

Application Note：

Telink TLSR826x BLE SDK

Developer Handbook

AN-17092700-E4

Ver1.3.0

2019/10/14

T
E

L
I
N

K

S

E
M

I
C

O
N

D
U

C
T

O
R

Brief:

This document is the guide for TLSR826x BLE SDK

3.2.0 which supports 8261, 8266, 8267 and 8269.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 1 Ver1.3.0

Published by

Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,

Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor

All Right Reserved

Legal Disclaimer

Telink Semiconductor reserves the right to make changes without further notice to any

products herein to improve reliability, function or design. Telink Semiconductor

disclaims any and allliability for any errors, inaccuracies or incompleteness contained

hereinor in any other disclosure relating to any product.

Telink Semiconductor does not assume any liability arising out of the application or

use of any product or circuit described herein; neither does it convey any license under

its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or life-

sustaining applications. Customers using or selling Telink Semiconductor products not

expressly indicated for use in suchapplications do so entirely at their own risk and

agree to fully indemnify Telink Semiconductor for any damages arising or resultingfrom

such use or sale.

Information:

For further information on the technology, product and business term, please contact

Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

http://www.telink-semi.com/
mailto:telinkcnsales@telink-semi.com
mailto:telinkcnsupport@telink-semi.com

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 2 Ver1.3.0

Change Log

Version Main Changes Date Authors

1.0.0 Initial Release 2017/11
Wangsihui, Gaoqiu,

Libiao, Chenqiuwei,

Cynthia

1.1.0

Updated section 5.1 Audio

initialization,

6.1.3 Modify Flash storage

architecture,

6.2.4.1 Modify firmware size and

OTA FW storage address,

6.3.4.1 Modify firmware size and

OTA FW storage address.

2018/12 LX, WSH, Cynthia

1.3.0

3.2.6.1 Add rx overflow

description

3.2.8.17 Add

BLT_EV_FLAG_LL_REJECT_IND

description

3.2.8.18 Add

BLT_EV_FLAG_RX_DATA_ABAND

OM description

3.2.8.19 Add

BLT_EV_FLAG_PHY_UPDATE

description

3.2.9.23 Add

blc_ll_set_CustomedAdvScanAcc

essCode() description

3.2.10 Add 2M PHY Supported

description

3.2.11 Add Data Length

Extension description

3. 3.2.1 Add

bls_l2cap_setMinimalUpdateReqSe

ndingTime_after_connCreate()

