytes:

1) Oxff00: OTA_FW_VERSION, request to obtain current Slave firmware version
number. This command is reserved and optional. To use this command,
corresponding callback function is available on Slave side for user to transfer
firmware version number.

2) Oxff0l: OTA_Start command. To start OTA upgrade process, Master needs to send
this command to Slave.

3) O0xff02: OTA_end command. When Master confirms all OTA data are correctly
received by Slave, it will send this command, which can be followed by four valid
bytes to double check Slave has received all data from Master.

4) 0xff03 ~ 0xffOf: to be added.

When the first two bytes are 0~0x1000, it indicates it’s an OTA data. Each OTA
data packet transfers 16-byte firmware data, and the adr_index is the actual firmware
address divided by 16. “adr_index=0" indicates OTA data are values of firmware
addresses 0x0~0xf; “adr_index=1" indicates OTA data are values of firmware addresses
0x10~0x1f. The last two bytes are the first CRC value calculated by CRC_16 operation
to the former 18 bytes. After Slave receives the OTA data, it will also carry out CRC
calculation, the data will be regarded as valid only when the result matches the CRC
(19t~20t byte) of the data.

6.4.3 RF transfer processing on Master side

Since BLE link-layer RF data will be automatically responded with ack to avoid
packet loss, during OTA data transfer Master won’t check if every OTA data is
responded with ack, that is, after sending an OTA data via write command, Master
won’t check if there’s ack response from Slave by software, and directly push the
following data into TX buffer as long as the number of data to be sent in TX buffer does
not reach the threshold.

AN-17092700-E4 219 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1)

2)

The OTA Master processes RF transfer by software as below:

Check if there’s any action to trigger entering OTA mode. If so, Master enters OTA
mode.

To send OTA commands and data to Slave, Master needs to know the Attribute
Handle value of current OTA data Atrribute on Slave side. User can decide to
directly use the pre-appointed value or obtain the Handle value via “Read By Type
Request”. UUID of OTA data in Telink BLE SDK is always 16-byte value as shown
below:

#define TELINK SPP DATA OTA
{0x12,0x2B, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,
0x03,0x02,0x01, 0x00} //'< TELINK SPP data for ota

In “Read By Type Request” from Master, the “Type” is set as the 16-byte UUID.
The Attribute Handle for the OTA UUID is available from “Read By Type Rsp”
responded by Slave. In the figure below, the Attribute Handle value is shown as
“0x0031”.

Data Type
L2CAP-S || 2 a a 0 25 0x0015 0x0004 || 0x08 0x0001 0xFFFF 12 2B 0D O0C 0B OA 09 08 07 06 05 04 03 02 01 00

Data Header L2CAP Header ATT_Read_By_Type_Req
LLID NESN SN MD POU-Length ||L2CAP-Length ChanlId ||Opcode StartingHandle EndingHandle AttType

Data Header RSSI
DataType (., Fsy sy MpD POU-Length T (aBm) [|FCS
Empty PDU|| 1 11 o 0 oxerEFDC || 0 | o |

Data Header L2CAP Header ATT_Read_By_Type_Rsp

RSSI
Data Ty CRC FCS
YPe|lILTD WESN SN MD EDU-Length |L2CAP-Tength Chanld ||Opcode Length AttData (dBm)
Locap-s || 2 0 1 0 3 0%0005 0x0004 [[0x08 0x03 31 0o oo ox7esesr| o | ox

3)

4)

5)

Figure6-10 Master obtains OTA Attribute Handle via “Read By Type Request”

(optional) Obtain current Slave firmware version number. User can check if it’s the
newest version and decide whether to start OTA upgrade correspondingly. In 826x
BLE SDK, user needs to determine the method to obtain FW version number.

An OTA version command is reserved, however, the transfer of version number is
not realized in current 826x BLE SDK. An “OTA version cmd” can be sent to Slave
in the form of “write cmd”; Slave only supplies a callback function after it receives
the request, and user needs to decide in the callback function how to transfer
Slave firmware version number to Master (e.g. manually send a NOTIFY/INDICATE
data).

Start a timer when OTA starts, and continuously check if the count value exceeds
the timeout duration (e.g. 15s, only for reference). If so, it’s regarded as OTA failure
due to timeout. Since Slave will check CRC after the OTA data are received, once
there’s CRC error or any other error (e.g. flash burning error), OTA fails, and
firmware is directly rebooted; the link layer can’t respond to Master with ack, and
Master fails to send data until timeout.

Read four bytes of Master flash 0x20018~0x2001b to determine firmware size
which is realized by compiler. Suppose firmware size is 20k (0x5000), the value of
firmware 0x18~0x1b is 0x00005000, so the firmware size can be read from

AN-17092700-E4 220 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

20018~0x2001b. As shown below, 0x18~0xlb of “8267_remote.bin” is
“0x00005a98”, so the firmware size is 0x5a98, i.e. 23192 bytes from 0 to 0x5a97.

T R = —— = e - - a a g g e e — ==

Qsst_remote.bindl

Address Ol 2032 S e | T8 S alb e d| et
00000000 Qe 80 01 03 00 00 00 00 4k 4de 4c 54 80 01 38 00
00000010 bLe 80 00 00 QO 00 QO 0O 98 5a 00 QO OO0 0O OO 0O
00000020 25 08 26 0% 26 0a 91 02 02 ca 08 50 04 bl fa 87
aooonan=s0 14 08 ~0 /b TR 0O/ RR 0A T3 08 ~0 Rk T4 0OR AR O/

Figure6-11 firmware sample: starting part

00005240 02 03 04 05 00 01 02 03 04 0L 00 00 el 77 ad 92
00005a50 24 al dc ka 13 02 £1 0 df ce bd ac 02 01 00 0O
00005a60 04 01 OO0 0O 08 Q1 0O 0O 40 01 00 00 10 O3 00 00
00005a70 20 03 00 00 40 03 00 00 80 03 00 0O 01 04 0O 0O
00005a80 02 04 00 00 LHc 58 00 00 Z2c b8 00 00 44 585 00 0O
0ooo05a%0 44 58 00 00 01 Q0 QO 0O

Figure6-12 firmware sample: ending part

6) Master sends an OTA start command “0xff01” to Slave, so as to inform it to enter
OTA mode and wait for OTA data from Master, as shown below.

T T Data Header L2CAP Header ATT_Write_Command CRC RSSI FCS
L LLID NESN SN MD FPODU-Length ||L2CAP-Length Chanld ||Opcode AttHandle AttValue (dBm)
L2CAP-5 2 4] 1] 1 g 0x0005 0x0004 ||0x52 0x0031 01 FF 0x618758 1] 0K |

Figure6-13 master sends “OTA start”

7) Read 16-byte firmware each time starting from Master flash 0x20000, assemble
them into OTA data packet, set corresponding adr_index, calculate CRC value, and
push the packet into TX FIFO, until all data of the firmware are sent to Slave. OTA
data format is used in data transfer : 20-byte valid data contains 2-byte adr_index,
16-byte firmware data and 2-byte CRC value to the former 18 bytes.

Note: If firmware data for the final transfer are less than 16 bytes, the remaining
bytes should be complemented with “Oxff” and need to be considered for CRC
calculation.

The 8267 _remote.bin as shown in Figure6-11 and Figure6-12 is taken as an
example to illustrate how to assemble OTA data.

Data for first transfer: “adr_index” is “Ox00 00”, 16-byte data are values of addresses
0x0000 ~ 0x000f. Suppose CRC calculation result for the former 18 bytes is “OxXYZW”,
the 20-byte data should be:

0x00 O0x00 O0xO0e O0x80 ...(12 bytes notlisted)... 0x88 0x00 O0xZW O0xXY

AN-17092700-E4 221 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

Data for second transfer:

Ox01 Ox00 Ox5e 0x80

Data for third transfer:

0x02 0x00 O0x25 0x08

Data for penultimate transfer:

Oxa8 O0x05 0x02 0x04

Data for final transfer:

... (12 bytes not listed)... 0x00 0x00 OxJK OxHI

... (12 bytes not listed)... 0Oxfa 0x87 OxNO OxLM

... (12 bytes not listed)... 0x00 0x00 OxST O0xPQ

Oxa9 Ox05 0x44 O0x58 O0x00 O0x00 Ox01 O0x00 O0x00 0x00

Oxff Oxff

Oxff

Ooxff

Oxff

oxff Oxff Oxff OxWX OxUV

Since the firmware data for final transfer are only 8 bytes, eight “Oxff” are added
CRC calculation result for the former 18 bytes (0xa9 ~ 0xff) is

to complement 16 bytes.

“OxUVWX”.

Data Header

L2CAP Header

ATT_Write_C RSSI

Data T CRC FCS
YPe|LLID NESN SN MD EDU-Length ||L2CAP-Length ChanId |Opcode AtcHandle ActValue (dBm)
LICAE-S || 2 0 o0 1 3 0x0005 0x0004 |[0x52 00031 01 FF ox618758 |0 || oK |
Data Header RSSI
Data T CRC FCS
YP® |lLtp NESW SN D PDU-Length (dBm)
Empty POU| 1 1 0 o 0 0xeFE27A | 0 || 0K
Data Type Data Header L2CAP Header ATT_Write_C
YPE|ILID NESN SN MD EDU-Length ||L3CAP-Length ChanId |Opcode AttHandle ActValue
L2cAP-S || 2 11 1 21 0x0017 0x0004 |[0x52 0x0031 00 00 O 80 01 03 00 00 00 00 4B 4E 4C 54 80 01 88 00 B& &5
Data Header RSSI
Data T, cRC FCS
YP® |ILID WESN SN MD FDU-Length (dBm)
Empty FOU| 1 0 1 o £ 0xBFESOF || 0 || 0K
Data Type Data Header L2CAP Header ATT_Write_Cq
ILID NESN SN MD PDU-Length ||L2CAP-Length ChanId | Opcode AtcHandle ActValue
LICAE-S || 2 0 o0 1 27 0x0017 0x0004 |[0x52 00031 01 00 SE 80 00 00 00 00 00 00 98 5A 00 00 00 00 00 00 EA EF
Data Header RSSI
Data T CRC FCS
YP® |lLtp NESW SN D PDU-Length (dBm)
Empty POU| 1 1 0 o 0 0xeFE27A | 0 || 0K
Data Type Data Header L2CAP Header ATT_Write_C
YPE|ILID NESN SN MD EDU-Length ||L3CAP-Length ChanId |Opcode AttHandle ActValue
L2cAP-S || 2 1 1 0 21 0x0017 0x0004 |[0x52 0x0031 02 00 25 08 26 09 26 0A 91 02 02 CA 08 50 04 B FA 87 A7 0D
Data Type Data Header L2CAP Header ATT_Write_Ct
YP®|LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld [|Opcode AttHandle Attvalue
LICAP-5 || 2 0 0 1 27 0x0017 0x0004 [|0x52 0x0031 19 05 44 58 00 00 01 00 00 00 FF FF FF FF FF FF FF FF 44 47
Data Header RSSI
Data T, CRC FCS
¥P® |lILID WESN SN MD EDU-Length (dBm)
Erpty FOU|| L 1 0 o o oxeFE27R|_o0 || oK |
Data Header L2CAP Header ATT_Write_Ci RSSI
Data T, _Write { CRC FCS
YP®|IIID WESN SN MD PDU-Length || L2CAP-Length Chanld [|Opcode AttHandle Atcvalue (dBm)
LICAP-5 || 2 1 1 0 13 0x0009 0x0004 [|0x52 0x0031 02 FF A9 05 56 FA | _oxE13FEAf o0 | ox |

Figure6-14 Master OTA data

8) After firmware data are sent, Master checks if BLE link-layer data are all sent out
(Only when link-layer data is acked by Slave, it’s considered the data is sent
successfully). If all data are sent, Master will send an ota_end command to inform

Slave.

“OTA end” packet is set as 6 valid bytes: first two bytes are “0Oxff02”, followed by
maximum adr_index value of new firmware (the two bytes are used to double
check if there’re OTA data lost on Slave side), the final two bytes are inverted value

AN-17092700-E4

222 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

9)

of the maximum adr_index (equivalent to simple check). CRC check is not needed
for “OTA end”.

The maximal adr_index and inverted value of “8267_remote.bin” are “0x05a9”
and “Oxfa56”, respectively. Figure6-14 shows the final OTA end packet.

Check if link-layer TX FIFO on Master side is empty: If it'’s empty, it indicates all
data and commands in above steps are sent successfully, i.e. OTA process on
Master succeeds.

Please refer to Appendix for CRC_16 calculation function.

6.4.4 RF receive processing on Slave side

As introduced above, Slave can directly invoke the otaWrite and otaRead in OTA

Attribute. After Slave receives write command from Master, it will be parsed and
processed automatically in BLE stack by invoking the otaWrite function. In the otaWrite
function, the 20-byte packet data will be parsed: first judge whether it’s OTA CMD or
OTA data, then process correspondingly (respond to OTA cmd; check CRC to OTA data
and burn data into specific addresses of flash).

1)

2)

The OTA related operations on Slave side are shown as below::

OTA_FIRMWARE_VERSION command is received (first two bytes are 0xff00):
Master requests to obtain Slave firmware version number. In 826x BLE SDK, after
Slave receives this command, it will only check whether related callback function
is registered and determine whether to trigger the callback function
correspondingly.

The interface in ble_ll_ota.h to register this callback function is shown as below:

typedef void (*ota versionCb_ t) (void);
void bls ota registerVersionReqCb (ota versionCb t cb);

OTA start command is received (first two bytes are Oxff01): Slave enters OTA mode.
If the “bls_ota_registerStartCmdCb” function is used to register the callback
function of OTA start, then the callback function is executed to modify some
parameter states after entering OTA mode (e.g. disable PM to stabilize OTA data
transfer). Slave starts and maintains a slave_adr_index to record the adr_index of
the latest correct OTA data. The initial value of slave_adr_index is -1, and it’s used
to judge whether there’s packet loss in the whole OTA process; if so, OTA fails,
Slave MCU exits OTA and reboots, since Master can’t receive any ack packet from
Slave, it will discover OTA failure by software after timeout.

The following interface is used to register the callback function of OTA start:

AN-17092700-E4 223 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3)

4)

5)

typedefvoid (*ota startCb t) (void);
void bls ota_ registerStartCmdCb (ota startCb t cb);

User needs to register this callback function to carry out operations when OTA
starts, for example, configure LED blinking to indicate OTA process. After Slave
receives “OTA start”, it enters OTA and starts a timer (The timeout duration is set
as 30s by default in current SDK). If OTA process is not finished within the duration,
it’s regarded as OTA failure due to timeout. User can evaluate firmware size (larger
size takes more time) and BLE data bandwidth on Master (narrow bandwidth will
influence OTA speed), and modify this timeout duration accordingly via the
interface as shown below.

void bls ota_ setTimeout (u32 timeout us);// unit: us

Valid OTA data are received (first two bytes are 0~0x1000): Whenever Slave
receives one 20-byte OTA data packet, it will first check if the adr_index equals
slave_adr_index plus 1. If not equal, it indicates packet loss and OTA failure; if
equal, the slave_adr_index value is updated. Then carry out CRC_16 check to the
former 18 bytes; if not match, OTA fails; if match, the 16-byte valid data are written
into corresponding addresses of flash (ota_program_offset+adr_index*16 ~
ota_program_offset+adr_index*16 + 15). During flash writing process, if there’s
any error, OTA also fails.

“OTA end” command is received (first two bytes are 0xff02): Check whether
adr_max in OTA end packet and the inverted check value are correct. If yes, the
adr_max can be used to double check whether maximum index value of data
received by Slave from Master equals the adr_max in this packet. If equal, OTA
succeeds; if not equal, OTA fails due to packet loss.

After successful OTA, Slave will set the booting flag of the old firmware address in
flash as 0, set the booting flag of the new firmware address in flash as 0x4b, then
MCU reboots.

Slave supplies OTA state callback function:

After Slave starts OTA, MCU will finally reboot regardless of OTA result. If OTA
succeeds, Slave will set flag before rebooting so that MCU executes the new
firmware; if OTA fails, the incorrect new firmware will be erased before rebooting,
so that MCU still executes the old firmare. Before rebooting, user can judge
whether the OTA state callback function is registered and determine whether to
trigger it correspondingly.

typedef void (*ota resIndicateCb_t) (int result);

AN-17092700-E4 224 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
enum {
OTA SUCCESS = 0, //success
OTA PACKET LOSS, //lost one or more OTA PDU
OTA DATA CRC_ERR, //data CRC err

OTA WRITE FLASH ERR, //write OTA data to flash ERR
OTA DATA UNCOMPLETE, //lost last one or more OTA PDU
OTA TIMEOUT, //

void bls ota registerResultIndicateCb
(ota resIndicateCb t cb);

The “enum” lists the 6 options for parameter “result”: the first value indicates OTA
success; the other five values indicate reasons for OTA failure. The “result” is
mainly used for debugging: When OTA fails, user can read the “result”, stop MCU
by using “while(1)”, and find the reason for current OTA failure.

LED indication can be added to indicate OTA success, as shown below:

void LED_show_ota_result (int result)
{

irg disable();

WATCHDOG DISABLE;

gpio_set output en(GPIO LED, 1);

if (result == OTA SUCCESS){ //OTA success
gpio write (GPIO LED, 1);
sleep us(2000000); //led on for 2s
gpio write (GPIO LED, 0);

}
else{ //OTA fail

gpio_set output en(GPIO LED, O0);

bls ota registerResultIndicateCb (LED show ota result);

The otaWrite function on Slave is assembled in lib, while other related interfaces
are available in proj_lib/ble/service/ble_lI_ota.h of SDK.

AN-17092700-E4 225 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

7 Key Scan

Keyscan architecture based on row/column scan is used to detect and process key
state update (press/release). User can directly use the sample code, or realize the
function by developing his own code.

7.1 Key matrix

Take Telink 8267 Demo board as an example: It’s a 4*6 matrix and supports up to
24 buttons. Four drive pins (RowO0~Row3) serve to output drive level, while six scan
pins (CoLO~Col5) serve to scan for button press in current column.

VvCC VCC VvCC VCC VCC VCC

Jo0nn0

Drive Row0] It

Rowl It

Row?2 i

Row3 It

CoLO

Col.1

Col2

CoL3

Col4

CoL5

Figure7-1 Row/Column key matrix

Keyscan related configurations in app_config.h are shown as below:

On Telink demo board, Row0O~Row3 pins are PB1, PB2, PB3 and PB6, while
CoLO0~Col5 pins are PD4, PD5, PD6, PD7, PEO and PE1.

Define drive pin array and scan pin array:
#define KB DRIVE PINS {GPIO PBl, GPIO PB2, GPIO PB3, GPIO PB6}

#define KB SCAN PINS {GPIO PD4, GPIO PD5, GPIO PD6, GPIO PD7,
GPIO_PEO, GPIO PELl}

AN-17092700-E4 226 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

Keyscan adopts analog pull-up/pull-down resistor in 8267 IC: drive pins use 100K
pull-down resistor, and scan pins use 10K pull-up resistor. When no button is pressed,
scan pins act as input GPIOs and read high level due to 10K pull-up resistor. When key
scan starts, drive pins output low level; if low level is detected on a scan pin, it indicates
there’s button pressed in current column (Note: Drive pins are not in float state, if
output is not enabled, scan pins still detect high level due to voltage division of 100K
and 10K resistor.)

Define valid voltage level detected on scan pins when drive pins output low level
in Row/Column scan:

#define

Define pull-up resistor for scan pins and pull-down resistor for drive pins:

#define

#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

KB LINE HIGH VALID

MATRIX ROW_ PULL

MATRIX COL_PULL

PULL_WAKEUP_ SRC PB1
PULL_WAKEUP_ SRC PB2
PULL_WAKEUP_ SRC_PB3
PULL_WAKEUP_ SRC_PB6

PULL WAKEUP_ SRC PD4
PULL_WAKEUP_ SRC_PD5
PULL_WAKEUP_ SRC_PD6
PULL WAKEUP_ SRC_PD7
PULL WAKEUP_ SRC_PEO
PULL WAKEUP_ SRC PEl

PM PIN PULLDOWN 100K

PM_PIN PULLUP 10K

MATRIX ROW PULL
MATRIX ROW PULL
MATRIX ROW PULL
MATRIX ROW PULL

MATRIX COL_PULL
MATRIX COL_ PULL
MATRIX COL_PULL
MATRIX COL_PULL
MATRIX COL_PULL
MATRIX COL_PULL

Since “ie” of general GPIOs is set as 0 by default in gpio_init, to read level on scan
pins, corresponding “ie” should be enabled.

#define
#define
#define
#define
#define
#define

AN-17092700-E4

PD4 INPUT ENABLE
PD5 INPUT ENABLE
PD6_INPUT ENABLE
PD7 INPUT ENABLE
PEO_INPUT ENABLE
PE1 INPUT_ ENABLE

N e e

227

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

When MCU enters suspend or deepsleep, it’s needed to configure CORE/PAD GPIO
wakeup. Set drive pins as high level wakeup; when there’s button pressed, drive pin
reads high level, which is 10/11 VCC (i.e. VCC * 100K/(100K+10K)). To read level state
of drive pins, corresponding “ie” should be enabled.