description

4.5.3 Add cpu_sleep_wakeup2()

description

2019/10 Chen Qiuwei

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 3 Ver1.3.0

Table of contents

1 SDK Overview.. 20

1.1 Software architecture .. 20

1.1.1 main.c .. 21

1.1.2 app_config.h ... 21

1.1.3 application file... 21

1.1.4 BLE stack entry .. 22

1.2 Applied ICs ... 22

1.3 Driver .. 23

1.4 bootloader ... 26

1.5 library ... 27

1.5.1 Category based on IC .. 28

1.5.2 Category based on function .. 28

1.5.3 Category based on system clock ... 29

1.5.4 Other special libraries ... 29

1.6 Demo .. 29

1.6.1 BLE Slave demo ... 30

1.6.2 BLE master demo .. 30

1.6.3 Feature demo and driver demo .. 31

2 MCU Basic Modules .. 32

2.1 MCU address space .. 32

2.1.1 MCU address space allocation .. 32

2.1.2 SRAM space ram allocation .. 33

2.1.2.1 SRAM and Firmware spcae .. 33

2.1.2.2 List file analysis demo .. 37

2.1.3 MCU address space access ... 42

2.1.3.1 Peripheral space access ... 42

2.1.3.2 Flash space operation .. 43

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 4 Ver1.3.0

2.1.4 SDK FLASH space allocation .. 46

2.1.4.1 Space allocation for 512kB Flash ... 47

2.1.4.2 Space allocation for 128kB Flash ... 50

2.2 Clock module.. 52

2.2.1 System clock configuration ... 53

2.2.2 system tick usage .. 54

2.3 GPIO module .. 56

2.3.1 GPIO definition .. 56

2.3.2 GPIO state control ... 57

2.3.3 GPIO initialization ... 59

2.3.4 Configure SWS pull-up to avoid MCU error .. 61

3 BLE Module ... 62

3.1 BLE SDK software architecture .. 62

3.1.1 Standard BLE SDK architecture ... 62

3.1.2 Telink BLE SDK architecture .. 63

3.1.2.1 Telink BLE controller .. 63

3.1.2.2 Telink BLE Slave ... 64

3.1.2.3 Telink BLE master ... 66

3.2 BLE controller ... 67

3.2.1 BLE controller introduction ... 67

3.2.2 Link Layer state machine .. 67

3.2.3 Link Layer state machine combined application 69

3.2.3.1 Link Layer state machine initialization .. 69

3.2.3.2 Idle + Advtersing .. 70

3.2.3.3 Idle + Scannning .. 71

3.2.3.4 Idle + Advtersing + ConnSlaveRole .. 72

3.2.3.5 Idle + Scannning + Initiating + ConnMasterRole 74

3.2.4 Link Layer timing sequence ... 75

3.2.4.1 Timing sequence in Idle state .. 76

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 5 Ver1.3.0

3.2.4.2 Timing sequence in Advertising state .. 76

3.2.4.3 Timing sequence in Scanning state ... 77

3.2.4.4 Timing sequence in Initiating state ... 78

3.2.4.5 Timing sequence in Conn state Slave role ... 78

3.2.4.6 Timing sequence in Conn state Master role .. 80

3.2.4.7 Conn state Slave role timing protection .. 81

3.2.5 Link Layer state machine extension .. 82

3.2.5.1 Scanning in Advertising state .. 82

3.2.5.2 Scanning in ConnSlaveRole .. 83

3.2.5.3 Advertising in ConnSlaveRole .. 84

3.2.5.4 Advertising and Scanning in ConnSlaveRole .. 85

3.2.6 Link Layer TX fifo & RX fifo .. 85

3.2.6.1 Slave role fifo ... 86

3.2.6.2 Master role fifo .. 89

3.2.7 Controller HCI Event ... 89

3.2.7.1 HCI event ... 91

3.2.7.2 HCI LE event ... 92

3.2.8 Telink defined event ... 95

3.2.8.1 BLT_EV_FLAG_ADV .. 98

3.2.8.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT ... 98

3.2.8.3 BLT_EV_FLAG_SCAN_RSP .. 98

3.2.8.4 BLT_EV_FLAG_CONNECT ... 98

3.2.8.5 BLT_EV_FLAG_TERMINATE .. 99

3.2.8.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE .. 100

3.2.8.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE .. 100

3.2.8.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP ... 101

3.2.8.9 BLT_EV_FLAG_CHN_MAP_REQ ... 102

3.2.8.10 BLT_EV_FLAG_CHN_MAP_UPDATE ... 103

3.2.8.11 BLT_EV_FLAG_CONN_PARA_REQ .. 103

3.2.8.12 BLT_EV_FLAG_CONN_PARA_UPDATE .. 103

3.2.8.13 BLT_EV_FLAG_SUSPEND_ENETR ... 104

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 6 Ver1.3.0

3.2.8.14 BLT_EV_FLAG_SUSPEND_EXIT ... 104

3.2.8.15 BLT_EV_FLAG_READ_P256_KEY .. 104

3.2.8.16 BLT_EV_FLAG_GENERATE_DHKEY ... 104

3.2.8.17 BLT_EV_FLAG_LL_REJECT_IND .. 104

3.2.8.18 BLT_EV_FLAG_RX_DATA_ABANDOM... 105

3.2.8.19 BLT_EV_FLAG_PHY_UPDATE ... 105

3.2.9 Controller API .. 106

3.2.9.1 Controller API brief .. 106

3.2.9.2 API return type ble_sts_t... 106

3.2.9.3 MAC address initialization ... 107

3.2.9.4 Link Layer state machine initialization .. 108

3.2.9.5 bls_ll_setAdvData .. 108

3.2.9.6 bls_ll_setScanRspData ... 109

3.2.9.7 bls_ll_setAdvParam ... 110

3.2.9.8 bls_ll_setAdvEnable .. 114

3.2.9.9 bls_ll_setAdvDuration ... 115

3.2.9.10 blc_ll_setAdvCustomedChannel .. 116

3.2.9.11 rf_set_power_level_index ... 116

3.2.9.12 blc_ll_setScanParameter ... 117

3.2.9.13 blc_ll_setScanEnable ... 118

3.2.9.14 blc_ll_createConnection .. 119

3.2.9.15 blc_ll_setCreateConnectionTimeout ... 121

3.2.9.16 blm_ll_updateConnection ... 121

3.2.9.17 bls_ll_terminateConnection .. 122

3.2.9.18 blm_ll_disconnect ... 123

3.2.9.19 Get Connection Parameters .. 123

3.2.9.20 blc_ll_getCurrentState ... 124

3.2.9.21 blc_ll_getLatestAvgRSSI ... 124

3.2.9.22 Whitelist & Resolvinglist .. 124

3.2.9.23 blc_ll_set_CustomedAdvScanAccessCode 126

3.2.10 2M PHY Supported .. 127

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 7 Ver1.3.0

3.2.11 Data Length Extension .. 128

3.3 L2CAP ... 131

3.3.1 Register L2CAP data processing function ... 131

3.3.2 Update connection parameters .. 131

3.3.2.1 Slave requests for connection parameter update 131

3.3.2.2 Master responds to connection parameter update request 132

3.3.2.3 Master updates connection parameters in Link Layer 135

3.4 ATT & GATT .. 136

3.4.1 GATT basic unit “Attribute” .. 136

3.4.2 Attribute and ATT Table .. 137

3.4.2.1 attNum .. 138

3.4.2.2 perm .. 139

3.4.2.3 uuid and uuidLen ... 139

3.4.2.4 pAttrValue and attrLen .. 140

3.4.2.5 Callback function w ... 141

3.4.2.6 Callback function r ... 143

3.4.2.7 Attribute Table layout .. 144

3.4.2.8 ATT table Initialization ... 145

3.4.3 Attribute PDU & GATT API .. 146

3.4.3.1 Read by Group Type Request, Read by Group Type Response 146

3.4.3.2 Find by Type Value Request, Find by Type Value Response 147

3.4.3.3 Read by Type Request, Read by Type Response 148

3.4.3.4 Find information Request, Find information Response 149

3.4.3.5 Read Request, Read Response .. 149

3.4.3.6 Read Blob Request, Read Blob Response .. 150

3.4.3.7 Exchange MTU Request, Exchange MTU Response............................... 150

3.4.3.8 Write Request, Write Response .. 152

3.4.3.9 Write Command .. 153

3.4.3.10 Handle Value Notification.. 153

3.4.3.11 Handle Value Indication .. 154

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 8 Ver1.3.0

3.4.3.12 Handle Value Confirmation ... 155

3.4.4 826x master GATT ... 156

3.5 SMP .. 158

3.5.1 SMP parameter configuration .. 158

3.5.1.1 Device bonding .. 158

3.5.1.2 Device OOB data verification .. 158

3.5.2 SMP enable ... 159

3.5.3 SMP event ... 160

3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN ... 160

3.5.3.2 BLT_EV_FLAG_PAIRING_END... 160

3.5.4 SMP bonding information ... 161

3.6 826x master customized pairing management ... 163

3.6.1 Design of Flash storage method ... 163

3.6.2 Slave Mac table ... 164

3.6.3 API ... 165

3.6.3.1 user_tbl_slave_mac_add .. 165

3.6.3.2 user_tbl_slave_mac_search .. 165

3.6.3.3 user_tbl_slave_mac_delete_by_adr ... 166

3.6.3.4 user_tbl_slave_mac_delete_by_index .. 166

3.6.3.5 user_tbl_slave_mac_delete_all ... 166

3.6.3.6 user_tbl_salve_mac_unpair_proc ... 166

3.6.4 Connection and pairing ... 166

3.6.5 Un-pairing ... 167

4 Power Management (PM) .. 169

4.1 PM driver.. 169

4.1.1 Low power modes ... 169

4.1.2 Hardware wakeup sources ... 170

4.1.3 Low power mode entry and wakeup .. 171

4.2 BLE low power management ... 174

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 9 Ver1.3.0

4.2.1 PM in Idle state ... 174

4.2.2 PM in BLE Adv state & Conn state .. 174

4.3 BLE PM configuration ... 175

4.3.1 PM module initialization ... 175

4.3.2 Set low power mode via “bls_pm_setSuspendMask” 175

4.3.3 Set low power wakeup source via “bls_pm_setWakeupSource” 176

4.3.4 Working mechanism of low power managment 177

4.4 “latency_use” configuration and calculation .. 179

4.5 Other APIs .. 181

4.5.1 bls_pm_getSystemWakeupTick .. 181

4.5.2 bls_pm_enableAdvMcuStall ... 182

4.5.3 cpu_sleep_wakeup2 ... 182

4.6 Notes about GPIO wakeup ... 183

4.6.1 Fail to enter suspend/deepsleep when wakeup level is valid 183

4.7 BLE system PM reference .. 184

4.8 Timer wakeup of APP layer .. 187

5 Audio Processing .. 187

5.1 Audio initialization ... 187

5.2 Processing of MIC sampled audio data .. 190

5.2.1 Audio data compression and RF transfer ... 190

5.2.2 Audio data compression processing ... 192

5.3 Compression and decompression algorithm ... 195

6 OTA ... 197

6.1 8267/8269 Flash architecture and OTA procedure 197

6.1.1 8267/8269 FLASH storage architecture .. 197

6.1.2 8267/8269 OTA update procedure ... 198

6.1.3 Modify Flash storage architecture .. 200

6.2 8266 Flash architecture and OTA procedure ... 201

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 10 Ver1.3.0

6.2.1 8266 FLASH storage architecture ... 201

6.2.2 8266 OTA upgrade procedure .. 202

6.2.3 cstartup_8266.S, reset, reboot, code transfer 203

6.2.3.1 boot_flag detect and process by cstartup_8266.S 203

6.2.3.2 Firmware size... 206

6.2.3.3 Reset and reboot ... 207

6.2.4 Modify Flash storage architecture .. 208

6.2.4.1 Modify firmware size and OTA FW storage address 208

6.2.4.2 Modify storage address of OTA boot bin ... 209

6.2.4.3 Modify storage addrss of OTA boot flag .. 209

6.3 8261 Flash architecture and OTA procedure ... 210

6.3.1 8261 FLASH storage architecture ... 210

6.3.2 8261 OTA update procedure .. 211

6.3.3 cstartup_8261.S, reset, reboot , code transfer 212

6.3.3.1 boot_flag detect and process by cstartup_8261.S 212

6.3.3.2 Firmware size, reset and reboot .. 215

6.3.4 Modify Flash storage architecture .. 215

6.3.4.1 Modify firmware size and OTA FW storage address 216

6.3.4.2 Modify storage address of OTA boot bin ... 217

6.3.4.3 Modify storage addrss of OTA boot flag .. 217

6.4 RF data proceesing for OTA mode ... 218

6.4.1 OTA processing in Attribute Table on Slave side 218

6.4.2 OTA data packet format .. 218

6.4.3 RF transfer processing on Master side ... 219

6.4.4 RF receive processing on Slave side .. 223

7 Key Scan .. 226

7.1 Key matrix .. 226

7.2 Keyscan, keymap and keycode .. 228

7.2.1 Keyscan ... 228

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 11 Ver1.3.0

7.2.2 Keymap &kb_event ... 229

7.3 Keycode .. 231

7.4 Keyscan flow .. 233

7.4.1 Basic keyscan flow .. 233

7.4.2 Keyscan flow timing optimization ... 235

7.5 Deepsleep wakeup fast keyscan .. 237

7.6 Repeat Key processing ... 239

7.7 Stuck Key processing .. 240

7.8 Power optimization for long key press .. 242

8 LED Management ... 243

8.1 LED task related invoking functions ... 243

8.2 LED task configuration and management .. 243

8.2.1 Led event definition .. 243

8.2.2 Led event priority .. 244

9 blt software timer ... 246

9.1 Timer initialization ... 246

9.2 Timer inquiry processing .. 246

9.3 Add timer task .. 249

9.4 Delete timer task .. 249

9.5 Demo .. 250

10 IR ... 252

10.1 PWM Driver .. 252

10.1.1 PWM id and pin... 252

10.1.2 PWM clock .. 253

10.1.3 PWM cycle and duty ... 253

10.1.4 PWM revert ... 254

10.1.5 PWM mode ... 254

10.1.6 PWM start and stop .. 256

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 12 Ver1.3.0

10.1.7 PWM pulse number .. 256

10.1.8 PWM phase ... 256

10.1.9 PWM interrupt .. 256

10.2 IR implementation method .. 258

10.3 IR Demo details .. 259

10.3.1 NEC IR .. 259

10.3.2 Set carrier .. 260

10.3.3 Set logic1 and logic0 time ... 260

10.3.4 Configure a complete NEC IR .. 262

10.3.5 Add timing sequence signal .. 263

10.3.6 Add data .. 264

10.3.7 NEC IR send ... 264

10.3.8 NEC IR repeat .. 265

10.3.9 Interrupt processing.. 266

10.3.10 APP layer checks IR busy status .. 266

11 Drivers in BLE SDK ... 267

11.1 External capacitor for 12/16 MHz crystal .. 267

11.2 External 32kHz crystal oscillator .. 267

11.3 PA ... 268

11.4 PWM .. 269

11.5 UART... 269

11.5.1 UART GPIO .. 269

11.5.2 UART configuration ... 270

11.5.2.1 UART common configuration .. 270

11.5.2.2 UART proprietary configuration .. 271

11.5.3 UART Data Rx/Tx in DMA mode .. 273

11.5.3.1 UART data Rx in DMA mode .. 274

11.5.3.2 UART data Tx in DMA mode .. 274

11.5.4 UART Data Rx/Tx in Non-DMA mode .. 275

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 13 Ver1.3.0

11.5.4.1 UART data Rx in Non-DMA mode .. 275

11.5.4.2 UART data Tx in Non-DMA mode .. 276

11.5.5 UART baudrate calculation tool .. 276

11.6 ADC ... 279

11.6.1 ADC Clock .. 279

11.6.2 ADC configuration ... 279

11.6.2.1 8261/8267/8269 ADC initializaiton ... 279

11.6.2.2 8266 ADC initializaiton .. 282

11.6.3 Obtain ADC convertion value .. 285

11.6.3.1.1 Calculate actual voltage value for 8261/8267/8269 285

11.6.3.1.2 Calculate actual value for 8266 ... 286

11.7 Low battery voltage detect .. 286

11.7.1 “Low battery check” implementation .. 287

11.7.1.1 “Low battery check” for 8266 .. 287

11.7.1.2 “Low battery check” for 8261/8267/8269 288

11.7.2 Demo for “Low battery check” ... 292

11.8 IIC ... 294

11.8.1 IIC Pin .. 294

11.8.2 IIC configuration .. 295

11.8.2.1 IIC Master initialization .. 295

11.8.2.2 IIC Slave initialization ... 296

11.8.3 IIC data transfer .. 297

11.8.3.1 IIC Master write transfer ... 297

11.8.3.2 IIC Master read transfer .. 298

11.8.3.3 IIC Slave data transfer .. 299

11.8.4 IIC interrupt ... 299

11.9 SPI ... 299

11.9.1 SPI Pin .. 299

11.9.2 SPI configuration ... 301

11.9.2.1 SPI Master initialization ... 301

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 14 Ver1.3.0

11.9.2.2 SPI Slave initialization .. 302

11.9.3 SPI Data transfer ... 303

11.9.3.1 SPI Master write transfer ... 303

11.9.3.2 SPI Master read transfer .. 304

11.9.3.3 SPI Slave data transfer ... 305

11.9.4 SPI interrupt .. 305

11.10 EMI ... 305

11.10.1 EMI Test .. 305

11.10.1.1 Emi initialization setting .. 306

11.10.1.2 Power level and Channel ... 307

11.10.1.3 Emi Carrier Only .. 308

11.10.1.4 Emi Carrier Data .. 308

11.10.1.5 Emi TX .. 308

11.10.1.6 EMI RX ... 309

11.10.1.7 Set configuration parameters .. 310

11.10.2 EMI Test Tool .. 311

11.11 PHY test .. 316

12 Appendix ... 317

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 15 Ver1.3.0