#define PB1 INPUT ENABLE
#define PB2 INPUT ENABLE
#define PB3 INPUT ENABLE

1
1
1
#define PB6 INPUT ENABLE 1

7.2 Keyscan, keymap and keycode

7.2.1 Keyscan

After configuration as shown in section 7.1, the function below is invoked in
mainloop to implement keyscan.

u32 kb_scan_key (int numlock status, int read key)

< numlock_status: Generally set as 0 when invoked in mainloop. Set as
“KB_NUMLOCK_STATUS_POWERON” only for fast keyscan after wakeup from
deepsleep (refer to section 7.5, corresponding to
DEEPBACK_FAST_KEYSCAN_ENABLE).

< read_key: Buffer processing for key values, generally not used and set as 1 (if it’s
set as 0, key values will be pushed into buffer and not reported to upper layer).

< The return value is used to inform user whether matrix keyboard update is
detected by current scan: if yes, return 1; otherwise return 0.

The kb_scan_key function is invoked in mainloop. As introduced in section 3.2.4,
each main loop is an adv_interval or conn_interval. In advertising state (suppose
adv_interval is 30ms), key scan is processed once for each 30ms; in connection state
(suppose conn_interval is 10ms), key scan is processed once for each 10ms.

In theory, when button states in matrix are different during two adjacent key scans,
it’s considered as an update. In actual code, a debounce filtering processing is enabled:
It will be considered as a valid update, only when button states stay the same during
two adjacent key scans, but different with the latest stored matrix keyboard state. “1”
will be returned by the function to indicate valid update, matrix keyboard state will be
indicated by the structure “kb_event”, and current button state will be updated to the
newest matrix keyboard state. Corresponding code in keyboard.c is shown as below:

unsigned int key debounce_ filter(u32 mtrx cur[], u32 filt en);

AN-17092700-E4 228 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The newest button state means press or release state set of all (24) buttons in the
matrix. When power on, initial matrix keyboard state shows all buttons are “released”
by default, and debounce filtering processing is enabled; as long as valid update occurs
to the button state, “1” will be returned, otherwise “0” will be returned. For example:
press a button, a valid update is returned; release a button, a valid update is returned;
press another button with a button held, a valid update is returned; press the third
button with two buttons held, a valid update is returned; release a button of the two
pressed buttons, a valid update is returned......

7.2.2 Keymap &kb_event

If a valid button state update is detected by invoking the “kb_scan_key”, user can
obtain current button state via a global structure variable “kb_event”.

#define KB RETURN KEY MAX 6

typedef struct/{
u8 cnt;
u8 ctrl key;
u8 keycode[KB RETURN KEY MAX];

}kb _data t;

kb data t kb event;

The “kb_event” consists of 8 bytes:
“cnt” serves to indicate valid count number of pressed buttons currently;

“ctrl_key” is not used generally, and it will be used only for standard USB HID
keyboard (user is not allowed to set keycode in keymap as Oxe0~0xe7).

keycode[6] indicates keycode of up to six pressed buttons can be stored (if more
than six buttons are pressed actually, only the former six can be reflected).

Keycode definition of 24 buttons in app_config.h is shown as below:

#define KB MAP NORMAL ({\
{CR_VOL MUTE, VK 3, VK 1, VK _MEDIA, }, \
{VK_2, VK_5, VK_M, VK_4, oo\
{CR_RIGHT, VK_NONE, CR_SEL, CR_LEFT, }, \
{CR_REWIND, VK_NONE, CR DN, CR_HOME, }, \
{CR_VOL_UP, VK_NONE, VK MMODE, CR _VOL DN, }, \
{VK_WEB, VK_NONE, CR UP, CR_POWER, }, }

The keymap follows the format of 4*6 matrix structure. The keycode of pressed
button can be configured accordingly, for example, the keycode of the button between
RowO and Col0O is “CR_VOL_MUTE".

AN-17092700-E4 229 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

In the “kb_scan_key” function, the “kb_event.cnt” will be cleared before each

scan, while the array “kb_event.keycode[]” won’t be cleared automatically. Whenever
“1” is returned to indicate valid update, the “kb_event.cnt” will be used to check
current valid count number of pressed buttons.

1)

2)

3)

If current kb_event.cnt = 0, previous valid matrix state “kb_event.cnt” must be
uncertain non-zero value; the update must be button release, but the released
button number is uncertain. Data in kb_event.keycode[] (if available) is invalid.

If kb_event.cnt = 1, the previous kb_event.cnt indicates button state update. If
previous kb_event.cnt is O, it indicates the update is one button is pressed; if
previous kb_event.cnt is 2, it indicates the update is one of the two pressed
buttons is released; if previous kb_event.cnt is 3, it indicates the update is two of
the three pressed buttons are released......

kb_event.keycode[0] indicates the key value of currently pressed button. The
subsequent keycodes are negligible.

If kb_event.cnt = 2, the previous kb_event.cnt indicates button state update. If
previous kb_event.cnt is O, it indicates the update is two buttons are pressed at
the same time; if previous kb_event.cnt is 1, it indicates the update is another
button is pressed with one button held; if previous kb_event.cnt is 3, it indicates
the update is one of the three pressed buttons is released......

kb_event.keycode[0] and kb_event.keycode[l] indicate key values of the two
pressed buttons currently. The subsequent keycodes are negligible.

User can manually clear the “kb_event.keycode” before each key scan, so that it

can be used to check whether valid update occurs, as shown in the example below.

In the sample code, when kb event.keycode[0]is not zero, it’s considered a

button is pressed, but the code won’t check further whether two buttons are pressed
at the same time or one of the two pressed buttons is released.

kb _event.keycode[0] = 0;// manually clear keycode[0]
int det key = kb _scan_key (0, 1);

if (det key)
{

key not released = 1;

u8 key = kb event.keycode[O0];
if (key) //key press
{

key buf[2] = key;

AN-17092700-E4 230 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

//send key press
blt push notify data (HID HANDLE KEYBOARD REPORT, key buf,
8);
}
else
{
key not released = 0;
key buf[2] = 0;
//send key release
blt push notify data (HID HANDLE KEYBOARD REPORT, key buf,
8);

7.3 Keycode

The section above introduces keymap definition in app_config.h and keycode
filling in KB_MAP_NORMAL. To realize standard USB HID keyboard, some special
keycodes need to be processed, so user should pay attention to details for keycode
definition.

The “kb_remap_key_row” function in keyboard.c serves to process keycode.

void kb _remap key row(int drv _ind, u32 m, int key max, kb data t

*kb data)

AN-17092700-E4 231 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

lstatic inline veoid kb remap key row(int drv ind, u32 m, int key max, ki data t *kb data){
foreach arr(i, scan pins){
if(m & 0Ox01){
[ug kc = kb k mp[i] [drv_ind]:
I #if (KB_HAS CTRL KEYS)

if(kc >= VK CIRL && kc <= VK _EWIN)
kb data->ctrl_key |= BIT (kc - VE_CTRL):
f/else if (ke == VE_MEDIA END)
//lock button pressed = 1;
else if (VK ZOOM IN == kc || VE ZOOM OUT == kc){
kb data->ctrl key |= VK MSK LCTRL;
kb _data->rkeycode[kb data->cnt++] = (VE _Z00M IN == kc)? VE_EQUAL : VE MINUS,
}
elze if(kc != VK FN)//fix fn ghost bug
kb data->keycode[kb data->cnt++] = kc;

"f#else
| kb data->keycode[kb data->cnt++] = kc;
ifendif
if (kb data->cnt >= key max){

break:
}

m=m > 1;
if(!m) {
break;

Figure7-2 keycode processing function

CTRLKEY will be obtained by kb_event.ctrl_key, and its keycode ranges from Oxe0
to Oxe7 which cannot be used by user.

In proj/drivers/usbkeycode.h:

#define VK_CTRL 0xe0
#define VK_SHIFT Oxel
#define VK_ALT 0xe?2
#define VK_WIN 0xe3
#define VK_RCTRL Oxed
#define VK_RSHIFT 0xeb
#define VK_RALT 0xeb
#define VK_RWIN Oxe’7

For the following key values, after they are transferred by Slave to Telink Master
Dongle, special processing will be realized by PC, and it depends on report descriptor
configuration of BLE HID in app_att.c.

enum {

VK _EXT START = 0xa0,

VK _SYS START VK_EXT START, //0xa0
VK _SLEEP = VK_SYS START, //0xa0, sleep

AN-17092700-E4 232 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
VK POWER, //0xal, power
VK_WAKEUP, //0xa2, wake-up
VK SYS END, //0xa3

VK _SYS CNT = (VK_SYS END - VK _SYS START),//0xa3-0xa0=0x03

VK _MEDIA START = VK_SYS_END, //0%xa3
VK W _SRCH = VK _MEDIA START, //Oxa3
VK _WEB, //0xad
VK_W_BACK,
VK_W_FORWRD,
VK _W_STOP,
VK W _REFRESH,
VK _W_FAV, //0xa9
VK _MEDIA,
VK MAIL,
VK _CAL,
VK MY COMP,

VK _NEXT TRK,
VK _PREV_TRK,
VK_STOP,

VK _PLAY PAUSE,
VK W _MUTE,

VK _VOL UP,

VK _VOL DN,

//b0

VK_MEDIA END,
VK _EXT END =
VK _MEDIA CNT =

VK MEDIA END,
(VK _MEDIA END - VK MEDIA START),//0xb5-0xa3=0x12

VK _ZOOM IN = (VK _MEDIA END + 1),//0xb6

VK_ZOOM OUT , //0xb7

7.4 Keyscan flow

7.4.1 Basic keyscan flow
When kb_scan_key is invoked, a basic keyscan flow is shown as below:
1) |Initial full scan through the whole matrix.

All drive pins output drive level (0). Meanwhile read all scan pins, check for valid
level, and record the column on which valid level is read. (The scan_pin_need is

AN-17092700-E4 233 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

2)

used to mark valid column number.)

scan _pin need = kb key pressed (gpio);

If row-by-row scan is directly adopted without initial full scan through the whole
matrix, each time all rows (four rows in current demo firmware) should be
scanned at least, even if no button is pressed. To save scan time, initial full scan
through the whole matrix can be added, thus it will directly exit keyscan if no
button press is detected on any column.

In the kb_key_pressed function, all rows output low level, and stabilized level of
scan pins will be read after 20us delay. A release_cnt is set as 6; if a detection
shows all pressed buttons in the matrix are released, it won’t consider no button
is pressed and stop row-by-row scan immediately, but buffers for six frames. If six
successive detections show buttons are all released, it will stop row-by-row scan.
Thus key debounce processing is realized.

Scan row by row according to full scan result through the whole matrix.

If button press is detected by full scan, row-by-row scan is started: Drive pins
(ROWO~ROW3) output valid drive level row by row; read level on columns, and
find the pressed button. Following is related code:

u32 pressed matrix[ARRAY SIZE (drive pins)] = {0};

kb scan row (0, gpio);
for (int i=0; i<=ARRAY SIZE(drive pins); i++) {
u32 r = kb scan row (i < ARRAY SIZE (drive pins) ? i : O,

gpio);

if (1) |

pressed matrix([i - 1] = r;

The following methods are used to optimize code execution time for row-by-row

scan.

<> When a row outputs drive level, it’s not needed to read level of all columns

(CoLO~ColL5). Since the scan_pin_need marks valid column number, user can read
the marked columns only.

After a row outputs drive level, a 20us or so delay is needed to read stabilized level
of scan pins, and a buffer processing is used to utilize the waiting duration.

The array variable “u32 pressed_matrix[4]” (up to 32 columns are supported) is
used to store final matrix keyboard state: pressed_matrix[0] bitO~bit5 mark

AN-17092700-E4 234 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

button state on CoLO~Col5 crossed with RowO......pressed_matrix[3] bitO~bit5
mark button state on CoLO~ColL5 crossed with Row3.

3) Debounce filtering for pressed_matrix(].

unsigned int key debounce_filter (u32 mtrx cur[], u32 filt en);

u32 key changed = key debounce filter(pressed matrix, \

(numlock status & KB NUMLOCK STATUS POWERON) 2 0 : 1);

During fast keyscan after wakeup from deepsleep, “numlock_status” equals
“KB_NUMLOCK_STATUS_POWERON?”, the “filt_en” is set as O to skip filtering and
fast obtain key values. In other cases, the “filt_en” is set as 1 to enable filtering.
Only when pressed_matrix[] stays the same during two adjacent key scans, but
different from the latest valid pressed_matrix[], the “key_changed” is set as 1 to
indicate valid update in matrix keyboard.

4) Buffer processing for pressed_matrix(].

Push pressed_matrix[] into buffer. When the “read_key” in “kb_scan_key (int
numlock status, int read_key)” is set as 1, the data in the buffer will be read
out immediately. When the “read_key” is set as 0, the buffer stores the data
without notification to the upper layer; the buffered data won’t be read until the
read_key is 1.

In current SDK, the “read_key” is fixed as 1, i.e. the buffer does not take effect
actually.

5) According to pressed_matrix[], look up the KB_MAP_NORMAL table and return
key values.

Corresponding functions are “kb_remap_key_code” and “kb_remap_key row”.

7.4.2 Keyscan flow timing optimization

As introduced above, even if no button is pressed, each mainloop takes about
100us to execute initial full scan through the whole matrix at least.

GPIO IRQ status bit inquiry can be used to optimize the time for full scan with no
button pressed.

As shown in PM section, in “user_init” all drive GPIO pins are configured as high-
level CORE wakeup for suspend.

u32 pin[] = KB DRIVE PINS;

AN-17092700-E4 235 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

for (int i=0; i<(sizeof (pin)/sizeof (*pin)); i++)
{
gpio_set wakeup(pin([i],1,1); //drive pin core(gpio) high

wakeup suspend

The “gpio_set_wakeup(pin[il,1,1)” sets wakeup polarity of drive pins as high level
and enables wakeup.

Since GPIO interrupt enabling and polarity adopts the same configuration

registers as wakeup, the “gpio_set_wakeup(pinli],1,1)” will also enable GPIO interrupt
and set interrupt polarity as high level.

High level on GPIO will set GPIO IRQ service flag bit (core_648 BIT(18)); this flag
bit can be used to check whether any button is pressed (when a button is pressed,
10/11 VCC high level will be read on corresponding drive pin).

#define reg irqg mask REG_ADDR32 (0x640)
#define reg irqg src REG_ADDR32 (0x648)
FLD IRQ GPIO EN = BIT(18),

As long as GPIO interrupt mask bit (core_640 BIT(18)) is not enabled, the
configuration will only set the IRQ flag bit, but won’t trigger interrupt.

The “KEYSCAN_IRQ_TRIGGER_MODE” definition in app_config.h serves to enable
time optimization for the keyscan flow.

#define KEYSCAN IRQ TRIGGER MODE 1
Initialization:
gpio _core irqg enable all(l);

reg irqg src = FLD IRQ GPIO EN;

AN-17092700-E4 236 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

static inline w32 kb scan key (int numlock status, int read key) {
ugé gpiol[8]:

#1f (KEYSCAN IRQ TRIGGER MODE)
static ug key not released = 0;
if (numlock status & KB NUMLOCE STATUS POWERON) {
key not released = 1;

}

if(reg irg src & FLD IRg GPIC EN}y{ //FLD IRQ GPIO RISC2Z2 EN
key not released = 1;
reg irg src = FLD IRQJ GPICQ EN; //FLD IRQ GPIO RISC2Z2 EN
}
else{ //no key press

if (!key not released && ! (numlock status & KB NUMLOCE STATUS POWERCHN)) {
return 0;
}
}
#Fendif

scan pin need = kb key pressed (gpio):
if(scan_pin need) {
return kb scan key walue (numlock status,read kew,gplo);
}
elsef
#1if (KB REPEAT KEY ENABLE)
repeat key.key change flg = KEY NONE:
#endif
#if (FKEYSCAN TR{) TRIGGER MODE)
key mot released = 0;
#endif
retorn 0;

Figure7-3 Keyscan time optimization

As shown above, it will first check whether IRQ flag bit is set after previous
keyscan is finished. If yes, it indicates there’s button press action during this duration;
since manual button press lasts for 200ms at least, the pressed button is not released
yet, and the subsequent basic keyscan flow (including full scan and row-by-row scan)
will be executed.

After the pressed button is released, the debounce function in kb_key pressed
takes effect. Only when six successive detections all show button release state, the
keyscan flow will be stopped.

7.5 Deepsleep wakeup fast keyscan

After Slave enters deepsleep during connection state, it can be woke up by button
press action. After wakeup, firmware is rebooted; in mainloop following user_init,
Slave will first send adv packets, establishes connection, and then sends the key value
to BLE Master.

AN-17092700-E4 237 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Though 826x BLE SDK adopts some processing to speed up the deepback
(resumption after wakeup from deepsleep), the duration may still reach several
hundreds of milliseconds (e.g. 300ms). To avoid action loss of the wakeup pin, fast
keyscan and data buffer are added. Fast keyscan is designed to avoid potential button
action loss caused by re-initialization time after MCU reboots and debounce filter
processing time during keyscan in mainloop. Data buffer is designed considering valid
button data detected in adv state and pushed into BLE TX FIFO will be cleared after
entering connection state.

The macro “DEEPBACK_FAST_KEYSCAN_ENABLE” in app_config.h is used to
control fast keyscan and data buffer.

#define DEEPBACK FAST KEYSCAN ENABLE 1

void deep_wakeup_ proc (void)
{
#if (DEE PBACK FAST KEYSCAN ENABLE)
if (analog read(DEEP_ANA REGO) == CONN DEEP_ FLG) {
if (kb _scan key (KB NUMLOCK STATUS POWERON, 1) && kb event.cnt) {
deepback key state = DEEPBACK KEY CACHE;
key not released = 1;

memcpy (&kb_event cache, &kb event, sizeof (kb _event));

}
#endif

During initialization key scan is processed before user_init. After it’s detected by
reading retention analog register that MCU enters deep wakeup from connection state,
the “kb_scan_key” is invoked to directly obtain the whole matrix button state without
enabling the debounce filtering. If key scan process shows a button is pressed (button
state update is returned, and kb_event.cnt in non-zero value), the “kb_event” variable
will be copied to the cache variable “kb_event_cache”.

The “deepback_pre_proc” and “deepback_post_proc” processing are added in
keyscan during mainloop.

void proc_keyboard (u8 e, u8 *p)
{
kb event.keycode[0] = 0;
int det key = kb _scan key (0, 1);

#if (DEE PBACK FAST KEYSCAN ENABLE)
if (deepback key state != DEEPBACK KEY IDLE) {
deepback pre proc(&det key);

AN-17092700-E4 238 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

}
#endif

if (det key) {
key change proc();

#if (DEE PBACK FAST KEYSCAN ENABLE)
if (deepback key state != DEEPBACK KEY IDLE) {
deepback post proc();
}
#endif
}

The “deepback_pre_proc” realizes buffer processing of fast keyscan value, as
shown below: After connection is established between Slave and Master, if no button
state update is detected in a kb_key_scan, the buffered kb_event_cache value will be
used as the current newest button state update.

For button release processing, it’s needed to check current matrix keyboard state:
If there’s button pressed, since actual button release generates a release action, it’s
not needed to add manual release; if current button is released, it’s needed to mark
that a manual release event should be added, otherwise button may fail to be released
since buffered button press event stays valid.

The “deepback_pre_proc” specifies whether manual release is needed. The
“deepback_post_proc” will determine whether to push a button release event into BLE
TX FIFO accordingly.

7.6 Repeat Key processing
When a button is pressed and held, it’s needed to enable repeat key function to
repeatedly send the key value with a specific interval.

The “repeat key” function is masked by default. By configuring related macros in
app_config.h, this function can be controlled correspondingly.

//repeat key

#define KB REPEAT KEY ENABLE 0
#defineKB REPEAT KEY INTERVAL MS 200
#define KB REPEAT KEY NUM 1
#define KB MAP REPEAT {VK_ 1, }

AN-17092700-E4 239 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

1) KB_REPEAT_KEY_ENABLE

This macro serves to enable or mask the repeat key function. To use this function,
first set “KB_REPEAT_KEY_ENABLE” as 1.

2) KB_REPEAT_KEY_INTERVAL_MS

This macro serves to set the repeat interval time. For example, if it’s set as 200ms,
it indicates when a button is held, kb_key_scan will return an update with the
interval of 200ms. Current button state will be available in kb_event.

3) KB_REPEAT_KEY_NUM #11 KB_MAP_REPEAT

The two macros serve to define current repeat key values: KB_REPEAT_KEY_NUM
specifies the number of keycodes, while the KB_MAP_REPEAT defines a map to
specify all repeat keycodes. Note that the keycodes in the KB_MAP_REPEAT must
be the values in the KB_MAP_NORMAL.

Following example shows a 6*6 matrix keyboard: by configuring the four macros,
eight buttons including UP, DOWN, LEFT, RIGHT, V+, V-, CHN+ and CHN- are set as
repeat keys with repeat interval of 100ms, while other buttons are set as non-repeat
keys.

f#define KB _MAP NORMAL i

i {VK_POWER, VK_LOW _BATT, VK _TV_PLUS, VK_TV_MINUS, VK_IN OUTPUT, VK _VOL UP,},
{VK_VOICE SEARCH, VE_PROGRAM, VK RETUEN, VE_HOME, VE_MENU, VK_EXIT, 1}, \
{VK_UE, VK_CH_UE, VK_W_MUTE, VEK_LEFT, VE_CONFIRM, VK RIGHT, }, \
{VK_VOL DN, VE_DOWN, VE_CH DN, VE_FAST BACKWARD, VE_PLAY PAUSE,VE 1, oM
{VK 2, VE_3, VE_4, VE_5, VE_6, VE_7, | I
{VEK_9, VKPAD ASTERIX, VK O, VK_NUMBER, VK_W_SRCH, VE_8,}, ¥

#define KB REPEAT KEY ENAELE 1

#define KB REPEAT KEY INTERVAL M5 100

i#define KB REPEAT KEY NUM 8

#define KB MAP REPEAT { VE_UP, VE_DOWN, VE_LEFT, VE_RIGHT, \

VK_VOL UP, VK VOL DN, VK CH UP, VK CH DN, }

User can search for the four macros in the project to locate the code about repeat
key.