Table of figures

Figure 1-1 SDK file structure ... 20

Figure1-2 pm and rf driver ... 23

Figure1-3 adc/gpio driver and bootloader ... 24

Figure1-4 i2c/spi/uart driver .. 25

Figure1-5 Difference in i2c driver ... 25

Figure1-6 Select bootloader ... 26

Figure1-7 Select library .. 27

Figure1-8 Libraries supplied in BLE SDK ... 27

Figure1-9 Demo code supplied in BLE SDK .. 29

Figure2-1 MCU address space allocation ... 32

Figure2-2 SRAM and Firmware space .. 33

Figure2-3 Section distribution in list file .. 38

Figure2-4 Section address in list file ... 39

Figure2-5 512kB FLASH address space allocation .. 47

Figure2-6 128kB Flash address space allocation .. 50

Figure2-7 Modify lib library .. 54

Figure3-1 BLE SDK standard architecture ... 62

Figure3-2 HCI data transfer between Host and Controller 63

Figure3-3 826x HCI architecture ... 64

Figure3-4 Telink BLE Slave architecture .. 65

Figure3-5 Telink BLE Master architecture ... 66

Figure3-6 State diagram of the Link Layer state machine in BLE Spec 68

Figure3-7 Telink Link Layer state machine .. 68

Figure3-8 Idle + Advertising .. 70

Figure3-9 Idle + Scanning .. 71

Figure3-10 BLE Slave LL state .. 72

Figure3-11 BLE Master LL state ... 74

Figure3-12 Timing sequence chart in Advertising State 76

Figure3-13 Timing sequence chart in Scanning state 77

Figure3-14 Timing sequence chart in Initiating state 78

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 16 Ver1.3.0

Figure3-15 Timing sequence chart in Conn state Slave role 78

Figure3-16 Timing sequence chart in ConnMasterRole 80

Figure3-17 Timing sequence chart with Scanning in Advertising state 83

Figure3-18 Timing sequence chart with Scanning in ConnSlaveRole 84

Figure3-19 Timing sequence chart with Advertising in ConnSlaveRole 84

Figure3-20 Timing sequence chart with Advertising and Scanning in

ConnSlaveRole .. 85

Figure3-21 HCI event .. 90

Figure3-22 Disconnection Complete Event... 91

Figure3-23 Read Remote Version Information Complete Event 92

Figure3-24 LE Connection Complete Event .. 93

Figure3-25 LE Advertising Report Event ... 93

Figure3-26 LE Connection Update Complete Event ... 94

Figure3-27 Architecture of Telink defined event .. 95

Figure3-28 Connect request PDU .. 99

Figure3-29 LL_CONNECTION_UPDATE_REQ format in BLE stack 103

Figure3-30 Adv packet format in BLE stack ... 108

Figure3-31 Advertising Event in BLE stack .. 110

Figure3-32 Four adv events in BLE stack ... 111

Figure3-33 Whitelist/Resolvinglist address filter .. 126

Figure3-34 Connection Para update Req format in BLE stack 132

Figure3-35 BLE sniffer packet sample: conn para update request & response . 132

Figure3-36 conn para update rsp format in BLE stack 133

Figure3-37 BLE sniffer packet sample: ll conn update req 135

Figure3-38 GATT service containing Attribute group ... 136

Figure3-39 Attribute Table in 826x BLE SDK .. 138

Figure3-40 BLE sniffer packet sample when Master reads hidInformation....... 141

Figure3-41 Write Request in BLE stack .. 142

Figure3-42 Write Command in BLE stack ... 142

Figure3-43 Service/Attribute Layout ... 145

Figure3-44 Read by Group Type Request/Read by Group Type Response 146

Figure3-45 Find by Type Value Request/Find by Type Value Response 148

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 17 Ver1.3.0

Figure3-46 Read by Type Request/Read by Type Response 148

Figure3-47 Find information request/Find information response 149

Figure3-48 Read Request/Read Response ... 149

Figure3-49 Read Blob Request/Read Blob Response ... 150

Figure3-50 Exchange MTU Request/Exchange MTU Response 150

Figure3-51 Write Request/Write Respons ... 153

Figure3-52 Handle Value Notification in BLE Spec ... 153

Figure3-53 Handle Value Indication in BLE spec ... 154

Figure3-54 Handle Value Confirmation in BLE Spec 156

Figure3-55 Pairing Disable ... 159

Figure3-56 Pairing Conn Trigger ... 159

Figure3-57 Pairing Peer Trigger .. 160

Figure3-58 Pairing_Req sent from Master .. 160

Figure4-1 Hardware wakeup sources for 826x MCU ... 170

Figure4-2 PM in Link Layer Idle state .. 174

Figure4-3 Reference code of 8267 remote low power management 185

Figure4-4 Trigger app wakup tick in advance... 187

Figure5-1 Audio circuit ... 188

Figure5-2 MIC configuration HW block diagram.. 189

Figure5-3 Audio data sample ... 191

Figure5-4 MIC service in Attribute Table .. 192

Figure5-5 Compression processing .. 194

Figure5-6 Data corresponding to compression algorithm 196

Figure6-1 8267/8269 default Flash storage structure 197

Figure6-2 8266 default Flash storage structure .. 201

Figure6-3 8266_ota_boot project setting ... 204

Figure6-4 firmware size inforamtion... 206

Figure6-5 firmware ending ... 207

Figure6-6 8261 default Flash storage structure .. 210

Figure6-7 8261_ota_boot project setting ... 213

Figure6-8 Write Command format in BLE stack ... 218

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 18 Ver1.3.0

Figure6-9 Format of OTA command and data .. 219

Figure6-10 Master obtains OTA Attribute Handle via “Read By Type Request” 220

Figure6-11 firmware sample: starting part ... 221

Figure6-12 firmware sample: ending part .. 221

Figure6-13 master sends “OTA start” ... 221

Figure6-14 Master OTA data ... 222

Figure7-1 Row/Column key matrix .. 226

Figure7-2 keycode processing function .. 232

Figure7-3 Keyscan time optimization.. 237

Figure10-1 PWM timing and PWM set .. 255

Figure10-2 NEC IR protocol .. 259

Figure10-3 IR ending .. 262

Figure10-4 Add low level ir task as IR end ... 263

Figure10-5 ir_nec_send ... 264

Figure10-6 ir_nec_send_repeat ... 265

Figure11-1 Tscript initial interface ... 276

Figure11-2 UART_BaudRate_cal.lua .. 277

Figure11-3 Input baudrate ... 277

Figure11-4 Input system clock ... 278

Figure11-5 Get “clk_div” and “bwpc” result .. 278

Figure11-6 ADC conversion curve .. 285

Figure11-7 8266 ADC channel .. 287

Figure11-8 Hardware chart for 8266 low battery check 287

Figure11-9 8261/8267/8269 ADC channel .. 288

Figure11-10 1/3 internal voltage division network, VCC channel 291

Figure11-11 1/3 internal voltage division network, PB7 channel 292

Figure11-12 EMI test tool .. 311

Figure11-13 Select data bus ... 312

Figure11-14 Swire synchronization operation ... 312

Figure11-15 Set channel .. 313

Figure11-16 Select RF mode .. 313

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 19 Ver1.3.0

Figure11-17 Interface after RF mode setting ... 314

Figure11-18 Select test mode .. 314

Figure11-19 Set TX packet number .. 315

Figure11-20 TX mode interface .. 315

Figure11-21 Read RX packet number and RSSI .. 316

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 20 Ver1.3.0

1 SDK Overview

Telink 826x BLE SDK supplies demo code for BLE Slave/Master development,

based on which user can develop his own application program.

Currently the SDK applies to four Telink ICs: 8261/8266/8267/8269.

1.1 Software architecture

Software architecture for Telink 826x BLE SDK includes APP layer and BLE protocol

stack.

Figure 1-1 shows the file structure after the SDK project is imported in Telink IDE,

which mainly contains three top-layer folders including “proj”, “proj_lib” and “vendor”.