7.7 Stuck Key processing

Stuck key processing is used to save power when one or multiple buttons of a
remote control/keyboard is/are pressed and held for a long time unexpectedly, for
example a RC is pressed by a cup or ashtray. If keyscan detects some button is pressed
and held, without the stuck key processing, MCU won’t enter deepsleep or other low
power state since it always considers the button is not released.

Following are two related macros in the app_config.h:

AN-17092700-E4 240 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

//stuck key
#define STUCK_KEY PROCESS ENABLE 0

#define STUCK KEY ENTERDEEP TIME 60//in s

By default the stuck key processing function is masked. User can set the
“STUCK_KEY_PROCESS_ENABLE” as 1 to enable this function. The
“STUCK_KEY_ENTERDEEP_TIME” serves to set the stuck key time: if it’s set as 60s, it
indicates when button state stays fixed for more than 60s with some button held, it’s
considered as stuck key, and MCU will enter deepsleep.

User can search for the macro “STUCK_KEY_PROCESS_ENABLE” to locate related
code in keyboard.c, as shown below:

#if (STUCK_KE Y_PROCE S S_ENABLE)
u8 stuckKeyPress[ARRAY SIZE (drive pins)];

#endif

An u8-type array stuckKeyPress[4] is defined to record row(s) with stuck key in
current key matrix. The array value is obtained in the function “key_debounce_filter”.

Upper-layer processing is shown as below:

kb event.keycode[0] = 0;
int det key = kb scan key (0, 1);

if (det key) {
#if (STUCK KEY PROCESS ENABLE)
if (kb _event.cnt){ //key press
stuckKey keyPressTime = clock time();
}
#endif

For each button state update, when button press is detected (i.e. kb_event.cnt is
non-zero value), the “stuckKey _keyPressTime” is used to record the time for the latest
button press state.

Processing in the blt_pm_proc is shown as below:

#if (STUCK KEY PROCESS ENABLE)
if (key not released && clock time exceed(stuckKey keyPressTime,
STUCK _KEY ENTERDEEP TIME*1 000000)) {
u32 pin[] = KB DRIVE PINS;
for (int i=0; i<(sizeof (pin)/sizeof (*pin)); i++)

{

AN-17092700-E4 241 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

extern u8 stuckKeyPress|[];
if (stuckKeyPress[i]) {
cpu_set gpio wakeup (pin[i],0,1); //reverse stuck
key pad wakeup

level

}
cpu_sleep wakeup(l, PM WAKEUP PAD, 0); //deepsleep
}
#endif

Check whether the latest pressed button is held for more than 60s: if yes, it’s
considered as stuck key, all row numbers with stuck key will be obtained via the
bottom-layer “stuckKeyPress[]”; then modify corresponding PAD wakeup polarity as
low level from high level, so that MCU can enter deepsleep and wake up by button
release normally (when button is pressed, corresponding drive pin reads high level of
10/11 VCC; after release, the drive pin turns to low level).

7.8 Power optimization for long key press

Power optimization can be enabled for long pressed keys, by enabling the macro
“LONG_PRESS_KEY_POWER_OPTIMIZE". Please refer to the PM section for details.

AN-17092700-E4 242 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

8 LED Management

8.1 LED task related invoking functions

Source code about LED management is available in vendor/common/blt_led.c of
826x BLE SDK for user reference. User can directly include the
“vendor/common/blt_led.h” into his C file.

User needs to invoke the following three functions:

void device_led init(u32 gpio,u8 polarity);
int device_led setup(led cfg t led cfq);

static inline void device_ led_process (void);

During initialization, the “device_led_init(u32 gpio,u8 polarity)” is used to set
current GPIO and polarity corresponding to LED. If “polarity” is set as 1, it indicates
LED will be turned on when GPIO outputs high level; if “polarity” is set as 0, it indicates
LED will be turned on when GPIO outputs low level.

The “device_led_process” function is added in Ul Entry of mainloop. It’s used to
check whether LED task is not finished (DEVICE_LED_BUSY). If yes, MCU will carry out
corresponding LED task operation.

8.2 LED task configuration and management

8.2.1 Led event definition

The following structure serves to define a LED event.

typedef struct/{
unsigned short onTime ms;
unsigned short offTime ms;
unsigned char repeatCount; //0xff special for long
on(offTime_ms:O)/long off (onTime ms=0)
unsigned char priority; //0x00 < 0x01 < 0x02 < 0x04 < 0x08
< 0x10 < 0x20 < 0x40 < 0x80

} led cfg t;
The unsigned short int type “onTime_ms” and “offTime_ms” specify light on and

off time (unit: ms) for current LED event, respectively. The two variables can reach the
maximum value of 65535.

The unsigned char type “repeatCount” specifies blinking times (i.e. repeat times
for light on and off action specified by the “onTime_ms” and “offTime_ms”). The
variable can reach the maximum value of 255.

AN-17092700-E4 243 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The “priority” specifies the priority level for current LED event.

To define a LED event when the LED light stays on/off, set the “repeatCount” as
255(0xff), set “onTime_ms”/“offTime_ms” as 0 or non-zero correspondingly.

LED event examples:

1) Blink for 3s with the frequency of 1Hz: turn on for 500ms, turn off for 500ms, and
repeat for 3 times.

led_cfg_t led_eventl = {500, 500, 3, 0x00, };

2) Blink for 50s with the frequency of 4Hz: turn on for 125ms, turn off for 125ms, and
repeat for 200 times.

led_cfg t led_event2 = {125, 125, 200, 0x00, };

3) Always on: onTime_ms is non-zero, offTime_ms is zero, and repeatCount is Oxff.
led_cfg t led_event3 ={100, O, Oxff, 0x00, }

4) Always off: onTime_ms is zero, offTime_ms is non-zero, and repeatCount is Oxff.
led_cfg t led_event4d = {0, 100, Oxff, 0x00, };

5) Turn on for 3s, and then turn off: onTime_ms is 1000, offTime_ms is 0, and
repeatCount is 0x3.

led_cfg t led_event5 = {1000, O, 3, 0x00, }L

The “device_led_setup” can be invoked to deliver a led_event to LED task
management.

device_led_setup(led_eventl);

8.2.2 Led event priority

User can define multiple LED events in SDK, however, only a LED event is allowed
to be executed at the same time. No task list is set for the simple LED management:
When LED is idle, LED will accept any LED event delivered by invoking the
“device_led_setup”. When LED is busy with a LED event (old LED event), if another
event (new LED event) comes, MCU will compare priority level of the two LED events;
if the new LED event has higher priority level, the old LED event will be discarded and
MCU starts to execute the new LED event; if the new LED event has the same or lower
priority level, MCU continues executing the old LED event, while the new LED event
will be completely discarded, rather than buffered.

By defining LED events with different priority levels, user can realize
corresponding LED indicating effect.

AN-17092700-E4 244 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Since inquiry scheme is used for LED management, MCU should not enter long
suspend (e.g. 10ms * 50 = 500ms) with latency enabled and LED task ongoing
(DEVICE_LED_BUSY); otherwise LED event with small onTime_ms value (e.g. 250ms)
won’t be responded in time, thus LED blinking effect will be influenced.

#define DEVICE_LED_BUSY (device_led.repeatCount)
The corresponding processing is needed to add in blt_pm_proc, as shown below:

user_task_flg = scan_pin_need | | key_not_released | | DEVICE_LED_BUSY;

if(user_task_flg){
bls_pm_setManuallatency(0); // manually disable latency

}
User can refer to the code in current 826x ble remote project for LED related

processing.

AN-17092700-E4 245 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

9 blt software timer

Telink BLE SDK supplies source code of blt software timer demo for user reference
on timer task. User can directly use this timer or modify as needed.

Source code are available in “vendor/common/blt_soft_timer.c” and
“blt_soft_timer.h”. To use this timer, the macro below should be set as 1.

#define BLT SOFTWARE TIMER ENABLE 0 //enable or disable

Since blt software timer is inquiry timer based on system tick, it cannot reach the
accuracy of hardware timer, and it should be continuously inquired during mainloop.
The blt soft timer applies to the use case with timing value more than 5ms and without
high requirement for time error.

Its key feature is: This timer will be inquired during mainloop, and it ensures MCU
can wake up in time from suspend and execute timer task. This design is implemented
based on “Timer wakeup of APP layer” (section 4.8).

Current design can run up to four timers, and maximum timer number is
modifiable via the macro below:

#define MAX TIMER NUM 4 //timer max number

9.1 Timer initialization

The API below is used for blt software timer initialization:

void blt soft timer init (void);

Timer initialization only registers “blt_soft_timer_process” as callback function of
APP layer wakeup in advance.

void blt_soft_timer init (void)
{
bls pm registerAppWakeupLowPowerCb (blt soft timer process);

9.2 Timer inquiry processing

The function “blt_soft_timer_process” serves to implement inquiry processing of
blt software timer.

void blt_soft_timer process(int type);

AN-17092700-E4 246 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

On one hand, mainloop should always invoke this function in the location as
shown in the figure below. On the other hand, this function must be registered as
callback function of APP layer wakeup in advance. Whenever MCU is woke up from
suspend in advace by timer, this function will be quickly executed to process timer task.

fZvoid main loop (void)
84

2tatic a3z tick_lDDp:

tick loop ++:

[TE I S I S

bBlt soft timer process (MATHNLOOP ENTRY) ;

o oon

blt sdk main loop():

The parameter “type” of the “blt_soft_timer_process” indicates two cases to
enter this function: If “type” is 0, it indicates entering this function via inquiry in
mainloop; if “type” is 1, it indicates entering this function when MCU is woke up in
advance by timer.

#define MAINLOOP ENTRY 0

#define CALLBACK ENTRY 1

The implementation of “blt_soft_timer_process” is rather complex, and its basic
principle is shown as below:

1) First check whether there is still user-defined timer in current timer table.If not,
directly exit the function and disable timing wakeup of APP layer; if there’s timer
task, continue the flow.

if (!blt timer.currentNum) {
bls pm setAppWakeupLowPower (0, 0); //disable

return;

}

2) Check whether the nearest timer task is reached: if the task is not reached, exit
the function; otherwise continue the flow. Since the design will ensure all timers
are time-ordered, herein it’s only needed to check the nearest timer.

if(!blt is timer expired(blt timer.timer[0].t, now)) {

return;
}

3) Inquire all current timer tasks, and execute corresponding task as long as timer
value is reached.

AN-17092700-E4 247 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

for(int i=0; i<blt_timer.currentNum; i++){
if (blt is timer expired(blt timer.timer[i].t ,now) }{ //timer trigger

if(blt timer.timer[i].cb == NULL){

write reg32 (0x8000, 0=x11111122); while(l):; //debug ERR
}
else{

result = blt_timer.timer[i].cb();

if (result < 0){
blt soft timer delete by index(i):
}
else if(result == 0){
change flg = 1;
blt timer.timer[i].t = now + blt timer.timer[i].interval;
¥

else{ /[/=set new timer interval
change flg = 1:
blt_timer.timer[i].interval = result * CLOCK S¥S5 CLOCK 1Us;

blt timer.timer[i].t = now + blt timer.timer[i].interval;

H

The code above shows processing of timer task function: If the return value of this
function is less than 0, this timer task will be deleted and won’t be responded; if
the return value is 0, the previous timing value will be retained; if the return value
is more than 0, this return value will be used as the new timing cycle (unit: us).

4) In step 3), if tasks in timer task table change, the previous time sequence may be
disturbed, and re-ordering is needed.

if (change flg) {
blt soft timer sort();

}

5) If the nearest timer task will be responded within 3s (it can be modified as a value
larger than 3s as needed) from now, the response time will be set as wakeup time
of APP layer in advance; otherwise APP layer wakeup in advance will be disabled.

if ((u32) (blt_timer.timer[0].t - now) < 3000 *
CLOCK SYS CLOCK_1MS) {
bls pm setAppWakeupLowPower (blt timer.timer([0].t, 1);
}

else{

bls pm setAppWakeupLowPower (0, 0); //disable

AN-17092700-E4 248 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

9.3 Add timer task

The API below serves to add timer task.

typedef int (*blt timer callback t) (void);

int blt_soft_timer add(blt timer callback t func, u32 interval us);

“func”: timer task function.

“interval_us”: timing value (unit: us).

The int-type return value correspons to three processing methods:
1) If the return value is less than 0, this executed task will be automatically deleted.
2) If the return value is O, the old interval_us will be used as timing cycle.

3) If the return value is more than 0, this return value will be used as the new timing
cycle (unit: us).

:int blt soft timer add(kblt timer callback t func, u32 interval usg)
it

int i:

u32 now = clock time();

if (blt timer.currentNum >= MAX TIMER NUM){ //timer full
L return 0;

}

else{
blt timer.timer[blt timer.currentNum].ck = func;
blt timer.timer[blt_timer.currentNum].interval = interval us * CLOCK S¥S CLOCK 1US

blt timer.timer[blt timer.currentNum].t = now + blt timer.timer[blt timer.currentl
blt timer.currentNum ++;

3 blt soft timer sort():
retorn 1;

As shown in the implementation code, if timer number exceeds the maximum
value, the adding operation will fail. Whenever a new timer task is added, re-ordering
must be implemented to ensure timer tasks are time-ordered, while the index
corresponding to the nearest timer task should be 0.

9.4 Delete timer task

As introduced above, timer task will be automatically deleted when the return
value is less than 0. Except for this case, the APl below can be invoked to specify the
timer task to be deleted.

int blt_soft_timer delete(blt timer callback t func);

AN-17092700-E4 249 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

9.5 Demo

For Demo code of blt soft timer, please refer to “TEST_USER_BLT_SOFT_TIMER” in
826x feature.

int gpio_test0 (void)
{

DBG_CHNO_TOGGLE; //gpio 0 toggle to see the effect
return 0;

int gpio_testl (void)
{
DBG_CHN1_TOGGLE; //gpio 1 toggle to see the effect

static u8 flg = 0;
flg = !flg;
if(flg) {

return 7000;
}

else{
return 17000;

int gpio_test2 (void)
{

DBG_CHN2_TOGGLE; //gpio 2 toggle to see the effect
//timer last for 5 second

if (clock time exceed (0, 5000000)) {
//return -1;
blt_soft_timer_delete(&gpio_test2);

return O;

int gpio_test3 (void)

{
//gpio 3 toggle to see the effect
DBG_CHN3_TOGGLE;

return 0;

AN-17092700-E4 250 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

}

Initialization:
blt_soft_timer_init();
blt_soft_timer_add(&gpio_test0, 23000);
blt_soft_timer_add(&gpio_test1, 7000);
blt_soft_timer_add(&gpio_test2, 13000);

blt_soft_timer_add(&gpio_test3, 27000);

Four tasks are defined with differenet features:
1) Toggle gpio_test0 once for every 23ms.
2) gpio_testl uses 7ms/17ms toggle timer.

3) Delete gpio_test2 after 5s, which can be implemented by invoking
“blt_soft_timer_delete(&gpio_test2)” or “return -1”.

4) Toggle gpio_test3 once for every 27mes.

AN-17092700-E4 251 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

10 IR

10.1 PWM Driver

Pleaser refer to PWM secion in Telink 8266/8267 IC Datasheet to help
understanding PWM driver.

Since PWM related hardware configuration basically implemented via operating
registers is very simple, BLE SDK does not use specific driver file, but define operation
interfaces in “register_8266.h/register_8267.h” which are implemented by using
“static inline function”, so as to improve efficiency and save code size.

10.1.1 PWM id and pin

8266/8267 supports up to 12-channel PWM: PWMO ~ PWM5 and PWMO_N ~
PWMS5_N. Six-channel PWM is defined in driver:

typedef enum {
PWMO_ID = O,
PWM1_ID,
PWM2_ID,
PWM3_ID,
PWM4_ID,
PWM5 ID,

}pwm_id;

Only six-channel PWMO~PWMS5 are configured in software, while the other six-
channel PWMO_N~PWM5_N is inverted output of PWMO~PWMS5 waveform. For
example: PWMO _N is inverted output of PWMO waveform. When PWMQO is high level,
PWMO_N is low level; When PWMO is low level, PWMO_N is high level. Therefore, as
long as PWMO~PWMS5 are configured, PWMO_N~PWM5_N are configured.

For 8266, IC pins corresponding to 12-channel PWM are shown as below:

Pin PWM Pin PWM

PCO PWMO PB7 PWMO_N
PC3 PWM1 PC1/PC2 PWM1_N
PC4 PWM2 PC5 PWM2_N
PA1/PD2 PWM3 PA4 PWM3_N
PA5/PD3 PWM4 PA6 PWM4_N
PBO PWM5 PB1 PWMS5_N

AN-17092700-E4 252 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

For 8267, IC pins corresponding to 12-channel PWM are shown as below:

Pin PWM Pin PWM

PAO/PCO/PD5/PEO PWMO PA2 PWMO_N
PA3/PC1/PD6/PE1 PWM1 PA4 PWM1_N
PBO/PC2/PD7 PWM2 PA5/PB1 PWM2_N
PB2/PC3 PWM3 PB3 PWM3_N
PB4/PC4 PWM4 PB5 PWM4_N
PB6/PC5 PWM5 PB7 PWMS5_N

The “void gpio_set_func(u32 pin, u32 func)” serves to set specific pin as PWM
function. E.g. To use PAO of 8267 as PWMO:

gpio_set_func(GPIO_PAO, AS PWM)

10.1.2 PWM clock

The “pwm_set_clk(int system_clock_hz, int pwm_clk)” serves to set PWM clock.
<> “system_clock_hz”: current system clock CLOCK_SYS CLOCK_HZ.
< “pwm_clk”: clock to be configured.

Note that “system_clock_hz” must be an integral multiple of “pwm_clk” so as to
get the wanted clock via frequency division.

To increase accuracy of PWM time, it's recommended to set “pwm_clk” as
“system_clock_hz”, i.e.

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, CLOCK_SYS CLOCK_HZz);

Both “system_clock_hz” and “pwm_clk” are tick value corresponding to system
clock, i.e. system clock increased value per second.

10.1.3 PWM cycle and duty

After PWM clock is configured, it’s needed to set maximum cycle and duty cycle
for each PWM waveform.

“static inline pwm_set_cycle(pwm_id id, ul6 cycle_tick)” serves to set maximum
cycle of specific PWM. “cycle_tick” unit is PWM clock tick value.

“static inline pwm_set_cmp(pwm_id id, ul6 cmp_tick)” serves to set high level
duration during PWM cycle. “cmp_tick” unit is PWM clock tick value.

Thus duty cycle equals cmp_tick/cycle_tick.
For PWMO~PWMS5, by default hardware will set PWM output high level followed

by low level during a frame cycle. To obtain PWM waveform with low level followed by

AN-17092700-E4 253 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

high level, following two methods applys:
1. Use corresponding PWMO_N~PWM5_N (inverted output of PWMO ~ PWM5).

2. Use “void pwm_revert(pwm_id id)” to invert PIWMO~PWM5 waveform.

Suppose current PWM clock is 16MHz, to set PWM cycle and duty cycle for PWMO
as 1ms and 40%:

pwm_set_cycle(PWMO_ID, 16000); //16*1000
pwm_set_cmp (PWMO_ID, 6400); //16*400

”

“static inline pwm_set_cycle_and_duty(pwm_id id, ul6 cycle_tick, ul6 cmp_tick)
combines the two interfaces above, which can be used to improve configuration
efficiency.

10.1.4 PWM revert

“static inline void pwm_revert(pwm_id id)” serves to invert PWMO~PWM5
waveform.

“static inline pwm_n_revert(pwm_id id)” serves to invert PWMO_N~PWM5_N
waveform.

10.1.5 PWM mode

PWM supports up to three modes: PWMO~PWMS5 support normal mode, while
only PWMO~PWM1 support count mode and IR mode.

typedef enum{
PWM NORMAL MODE = 0x00,
PWM COUNT MODE = 0x01,
PWM IR MODE = 0x03,

}pwm_mode;

1. normol mode

Normal PWM mode, PWM timing sequence with configured pwm_set_clk/
pwm_set cycle_and_duty is called a frame. After a PWM is enabled via “pwm
start”, it will continuously output frames until this PWM is disabled via “pwm
stop”.

2. count mode

AN-17092700-E4 254 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

After a PWM frame is configure via “pwm_set_clk”
/“pwm_set_cycle_and_duty”, “pwm_set_pulse_num” is used to specify the
frame number, i.e. the number of pulses consisiting output waveform.
Suppose pulse number is n, after a PWM is enabled via “pwm start”, it will
continuously output n frames, and it will be stopped automatically without

the need to use “pwm stop”.

In this mode, after PWM is stopped automatically, it’s needed to use “pwm
start” to restart the PWM timing sequence. The new configuration of PWM
cycle and duty cycle during PWM timing sequence will take effect in the next
frame immediately. Suppose the initial PWM frame is set as 1ms cycle and 1/2
duty cycle, and frame number is set as 10; during the 6% frames, cycle and
duty cycle are modified as 2ms and 1/3, then the new setting will take effect
in the remaining four frames.