Figure 1-1 SDK file structure

 proj: This folder contains MCU related peripheral driver, such as flash, I2C, USB,

GPIO, UART driver, and etc.

 proj_lib: This folder contains library files necessary for MCU running, e.g. BLE stack,

RF driver, PM driver. Since this folder is supplied in the form of library files (e.g.

liblt_8267.a, liblt_8261.a), the source files are not open to users.

 vendor: This folder contains user APP-layer code, e.g. 826x_ble_remote demo

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 21 Ver1.3.0

application. The following four basic files are needed for each new user folder.

1.1.1 main.c

The “main.c” file includes main function entry, system initialization functions and

endless loop “while(1)”. It’s not recommended to make any modification to this file.

int main (void) {

blc_pm_select_internal_32k_crystal(); //select internal 32k rc as 32k counter clock

source

 cpu_wakeup_init(CRYSTAL_TYPE);//Basic MCU hardware initialization, negligible to user

 clock_init(); // Clock initialization, user only needs to configure related

parameters in app_config.h

 set_tick_per_us(CLOCK_SYS_CLOCK_HZ/1000000);// Clock initialization

 gpio_init(); // GPIO initialization, user only needs to configure related

parameters in app_config.h

 rf_drv_init(CRYSTAL_TYPE);// RF initialization, negligible to user

 user_init (); // BLE initialization, initialization of the whole system, configured by user

 irq_enable(); // Enable global interrupt

 while (1) {

#if (MODULE_WATCHDOG_ENABLE)

 wd_clear(); //clear watch dog

#endif

 main_loop (); // include BLE Rx/Tx processing, power management and user tasks

 }

}

1.1.2 app_config.h

The user configuration file “app_config.h” serves to configure parameters of the

whole system, including parameters related to BLE, GPIO, PM low-power management,

and etc. Parameter details of each module will be illustrated in following sections.

1.1.3 application file

“app.c”: User file for system initialization and adding user task UI.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 22 Ver1.3.0

“app_att.c” of BLE Slave project: configuration files for services and profiles.

Based on Telink Attribute structure, as well as Attributes such as GATT, standard HID,

proprietary OTA and MIC, user can add his own services and profiles as needed.

1.1.4 BLE stack entry

There are two entry functions in BLE stack code of Telink BLE SDK.

1) BLE related interrupt processing entry in “irq_handler” function of “main.c” file

“irq_blt_sdk_handler”.

_attribute_ram_code_ void irq_handler(void)

{

 ……

 irq_blt_sdk_handler ();

 ……

}

2) BLE logic and data processing function entry in application file mainloop

“blt_sdk_main_loop”.

void main_loop (void)

{

 tick_loop ++;

///////////////////// BLE entry ////////////////////////////

 blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////////

 ……

}

1.2 Applied ICs

The four applied ICs can be divided into two categories:

 8261/8267/8269: The three ICs share the same IP core, thus their hardware

modules are almost the same except in audio, Flash size and SRAM size.

 8266: This IC has IP core and hardware modules differenet from 8261/8267/8269.

IC IP core Audio Flash size SRAM size

8266 IP1 × 512 kB 16 kB

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 23 Ver1.3.0

IC IP core Audio Flash size SRAM size

8261

 IP2

 × 128 kB 16 kB

8267 √ 512 kB 16 kB

8269 √ 512 kB 32 kB

Following sections will introduce characteristics of SDK file structure

corresponding to IC difference.

1.3 Driver

In SDK, drivers can be divided into two categories: 8266, 8267.

Since 8261/8269 share the IP core of 8267, drivers of 8267 also applies to

8261/8269 application.

E.g. for an 8269 ble remote application based on 8269, to use drivers such as

rf/gpio driver, user should find corresponding rf_drv_8267/gpio_8267 files.

In SDK, most drivers are supplied in source code (except for rf and pm driver), and

these files are mainly available from the following three locations:

1) proj_lib

As shown below, source code of pm_8266 and pm_8267 are not open to user,

while related interfaces are assembled in lib. Only head files are supplied for user

reference.

Figure1-2 pm and rf driver

2) proj/mcu_spec

For drivers which have great difference in 8267 and 8266, e.g. adc and gpio driver,

corresponding source files and head files (adc/gpio/register files as shown below)

are placed under the “proj/mcu_spec” folder.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 24 Ver1.3.0

Figure1-3 adc/gpio driver and bootloader

3) proj/drivers

For drivers which have slight difference in 8267 and 8266, e.g. uart/i2c driver,

corresponding files are unified under the “proj/driver” folder, while differences

are processed by using “MCU_CORE_TYPE” in the source files.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 25 Ver1.3.0

Figure1-4 i2c/spi/uart driver

Figure1-5 Difference in i2c driver

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 26 Ver1.3.0

1.4 bootloader

Each of the four ICs has its own bootloader: cstartup_8261.S / cstartup_8266.S /

cstartup_8267.S / cstartup_8269.S. Please refer to Figure1-3 for file location in SDK.

Take “cstartup_8267.S” for example: The first sentence “#ifdef MCU_CORE_8267”

indicates this bootloader will take effect only when the “MCU_CORE_8267” is defined

by user.

Therefore, user can correspondingly define MCU_CORE_8261 / MCU_CORE_8266

/ MCU_CORE_8267 / MCU_CORE_8269 to enable compiler to automatically select the

correct bootloader.

The “8267_ble_remote” is taken as an example to illustrate how to select 8267

bootloader. As shown below, user can define MCU_CORE_8267 (-DMCU_CORE_8267)

in the 8267_ble_remote.

Figure1-6 Select bootloader

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 27 Ver1.3.0

1.5 library

The figure below shows how to select library corresponding to project.

Figure1-7 Select library

Figure1-8 shows libraries currently supplied in SDK 3.2.0. Not all libraries all

released in SDK, however, if user has special requirement (e.g. liblt_8267_48m.a) in

actual development, he can apply as needed, and will be provided with the the library

after evaluation and approval by Telink.

Figure1-8 Libraries supplied in BLE SDK

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 28 Ver1.3.0

Following sub-sections show features of libraries in Telink BLE SDK.

1.5.1 Category based on IC

According to IC, libraries can be divided into three categories: 8261 relative/8266

relative/8267 relative.

 8269 libraries are not supplied independently, and user can directly use 8267

libraries, since:

1) As shown in the IC difference table, the sole difference between 8269 and

8267 is SRAM size: 32kB (8269), 16kB (8267).

2) SRAM configuration of 8267/8269 is implemented in corresponding

bootloader (cstartup_8267.S / cstartup_8269.S supplied in source code), user

only needs to select his bootloader in setting of project.

1.5.2 Category based on function

Currently SDK supplies libraries corresponding to three basic BLE functions.

1) BLE Slave, Telink 826x acts as Host MCU. Corresponding libraries include:

liblt_8261/liblt_8261_32m and etc.; liblt_8266/liblt_8266_32m and etc.;

liblt_8267/liblt_8267_32m and etc.;

2) BLE Slave, Telink 826x acts as BLE SPP module and communicates with Host

MCU via interface such as UART/SPI. Corresponding libraries include:

liblt_8261_mod/ liblt_8261_mod_32m and etc.;

liblt_8266_mod/liblt_8266_mod_32m and etc.;

liblt_8267_mod/liblt_8267_mod_32m and etc.;

3) BLE Master, only single connection can be established, Telink 826x acts as Host

MCU. Corresponding libraries include: liblt_8266_master_1_conn and

liblt_8267_master_1_conn. Note that 8261 libraries are not released

independently, thus if 8261 is used to develop BLE single connection master,

user can select “liblt_8267_master_1_conn”.