3. IR mode

Similar to count mode, pwm_set_clk/pwm cycle and
dut/pwm_set_pulse_num are used to set timing sequence of a group of PWM
frames (ir task, marked with ir_taskn orirn). After a PWM is enabled via “pwm
start”, hardware will continuously running this ir_task until this PWM is
disabled via “pwm stop”.

Following shows the differences between IR mode and count mode:
1) count mode will be stopped automatically, while IR mode won’t.

2) In count mode, new configuration of cycle and duty cycle will take effect
immediately in the next frame; while in IR mode, new setting won’t take
effect until the current ir_task is finished, i.e. it will take effect in the next
new ir_task.

Following shows an example of IR mode timing sequence.

PWM timing t0 tl t2 t3 t4 th
| | | | | |
\ \ \ \ \
PWM set ts0 tsl ts2 ts3 tL/l
pwm
start

Figure10-1 PWM timing and PWM set

“ts0” indicates the moment to set pwm frame/pulse number for the first time.

AN-17092700-E4 255 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Suppose ir_taskO is set herein.
t0 indicates the moment to start PWM IR mode via “pwm start”.

tn (t1, t2, t3......) indicates the moment when an IR task is finished and the
next IR task is started.

tsn (tsl, ts2, ts3, ts4......) indicates the moment when user can set timing
sequence of new IR task.

After “pwm start”, hardware runs ir_taskO from tO to t1. Following shows
several setting and corresponding running state:

1) After ir_taskO is set at tsO, PWM setting is not modified, i.e. no new IR
task is set. Hardware will continuously run ir_taskO (t0~t1, t1~t2, t2~t3,
t3~t4, t4~t5) until PWM is disabled via “pwm stop”.

2) Suppose ir_taskO is set at ts0, and ir_task1 is set at ts1. Hardware will run
ir_taskO during t0~t1, and then continuously run ir_taskl (t1~t2, t2~t3,
t3~t4, t4~t5) until PWM is disabled via “pwm stop”.

3) Suppose ir_taskO is set at tsO, ir_taskl is set at ts1, and ir_task2 is set at
ts2. Hardware wil run ir_taskO during tO~t1, run ir_taskl during t1~t2,
and then continuously run ir_task2 (t2~t3, t3~t4, t4~t5) until PWM is
disabled via “pwm stop”.

10.1.6 PWM start and stop
The two interfaces below serve to enable (start)/disable (stop) certain PWM.
static inline void pwm_start(pwm_id id)

static inline void pwm_stop(pwm_id id)

10.1.7 PWM pulse number

“static inline void pwm_set_pulse_num(pwm_id id, ul6 pulse_num)” serves to
specify PWM frame number in PWMO~PWM1 count mode and IR mode.

This interface does not apply to PWM2~PWM5 which support normal mode only.

10.1.8 PWM phase

“static inline pwm_set_phase(pwm_id id, ul6 phase)” serves to set delay time
before PWM is started. Generally it can be set as 0 (no delay).

10.1.9 PWM interrupt
PWM supports eight types of interrupt: IRQ_PWMn_PNUM (n=0,1),

AN-17092700-E4 256 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

IRQ_PWMn_FRAME (n=0,1,2,3,4,5).

typedef enum{

FLD IRQ PWMO PNUM = BIT(0),
FLD IRQ PWMI PNUM = BIT (1),
FLD IRQ PWMO FRAME = BIT(2),
FLD IRQ PWMI FRAME = BIT(3),
FLD IRQ PWMZ2 FRAME = BIT (4),
FLD IRQ PWM3 FRAME = BIT(5),
FLD IRQ PWM4 FRAME = BIT(6),
FLD IRQ PWM5 FRAME = BIT(7),
}PWM_IRQ;

Whenever a frame configured by pwm_set_clk/ pwm_set_cycle_and_duty is
finished, PWMn will generate a frame-done IRQ (Interrupt Request) signal
“FLD_IRQ_PWMn_FRAME". This applies to PWMO ~ PWMS5 normal mode/count
mode/IR mode.

Whenever a frame group (it's called IR task in IR mode) consisting
“pwm_set_pulse_num” frames is finished, PWMn will generate a Pnum IRQ signal
“FLD_IRQ_PWMn_PNUM?”. This only applies to PWMO~PWM1 count mode/IR mode.

Suppose PWM mode is count mode, to set cycle as 1ms, duty cycle as 1/2, pulse
number as 50:

pwm_set_clk(16000000, 16000000);
pwm_set_cycle_and_duty(PWMO_ID, 16000, 8000);
pwm_set_pulse_num(IR_PWM_ID, 50);

PWMO will generate a frame done IRQ “FLD_IRQ_PWMO_FRAME” for every 1ms.
After 50 frams are finished, PWMO will generate a Pnum IRQ
“FLD_IRQ_PWMO_PNUM”. At this moment, totally “FLD_IRQ_PWMO_FRAME” have
been generated for 50 times.

To enable PWM interrupt processing during irq_hander (interrupt entry in SDK),
it’s also needed to enable the mask of corresponding PWM interrupt.

Take IRQ_PWMO_PNUM as an example.
1. Enable mask of FLD_IRQ_PWMO_PNUM:
reg_pwm_irg_mask |= FLD_IRQ_PWMO_PNUM;

Generally it’s recommended to clear the previous status before mask is
enabled, so that it won’t be triggered to enter irqg_handler by previous status.

AN-17092700-E4 257 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

reg_pwm_irq_sta = FLD_IRQ_PWMO_PNUM;

2. Enable mask of PWM interrupt in MCU system interrupt.
reg_irq_mask |=FLD_IRQ_SW_PWM_EN;

3. Ensure MCU global interrupt is enabled, i.e. irg_enable ().

4. The settings above ensure this interrupt can trigger MCU to enter
irq_handler(). Following is suggested processing in irq_handler().

u8 pwm sta = reg pwm irqg sta;
if (pwm _sta & FLD IRQ PWMO_PNUM) {
func();

reg pwm _irqg sta = FLD IRQ PWMO PNUM;

10.2 IR implementation method

IR transmission needs to switch PWM output at specific time, to avoid IR error, the
switch time has high requirement of accuracy.

As introduced in BLE Link Layer timing sequence (section 3.2.4), Link Layer uses
system interrupt to process brx event (In newest SDK, processing of adv event is placed
in mainloop, and it does not occupy system interrup time). When IR is going to switch
PWM output soon, if brx event related interrupt comes first and occupies MCU time,
the time to swtich PWM output may be delayed, thus to result in IR error.

To avoid the problem above, IR implementation uses PWM IR mode. As introduced
in IR mode, BLE SDK will divides an IR data into multiple ir tasks: ir_taskO, ir_task1,
ir_task2......ir_task(n-1), ir_taskn.

First set ir_taskO, after pwm_start, PWM outputs ir_taskO, then set ir_taskl
immediately; when ir_taskO is finished, “FLD_IRQ_PWMn_PNUM” is generated, then
set ir_task2 in irq_handler(), at this moment PWM outputs ir_task1; when ir_taskl is
finished, “FLD_IRQ_PWMn_PNUM” is generated, then set ir_task3 in irq_handler(), at
this moment PWM outputs ir_task2......

The next IR task should be set when the previous IR task is output. As long as
maximum time of MCU system interrupt does not exceed the shortest IR task time, it
can ensure IR timing sequence won’t be delayed. In BLE SDK, maximum interrupt
processing time in brx event is generally shorter than IR task.

AN-17092700-E4 258 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

10.3 IR Demo details

10.3.1 NECIR

NEC IR protocol is shown as below:

fTHMNECHMY4RiS1BE IR NEC protocol encoding

|<— 110ms | 110ms ——>|
Start Repeat Repeat
4.5ms 560us 1690us i 2.25ms
9ms [560us 560us = 9_rDs
Logical “0" Logical "1"
Data format: Address inverted code
Datat&zt : Address + Address + Command + Command 4Tfs : Start Red: Start

Addrég;&sﬁcode SR ¢ Commahdiifiverted codel&t : Data Blue: data

Gl o FRA— SRR (RS 3200, .
R, e BR8N , AR NER{ESH32(Green: Repeat

Address code and command are 8bits, so a complete signal contains 32bits.

Figure10-2 NEC IR protocol

To implement NEC IR by using PWM IR mode, a complete timing sequence is
divided into multiple IR tasks. Actually each IR task only contains three parameters:
Cycle, duty cycle and pulse number, which can be configured via the two APIs below.

static inline pwm_set_cycle_and_duty(pwm_id id, ul6 cycle_tick, ul6 cmp_tick)
static inline void pwm_set_pulse_num(pwm_id id, ul6 pulse_num)

Telink BLE SDK does not need user to divide each IR task, but supplies a set of
unified processing mechanism with some configuration interfaces for user to
automatically implement IR.

User only needs to understand this IR management mechanism, and configure his
IR accordingly. Note that some interfaces are not modifiable and can only be invoked
by user, and some functions may need user to modify as needed.

The core of this mechanism is a structure, as shown below.

typedef struct({
ir send ctrl data t data[IR GROUP MAX];
u8 group_ index;

u8 group_cnt;

AN-17092700-E4 259 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

u8 is sending;

u8 repeat timer enable;

u8 ir send irg idx;
u8 ir send start high;
u8 last cmd;

u8 rsvd;

ul6 carrier cycle;
ul6 carrier high;
u32 sending start time;

u32 repeat time;

}ir send ctrl t;

10.3.2 Set carrier
NEC IR carrier frequency is 38kHz, while duty cycle is 1/3.

User needs to invoke the interface below to set carrier cycle and duty cycle. This
interface can only be invoked, and user cannot modify its internal implementation.

void ir_config_carrier(ul6 cycle_tick, ul6 high_tick)
When system clock is CLOCK_SYS_CLOCK_Hz,
cycle_tick = CLOCK_SYS_CLOCK_Hz/38000
Since duty cycle is 1/3, high_tick should be set as (cycle_tick * 1/3).

As shown in the code, carrier cycle and duty cycle configured by user are stored in
the “carrier_cycle” and “carrier_high” variable.

10.3.3 Set logicl and logicO time

The interface below serves to set PWM duration of IR data bit 1 and bit 0. This
interface can only be invoked, and user cannot modify its internal implementation.

void ir_config_byte_timing(u32 tick_logic_1 carr, u32 tick_logic_1_none,

u32 tick_logic_0 carr, u32 tick_logic_0_none)

“tick_logic_1_carr” and “tick_logic_1 none” indicate carrier and low level
duration of logic level 1.

“tick_logic_0_carr” and “tick_logic_0_none” indicate carrier and low level
duration of logic level 0.

AN-17092700-E4 260 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

According to NEC IR protocol, the setting of the four values is shown as below:

ir_config_byte_timing(560 * CLOCK_SYS_CLOCK_1US,
1690 * CLOCK_SYS_CLOCK_1US,
560 * CLOCK_SYS_CLOCK_1US,

560 * CLOCK_SYS_CLOCK_1US);

Each IR task only has three parameters: cycle, duty cycle and pulse number. The
structure below is used to describe an IR task.

typedef struct/{
u32 cycle;
ul6 hich;
ul6 cnt;

}ir ctrl t;

Create two IR task array data for logic 1 and logic O with carrier and without carrier
(i.e. low level), as shown below:

ir ctrl t ir bit 1 controll[2];
ir ctrl t ir bit O controll[2];

Actually the four parameters configured by “ir_config_byte_timing(...)” are stored
in the two arrays above.

When IR sends a byte (e.g. 0x55, 8b’ 01010101), each bit 0 and bit 1 will be
configured according to the three values of IR task pre-calculated by ir_bit_1 controll
and ir_bit_0_controll. User only needs to write the data to be sent (0x55), and SDK will
automatically disassemble this data into eight corresponding IR tasks.

As shown in the code of “ir_config_byte_timing(...)”, the timing sequence of
carrier is determined by user-configured carrier parameters (cycle, high) and pulse
number which is tick_logic_1 carr duration divided by carrier cycle.

ir bit 1 controll[0].cycle = ir send ctrl.carrier cycle;
ir bit 1 controll[0].hich = ir send ctrl.carrier high;
ir bit 1 controll[O0].cnt=(tick logic 1 carr)/

ir send ctrl.carrier cycle;

PWM timing sequence without carrier should also be transformed to an IR task:
cycle is duration, duty cycle is 0, and pulse number is 1. Since large cycle may result in
data overflow, user can correspondingly decrease cycle and increase pulse number, e.g.
cycle is duration *1/2, duty cycle is 0, pulse number is 2.

ir bit 1 controll[l].cycle = tick logic_1 none;
ir bit 1 controll[1l].hich = 0;
ir bit 1 controll[l].cnt = 1;

AN-17092700-E4 261 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

10.3.4 Configure a complete NEC IR

According to NEC IR protocol, to sent a cmd (e.g. 7), it’s needed to send start (9ms
carrier + 4.5ms low level), followed by “address+ ~address+ cmd + ~cmd”. In demo
code, address is set as 0x88.

When the final bit of the final “~cmd” is sent, whether it’s bit 0 or bit 1, a duration
of low level (without carrier) is needed; if “~cmd” is not followed by any data, there
may bring a problem on Rx side: Since no boundary of carrier is used for differentiation,
user cannot know whether the low level duration of the final bit is 560us or 190us,
thus cannot identify whether the data is 0 or 1. To solve this problem, a customized
carrier with duration of 563us is used as end.

Another problem is: In PWM IR mode, the timing sequence of the next IR task
should be configured in the previous IR task. As shown in the final three IR tasks of NEC
IR, “ir_task n-2” and “ir_task n-1” correspond to carrier and low level duration of the
final bit, while “ir_task n” corresponds to the customized 563us end carrier duration.

ir task n—2 ir task n-1 ir task n

Tn-3 Tn-2 Tn-1 Tn

Figurel0-3 IR ending

Actually in software, “ir_task n-1” is set at “Tn-3” (FLD_IRQ_PWMO_PNUM
interrupt after “ir_task n-3” is finished), “ir_task n” is set at “Tn-2”
(FLD_IRQ_PWMO_PNUM interrupt after “ir_task n-2” is finished), while at “Tn-1”
(FLD_IRQ_PWMO_PNUM interrupt after “ir_task n-1” is finished), no IR task is set. At
“Tn”, if FLD_IRQ_PWMO_PNUM interrupt after “ir_task n” is finished can be responded
immediately, “pwm stop” can be used to disable PWM; if this interrupt is delayed by
BLE interrupt and cannot be responded immediately, MCU will start a new “ir_task n”,
and the carrier duration may be a unexpected value other than the customized
duration 563us (e.g. 600us). If special format (e.g. IR low level followed by carrier)
results in the final IR task with carrier, it’s not needed to add a customized carrier as
differentiation, this case may cause error.

To solve the problem above, we make an appointment: As long as an IR starts, no
matter whether the final IR task is customized, an IR task of low level (without carrier)
should be added as the eventual end, and the duration is configurable. E.g. add an IR
task of 500us low level as end, i.e. “ir_task n+1” in Figure10-4, “ir_task n+1” can be set
at “Tn-1”, at “Tn”, even if FLD_IRQ_PWMO_PNUM interrupt is not responded in time,
PWM will send a low level singal and timing sequence won’t be influenced. User only
needs to use “pwm stop” to disable PWM in FLD_IRQ_PWMO_PNUM interrupt.

AN-17092700-E4 262 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

ir task n-2 ir task n—1 ir task n ir task n+l

I I I I
Tn-3 Tn-2 Tn-1 Tn

Figurel0-4 Add low level ir task as IR end
According to the description above, an NEC IR data mainly contains three parts:
1. startsignal, 9ms carrier + 4.5ms low level (without carrier)
2. valid data: address+ ~address+ cmd + ~cmd

3. stop signal, customized 563us carrier + 560us low level as end

10.3.5 Add timing sequence signal

In NEC IR, start and stop signal are timing sequence signal, which can be added via
the interface below. This interface can only be invoked, and user cannot modify its
internal implementation.

void ir_send_add_series_item(u32 *time_series, u8 series_cnt, ir_ctrl_t *ir_control,
u8 start_high)

“time_series” and “series_cnt” are description of timing sequence. User should
define the two parameters as const variable (store in flash) or local variable, so as to
save RAM space.

NEC IR start signal is:
const u32 ir lead times[] = { 9000 * CLOCK SYS CLOCK 1US,
4500 * CLOCK SYS CLOCK 1US};

III

“ir_control” is ir_ctrl_t structure used to store signals including cycle/duty/pulse
number after corresponding timing sequence is transformed to IR tasks, and user
should define it as global variable:

ir_ctrl_t nec_start[ARRAY_SIZE(ir_lead_times)];

“start_high” indicates the order of carrier and low level during IR transmission. 1-
carrier first, followed by low level; O-low level first, followed by carrier.

Configure NEC IR start signal as IR task:
ir_send_add_series_item(ir_lead_times, ARRAY_SIZE(ir_lead_times), &nec_start, 1);

The configuration of NEC IR stop signal is the same as start signal.

AN-17092700-E4 263 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

10.3.6 Add data

The interface below serves to add data in unit of byte. This interface can only be
invoked, and user cannot modify its internal implementation.

void ir_send_add_byte_item(u8 code, u8 start_high)
“code”: data.

“start_high” indicates the order of carrier and low level during IR transmission. 1-
carrier first, followed by low level; 0-low level first, followed by carrier.

NEC IR data is: address+ ~address+ cmd + ~cmd

If address is 0x88, and cmd is 7:

ir send add byte item(0x88, 1);
ir send add byte item(~0x88, 1);
ir send add byte item(0x07, 1);

ir send add byte item(~0x07, 1);

10.3.7 NEC IR send

The figure below shows the implementation reference of “ir_nec_send”.

Twold ir nec send(uf addrl, uf addr2, uf cmd)
B{

if(ir_send ctrl.last cmd != cmd)
2 if (ir_sending check())
3 i
E: return;
5 }

B ir send ctrl.last_cmd = cmd;

ir send ctrl clear():

ir send add series_item(ir lead times, ARRAY SIZE(ir lead times), &nec start, 1);

T =]

ir send add byte item(addrl, 1):
ir send add byte item(addr?, 1):
ir send add byte item(cmd, 1);
ir send add byte_ item(~cmd, 1);

-

ir send add series item(ir stop bit times, ARRAY SIZE(ir stop bit times), &nec stop, 1):

ir send ctrl start(l);

T R]

Figurel0-5 ir_nec_send

User needs to invoke interface to configure and modify as needed, so as to realize
his own IR send function.

“int ir_sending_check(void)” checks whether PWM still sends previous IR. If yes,
new IR is not processed. This interface can only be invoked, and user cannot modify its
internal implementation.

AN-17092700-E4 264 Verl.3.0

ATELIN
b Telink TLSR826x BLE SDK Developer Handbook

O SEMICONDUCTOR,

“void ir_send_ctrl_clear(void)” must be invoked before a new IR is configured. This
interface can only be invoked, and user cannot modify its internal implementation.

After timing sequence and data configuration are finished (see 10.3.5 and 10.3.6),
the interface below is invoked to start an IR transmission. This interface can only be

invoked, and user cannot modify its internal implementation.

void ir_send_ctrl_start(int need_repeat)

“need_start” indicates whether repeat signal is needed. 1-need repeat signal.

10.3.8 NEC IR repeat
Repeat signal will be enabled by “ir_send_ctrl_start (1)”. The configuration and

transmission of repeat signal is similar to IR data signal.

According to NEC protocal, repeat signal is “O9ms carrier + 2.25ms low level
(without carrier) + 560us carrier”, with 500us end signal, the eventual repeat signal is

defined as below:

{ 9000 * CLOCK_SYS CLOCK 1US,
2250 * CLOCK SYS CLOCK 1US,
560 * CLOCK SYS CLOCK_1US,

const u32 ir repeat times[]

500 * CLOCK SYS CLOCK 1US};

The analysis of the ir_nec_send_repeat is similar to ir_nec_send function. User
needs to invoke interface to configure and modify as needed, so as to realize his own

IR send repeat function.

vold ir_nec send repeat(void)
It
if (ir sending check()){
retorn:

¥

ir send ctrl clear():
ir send add series item((u32 *)ir repeat_times, ARRAY SIZE (ir repeat_times), &nec_repeat, 1)

ir send ctrl start(l):;

Figurel0-6 ir_nec_send_repeat

NEC IR repeat signal will be sent with interval of 110ms. In SDK, hardware Timer2
is used to implement 108ms timer. Whenever the timeout expires, one repeat signal
transmission is added. When button is released to finish IR, Timer2 should be disabled.

AN-17092700-E4 265 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

10.3.9 Interrupt processing

It’'s not needed to modify Timer2 and FLD_IRQ_PWMn_PNUM interrupt
processing in “irq_handler” of demo code.

For FLD_IRQ_PWMn_PNUM processing, user needs to note whether PWMO or
PWML1 is used, which is defined by the following macros in code:

#define PWMO IR MODE 0
#define PWM1 IR MODE 1
#define IR PWM SELECT PWMO IR MODE

“void ir_irq_send(void)” serves to get ir_taskO, ir_task1......ir_taskn successively
according to IR signal and data configuration. PWM will be automatically disabled after
all IR tasks are finished. This function is not modifiable.

“void ir_repeat_handle(void)” serves to restart an IR repeat signal with 108ms
interval.