The library category below will be released in following SDK versions:

BLE Master, support multi connection, Telink 826x acts as Host MCU.

Corresponding libraries include: liblt_8266_master_n_conn and

liblt_8267_master_n_conn.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 29 Ver1.3.0

1.5.3 Category based on system clock

For BLE Master, libraries won’t differ according to system clock of application

program.

However, for BLE Slave, library name will indicate libray of corresponding system

clock, as shown below:

 By default, library name is not marked with clock, which indicates library

corresponding to 16m system clock. For example, “liblt_8266.a” indicates 8266

library corresponding to 16m system clock.

 Library name marked with 32m/48m (not 16m) indicates library corresponding to

32m/48m system clock. For example, “liblt_8267_32m.a” indicates 8267/8269

library corresponding to 32m system clock.

For BLE master single connection, regardless of 16m, 32m or 48m system clock

is used, 8266 will use unified library “liblt_8266_master_1_conn”, while

8261/8267/8269 will use unified library “liblt_8267_master_1_conn”.

1.5.4 Other special libraries

Considering actual application cases, SDK also provides some special libraries, e.g.

“liblt_8267_IR.a” and “liblt_8267_32m_IR.a” for 8267/8269 IR application

corresponding to 16m and 32m system clock.

Note: All IR applications need specific library. To develop 8261/8266 IR application,

user needs to contact Telink and apply for corresponding library.

1.6 Demo

Telink BLE SDK supplies multiple BLE demos for user. Each demo code

corresponding to specific hardware, based on which user can run demo, observe effect

and modify demo code for his own application development.

Figure1-9 Demo code supplied in BLE SDK

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 30 Ver1.3.0

1.6.1 BLE Slave demo

BLE Slave demo and differences are listed as in the table below:

Demo Stack Application MCU function

826x hci BLE controller No

Controller, communicate

with MCU Host via HCI

interface

826x module BLE controller + host Application in Host MCU BLE SPP module

826x remote BLE controller + host Remote control application Host MCU

826x hid sample BLE controller + host
Simple Slave demo with

V+/V- volume control only
Host MCU

826x hci is a BLE Slave controller. It supplies USB/UART-based HCI to communicate

with MCU Host and forms a complete BLE Slave system.

 826x remote/826x module are complete BLE Slave stack.

 826x module only acts as BLE SPP module to communicate with Host MCU via

UART interface. Generally application code is written in Host MCU.

 826x remote is a demo of BLE remote controller which supports basic remote

control function. It can connect with standard iOS/Android device or Telink 826x

master kma dongle to control the peer.

 826x hid sample is simplified demo based on 826x remote, which should run on

Telink 8266/8267 dongle. The dongle can pair and connect with standard iOS/Android

device, and the two buttons on the dongle simulate Vol+/Vol-. This demo can run on

826x dongle, thus user can save demo hardware cost for debugging and development.

 826x ota boot is a code section of OTA necessary for all 8261/8266 BLE Slave

projects, while 8267/8269 does not need ota boot. Please refer to OTA section for

details.

1.6.2 BLE master demo

826x master kma dongle is a demo of BLE Master single connection. It can connect

and communicate with 826x hid sample/826x remote/826x module.

Libraries corresponding to 826x remote/826x hid sample supply standard BLE

stack, including BLE controller + BLE host. User only needs to add his own application

code in APP layer by using APIs of controller and Host, and does not need to process

BLE Host.

Libraries corresponding to 826x master kma dongle only provide standard BLE

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 31 Ver1.3.0

controller function, and does not provide standard Host. 826x master kma dongle

demo code gives BLE Host implementation in APP layer for reference, including ATT,

simple SDP (service discovery protocol), the most common SMP (security

management protocol), and etc.

The most complex function of BLE Master is service discovery of Slave server and

recognition of all services, which generally can be implemented in Android/linux

system. Limited by Flash size and SRAM size, Telink 826x IC cannot supply complete

service discovery. However, SDK supplies all ATT interfaces needed for service

discovery. Based on service discovery process of 826x remote by 826x master kma

dongle, user can implement traversal of specific services.

1.6.3 Feature demo and driver demo

826x feature test gives demo code for some common features related to BLE. User

can implement his own functions based on these demos. All features will be

introduced in BLE section.

826x driver test gives sample code for basic drivers, based on which user can

implement his own driver functions. The Driver section will introduce various drivers

in detail.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 32 Ver1.3.0

2 MCU Basic Modules

2.1 MCU address space

2.1.1 MCU address space allocation

 Telink 826x MCU supports maximum addressing space of 16M bytes, including

8M-byte program space from 0 to 0x7fffff and 8M-byte peripheral space (e.g. SRAM,

register space) from 0x800000 to 0xffffff.

Program
space

Peripheral
Space

0x800000

0x808000

Register

SRAM

0xffffff

0x000000

0x7fffff

FLASH

Customizable

Figure2-1 MCU address space allocation

During physical addressing of 826x MCU, address line BIT (23) serves to

differentiate program space / peripheral space:

 Address line BIT (23) is 0: acess program space

 Address line BIT (23) is 1: acess peripheral space

When addressing space is peripheral space (BIT(23) is 1), address line BIT (15)

serves to differentiate Register / SRAM.

 Address line BIT (15) is 0: access Register

 Address line BIT (15) is 1: access SRAM.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 33 Ver1.3.0

2.1.2 SRAM space ram allocation

2.1.2.1 SRAM and Firmware spcae

For 16kB SRAM, address space range is 0x808000 ~ 0x80C000; while for 32kB

SRAM, address space range is 0x808000 ~ 0x810000.

The figure below shows SRAM and Firmware space allocation in 16kB SRAM.

stack

0x808000

ram_code

128K/512K

Sram Flash

0x808000+real_ramcode_size
Cache
2.25K

vector

_ramcode_size_ram_code

vector

0x808900+real_ramcode_size

unused area ……

0x80C000

text

real_ramcode_size

……

rodata & data
init value

data + bss

Firmware

power on
load

0x00000

wasted Sram area

Figure2-2 SRAM and Firmware space

 In SDK, files related to SRAM space allocation include “boot.link” and bootloader

S file corresponding to IC (e.g. “cstartup_8267.S”).

Firmware in Flash includes vector, ramcode, text, Rodata and Data initial value.

SRAM includes vector, ramcode, Cache, data, bss, stack and unused area. Note that

vector/ramcode in SRAM is a copy of vector/ramcode in Flash.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 34 Ver1.3.0

1) vectors, ram_code

Vectors is a code section of Flash Firmware (executable bin file generated by

program compiling in SDK), and it corresponds to assembling file “cstartup_826x.S”

(i.e. startup code bootloader).

Ramcode is memory resident code in Flash Firmware, and it corresponds to all

functions with keyword “_attribute_ram_code_” (e.g. flash erease function).