10.3.10 APP layer checks IR busy status

User can check the two variables below, so as to determine whether current IR is
busy with transmission of data or repeat signal:

ir_send_ctrl.is_sending

ir_send_ctrl.repeat_timer_enable

Following shows the demo code in PM management to check IR busy status. When
IR is busy with transmission of data or repeat signal, MCU cannot enter suspend.

if(ir send ctrl.is sending ||ir_send ctrl.repeat timer enable)

{
bls pm setSuspendMask (SUSPEND DISABLE) ;

AN-17092700-E4 266 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11 Drivers in BLE SDK

11.1 External capacitor for 12/16 MHz crystal

By default, SDK uses internal capacitor of 826x MCU (i.e. cap corresponding to
ana_81<4:0>) as matching capacitor of 12MHz/16MHz crystal oscillator, which is
measurable and adjustable in Telink jig system to reach optimal frequency point value
of final application product.

If it's needed to use external soldered capacitor as matching capacitor of
12MHz/16MHz crystal oscillator instead, the APl below should be invoked at the
beginning of main function and before “cpu_wakeup_init” function.

static inline void blc_app_setExternalCrystalCapEnable (u8 en)
{

blt miscParam.ext cap en = en;

As long as this API is invoked before “cpu_wakeup_init”, SDK will automatically
implement all operations (e.g. disable internal matching capacitor and stop reading
frequency offset calibration value).

11.2 External 32kHz crystal oscillator

By default SDK uses internal 32kHz crystal, i.e. 32kHz RC. The maximum error of
this capacitor is 500ppm, so its accuracy will be influenced for application with long
suspend time. Currently 32kHz RC supports up to 1.5s connection by default. Once
connection time exceeds this duration, inaccurate packet Rx time will be caused by BLE
timing error; this case usually needs packet Rx/Tx retry, thus to increase power
consumption and result in disconnection.

To ensure time accuracy for long suspend applications, external 32kHz crystal (i.e.
32kHz pad) should be used instead. Currently SDK supports this mode.

Either of the two APIs below should be invoked at the beginning of main function
and before “cpu_wakeup_init” function, so as to select 32kHz RC (default) or 32kHz
pad.

void blc_pm select_internal 32k crystal (void);

void blc_pm select_external 32k crystal (void);

Note: Currently this function is not supported by 8261, completely supported by 8266,
and only supported by 8267/8269 above A2/Al respectively (A2 and Al indicate

AN-17092700-E4 267 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

hardware version). User must check with Telink to avoid failure to use 32kHz pad
caused by usage of incorrect IC.

113 PA

To use RF PA, please refer to “proj/drivers/rf_pa.c” and “rf_pa.h”.

First enable the macro below, which is disabled by default.

#ifndef PA ENABLE
#define PA ENABLE 0

#endif

Invoke PA initialization during system initialization.
void rf_pa_init(void);

In this initialization, “PA_TXEN_PIN” and “PA_RXEN_PIN” are set as GPIO output
mode, and initial status is “output 0”. User needs to define GPIOs corresponding to TX
and RX PA.

#ifndef PA TXEN PIN
#define PA TXEN PIN GPIO PB2
#endif

#ifndef PA RXEN PIN
#define PA RXEN PIN GPIO_PB3

#endif

And “void app_rf_pa_handler(int type)” is registered as callback function of PA.
Acutally this function processes the three PA status below: disable PA, enable TX PA,
and enable RX PA.

#define PA TYPE OFF 0
#define PA TYPE TX ON 1
#define PA TYPE RX ON 2

User only needs to invoke the “rf_pa_init” above; “app_rf_pa_handler” is
registered as the bottom-layer callback, so that it will be automatically invoked to
process correspondingly in various BLE states.

AN-17092700-E4 268 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

114 PWM

For illustration of PWM driver, please refer to section 10 IR.

11.5 UART

11.5.1 UART GPIO

Telink 8261/8266/8267/8269 embeds an UART module: 8261/8267/8269
supports three groups of GPIOs for UART, while 8266 supports one group of GPIOs for
UART, as shown in the table below.

UART GPIO mapping

IC type UART ID GPIO Pin UART Pin
1 PA6 Tx
PA7 Rx
5 PB2 TX
PB3 Rx
8261/8267/8269
PC2 TX
3 PC3 Rx
PC4 RTS
PC5 CTS
PC6 TX
PC7 Rx
8266 1
PDO RTS
PD1 CTS

To use the internal UART module, first it’s needed to configure GPIO pins for UART.
Telink GPIO pins support multiplexed functions, and default function of most pins is
GPIO function. SDK supplies GPIO configuration function for user to use other
multiplexed functions. The function prototype is shown as below:

void gpio_set_func(u32 pin, u32 func)

Parameter Description
pin GPIO pin to be set
func Function of the specific GPIO pin to be set

E.g.
gpio_set_func(GPIO_PA6,AS_UART);
gpio_set func(GPIO PA7,AS_UART);

AN-17092700-E4 269 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

To simplify the usage of UART, macros are defined in “uart.h” of SDK for GPIO
configuration of all serial pins. For example:

#define UART GPIO CFG_PA6 PA7
#define UART GPIO CFG PB2 PB3
#define UART GPIO CFG PC2 PC3

0
0
0
#define UART GPIO CFG _PC6 PC7()

User only needs to invoke corresponding macro to implement UART GPIO
configuration.

11.5.2 UART configuration
11.5.2.1 UART common configuration

UART module of Telink 826x MCU is basically the same. Common UART
configuration parameters include baudrate, data bit, parity check bit, stop bit, and etc.
UART initialization function can be invoked to configure the common parameters
above. The function prototype is shown as below:

unsigned char uart_Init(unsigned short uartCLKdiv,
unsigned char bwpc,
UART_ParityTypeDef Parity,
UART_StopBitTypeDef StopBit)

Parameter Description
uartCLKdiv The two parameters serve to determine Baudrate (See IC
Datasheet). Parameter values corresponding to common

b
wpe Baudrates will be listed below.
Parity Set parity check bit (enum-type value).
StopBit Set stop bit (enum-type value).
E.g.

uart_Init (9,13,PARITY NONE,STOP BIT ONE) ;

Enum type definition for parity check bit:
typedef enum {
PARITY_NONE = O,
PARITY_EVEN,
PARITY_ODD,

AN-17092700-E4 270 Verl.3.0

"E'""'o”"“"'o“’& Telink TLSR826x BLE SDK Developer Handbook

} UART_ParityTypeDef;

Enum type definition for stop bit:
typedef enum{
STOP_BIT ONE = 0,
STOP_BIT_ONE_DOT_FIVE = BIT(12),
STOP_BIT_TWO = BIT(13),
} UART_StopBitTypeDef;

The table below shows “clk_div” and “bwpc” parameter values corresponding to
common baudrates.

Common Baudrates

4800 302 605 10 10
9600 118 302 13 10
19200 118 118 6 13
38400 25 118 15 6
57600 30 36 8 14
115200 9 30 13 8

User can use Telink tool “TScript” to obtain “clk_div” and “bwpc” parameter
values corresponding to other baudrates. Please refer to section 11.5.5 for the usage
of “TScript”.

11.5.2.2 UART proprietary configuration

Except for UART common confirmation as introduced in section 11.5.2.1, some
UART proprietary configurations are needed. Telink UART module supports two
working modes: DMA mode, and non-DMA mode (Normal mode). Via proprietary
configuration, UART can work in either of the two modes.

1) Proprietary configuration for UART DMA mode

When UART works in DMA mode, it’s needed to configure DMA channel of UART
via DMA initialization funcation. The function prototype is shown as below:

AN-17092700-E4 271 Verl1.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook

void uart_DmaModeInit(unsigned char dmaTxIrqEn,

unsigned char dmaRxIrgEn)

dmaTxIrgEn UART Tx interrupt enable (1)/disable (0)
dmaRxIrgEn UART Rx interrupt enable (1)/disable (0)
E.g.

uart_DmaModeInit(1,0);

In UART DMA mode, user also needs to configure a Rx buffer via “uart_RecBufInit()”
function, so that DMA can store received UART data in this buffer. The function

prototype is shown as below:
void uart_RecBuffInit(unsigned char *recAddr,
unsigned short recBufflLen)

recAddr Pointer pointing to Rx buffer
recBuffLen Rx buffer length

E.g.
unsigned char rxBuf[100];

uart_RecBuffInit(rxBuf,100);

2) Proprietary configuration for UART Normal mode

In Normal (Non-DMA) mode, user needs to invoke “uart_Init()” function to
initialize UART, and invoke “uart_notDmaModelnit()” function to configure UART.
The function prototype of “uart_notDmaModelnit()” is shown as below:

void uart_notDmaModeInit(unsigned char rx_level,

unsigned char tx_level,
unsigned char rx_irqg_en,

unsigned char tx_irg_en)

AN-17092700-E4 272 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
rx_level Set the number of received data to generate UART Rx IRQ,

i.e. UART Rx interrupt will be generated after “rx_level” data
are received (if Rx interrupt is enabled).

Maximum value is 8.

tx_level Set the number of transmitted data to generate UART Tx IRQ,
i.e. UART Tx interrupt will be generated after “tx_level” data
are transmitted (if Tx interrupt is enabled).

Maximum value is 8.

rx_irg_en UART Rx interrupt enable (1)/disable (0).

tx_irg_en UART Tx interrupt enable (1)/disable (0).

Note: To implement UART data transmission, it’s recommended to adopt inquiry of “Tx
done flag” used in current UART driver, rather than interrupt method. If user does
need to adopt interrupt method, please contact Telink for support.

E.g.
uart_notDmaModeInit(1,0,1,0);

SDK also supplies some macro functions in “uart.h” for user to implement UART
configurations (only supply UART macro functions of DMA mode). Current supported
macro sunctions are shown as below:

#define CLK32M_UART9600 //sys_clk = 32MHz,Baudrate = 9600

#define CLK32M_UART115200//sys_clk=32MHz,Baudrate
115200

#define CLK16M_UART115200//sys_clk=16MHz,Baudrate
115200

#define CLK16M_UART9600 //sys clk = 16MHz,Baudrate = 9600

11.5.3 UART Data Rx/Tx in DMA mode
UART adopts interrupt method to implement data reception.

Note: As introduced above, UART configurations of DMA mode only enable DMA
interrupt related to UART. To enable CPU to detect UART interrupt, global interrupt
must be enabled by invoking “irq_enable()” function.

AN-17092700-E4 273 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.5.3.1 UART data Rx in DMA mode

In DMA mode, UART data reception does not need intervention of CPU, while
DMA module will automatically store the received UART data into the Rx buffer
speicified during UART initialization.

When data reception is finished, a Rx interrupt will be generated to inform MCU
the finish of data reception. Then user can read data from Rx buffer. The
“uart_IRQSourceGet()” function can be invoked to get IRQ source. The function
prototype is shown as below:

enum UARTIRQSOURCE uart_IRQSourceGet(void)

This function will return an enum-type value which specifies interrupt type. Its
definition is shown as below:

enum UARTIRQSOURCE
{
UARTNONEIRQ = @,
UARTRXIRQ = BIT(O),
UARTTXIRQ = BIT(1),
}s

After UART interrupt is generated, user does not need to clear IRQ flag, i.e. it will
be automcatically cleared by hardware.

11.5.3.2 UART data Tx in DMA mode

User can invoke “uart_Send ()” function to send data. The function prototype is
shown as below:

unsigned char uart_Send(unsigned char* addr)

addr Pointing to user data buffer
Return value | 0: DMA busy; 1: Tx success

E.g.
unsigned char txBuf[] = {0x02,0x00,0x00,0x00,0xAA,0xBB};

uart_Send(txBuf);

Notes:

AN-17092700-E4 274 Verl.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook

1) For UART data Tx in DMA mode, the Tx buffer stores 4 bytes (lower byte first) to
indicate the length of data to be transmitted, which are followed by actual data.
Following shows the format to send data:

datalen

2) In DMA mode, one UART transmission can send up to 507-byte (512-5) data,
therefore, long data with length exceeding 507 bytes should be disassembled into
several transmissions.

11.5.4 UART Data Rx/Tx in Non-DMA mode
UART adopts interrupt method to implement data reception.

Note: As introduced above, UART configurations of Non-DMA mode only enable
interrupt related to UART. To enable CPU to detect UART interrupt, global interrupt
must be enabled by invoking “irq_enable()” function.

11.5.4.1 UART data Rx in Non-DMA mode

In Non-DMA mode, UART data reception is implemented in interrupt. When serial
port receives data, a Rx interrupt will be generated. User can get Rx IRQ by invoking
“GET_UART_NOT_DMA_IRQ()” function which is given in the form of macro definition
(Return value: 1 - data are received; 0 - no data is received). Then the received data
can be obtained by invoking “uart_notDmaModeRevData()” function, the prototype
of which is shown as below:

unsigned char uart_notDmaModeRevData(void)

Return one-byte received data. Multiple-byte data can be
obtained via multiple invoking.

Return value

Note: The generation of Rx interrupt depends on the setting of “rx_level” in
“uart_notDmaModelnit ()”. E.g. If rx_level = 1, UART Rx interrupt will be generated
after one byte data is received; if rx_level = 2, UART Rx interrupt will be generated
after two-byte data is received......

AN-17092700-E4 275 Verl1.3.0

/TELINIG

O SEMICONDUCTOR,

11.5.4.2 UART data Tx in Non-DMA mode

User can send data by invoking "uart_notDmaModeSendByte()”, the prototypeof
which is shown as below:

unsigned char

uart_notDmaModeSendByte (unsigned
uartData)

uartData

Data to be sent
Return value

Not used

11.5.5 UART baudrate calculation tool
1)

Open software tool “TScript”, the interface of which is shown as below.

Tscript tools 2.5 xiaodong.zong@telink-semi.com
Config

= |
L £1UART BaudRate_calculate

2%

—————Log

sys: [lo remap begin]

State list

Q) o

[T

'\H Save(ame)
2017/9/8 11:18:03

0
Save as...

Mode:Debug

Figure11-1 Tscript initial interface

2) Click “UART_Baudrate_calculate” icon at the top-left corner, the window at the
lower left corner will show “UART_BaudRate_cal.lua”, as shown below.

AN-17092700-E4 276 Verl1.3.0

Telink TLSR826x BLE SDK Developer Handbook

char

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

Config
=T ‘ 0% ‘
[@JUART BaudRate calculate ”
sys: [io remap begin]
State list
@ UART_BaudRate_cal.lua
[g |
. f
‘ o log Clear (O] Save(Time) | ||,) Save(tiame) ﬁ Save as...

2017/9/8 11:28:59 Mode:Debug A

3)

Figurell-2 UART_BaudRate_cal.lua

Dobule click “UART_BaudRate_cal.lua”, the right log window will show “please

entry the baudrate”, as shown below.

EBT:
BElUART BaudRate calculate

State list

@ UART_BaudRate_cal.lua

2017/9/8 11:36:15 Mode:Debug

Config

‘ 0%

—————d0g

#% sys: [jo remap begin]

| task[T:\WART_BaudRate_calculate|JART_BaudRate_cal.lua]begin —
please entry the baudrate

| b |

‘ o log Clear

@ Save(Time)

\ﬂ Save(Name)

'
ﬂ Saveas...

‘ 0 Stop Script

AN-17092700-E4

Figurell-3 Input baudrate

277 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

4)

Input the wanted baudrate in the text box, and then click “Enter”. The log window

will show “please entry system clock”, as shown below.

Config

BT:

State list

2017/9/8 11:40:39

BmlUART BaudRate calculate

® UART_BaudRate_cal.lua

Made:Debug

| o |

--—log

sys: [io remap begin]
—— task[T:\WART_BaudRate_calculate\WART_BaudRate_cal.lua]begin —
please entry the baudrate

Please entry system dock

115200

@) e

[|

) some

0
Save as...

\'H Save(Name)

Q) sosen

5)

Figurell-4 Input system clock

Input system clock, and then click “Enter”. The log window will show values of

“clk_div” and “bwpc” corresponding to the specified baudrate, as shown below.

% Tscript tools 2.5

Config
BT 0%
QElUART _BaudRate_calculate] —
[mIUART BaudRate calculate P
=z sys: [lo remap begin]
— task[T:\\JART_BaudRate_calculate\\JART_BaudRate_cal.luz]begin —
please entry the baudrate
please entry system dock
system dock: 16000000 baud rate: 115200
the calculate resultis bwpc: 13 div: 9
please entry the baudrate
State list
@ UART_BaudRate_cal.lua
16000000 (oo
- '
‘ o tog Cear | | B saverine)) savetiane) a Save as... ‘ € stopsawt
2017/9/8 11:43:21 Mode:Debug A

xiaodong.zong@telink-semi.com

AN-17092700-E4

Figurell-5 Get “clk_div” and “bwpc” result

278 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.6 ADC

11.6.1 ADC Clock

Working clock of ADC module is derived from FHS (High speed clock) via
frequency division. The maximum working frequency of Telink ADC is 4MHz (please
refer to IC Datasheet for configuration guide). To use ADC, ADC clock must be enabled.
Since ADC clock has already been configured in ADC driver, user can directly use the
configuration.

11.6.2 ADC configuration

Telink ADC supports seven resolution options, two working modes (single-end
mode and differential mode), 12 single-end input channels and multip groups of
differential input channels, 2 or 3 reference voltage options (8266: 1.3V, 3.3V; 8267:
3.3V, 1.428V, 1.224V), as well as detection of battery voltage and temperature (based
on internal temperature sensor). User can invoke “adc_Init()” function to initialize ADC.

11.6.2.1 8261/8267/8269 ADC initializaiton

The prototype of 8261/8267/8269 ADC initialization function is shown as below:
void adc_Init(enum ADCCLOCK adc_clk,

enum ADCINPUTCH chn,

enum ADCINPUTMODE mode,

enum ADCRFV ref_vol,

enum ADCRESOLUTION resolution,

enum ADCST sample_cycle)

ade clk Set ADC clock. It’s an enum-type value, and can only be configured
- as ADC_CLK_4M.

chn Set ADC channel. It’s an enum-type value.

mode Set ADC working mode. It’s an enum-type value.

ref_vol Set ADC reference voltage. It’s an enum-type value.

resolution Set ADC resolution. It’s an enum-type value.

sample_cycle | Set ADC sampling time. It’s an enum-type value.

E.g.

adc_Init(ADC_CLK 4M, B6, SINGLEEND, RV_AVDD, RES14, S 3);

AN-17092700-E4 279 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Enum type definition for ADC clock:
enum ADCCLOCK {
ADC_CLK_4M

Il
S

ADC_CLK_5M

1
v
-

}s

Enum type definition for ADC input channel:
enum ADCINPUTCH{
NOINPUT,
co,
C1,
ce,
Cc7,
Bo,
B1,
B2,
B3,
B4,
B5,
Bé6,
B7,
PGAVOM,
PGAVOP,
TEMSENSORN,
TEMSENSORP,
AVSS,
OTvDD,//1/3 voltage division detection

}s

AN-17092700-E4 280 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Enum type definition for ADC working mode:
enum ADCINPUTMODE{

SINGLEEND,

INVERTB 1,

INVERTB_3,

PGAVOPM,

}s

Enum type definition for ADC reference voltage:
enum ADCRFV{

RV_1P428,

RV_AVDD,

RV_1P224,

}s

Enum type definition for ADC resolution:
enum ADCRESOLUTION{

RES7,

RES9,

RES10,

RES11,

RES12,

RES13,

RES14,

}s

Enum type definition for ADC sampling time:
enum ADCST{

S 3,

S 6,

S 9,

AN-17092700-E4 281 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

S 12,
S 18,
S 24,
S_48,
S_144,
}s

11.6.2.2 8266 ADC initializaiton

The prototype of 8266 ADC initialization function is shown as below:
void adc_Init(ADC_CLK_ t adc_clock,
ADC_INPUTCHN_t chn,
ADC_INPUTMODE_t mode,
ADC_REFVOL_t ref_vol,
ADC_RESOLUTION_t resolution,
ADC_SAMPCYC_t sample_cycle)

ade clock Set ADC clock. It’s an enum-type value, and can only be configured
- as ADC _CLK 4M

chn Set ADC channel. It’s an enum-type value.

mode Set ADC working mode. It’s an enum-type value.

ref_vol Set ADC reference voltage. It’s an enum-type value.

resolution Set ADC resolution. It’s an enum-type value.

sample_cycle | Set ADC sampling time. It’s an enum-type value.

E.g.

adc_Init(ADC_CLK_4M, ADC_CHN_D2,SINGLEEND,ADC_REF_VOL_AVDD,
ADC_SAMPLING RES_14BIT, ADC_SAMPLING CYCLE 6);

Enum type definition for ADC clock:

typedef enum{

ADC_CLK 4M = 4,
ADC_CLK 5M = 5,
} ADC_CLK_t;

AN-17092700-E4 282 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

typedef enum{

ADC_CHN_D@
ADC_CHN_D1
ADC_CHN_D2
ADC_CHN_D3
ADC_CHN_D4
ADC_CHN_D5
ADC_CHN_C2
ADC_CHN_C3
ADC_CHN_C4
ADC_CHN_C5
ADC_CHN_C6
ADC_CHN_C7

ADC_CHN_PGA R

ADC_CHN_PGA L

ADC_CHN_TEMP_POS
ADC_CHN_TEMP_NEG

ADC_CHN_VBUS

ADC_CHN_GND

} ADC_INPUTCHN_t;

oxo1,
0x02,
0x03,
ox04,
ox05,
ox06,
ox07,
ox08,
0x09,
Ox0a,
oxeb,
oxoc,
oxed,
Ox0e,
oxof,
ox10,
ox11,
ox12,

Enum type definition for ADC input channel:

Enum type definition for ADC working mode:

typedef enum{

} ADC_INPUTMODE_t;

AN-17092700-E4

SINGLEEND,
INVERTD 5,
INVERTC 3,
CHN_PGA_L,

283

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Enum type definition for ADC reference voltage:
typedef enum{
ADC REF _VOL_1V3 =0xe0, //!< ADC Reference:1.3v
ADC_REF _VOL_AVDD = 0x@1, //!< ADC Reference:AVDD
} ADC_REFVOL_t;

Enum type definition for ADC resolution:
typedef enum{
ADC_SAMPLING RES 7BIT

1l
(O]
-

ADC_SAMPLING RES_9BIT

1
=
-

ADC_SAMPLING_RES_16BIT

1l
N v b~ W N
-

ADC_SAMPLING_RES_11BIT

-

ADC_SAMPLING_RES_12BIT
ADC_SAMPLING_RES_13BIT

-

ADC_SAMPLING RES 14BIT
} ADC_RESOLUTION_t;

Enum type definition for ADC sampling time:

typedef enum{

ADC_SAMPLING CYCLE 3 = O,
ADC_SAMPLING CYCLE 6 = 1,
ADC_SAMPLING CYCLE 9 = 2,

ADC_SAMPLING CYCLE 12 =3,
ADC_SAMPLING CYCLE 18 =4,
ADC_SAMPLING CYCLE 24 =5,
ADC_SAMPLING CYCLE 48 =6,
ADC_SAMPLING CYCLE 144 = 7,

} ADC_SAMPCYC_t;

AN-17092700-E4 284 Verl.3.0

"E'""'o”"“"'o"& Telink TLSR826x BLE SDK Developer Handbook

11.6.3 Obtain ADC convertion value

ADC driver supplies the function of obtaining ADC convertion value for user to
invoke. The prototype is shown as below:

unsigned short adc_SampleValueGet(void)

Return value ADC conversion value

Actual voltage value should be calculated according to ADC conversion value
obtained via “adc_SampleValueGet” function.

11.6.3.1.1 Calculate actual voltage value for 8261/8267/8269

In theory, the relationship between ADC conversion value and voltage value is
linear, shown as the dotted red line in the figure below. However, there will be an
offset for 8261/8267/8269 actually, shown as the solid black line in the figure below.
At zero voltage, conversion value has a 128 or so offset relative to “0”; at full voltage,
conversion value also has a 128 or so offset relative to “2”resolution -1”.

A

Adv_value Practical ——
Theoretical -

2"reso|utionz ——————————
27resolution - 128 <

128 7

0 Vol

Figure11-6 ADC conversion curve
Telink supplies a calculation method to eliminate this offset.

Vol= Vier * (adc_value - 128) / (2reselution . 256);

AN-17092700-E4 285 Verl1.3.0

/TELINIG

WSEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Vol Actual voltage value
Vret ADC reference voltage
adc_value ADC conversion value
resolution ADC resolution

Note: Actually the offset value at zero voltage and full voltage is a slightly changed
range, therefore, 128 is only a typical average value obtained from test of multiple ICs.
Generally test voltage of actual application is not close to zero voltage and full voltage,
the typical value can be used directly without problem; however, when test voltage is
close to zero voltage, if 128 is directly used, it may cause data overflow. Actual
application should not measure zero voltage (the actual error is large due to resolution
problem).

11.6.3.1.2 Calculate actual value for 8266

Following shows the calculation method of actual voltage for 8266.
Vol = Vrer * (adc_value) / (2resolution).
The parameters are the same as 8261/8267/8269.

Note: 8266 ADC supports two reference voltage options: AVDD (voltage of IC AVDD
pin) or internal 1.3V (1.3V is used in firmaware instead of 1.428V given in Datasheet).

11.7 Low battery voltage detect

“Low battery check” function uses ADC function to check whether current voltage
is lower than the preset normal threshold.

For applications with lithium battery or coin-cell battery, “Low battery check”
function should be added. If 826x works in low level below normal threshold, chip
working may become unstablized, which will bring unexpected risk, such as Flash
write/erase error. If product upgrades its firmware via OTA at low voltage, the OTA
process may fail, new firmware cannot be executed, which will cause product failure.

Once APP layer detects low level, the whole MCU must be cut off to stop all
operations.

AN-17092700-E4 286 Verl.3.0

javascript:void(0);
javascript:void(0);

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.7.1 “Low battery check” implementation
11.7.1.1 “Low battery check” for 8266

ADC channel
PDO

PD1

4

ADC

PC7

Figure11-7 8266 ADC channel

“Low battery check” for 8266 can only be implemented via ADC channel. Hardware
chart for 8266 ADC channel is shown as above. “adc_Init” is used to initialize ADC
configuration.

,,,,,,,,,,,,,,,,

8266 MCU

ADC channel

[oR I!HHIIAA‘A‘AA‘A’

Battery R

Figure11-8 Hardware chart for 8266 low battery check

Since the voltage to be checked is battery voltage, it cannot be used as reference
voltage source, i.e. reference voltage can only be set as 1.3V voltage. In this case,
measurable voltage cannot exceed 1.3V. To meet VCC test range, an external voltage
division network should be used in hardware circuit. As shown in the figure above, 1/3

AN-17092700-E4 287 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

voltage division network is used to extend measurable voltage to 3.9V. User can
measure voltage larger than 3.9V by using voltage division network such as 1/4, 1/5
and etc. An ADC channel should be selected to input the voltage after 1/3 voltage
division of VCC.

If DCDC is used to convert battery voltage and supply power for MCU, the voltage
to be measured should be the voltage before DCDC conversion, as shown in the figure
above.

11.7.1.2 “Low battery check” for 8261/8267/8269

For 8261/8267/8269, ADC hardware module embeds a 1/3 voltage division
network, which can be used for low battery check as well as ADC function extension.
This internal voltage division network has two voltage sources: PB7, VCC (actual
voltage at AVCC pin).

ADC input channel is selectable as GPIO pin with ADC function or the voltage
obtained from 1/3 voltage division network.

Note: PB7 can be used as GPIO pin with ADC function and directly set as ADC input, or
use PB7 as voltage source of 1/3 voltage division network and use the voltage from
1/3 voltage division network as ADC intput.

ADC channel
PCO
PC1
PB6
» ADC
PB7 g
VCC ——o

Figure11-9 8261/8267/8269 ADC channel

AN-17092700-E4 288 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

Since 8261/8267/8269 adds hardware 1/3 voltage division network for ADC input
channel, SDK supplies battery voltage check API function “adc_BatteryChecklInit” to
replace “adc_Init”, which adds the configuration to ADC channel of 1/3 voltage division
network based on “adc_Init”. The protorype is shown as below:

void adc_BatteryCheckInit(enum ADCCLOCK adc_clk,

unsigned char div_en,

enum ONETHIRD_INPUTCHN oneThirdChn,
enum ADCINPUTCH notOneThirdChn,
enum ADCINPUTMODE mode,

enum ADCRFV ref_vol,

enum ADCRESOLUTION resolution,

enum ADCST sample cycle)

adc_clk

Set ADC clock. It's an enum-type value, which can be
configured as ADC_CLK _4M or ADC_CLK_5M.

div_en

Set whether to select internal 1/3 voltage division network
channel. 1: use; 0: not use.

oneThirdChn

If div_en =1, this parameter is used to set voltage source for
internal voltage division network as Battery Chn VCC or
Battery_Chn_B7.

notOneThirdChn

If div_en =0, internal voltage division network is not used, this
parameter is used to set ADC input channel.
“adc_BatteryChecklnit” acts the same as “adc_|Init”.

mode Set ADC working mode. It’s an enum-type value.
ref_vol Set ADC reference voltage. It’s an enum-type value.
Resolution Set ADC resolution. It’s an enum-type value.

sample_cycle

Set ADC sampling time. It’s an enum-type value.

AN-17092700-E4

289 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

The common function “adc_BatteryCheckInit” can be used for battery voltage

detection in two cases:

1)
2)

Directly use internal 1/3 voltage division network as ADC input channel.

Use GPIO pin with ADC function as ADC input channel, and use external 1/3
voltage division network. In this case, user needs to implement external 1/3
voltage division network.

In “adc_BatteryChecklnit” function, the effect of “oneThirdChn” and

“notOneThirdChn” depends on “div_en”.

<>

If div_en =1, internal 1/3 voltage division network is used as ADC input channel
to detect battery voltage. In this case, “notOneThirdChn” is invalid, while
“oneThirdChn” is valid, which serves to set Battery channel (VCC) as voltage
source for the network.

If div_en = 0, GPIO pin with ADC function is used as ADC input channel, and
external 1/3 voltage division network is needed to implement battery voltage
detection. In this case, “oneThirdChn” is invalid, while “notOneThirdChn” is valid,
which serves to set ADC input channel.

According to ADC hardware circuit feature for 8261/8267/8269, implementation

methods of low battery check are shown as below:

1.

Adopt the method of 8266, i.e. use external voltage division network, use GPIO
pin with ADC function (PCO,PC1...PB6,PB7) as ADC input channel. DCDC is optional.
If DCDC is used, ADC should measure the voltage before DCDC conversion.

This method can use either “adc_Init” or “adc_BatteryChecklnit” for initialization.

Suppose external 1/3 external voltage division network is used, GPIO PCO is used
as ADC input channel, initialization should be:

adc_Init (ADC CLK 4M, CO, SINGLEEND, RV _1P428, RES14, S 3);
or

adc_BatteryCheckInit (ADC CLK 4M, 0, 0, CO,

SINGLEEND, RV _1P428, RES14, S 3);

AN-17092700-E4 290 Verl.3.0

/TELINIG

O SEMICONDUCTOR,

Telink TLSR826x BLE SDK Developer Handbook

2.

Use 1/3 internal voltage division network as ADC input channel, and select VCC as
voltage source of the network. Since VCC is actual voltage of IC AVCC pin,
hardware DCDC should not be used.

Battery

8261/8266/8267 MCU

ADC channel

PCO

C1

PB6

7]

PB7

vCe

”H[::}IHE. 5

Figure11-10 1/3 internal voltage division network, VCC channel

Only “adc_BatteryChecklnit” can be used for initialization.
adc_BatteryCheckInit(ADC_CLK 4M,1,Battery Chn_VCC, O,
SINGLEEND, RV _1P428, RES14, S 3);

AN-17092700-E4

291

Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

3. Use 1/3 internal voltage division network as ADC input channel, and select PB7 as
voltage source of the network. DCDC is optional. If DCDC is used, ADC should
measure the voltage before DCDC conversion (i.e. PB7 should be connected
before DCDC conversion).

,,,,,,,,,,,,,,,,

8261/8266,/8267 MCU

ADC channel

Battery

\ |

Figurel1l-11 1/3 internal voltage division network, PB7 channel

Only “adc_BatteryChecklnit” can be used for initialization.
adc BatteryCheckInit (ADC CLK 4M, 1, Battery Chn B7, O,

SINGLEEND, RV _1P428, RES14, S 3);

11.7.2 Demo for “Low battery check”

The project “826x remote”/”826x module” supplies demo for “Low battery
check”. User can use this method or optimize as needed to implement his low battery
check solution.

Take 826x remote demo as an example.
Enable the macro of low battery check in app_config.h.
#define BATT CHECK ENABLE 1 //enable or disable battery
Implement low battery check initialization according to current MCU type:
<> 8266 remote uses external 1/3 voltage division network, connects the voltage

after 1/3 voltage division to PC4 pin (ADC input), and uses “adc_init” for

AN-17092700-E4 292 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

initialization.
<> 8267 remote does not use DCDC, uses internal 1/3 voltage division network as

ADC input, uses VCC as the voltage source of the network, and uses
“adc_BatteryChecklnit” for initialization.

#if ((MCU CORE TYPE == MCU CORE 8261) | | (MCU CORE_TYPE == MCU CORE_ 8267)

|| (MCU CORE TYPE == MCU CORE 8269))
adc BatteryCheckInit (ADC CLK 4M, 1, Battery Chn VCC, 0,
SINGLEEND, RV _1P428, RES14, S 3);
#elif (MCU CORE TYPE == MCU CORE 8266)

adc_Init (ADC CLK 4M, ADC CHN C4, SINGLEEND, ADC REF VOL 1V3,
ADC SAMPLING RES 14BIT, ADC SAMPLING CYCLE 6);

#endif

During battery check in mainloop, once battery voltage is lower than the
threshold (2.0V), MCU will be cut off, and invoke “cpu_sleep_wakeup” to directly
enter deepsleep. GPIO PAD wakeup is enabled.

Demo code is shown as below.

Ivold battery power check (void)
i
statiec u32 battCheckTick = 0;
if (clock time exceed (battCheckTick, 100000)){
battCheckTick = clock time(}:
H
else{
return;

int ade idx = 0O;
unsigned short adcValue [BATT CHECE CNT] = {0};

for (adc idx=0;adc i1dx<BATT CHECE CHNT:adc idx++){
adcValue [adc idx] = adc SampleValueGet();
}

unsigned short average data;
average data = filter data(adcValue,BATT CHECE CNT):

ungigned int tem batteryVol; ff2n14 - 1 = 16383;
#if ((MCU CORE TYPE == MCU CORE 8261) || (MCU CORE TYPE == MCU CORE 82&7) || (MCU CORE TYP
tem bhatteryVol = 3*[1428*[average_data—lQS]I(16383—256]J; JF2714 - 1 = 16383;

i#e2lif (MCU CORE TYPE == MCU CORE 82&6)
tem batteryVol = 3% ((1300*average data)>>14):
fendif

if (tem batteryVol < 2000)}{ //when battery wvoltage iz lower than 2.0v, chip will

cpu_=sleep wakeup(l, FM FAKEUF PAD, 0);
}

AN-17092700-E4 293 Verl.3.0

"E'""'o”"“"'o“’& Telink TLSR826x BLE SDK Developer Handbook

Code contains average and filter processing in software, which ensures the
accuracy of measured voltage. User can directly use the method in the SDK, or use
other better software algorithm.

11.8 IIC

11.8.1 lIC Pin

Telink MCU embeds an IIC module. SDA and SCK line of the IIC module can be
mapped to multiple groups (8261/8267/8269: 3 groups; 8266: 1 group) of GPIOs, as
shown in the table below.

IIC pin mapping table

fctype |meNo. spa s |

1 PA3 PA4
8261/8267/8269 2 PB6 PB7
3 PCO PC1
8266 1 PE7 PF1

Since GPIOs of Telink MCU support multiplexed functions, to use IIC function, it’s
needed to configure corresponding GPIO pins by invoking “i2c_pin_init ()” function.
The function prototype is shown as below:

void i2c_pin_init(I2C_GPIO_GroupTypeDef i2c_pin_group)

i2c_pin_group GPIO pin group to be configured. It's an enum-type value.

E.g.
i2c¢_pin_init(I2C_GPIO_GROUP_CeoC1);

Enum type definition for “12C_GPIO_GroupTypeDef” is shown as below:

typedef enum ({
#if ((MCU CORE TYPE == MCU CORE 8261) || (MCU CORE TYPE == MCU CORE 8267)
| | (MCU _CORE_TYPE == MCU CORE 8269))
I2C GPIO GROUP A3A4,
I2C GPIO GROUP B6B7,
I2C _GPIO GROUP COCI,
#elif (MCU CORE TYPE == MCU CORE_8266)

AN-17092700-E4 294 Verl1.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook

I2C_GPIO GROUP_ET7F1,
#endif

}I12C_GPIO GroupTypeDef;

11.8.2 IIC configuration

[IC module of Telink MCU supports Master mode and Slave mode.
11.8.2.1 |IC Master initialization

Considering different user requirements, driver supplies two functions to
initialize IIC Master, including “i2c_master_init_div ()” and “i2c_master_init_khz ()".

Protorype of “i2c_master_init_div ()” is shown as below:
void i2c_master_init_div(unsigned char slave_id,

unsigned char div_clock)

slave_id Set address of Slave device to be accessed.
div_clock Set IIC frequency: fiic = foys i/ (4 * div_clk)
E.g.

//When sys clk=16MHz, fii=200KHz
i2c_master_init_div(@xA@, 0x14);

Protorype of “i2c_master_init_khz ()" is shown as below:
void i2c_master_init_khz(unsigned char slave_id,

unsigned int i2c_speed)

slave_id Set address of Slave device to be accessed.
i2c_speed Directly set IIC frequency.
E.g.

//When sys clk=16MHz, fiic=200KHz

i2c_master_init_khz(exAe, 200);

Note: Maximum working frequency for Telink IIC module should be fmax iic= fsys/10. It’s
not recommended to use this maximum frequency.

AN-17092700-E4 295 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.8.2.2 IIC Slave initialization

When Telink IIC module is used as Slave, two working modes are supported: DMA
mode, Mapping mode. Please refer to IC Datasheet for the detailed introduction.

SDK supplies Slave initialization function to initialize 112 Slave, the prototype of
which is shown as below:

void i2c_slave_init(unsigned char device id,
enum I2C_SLAVE_MODE i2c_mode,

unsigned char* pbuf)

device_id Set device address
i2c_mode Set Slave Mode. It's an enum-type value.
buf Pointing to Slave device buffer. This parameter is only valid in Slave
P Mapping mode, and it should be set as “NULL” in Slave DMA mode.
E.g.

i2c_slave_init(@xA@, I2C SLAVE DMA,NULL);

Enum type definition for “I2C_SLAVE_MODE” is shown as below:
enum I2C_SLAVE_MODE{
I2C SLAVE DMA = O,
I2C_SLAVE MAP,
}s
When Telink MCU is used as Slave, IIC Master can use Telink MCU or others.

<> If Slave works in DMA mode, IIC Master will access register and SRAM space of
Slave, so it’s needed to specify the target address in register or SRAM.

<> If Slave works in Mapping mode, IIC Master will directly access the space pointed
by “pbuf” in “i2c_slave_init ()”, so it’s not needed to specify storage address
information.

AN-17092700-E4 296 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.8.3 IIC data transfer

When Telink MCU works in IIC Master mode, it can access Slave device with IIC
interface from Telink or other manufacturers.

When Telink MCU works in IIC Slave mode, SPI Master can access the register and
SRAM space of Slave in DMA mode or access memory space (buffer) specified by user
in Mapping mode.

11.8.3.1 IIC Master write transfer

When Telink MCU works in I1IC Master mode, it can access Slave address of 8-bit
or 16-bit length. SDK supplies IIC write function, the prototype of which is shown as
below:

void i2c_write_dma(unsigned short addr,
unsigned char addr_len,

unsigned char* pbuf,

int len)
addr Set Slave address to be accessed.
addr len Set Slave address length.
- 1: 8bit addr; 2: 16bit addr
pbuf Pointing to buffer which stores data to be written.
len Length of data to be written.
E.g.

unsigned char dataBuf[] = {0x00,0x11,0x22,0x33,0x44};

i2c_write_dma(0x@000,2,dataBuf,sizeof(dataBuf));

When Telink MCU works in IIC Slave Mapping mode, user needs to invoke
“i2c_write_mapping ()" in IIC Master to write data into Slave, and it’s not needed to
specify memory address. The function prototype is shown as below.

void i2c_write_mapping(unsigned char* pbuf, int len)

pbuf Pointing to buffer which stores data to be written.
len Date length

AN-17092700-E4 297 Verl1.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook

E.g.

unsigned char writeBuf[]={0x00,0x01,0x02,0x03};

i2c_write_mapping(writeBuf, sizeof(writeBuf));

11.8.3.2 |IC Master read transfer

User can invoke “i2c_read_dma ()” to read data of Slave device. The function
prototype is shown as below.

void i2c_read_dma(unsigned short addr,
unsigned char addr_len,

unsigned char* pbuf,

int len)
addr Set Slave address to be accessed.
addr len Set Slave address length
- 1: 8bit addr; 2: 16bit addr
pbuf Pointing to buffer which stores the read data.
len Length of data to be read.
E.g.

unsigned char dataBuf[] = {0x00,0x11,0x22,0x33,0x44};
i2c_read_dma(@x@0ff,2,dataBuf,sizeof(dataBuf));

When Telink MCU works in IIC Slave Mapping mode, user needs to invoke
“i2c_read_mapping ()” in IIC Master to read data from Slave, and it’s not needed to
specify memory address. The function prototype is shown as below.

void i2c_read_mapping(unsigned char* pbuf, int len)

pbuf Pointing to data read buffer
len Data length
E.g.

unsigned char readBuf[]={0x00,0x01,0x02,0x03};

i2c_read_mapping(readBuf, sizeof(readBuf));

AN-17092700-E4 298 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.8.3.3 IIC Slave data transfer

When IIC works in Slave mode and it’s correctly initialized, data transmission and
reception are completely processed by hardware. If Telink MCU works in Slave
Mapping mode, when IIC Master needs to access this Slave, it can directly read/write
data without specifying memory address.

11.8.4 lIC interrupt

When Telink MCU works in IIC Slave mode, if [IC Master writes data into Slave or
reads data from Slave, Slave will check start and stop signal of IIC Master, and then
generate interrupt (if enabled). [IC interrupt can be enabled by invoking “I2C_IRQ_EN()”
macro function. Note that global interrupt should aslo be enabled by invoking
“irq_enable()".