_attribute_ram_code_ void flash_erase_sector(u32 addr);

 In the following two cases, functions should be memory resident:

 Some functions (e.g. Flash operation functions) involve timing multiplex with four

Flash MSPI pins: If these functions are placed in Flash, it will cause timing conflict

and system crash.

 Whenever functions resident in RAM are invoked, it isn’t needed to re-read them

from Flash, thus time will be saved. Therefore, the functions with limited

execution time should be memory resident to increase execution efficiency. In SDK,

some functions related to BLE timing sequence need frequent execution, in order

to decrease execution time and save power consumption, these functions are

memory resident.

User can set a function as memory resident by adding the keyword

“_attribute_ram_code_” (please refer to flash_erase_sector). After compiling,

user can find this function in ramcode section of list file.

It’s needed to load the vector and ramcode in firmware to RAM when power on.

After compiling, the total size of the two parts is “_ramcode_size_”, which is a

variable recognizable by compiler. Its calculation is implemented in “boot.link”. As

shown below, the compiling result “_ramcode_size_” equal the size of all code

including vector and ramcode.

 . = 0x0;

 .vectors :

 {

 *(.vectors)

 (.vectors.)

 }

 .ram_code :

 {

 *(.ram_code)

 (.ram_code.)

 }

 PROVIDE(_ramcode_size_ = .);//calculate actual ramcode size(vector +

ramcode)

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 35 Ver1.3.0

 PROVIDE(_ramcode_size_div_16_ = (. + 15) / 16);

 PROVIDE(_ramcode_size_div_256_ = (. + 255) / 256);

 PROVIDE(_ramcode_size_div_16_align_256_ = ((. + 255) / 256) * 16);

2) Cache

Cache is high-speed instruction buffer of MCU, and it must be configured as a

section in SRAM. Cache size is fixed as 2.25K (0x900), including 256-byte tag and

2048-byte Instructions cache.

Memory resident code can be directly read and executed from memory, however,

only a small part of firmware is memory resident code, and the majority are still

in Flash. According to program locality principle, a part of Flash code can be stored

in the Cache. Thus, if the code to be executed is in the Cache, instructions can be

directly read and executed from the Cache; otherwise it’s needed to read code

from Flash to replace the old code in the Cache, then read and execute

instructions from the Cache.

As shown in Figure2-2, the “text” in firmware is Flash code not placed in SRAM.

According to program locality principle, it’s needed to load this part to the Cache

so that it can be executed.

Though Cache size is fixed as 2.25K, its starting address in SRAM is configurable.

To ensure enough space to store vector and ramcode in Flash, this starting address

must exceed “0x808000+_ramcode_size_”. As specified by 826x MCU hardware,

Cache starting address must be 256-byte aligned, therefore, the

“real_ramcode_size” is the 256-byte aligned size of “_ramcode_size_”, Cache

starting address should be:

0x808000 + real_ramcode_size

= 0x808000 + ((_ramcode_size_+255)/256)* 256

= 0x808000 + _ramcode_size_div_256_* 0x100

Cache starting address is 256-byte aligned “0x808000 + _ramcode_size_div_256_

* 0x100”, while the “_ramcode_size_” is not 256-byte aligned generally. The actual

size of the code loaded from Flash to RAM when power on is

“_ramcode_size_div_256_* 256”, which means a part of space in SRAM is wasted

area.

For example: Suppose “_ramcode_size_” is 0x780, and the size of code loaded to

SRAM is 0x800, then the code of 0x00000 ~ 0x007ff in Flash firmware is memory

resident, the 128 bytes of 0x808780 ~0x8087ff in SRAM is wasted area, i.e. non-

ramcode is memory redident in SRAM.

If “_ramcode_size_” is 0x701, 255 bytes will be wasted; if “_ramcode_size_” is

0x800, the size of wasted SRAM area is 0. The maximum size of wasted SRAM area

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 36 Ver1.3.0

is 255 bytes, therefore, during program design, user needs to check list file to view

ramcode occupation, and try to avoid large wasted area.

Since Cache size is fixed as 2.25K, Cache ending address should be:

 0x808000 + real_ramcode_size + 0x900

 = 0x808900 + real_ramcode_size

3) data / bss

“data” in SRAM serves to store initialized global variables of program (i.e. global

variables which are non-zero initially). The initial value of the global variables in

“data” is “data init value” in firmware, as shown in Figure2-2.

“bss” in SRAM serves to store global variables of program not initialized (i.e. global

variables which are zero initially).

Cache is followed by “data”, while “data” is followed by “bss”. The starting address

of “data + bss” is Cache ending address, i.e. “0x808900 +

_ramcode_size_div_256_* 0x100”.

Following shows the code in “boot.link” which directly defines the starting address

of “data”.

 . = 0x808900 + _ramcode_size_div_256_ * 0x100;

 .data :

4) stack / unused area

“stack” in SRAM starts from 0x80C000 (default 16kB SRAM) / 0x810000 (32kB

SRAM), which is the lowest address. Its SP pointer will descend during push

operation, and ascend during pop operation.

By default, size of stack used by SDK library does not exceed 256 bytes. However,

since the size of used stack depends on stack depth (i.e. the address of the deepest

location), final size of used stack is relevant to user upper-layer program design.

Any case which causes deep stack, e.g. complex recursive function invoking is used,

or large local array variable is used in a function, will increase the final size of used

stack.

When large area of SRAM is used, user needs to know the size of stack used by

program. This cannot be obtained by analyzing list file; instead, user should run

actual product application, ensure all of the code which may use deep stack have

been executed, then reset MCU and read SRAM space to determine the size of

used stack.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 37 Ver1.3.0

“unused area” in SRAM is the space from deepest stack address to bss ending

address. This area should exist to ensure non-overlap of stack and bss; otherwise

it indicates SRAM size is not enough.

“bss” ending address can be obtained via list file, thus the maximum size for stack

is determined. User needs to analyze whether this space is enough for stack usage.

Please refer to 2.1.2.2 List file analysis demo for analysis method.

5) text

“text” is a part of Flash firmware. Functions with “_attribute_ram_code_” in

firmware will be compiled as “ram_code”, while other functions without this

keyword will be compiled as “text”.

“text” occupies the maximum space in firmware, which largely exceeds SRAM size

generally. Therefore, it’s needed to use Cache buffer function, i.e. load code into

Cache and then execute it.

6) rodata/data init value

The remaining data except for “vector”, “ram_code” and “text” in firmware are

“rodata” and “data initial value”.

“rodata” is read-only data in firmware, i.e. variable with keyword “const”. E.g. ATT

table in Slave:

const attribute_t my_Attributes[] = ……

User can view the “my_Attributes” is within the “rodata” by checking

corresponding list file.

As introduced above, “data” is initialized global variables in firmware, e.g.

int testValue = 0x1234;

The compiler will store the initial value “0x1234” in “data initial value”. When the

bootloader (cstartup_826x.S) is executed, this initial value will be copied to

memory address corresponding to “testValue”.

2.1.2.2 List file analysis demo

A simple BLE Slave demo “8267 hid sample” is taken as an example to illustrate

SRAM and Flash address space allocation (please refer to Figure2-2 SRAM and

Firmware space). Based on this demo, user can analyze SRAM and Flash space

allocation of his own program.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 38 Ver1.3.0

Bin file and list file of this demo is available under the directory “SDK” -> “Demo”

-> “list file analyze”. Information of SRAM space allocation can be analyzed from the

“8267_hid_sample.list” file.