After IIC interrupt is enabled, user can invoke “I12C_SlavelrgGet ()” in interrupt
handler to obtain IRQ flag bit. The function prototype is shown as below:

I2C_I2CIrqSrcTypeDef I2C_SlaveIrqGet(void)

Return value Return IRQ flag. It’s an enum value.

Enum type definition for “12C_I12ClrqSrcTypeDef” is shown as below:

typedef enum {
I2C_IRQ NONE = O,
I2C_IRQ HOST WRITE ONLY,
I2C_IRQ HOST READ ONLY,
}I2C_I2CIrqSrcTypeDef;

11.9 SPI

11.9.1 SPI Pin

Telink MCU embeds a SPI module. This SPI module supports Master/Slave mode,
and its MISO, MOSI, CS and CK can be mapped to different GPIOs (8266: 1 group of
GPIOs; 8261/8267/8269: two groups of GPIOs), as shown below.

AN-17092700-E4 299 Verl.3.0

®SEMIC OEI\II;U[TM?&

Telink TLSR826x BLE SDK Developer Handbook

SPI GPIO mapping table

PA2 DO
PA3 DI
PA4 CK
PAS CS
8261/8267/8269
PB4 ()
PB5 DO
PB6 DI
PB7 CK
PE6 ()
PE7 DI
8266
PFO DO
PF1 CK

Since GPIOs of Telink MCU support multiplexed functions, to use SPI function, it’s
needed to configure corresponding GPIO pins by invoking SPI pin initialization function.

For 8266, the prototype of SPI pin initialization function is shown as below:

void spi_master_pin_init (unsigned int cs_pin)

cs_pin Set SPI chip select pin

E.g.

spi_master_pin_init(GPIO_PCO);

For 8261/9267/8269, the prototype of SPI pin initialization function is shown as
below:

void spi_master_pin_init(enum spi_pin_t data_clk_pin,
unsigned int cs_pin)

data_clk_pin Set SPI data and clock pins. It’s an enum value.

cs_pin Set SPI chip select pin.

E.g.

AN-17092700-E4 300 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

spi_master_pin_init(SPI_PIN_GROUPA,GPIO PCO);

Enum type definition for “spi_pin_t” is shown as below:
enum spi pin_t{
SPI_PIN_GROUPA,
SPI_PIN_GROUPB,

}s

Note: If Telink MCU is used as SPI Master, its chip select pin can select CS pin of SPI
module, or set other GPIO as SPI CS pin. User only needs to specifiy “cs_pin” in SPI pin
initialization function above. If Telink MCU is used as SPI Slave, its chip select pin can
only select CS pin of SPI module. Therefore, driver assembles Slave pin initialization in
“slave_init ()” (see section 11.9.2), and does not supply independent Slave pin
initialization function.

11.9.2 SPI configuration
Telink SPI module supports Master and Slave mode.

Four standard working modes are supported (see IC Datasheet).

11.9.2.1 SPI Master initialization

When Telink MCU works as SPI Master, user needs to invoke “spi_master_init ()”
function to configure SPI module. The function prototype is shown as below.

void spi_master_init(unsigned char div_clk,

enum spi mode_t spi mode)

div_clk Set SPI working clock frequency: fspi = fsys/ (2 *(div_clk + 1))

spi_mode | Set SPI working mode. It’s an enum value.

E.g.
spi_master_init(@xef, SPI_MODE®);

spi_mode_t definition is shown as below:

enum spi_mode_t{

SPI_MODE®o = @,

SPI_MODE1 2,

AN-17092700-E4 301 Verl.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook
SPI MODE2 = 1,
SPI MODE3 = 3,

}s

11.9.2.2 SPI Slave initialization

When Telink MCU works as SPI Slave, user needs to invoke “spi_slave_init()”
function to configure SPI module.

For 8266, the function prototype is shown as below.

void spi_slave_init(enum spi mode t spi _mode)

spi_mode | Set SPI working mode. It’s an enum value.

E.g.

spi_slave_init(SPI_MODE?®);

For 8261/9267/8269, the function prototype is shown as below.
void spi_slave_init(enum spi pin_t spi_grp,
enum spi mode_t spi mode)

spi_grp SPI GPIO pins. It's an enum value.
spi_mode | SPI mode. It's an enum value.

il
spi_slave_init(SPI_PIN_GROUPA,SPI_MODE®);
Enum type definition for “spi_pin_t” definition:
enum spi_pin_t{
SPI_PIN_GROUPA,
SPI_PIN_GROUPB,

}s

AN-17092700-E4 302 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Enum type definition for “spi_mode_t":
enum spi mode t{

SPI_MODE®

SPI_MODE1

SPI_MODEZ2

-

1l
w = N O©
-

SPI_MODE3
}s

11.9.3 SPI Data transfer

When Telink MCU is used as SPI Master, it can access Slave device with SPI
interface from Telink or other manufacturers.

When Telink MCU is used as SPI Slave, SPI Master can access the register and
SRAM space of Slave.

11.9.3.1 SPI Master write transfer

When SPI works in Master mode, after initialization is finished, “spi_write ()”
function can be invoked to write data. The function prototype is shown as below.

void spi_write(unsigned char* addr_cmd,
unsigned char addr_cmd_len,
unsigned char* pbuf,
int buf_len,

unsigned int cs_pin)

Pointing to Register address to be written or buffer of write
addr_cmd

command
addr_cmd_len | Length of address and command

pbuf Pointing to buffer which stores data to be written
buf len Length of data to be written
cs_pin Chip select pin

AN-17092700-E4 303 Verl1.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

E.g.
#define SLAVE_REG_ADD_H 0x80
#define SLAVE_REG_ADD_L 0x00
#define SPI_WRITE_CMD ©0x00//telink SPI write cmd=0x00
unsigned char slaveRegAddr_WriteCMD[]= {SLAVE_REG_ADD_H,
SLAVE_REG_ADD L,
SPI_WRITE_CMD};
unsigned char spi_write_buff[]= {0x00,0x11,0x22};
spi_write(slaveRegAddr_WriteCMD, 3,
spi_write_buff, sizeof (spi_write_buff),
GPIO PCO
)

11.9.3.2 SPI Master read transfer

User can invoke “spi_read()” function to read data. The function prototype is

shown as below.

void spi_read(unsigned char* addr_cmd,
unsigned char addr_cmd_len,
unsigned char* pbuf,
int buf_len,

unsigned int cs_pin)

addr_cmd Pointing to Register address to be read or buffer of read
command
addr_cmd_len Length of address and command
pbuf Pointing to buffer which stores the read data
buf len Length of data to be read
cs_pin Chip select pin
E.g.

#define SLAVE_REG_ADD_H 0x80
#define SLAVE_REG_ADD_L 0x00
#define SPI_READ_CMD ox80//telink SPI read cmd=0x80

AN-17092700-E4 304 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

unsigned char slaveRegAddr_ReadCMD[]= {SLAVE_REG_ADD_H,
SLAVE_REG_ADD L,
SPI_READ_CMD};
unsigned char spi_read_buff[10];
spi_read(slaveRegAddr_ReadCMD, 3,
spi_read_buff, sizeof (spi_read_buff),
GPIO PCo
)

11.9.3.3 SPI Slave data transfer

When SPI works in Slave mode and it’s correctly initialized, data transmission and
reception are completely processed by hardware.

11.9.4 SPIl interrupt

When Telink MCU works in SPI Slave mode, if SPI Master writes data into Slave or
reads data from Slave, Slave will generate interrupt (if enabled). SPI interrupt can be
enabled by invoking “SPI_IRQ_EN()” macro function. Note that global interrupt should
aslo be enabled by invoking “irg_enable()”.

After SPl interrupt is enabled, user can invoke “SPI_IRQ_GET()” macro function in
interrupt handler to obtain IRQ flag bit. The IRQ flag can be cleared by invoking
“SPI_IRQ_CLK()” macro function.

11.10 EMI

11.10.1 EMI Test

This section will take 8267 as an example to illustrate EMI test. 8261/8269 share
the same hardware registers as 8267, and they actually invoke EMI test interface
function of 8267; 8266 also invokes the same interface function.

During EMI Test, it’s needed to invoke interafces related to rfdry, e.g. rf_drv_init(),
rf_drv_1m(), rf_drv_2m(), and etc. All of these interfaces are assembled in library. API
declaration is viewable in “rf_drv_826x.h".

EMI Test supports four test mode: Carrire mode (send carrier only), CD mode
(send Carrirer with data), RX mode, TX mode. TX mode supports three sub-modes with
different packet types.

AN-17092700-E4 305 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

Struct test list sate list[] = {
{0x01,EmiCarrierOnly},
{0x02,EmiCarrierData},
{0x03,EmiRx},
{0x04,EmiTxPrbs9},
{0x05,EmiTx55},
{0x06,EmiTxff},

}s

11.10.1.1 Emi initialization setting

1) Before EMI test, first it’s needed to invoke “rf_drv_init()” function to initialize RF.
void rf_drv_init (int xtal_type);
“xtal_type” serves to select external crystal, XTAL_12M/ XTAL_16M.

2) After RF configuration, it’s needed to invoke “Rf_Emi_lInit()” function to record
some data before test.
int Rf_Emilnit(void);

3) If it’s needed to enable usbprint function, the configurations below should be
implemented.
WriteAnalogReg (0x88, 0x0f);
WriteAnalogReg (0x05, 0x60);
write_reg8(0x80013c,0x10);

4) Set EMl initial status:
write_reg8(RUN_STATUE_ADDR,run); //run,0
write_reg8(TEST_COMMAND_ADDR,cmd_now); //cmd,1
write_reg8(POWER_ADDR,power_level); //power,0
write_reg8(CHANNEL_ADDR,chn); //chn,2
write_reg8(RF_MODE_ADDR,mode); //mode,1
write_reg8(TX_PACKET _MODE_ADDR,tx_mode); //tx_mode,0

5) Invoke “PhyTest_ PRBS9()” function to implement data initialization setting in Tx
buffer.
void PhyTest_PRBS9 (unsigned char *p, int n);
“PhyTest_PRBS9()” will write prbs9 data into buffer with initial address “p” and

length “n”.

6) Before EMI test, finally it’s needed to invoke “irg_disable()” function to disable all

interrupts.

AN-17092700-E4 306 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.10.1.2 Power level and Channel

IH

During EMI test, user can configure “rf power leve
determine energy and channel for packet transmission.

and “rf channel”, which will

Power level : Select Tx power, enum data type
RF_POWER _8dBm : 0,7dBm Tx power (actual value)
RF_POWER _4dBm : 1,5dBm Tx power (actual value)
RF_POWER _0dBm : 2,-0.6dBm Tx power (actual value)
RF_POWER_m4dBm : 3,-4.3dBm Tx power (actual value)
RF_POWER_m10dBm: 4,-9.5dBm Tx power (actual value)
RF_POWER_m14dBm: 5,-13.6dBm Tx power (actual value)
RF_POWER_m20dBm: 6,-18.8dBm Tx power (actual value)
RF_POWER_m24dBm: 8, -23.3dBm Tx power (actual value)
RF_POWER_m28dBm: 9,-27.5dBm Tx power (actual value)
RF_POWER _m30dBm: 10, -30dBm Tx power
RF_POWER _m37dBm: 11, -37dBm Tx power
RF_POWER_OFF : 16, disable PA

Note: Power level will be configured as actual Tx power value. For example, if
power level is set as “RF_POWER_8dBm”, actual Tx power should be 7dBm rather than
8dBm.

Power setting can be implemented by invoking the function below.
void rf_set_power_level index (int level);

“level”: Power level.

RF Channel: Set frequency as (2400+chn) MHz. (0<chn<100)

For example, to set channel as 2405MHz, “chn” should be set as 5. The function
below can be invoked.

void SetRxMode (signed char chn, unsigned short set);
“chn”: RF channel.

“set”: set as 0.

AN-17092700-E4 307 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.10.1.3 Emi Carrier Only

For Carrier mode, user only needs to directly invoke “EmiCarrierOnly()”.
void EmiCarrierOnly(int power_level, signed char rf_chn);

“power_level”: Power level. (See section 11.10.1.2).

“rf_chn”: RF channel. (See section 11.10.1.2).

In Carrier mode, “EmiCarrierOnly()” will invoke “Rf_EmiCarrierRecovery()”
function to restore some registers of EMI to default setting.

int Rf_EmiCarrierRecovery(void);

11.10.1.4 Emi Carrier Data

In CD mode, data in carrier are updated via “Rf _EmiDataUpdate()” function to
ensure the data are random numbers. User only needs to invoke “EmiCarrierData()”

function to enter CD mode.
void EmiCarrierData(int power_level,signed char rf_chn);
“power_level”: Power level. (See section 11.10.1.2).
“rf_chn”: RF channel. (See section 11.10.1.2).

In CD mode, “EmiCarrierData()” will invoke “Rf _EmiCarrierDataTest()” function to
implement the setting of CD mode (e.g. power level, chn, and etc), and invoke
“Rf_EmiDataUpdate()” functioin to update data in carrier.

void Rf_EmiCarrierDataTest(int power_level,signed char rf_chn);

void Rf_EmiDataUpdate(void);

11.10.1.5 Emi TX

TX mode supports three sub-modes with different packet types, including “PRBS9
packet payload”, “00001111 packet payload” and “10101010 packet payload”. User
can directly invoke “EmiTXff()”/“EmiTx55()”/“EmiTxPrbs9()” to enter corresponding TX
sub mode.

void EmiTxPrbs9(int power_level, signed char rf_chn);
void EmiTx55(int power_level, signed char rf_chn);
void EmiTxff(int power_level, signed char rf_chn);
“power_level”: Power level. (See section 11.10.1.2).

“rf_chn”: RF channel. (See section 11.10.1.2).

AN-17092700-E4 308 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

“EmiTXff()”/“EmiTx55()”/“EmiTxPrbs9()” will invoke “Rf_EmiTxInit()” function to
implement EMI TX initialization setting, and invoke “Rf_EmiSingleTx()” function to start
packet transmission.

void Rf_EmiTxInit(int power_level, signed char rf_chn);
void Rf_EmiSingleTx(unsigned char *addr, int power_level);

“addr”: Starting adderss of Tx buffer.

11.10.1.6 EMIRX

Rx mode adopts inquiry method to receive data. In Rx mode, “EmiRx()” function
is used to implement initialization setting of status register and flag bit. Flag bit can be
used to check whether there are new data received, and “EmiRxProc()” function serves
to process the received data. User only needs to directly invoke “EmiRx()” and
“EmiRxProc()” to enter Rx mode.

void EmiRx(intpower_level, signed char rf_chn);
void EmiRxProc(void);

“power_level”: Power level. (See section 11.10.1.2).
“rf_chn”: RF channel. (See section 11.10.1.2).

“EmiRx()” will invoke “Rf_EmiRxTest()” function to set starting address of Rx
buffer, size, chn and etc.

void Rf_EmiRxTest (unsigned char *addr,
signed char rf_chn,
int buffer_size,
unsigned char pingpong_en)
“addr”: Pointer of Rx buffer in RAM (Generally it’s starting addres of an array).

“buffer_size”: buffer length (integral multiple of 16, mainly used for pingpong
buffer).

“rf_chn”: set Tx RF channel.

“pingpong_en”: Enable (1)/Disable (0) pingpong buffer.

AN-17092700-E4 309 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

11.10.1.7 Set configuration parameters

Run:
0 Default 1 Start test
Cmd:
1 Carrier 2 CD 3 RX
4 TX(PRBS9) |5 TX(0x55) 6 TX(0x0f)

For Power and channel, please refer to section 11.10.1.2.

Mode:

0 Ble_2M 1 Ble_1M

The default setting of these parameter are (mode=1; power=0; channel=2;
cmd=1), i.e. send carrier in ble_1M mode with 2402MHz frequency and 7dBm Tx
power.

Parameters can be configured via flash or RAM address correspondingly. To
modify customized parameters in flash, it’s needed to erase this area before writing
new value. If RAM address method is used, the configured parameter will restore to
its default value after power down.

Note: Flash adderss is modifiable. Please refer to Flash space allocation.

Take 3f000 sector as an example to illustrate how to set configuration parameters
via flash.

#define EMI TEST TX MODE 0x3£005
#define EMI TEST RUN 0x3£006
#define EMI TEST CMD 0x3£007
#define EMI TEST POWER LEVEL 0x3£008
#define EMI TEST CHANNEL 0x3£009
#define EMI TEST MODE 0x3£00a

Test status can be modified via flash address space 0x3f007~0x3f00a. User can
write parameter into corresponding flash address, and power cycle DUT to get the
wanted status.

Test status can also be modified via RAM address 0x8007~0x800a. User can write
parameter into corresponding RAM address, and write RAM "0x8006” with "1” to get
the wanted status.

AN-17092700-E4 310 Verl.3.0

/TELINIG

NIEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook
Ram_address Flash_address Function
0x8004 Rssi
Set number of Tx packets as 1000 or unlimited for
0x8005 0x3f005)
1: send 1000 packets and then stop
0: continuously send packets
0x8006 Run
0x8007 0x3f007 Cmd
0x8008 0x3f008 Power
0x8009 0x3f009 Channel
0x800a 0x3f00a Mode
RX_packet_num (In RX mode, the address space
0x800c-0x800f
stores the number of received packets, 4 bytes).
0x1E000/0x77000 | 0x81_Cap_value(Oxbf<cap< Oxe0)
0x1E040/0x77040 | TpO (1M: 0x13<Tp0<0x27; 2M: 0x36<Tp0<0x4a)
0x1E080/0x77041 Tpl (1M: 0x0f<Tp0<0x23; 2M: 0x2f<Tp1<0x43)

11.10.2 EMI Test Tool

“EMI Test Tool” can be used to implement EMI test. The tool interface is shown

as below.
) EMITEST w11 = [B [t
Log_Window:
SWIRE -
Setting:
2402| Set_Channel
7dbm ~ Set_Power
[BLEM -] | SetRF Mode |
Carrier:
‘ Carrier ‘ ‘ CarrierData
X Unlimited -
‘ PRBS9 ‘ ‘ 0x55 ‘ Ox0f ‘
RX:
RxTest
‘ Read_Rx_Cnt ‘ ReadRssi ‘
Figurel1-12 EMI test tool
AN-17092700-E4 311 Ver1.3.0

"EM""”"”""’"’b Telink TLSR826x BLE SDK Developer Handbook

Step 1: User can select hardware connection method as needed. When “Swire” is
selected, if system clock is 16MHz or below, it’s needed to implement “SWB SPEED”
(click “SWB SP”) on Wtcdb tool to ensure normal communication.

ISWIRE ~|

SWIRE
RUSB

Figurel11-13 Select data bus

e e — e
L
T
‘: :\Git_app\ble_lt_spp\ble lt sdk\8266_feature_ test ﬂ BIN... Open
DEF. Ini

BIN 5320 ~| OTP Program |5033 j [og] ‘ ‘l-DYBEJ |USB J wtodb.ind
8266 feature test.bin Flash Sector (4K) Erase at address 0

Flash Sector (4K) Erase at address 1000
Flash Sector (4K) EZrase st address 2000
Flash Sector (4K) Erase at address 3000
Flash Sector (4K) Erase st address 4000
Flash Sector (4K) Erase at address 5000
Flash Sector (4E) Zrase at address £000
Flash Sector (4K) Erase at address 7000
Flash Sector (4K) Erase at address 8000
Flash Sector (4K) EZrase st address 3000
Flash Sector (4K) Erase at address 2000
Flash Sector (4E) Zrase at address b000
Flash Sector (4K) EZrase at address c000
Flash Sector (4K) Erase at address 4000
Flash Sector (4K) EZrase st address 000
Flash Sector (4K) Erase at address £000
Total Time: 1233 ms
tedb -1 8266_feature_test.bin -b
TC32 ZVE: Swire OF
Flash Sector (4K) Erase & Drogram at address 0
Flash Sector (4K) Erase & Program at address 1000

Flash Sector (4K) Erase & Program at address 2000

file dowload to 00000000: 9264 bytes

Totzl Time: 783 ms
set swire master speed: tedb sp 5
set swire slave speed: tedb we b2 2
TC32 EVE: Swire OK

et swire master speed: tcdb sp §
set swire slave speed: tedb we b2
TC32 EVE: Swire OK
Totzl Time: 0 ms
e,
TRACE Firware —UART

71:1: srart ‘ . Text Clear Save | \tocdb.exe wf 0 -3 64k -e
4 WCD SRAM Iﬂabuq| EraseF | ming32 | RezdF | FlashID‘ ReadPC‘ Cale |Pcmar0ff| CIRL T

a3 Tiew | SHB | Hex‘ SHER | ';:mwnu| RaaﬂID| PktCap ‘ Zrasze3zk
i

7o)

EstHCU‘ NutePaﬂ‘ ROOG0 | wpodb | Close

B " 0 n

Figurell-14 Swire synchronization operation

Step 2: Set “chn”, i.e. input frequency (e.g. 2402) in the corresponding box and
click “Set_Channel”. The log window will show “Swire OK” to indicate normal
communication, as shown below.

AN-17092700-E4 312 Verl.3.0

®SEMIC OEI\II;U[TM?&

Telink TLSR826x BLE SDK Developer Handbook

XA TEST

_SWIRE =

Setting:

2402
(7dbm =l el Power '
BLEIM =] | SetRF_Mode
Carrier;

l Carrier] | CarerData
T Unlimited .

lmsss] 0u55 Oxof
R

RuTest
Read_Rx_Cnt ; ReadRssi

Log_Window:

EEEEEEER RS R R R R

Set Parameter

@Setcha

R FEERFAEARERAE AR
TC32 EVK: Swire OK

Tatal Time: 0 ms

@Start Test Command

Figurel1-15 Set channel

Step 3: Select power level and BLE mode via the corresponding drop-down box,
and click “Set_Power”/”Set_RF_Mode".

AN-17092700-E4

[|BLE_2M

CzBLE_IM

Zigbee_250K

Set_RF_Mode

Figurel1-16 Select RF mode

313

Verl.3.0

®SEMIC OEﬂéll['lg?&

Telink TLSR826x BLE SDK Developer Handbook

Carrier;
——
T Unlimited -
e
RX:

RxTest

Read_Rx_Cnt ReadRssi ‘

Log_Window:
Total Tirme: O ms

T T

@Start Test Command
TC32 EVE: Swire DK
Total Time: 0 ms

FEEEEEEEEEE AR EEER R

Set Parameter

AR R R R

AEEEEEEEEE RN AR NN

T T
Total Time: 0 ms
R R R R R R R R R P R R R R R R R R R R
@Start Test Command

e
TC32 EVE: Swire OK

Total Time: O ms

FEEEEEEEERE R

Set Parameter

@ Set Tx Power:BLE_2M

SEEEEERSdR AN BEEEERR ARG EE AR
TC32 EVE: re O
Total Time: 0 ms

Y

@Start Test Command
AR EREEEER AR AR AN E R AN EERER AR
TC32 EVK: Swire OK

Total Tirme: O mes

Figurel1-17 Interface after RF mode setting

Step 4: Click “Carrier”/“CarrierData”/“RXTest”/“PRBS9”/“0x55”/“0x0f” to enter

corresponding test mode.

Carrier:

Carrier CarrierData |
T Unlimited -
= e ool
R

RxTest

rinon] | o

Log_Window:
Total Time: 0 ms

ier Command

Total Time: 0 ms

AEEEEEE SRR R R R R

Set Parameter

FEEEEEE SRR R SRR R

R Send CarrierData Command
TC32 EVE: Swire OK
Total Time: 0 ms

R R

@ Send Start CarrierData Command
EE R R R RS PR R R R R P R R R E R R R E R R E R R R
TC32 EVK: Swire OK

Total Time: 0 ms

B T R

Set Parameter

D L L T i P pe e
e LR R N PR R R R R PR RN
aend Rx Command
LR EES RN PR PRI RS R PR RN
TC32 EVE: Swire OK
Total Time: 0 ms

B S P R

@ Send Start Rx Command

D T S

TC32 EVEK: Swire 0K
Total Time; O ms

Figure11-18 Select test mode

AN-17092700-E4

314

"E'""o”"“"""& Telink TLSR826x BLE SDK Developer Handbook

Step 5: In TX mode, user can select to send 1000 packets or unlimited packets.

LESE I nlimited

= [0]

Figurel1-19 Set TX packet number

e e L LR PP -

the numbser of packet Command

Setting: Swire
J BAEERAR AR
[%-mz y
Se-Chanes) £ Send Tx(PRESI) Command
- - -, - . ST TR TS 3 BEEER R R
| 5dbm T | Set_Power | TC32 EVK: Swire OK
i . - - Totad Time: 0 ms
BEM - Set_RF_Mode sk koo bkl nciinkokci ook ook
- e i@ Send Start Tx(PRESY) Command
. EERRS R RN R R R RN R R R R R P R R R R R R Y

TC32 EVE: Swire OK
[1 Tatal Time: 0 ms
L) Set Parameter

e PR e
T Unlimited - e R P

i@ Set the number of packet Command

PRES9 55 Oi0f I TC32 EVE: Swire 0K
L il L J Total Time; 0 ms

R g

B e e
1 TC32 EVE: Swire QK
RxTest Taotad Time: 0 ms

LR R e L e R P P R e R L

@ Send Start Tx(0x55) Command

I Il [I LR R R R R R R R R R R P E R R E RN R R
Read_Rx_Cnt ReadRssi TC32 EVIC: Swire OK
. S Totad Time: 0 ms

Figure11-20 TX mode interface

Step 6: In RX mode, number of received packets can be read by clicking
“Read_Rx_Cnt”, while current RSSI can be obtained by clicking “ReadRssi”, as shown
below.

AN-17092700-E4 315 Verl1.3.0

/TELINIG

WSEMICONDUCTOR, Telink TLSR826x BLE SDK Developer Handbook

EVLTEST.L L S o T
Log_Window:

SWIRE - @ Send Start CarrierData Command

Setting: TC32 EVK: Swire OK
Total Time: 0 ms

Sel_Channel Set Parameter

7dbm - Set_Power

@' Bend Rx Command 3
BLE_1M - Set_RF_Mode

TC32 EVK: Swire OK

Carrier- Total Time: 0 ms
@ Send Start Rx Command
‘ Carrier ‘ CarrierData
TC32 EVK: Swire OK
Total Time: 0 ms
X Unlimited -
@ Read the number of received packets E
‘ PRBS9 ‘ ‘ 0x55 ‘ ‘ 0x0f ‘ OK

T A Cniira
(0000 o&f 12 00 00

otd s
RX: @ the number of received packﬁ:tt?lg >

@ Read the value of the RSSI
T K: Swire OK
. otar 1ime: 0 ms
‘ Read_Rx_Cnt ‘ ReadRssi @ the value of t

Figurel1-21 Read RX packet number and RSSI

11.11 PHY test

To be added.

AN-17092700-E4 316 Verl1.3.0

/TELINIG

WSEMICONDUCTOR Telink TLSR826x BLE SDK Developer Handbook

12 Appendix

Appendix 1: crc16 algorithm

unsigned short crclé (unsigned char *pD, int len)
{
static unsigned short poly[2]={0, 0xa001};
unsigned short crc = Oxffff;
unsigned char ds;

int i,9;

for (j=len; 3>0; j--)
{
unsigned char ds = *pD++;
for (i=0; i<8; i++)
{
crc = (crc >> 1) » polyl[(crc ~ ds) & 1];

ds = ds >> 1;

return crc;

AN-17092700-E4 317 Verl.3.0

	1 SDK Overview
	1.1 Software architecture
	1.1.1 main.c
	1.1.2 app_config.h
	1.1.3 application file
	1.1.4 BLE stack entry

	1.2 Applied ICs
	1.3 Driver
	1.4 bootloader
	1.5 library
	1.5.1 Category based on IC
	1.5.2 Category based on function
	1.5.3 Category based on system clock
	1.5.4 Other special libraries

	1.6 Demo
	1.6.1 BLE Slave demo
	1.6.2 BLE master demo
	1.6.3 Feature demo and driver demo

	2 MCU Basic Modules
	2)
	2.1 MCU address space
	2.1.1 MCU address space allocation
	2.1.2 SRAM space ram allocation
	2.1.2.1 SRAM and Firmware spcae
	2.1.2.2 List file analysis demo

	2.1.3 MCU address space access
	2.1.3.1 Peripheral space access
	2.1.3.2 Flash space operation

	2.1.4 SDK FLASH space allocation
	2.1.4.1 Space allocation for 512kB Flash
	2.1.4.2 Space allocation for 128kB Flash

	2.2 Clock module
	2.2.1 System clock configuration
	2.2.2 system tick usage

	2.3 GPIO module
	2.3.1 GPIO definition
	2.3.2 GPIO state control
	2.3.3 GPIO initialization
	2.3.4 Configure SWS pull-up to avoid MCU error

	3 BLE Module
	3)
	3.1 BLE SDK software architecture
	3.1.1 Standard BLE SDK architecture
	3.1.2 Telink BLE SDK architecture
	3.1.2.1 Telink BLE controller
	3.1.2.2 Telink BLE Slave
	3.1.2.3 Telink BLE master

	3.2 BLE controller
	3.2.1 BLE controller introduction
	3.2.2 Link Layer state machine
	3.2.3 Link Layer state machine combined application
	3.2.3.1 Link Layer state machine initialization
	3.2.3.2 Idle + Advtersing
	3.2.3.3 Idle + Scannning
	3.2.3.4 Idle + Advtersing + ConnSlaveRole
	3.2.3.5 Idle + Scannning + Initiating + ConnMasterRole

	3.2.4 Link Layer timing sequence
	3.2.4.1 Timing sequence in Idle state
	3.2.4.2 Timing sequence in Advertising state
	3.2.4.3 Timing sequence in Scanning state
	3.2.4.4 Timing sequence in Initiating state
	3.2.4.5 Timing sequence in Conn state Slave role
	3.2.4.6 Timing sequence in Conn state Master role
	3.2.4.7 Conn state Slave role timing protection

	3.2.5 Link Layer state machine extension
	3.2.5.1 Scanning in Advertising state
	3.2.5.2 Scanning in ConnSlaveRole
	3.2.5.3 Advertising in ConnSlaveRole
	3.2.5.4 Advertising and Scanning in ConnSlaveRole

	3.2.6 Link Layer TX fifo & RX fifo
	3.2.6.1 Slave role fifo
	3.2.6.2 Master role fifo

	3.2.7 Controller HCI Event
	3.2.7.1 HCI event
	3.2.7.2 HCI LE event

	3.2.8 Telink defined event
	3.2.8.1 BLT_EV_FLAG_ADV
	3.2.8.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT
	3.2.8.3 BLT_EV_FLAG_SCAN_RSP
	3.2.8.4 BLT_EV_FLAG_CONNECT
	3.2.8.5 BLT_EV_FLAG_TERMINATE
	3.2.8.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE
	3.2.8.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

	3.1
	3.2
	3.2.1
	3.2.2
	3.2.3
	3.2.4
	3.2.5
	3.2.6
	3.2.7
	3.2.8
	3.2.8.1
	3.2.8.2
	3.2.8.3
	3.2.8.4
	3.2.8.5
	3.2.8.6
	3.2.8.7
	3.2.8.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP
	3.2.8.9 BLT_EV_FLAG_CHN_MAP_REQ
	3.2.8.10 BLT_EV_FLAG_CHN_MAP_UPDATE
	3.2.8.11 BLT_EV_FLAG_CONN_PARA_REQ
	3.2.8.12 BLT_EV_FLAG_CONN_PARA_UPDATE
	3.2.8.13 BLT_EV_FLAG_SUSPEND_ENETR
	3.2.8.14 BLT_EV_FLAG_SUSPEND_EXIT
	3.2.8.15 BLT_EV_FLAG_READ_P256_KEY
	3.2.8.16 BLT_EV_FLAG_GENERATE_DHKEY
	3.2.8.17 BLT_EV_FLAG_LL_REJECT_IND
	3.2.8.18 BLT_EV_FLAG_RX_DATA_ABANDOM
	3.2.8.19 BLT_EV_FLAG_PHY_UPDATE
	3.2.9 Controller API
	3.2.9.1 Controller API brief
	3.2.9.2 API return type ble_sts_t
	3.2.9.3 MAC address initialization
	3.2.9.4 Link Layer state machine initialization
	3.2.9.5 bls_ll_setAdvData
	3.2.9.6 bls_ll_setScanRspData
	3.2.9.7 bls_ll_setAdvParam
	3.2.9.8 bls_ll_setAdvEnable
	3.2.9.9 bls_ll_setAdvDuration
	3.2.9.10 blc_ll_setAdvCustomedChannel
	3.2.9.11 rf_set_power_level_index
	3.2.9.12 blc_ll_setScanParameter
	3.2.9.13 blc_ll_setScanEnable
	3.2.9.14 blc_ll_createConnection
	3.2.9.15 blc_ll_setCreateConnectionTimeout
	3.2.9.16 blm_ll_updateConnection
	3.2.9.17 bls_ll_terminateConnection
	3.2.9.18 blm_ll_disconnect
	3.2.9.19 Get Connection Parameters
	3.2.9.20 blc_ll_getCurrentState
	3.2.9.21 blc_ll_getLatestAvgRSSI
	3.2.9.22 Whitelist & Resolvinglist
	3.2.9.23 blc_ll_set_CustomedAdvScanAccessCode

	3.2.10 2M PHY Supported
	3.2.11 Data Length Extension

	3.3 L2CAP
	3.3.1 Register L2CAP data processing function
	3.3.2 Update connection parameters
	3.3.2.1 Slave requests for connection parameter update
	3.3.2.2 Master responds to connection parameter update request
	3.3.2.3 Master updates connection parameters in Link Layer

	3.4 ATT & GATT
	3.4.1 GATT basic unit “Attribute”
	3.4.2 Attribute and ATT Table
	3.4.2.1 attNum
	3.4.2.2 perm
	3.4.2.3 uuid and uuidLen
	3.4.2.4 pAttrValue and attrLen
	3.4.2.5 Callback function w
	3.4.2.6 Callback function r
	3.4.2.7 Attribute Table layout
	3.4.2.8 ATT table Initialization

	3.4.3 Attribute PDU & GATT API
	3.4.3.1 Read by Group Type Request, Read by Group Type Response
	3.4.3.2 Find by Type Value Request, Find by Type Value Response
	3.4.3.3 Read by Type Request, Read by Type Response
	3.4.3.4 Find information Request, Find information Response
	3.4.3.5 Read Request, Read Response
	3.4.3.6 Read Blob Request, Read Blob Response
	3.4.3.7 Exchange MTU Request, Exchange MTU Response
	3.4.3.8 Write Request, Write Response
	3.4.3.9 Write Command
	3.4.3.10 Handle Value Notification
	3.4.3.11 Handle Value Indication
	3.4.3.12 Handle Value Confirmation

	3.4.4 826x master GATT

	3.5 SMP
	3.5.1 SMP parameter configuration
	3.5.1.1 Device bonding
	3.5.1.2 Device OOB data verification

	3.5.2 SMP enable
	3.5.3 SMP event
	3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN
	3.5.3.2 BLT_EV_FLAG_PAIRING_END

	3.5.4 SMP bonding information

	3.6 826x master customized pairing management
	3.6.1 Design of Flash storage method
	3.6.2 Slave Mac table
	3.6.3 API
	3.6.3.1 user_tbl_slave_mac_add
	3.6.3.2 user_tbl_slave_mac_search
	3.6.3.3 user_tbl_slave_mac_delete_by_adr
	3.6.3.4 user_tbl_slave_mac_delete_by_index
	3.6.3.5 user_tbl_slave_mac_delete_all
	3.6.3.6 user_tbl_salve_mac_unpair_proc

	3.6.4 Connection and pairing
	3.6.5 Un-pairing

	4 Power Management (PM)
	4)
	4.1 PM driver
	4.1.1 Low power modes
	4.1.2 Hardware wakeup sources
	4.1.3 Low power mode entry and wakeup

	4.2 BLE low power management
	4.2.1 PM in Idle state
	4.2.2 PM in BLE Adv state & Conn state

	4.3 BLE PM configuration
	4.3.1 PM module initialization
	4.3.2 Set low power mode via “bls_pm_setSuspendMask”
	4.3.3 Set low power wakeup source via “bls_pm_setWakeupSource”
	4.3.4 Working mechanism of low power managment

	4.4 “latency_use” configuration and calculation
	4.5 Other APIs
	4.5.1 bls_pm_getSystemWakeupTick
	4.5.2 bls_pm_enableAdvMcuStall
	4.5.3 cpu_sleep_wakeup2

	4.6 Notes about GPIO wakeup
	4.6.1 Fail to enter suspend/deepsleep when wakeup level is valid

	4.7 BLE system PM reference
	4.8 Timer wakeup of APP layer

	5 Audio Processing
	5)
	5.1 Audio initialization
	5.2 Processing of MIC sampled audio data
	5.2.1 Audio data compression and RF transfer
	5.2.2 Audio data compression processing

	5.3 Compression and decompression algorithm

	6 OTA
	6)
	6.1 8267/8269 Flash architecture and OTA procedure
	6.1.1 8267/8269 FLASH storage architecture
	6.1.2 8267/8269 OTA update procedure
	6.1.3 Modify Flash storage architecture

	6.2 8266 Flash architecture and OTA procedure
	6.2.1 8266 FLASH storage architecture
	6.2.2 8266 OTA upgrade procedure
	6.2.3 cstartup_8266.S, reset, reboot, code transfer
	6.2.3.1 boot_flag detect and process by cstartup_8266.S
	6.2.3.2 Firmware size
	6.2.3.3 Reset and reboot

	6.2.4 Modify Flash storage architecture
	6.2.4.1 Modify firmware size and OTA FW storage address
	6.2.4.2 Modify storage address of OTA boot bin
	6.2.4.3 Modify storage addrss of OTA boot flag

	6.3 8261 Flash architecture and OTA procedure
	6.3.1 8261 FLASH storage architecture
	6.3.2 8261 OTA update procedure
	6.3.3 cstartup_8261.S, reset, reboot , code transfer
	6.3.3.1 boot_flag detect and process by cstartup_8261.S
	6.3.3.2 Firmware size, reset and reboot

	6.3.4 Modify Flash storage architecture
	6.3.4.1 Modify firmware size and OTA FW storage address
	6.3.4.2 Modify storage address of OTA boot bin
	6.3.4.3 Modify storage addrss of OTA boot flag

	6.4 RF data proceesing for OTA mode
	6.4.1 OTA processing in Attribute Table on Slave side
	6.4.2 OTA data packet format
	6.4.3 RF transfer processing on Master side
	6.4.4 RF receive processing on Slave side

	7 Key Scan
	7)
	7.1 Key matrix
	7.2 Keyscan, keymap and keycode
	7.2.1 Keyscan
	7.2.2 Keymap &kb_event

	7.3 Keycode
	7.4 Keyscan flow
	7.4.1 Basic keyscan flow
	7.4.2 Keyscan flow timing optimization

	7.5 Deepsleep wakeup fast keyscan
	7.6 Repeat Key processing
	7.7 Stuck Key processing
	7.8 Power optimization for long key press

	8 LED Management
	8)
	8.1 LED task related invoking functions
	8.2 LED task configuration and management
	8.2.1 Led event definition
	8.2.2 Led event priority

	9 blt software timer
	9)
	9.1 Timer initialization
	9.2 Timer inquiry processing
	9.3 Add timer task
	9.4 Delete timer task
	9.5 Demo

	10 IR
	10)
	10.1 PWM Driver
	10.1.1 PWM id and pin
	10.1.2 PWM clock
	10.1.3 PWM cycle and duty
	10.1.4 PWM revert
	10.1.5 PWM mode
	10.1.6 PWM start and stop
	10.1.7 PWM pulse number
	10.1.8 PWM phase
	10.1.9 PWM interrupt

	10.2 IR implementation method
	10.3 IR Demo details
	10.3.1 NEC IR
	10.3.2 Set carrier
	10.3.3 Set logic1 and logic0 time
	10.3.4 Configure a complete NEC IR
	10.3.5 Add timing sequence signal
	10.3.6 Add data
	10.3.7 NEC IR send
	10.3.8 NEC IR repeat
	10.3.9 Interrupt processing
	10.3.10 APP layer checks IR busy status

	11 Drivers in BLE SDK
	11)
	11.1 External capacitor for 12/16 MHz crystal
	11.2 External 32kHz crystal oscillator
	11.3 PA
	11.4 PWM
	11.5 UART
	11.5.1 UART GPIO
	11.5.2 UART configuration
	11.5.2.1 UART common configuration
	11.5.2.2 UART proprietary configuration

	11.5.3 UART Data Rx/Tx in DMA mode
	11.5.3.1 UART data Rx in DMA mode
	11.5.3.2 UART data Tx in DMA mode

	11.5.4 UART Data Rx/Tx in Non-DMA mode
	11.5.4.1 UART data Rx in Non-DMA mode
	11.5.4.2 UART data Tx in Non-DMA mode

	11.5.5 UART baudrate calculation tool

	11.6 ADC
	11.6.1 ADC Clock
	11.6.2 ADC configuration
	11.6.2.1 8261/8267/8269 ADC initializaiton
	11.6.2.2 8266 ADC initializaiton

	11.6.3 Obtain ADC convertion value
	11.6.3.1.1 Calculate actual voltage value for 8261/8267/8269
	11.6.3.1.2 Calculate actual value for 8266

	11.7 Low battery voltage detect
	11.7.1 “Low battery check” implementation
	11.7.1.1 “Low battery check” for 8266
	11.7.1.2 “Low battery check” for 8261/8267/8269

	11.7.2 Demo for “Low battery check”

	11.8 IIC
	11.8.1 IIC Pin
	11.8.2 IIC configuration
	11.8.2.1 IIC Master initialization
	11.8.2.2 IIC Slave initialization

	11.8.3 IIC data transfer
	11.8.3.1 IIC Master write transfer
	11.8.3.2 IIC Master read transfer
	11.8.3.3 IIC Slave data transfer

	11.8.4 IIC interrupt

	11.9 SPI
	11.9.1 SPI Pin
	11.9.2 SPI configuration
	11.9.2.1 SPI Master initialization
	11.9.2.2 SPI Slave initialization

	11.9.3 SPI Data transfer
	11.9.3.1 SPI Master write transfer
	11.9.3.2 SPI Master read transfer
	11.9.3.3 SPI Slave data transfer

	11.9.4 SPI interrupt

	11.10 EMI
	11.10.1 EMI Test
	11.10.1.1 Emi initialization setting
	11.10.1.2 Power level and Channel
	11.10.1.3 Emi Carrier Only
	11.10.1.4 Emi Carrier Data
	11.10.1.5 Emi TX
	11.10.1.6 EMI RX
	11.10.1.7 Set configuration parameters

	11.10.2 EMI Test Tool

	11.11 PHY test

	12 Appendix