All screeshots herein are available from the files including “boot.link”,

“cstartup_8267.S”, “8267_hid_sample.bin” and “8267_hid_sample.list”.

In the list file, each code part of a specific function is called a “section”. The figure

below shows section distribution in the list file “8267_hid_sample.list”.

Figure2-3 Section distribution in list file

Following lists the sections in the list file.

1) vectors: start from Flash 0, size is 0x100.

2) ram_code: start from Flash 0x100, size is 0x12c8.

3) text: start from Flash 0x13d0, size is 0x5124.

4) rodata: start from Flash 0x64f4, size is 0x894.

5) data: start from SRAM 0x809d00, size is 0x124.

6) bss: start from SRAM 0x809e30, size is 0xbe0. By calculation, “bss” ending address

is 0x809e30 + 0xbe0 = 0x80aa10. The remaining space size following the “bss” is

0x80c000 – 0x80aa10 = 0x15F0 = 5616 bytes. Except for the 256 bytes for stack,

the remaining 5360 bytes are unused.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 39 Ver1.3.0

Figure2-4 Section address in list file

The figure above shows starting/ending address of various sections by searching

“section” in the list file.

From Figure2-3 Section distribution in list file and Figure2-4 Section address

in list file, the analysis is shown as below:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 40 Ver1.3.0

1) vector

“vector” is bootloader corresponding to “startup_826x.S” assembly file. As shown

in the list file, this section contains 256 bytes (size) from 0 (starting address) to

0xff (ending address). After power on load to SRAM, the corresponding address in

SRAM is 0x808000 ~ 0x8080ff.

2) ram_code

“ram_code” section contains 0x12c8 bytes (size) from 0x100 (starting address) to

0x13c8 (ending address). Since “_ramcode_size_” is 0x13c8, 256-byte aligned

“real_ramcode_size” is 0x1400, there are actually 56 (0x38) bytes in SRAM are

wasted.

3) Cache

Cache starting and ending address are:

0x808000 + real_ramcode_size ~ 0x808900 + real_ramcode_size

0x809400 ~ 0x809d00

Cache related information are not shown in the list file.

4) text

“text” section contains 0x5124 (size= 0x64f4 – 0x13d0) bytes from 0x13d0

(starting address of “text”, i.e. ending address of “ram_code”) to 0x64f4 (ending

address).

5) rodata

“rodata” section starts from 0x64f4 (“text” ending address) and ends till 0x6d88.

As shown in the “8267_hid_sample.bin”, the actual bin size is 0x6eac. According

to analysis above, the remaining firmware space 0x6d88 ~ 0x6eac is actually “data

init value”, i.e. initial value of initialized global variables in the firmware.

There is not a specific section in the list file corresponding to the “data init value”.

User can search the keyword “_dstored_” and find the value “0x6d88” which

indicates the starting address of the “data init value”.

00006d88 g *ABS* 00000000 _dstored_

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 41 Ver1.3.0

Following is the “_dstored_” definition in the “boot.link”. This will tell the compiler

that initial value of initialized global variables in the “data” section are all stored

in the “_dstored_” of firmware.

. = 0x808900 + _ramcode_size_div_256_ * 0x100;

 .data :

 AT (_dstored_)

 {

 . = (((. + 3) / 4)*4);

 PROVIDE(_start_data_ = .);

 *(.data);

 (.data.);

 . = (((. + 3) / 4)*4);

 PROVIDE(_end_data_ = .);

 }

6) data

“data” section starts from Cache ending address 0x809d00, and its size is shown

as 0x124 in Figure2-3 Section distribution in list file.

The final variable in the “data” section is “smpResSignalPkt”, which is a structure

variable in SDK bottom layer. This variable starts from 0x809e08, and its size is 28

= 0x1c. Therefore “data” ending address is 0x809e24, and the size of the “data”

section is 0x809e24 - 0x809d00 = 0x124.

7) bss

“data” section is followed by “bss”. Since the first array “_start_bss_” should be

16-byte aligned, the “bss” section starts from 0x9e30, and its size is shown as

0xbe0 in Figure2-3 Section distribution in list file.

The final variable in the “bss” section is “smp_param_peer”, which is a structure

variable in SDK bottom layer. This variable starts from 0x80a9d0, and its size is 64

= 0x40. Therefore “bss” ending address is 0x80aa10, and the size of the “bss”

section is 0x80aa10 - 0x809e30 = 0xbe0.

By calculation, the remaining SRAM space size is 0x80c000 – 0x80aa10 = 0x15F0 =

5616 bytes. Except for the 256 bytes for stack, the remaining 5360 bytes are

unused.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 42 Ver1.3.0

2.1.3 MCU address space access

MCU address space 0x000000 ~ 0xffffff can be accessed in firmware as follows:

2.1.3.1 Peripheral space access

The peripheral space (register & SRAM) is directly accessed (read/write) via

pointer.

 u8 x = *(volatile u8*)0x800066; // read register 0x66

 (volatile u8)0x800066 = 0x26; //write register 0x66

 u32 y = *(volatile u32*)0x808000; //read SRAM 0x8000~0x8003

 (volatile u32)0x808000 = 0x12345678; //write SRAM 0x8000~0x8003

In firmware, functions including “write_reg8”, “write_reg16”, “write_reg32”,

“read_reg8”, “read_reg16” and “read_reg32”, which implement pointer operation, are

used to write or read the peripheral space correspondingly. Please refer to

“proj/common/compatibility.h” and “proj/common/utility.h” for details.

Note: For operation such as write_reg8(0x8000) / read_reg16(0x8000), to ensure

the access space is Register/SRAM rather than Flash, the base address “0x800000” is

automatically added (address line BIT(23) is 1), as shown below.

#define REG_BASE_ADDR 0x800000

#define write_reg8(addr,v) U8_SET((addr + REG_BASE_ADDR),v)

#define write_reg16(addr,v) U16_SET((addr + REG_BASE_ADDR),v)

#define write_reg32(addr,v) U32_SET((addr + REG_BASE_ADDR),v)

#define read_reg8(addr) U8_GET((addr + REG_BASE_ADDR))

#define read_reg16(addr) U16_GET((addr + REG_BASE_ADDR))

#define read_reg32(addr) U32_GET((addr + REG_BASE_ADDR))

Please pay attention to memory alignment: If a pointer pointing to 2 bytes/4

bytes is used to access the peripheral space, make sure the address is 2-byte/4-byte

aligned to avoid data read/write error. Following shows two incorrect formats:

u16 x = *(volatile u16*)0x808001; //0x808001 is not 2-byte aligned

 (volatile u32)0x808005 = 0x12345678; //0x808005 is not 4-byte aligned

 The correct formats should be:

u16 x = *(volatile u16*)0x808000; //0x808000 is 2-byte aligned

 (volatile u32)0x808004 = 0x12345678; //0x808004 is 4-byte aligned

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 43 Ver1.3.0

2.1.3.2 Flash space operation

Read/Write access operation of the Flash space is implemented by using the

function “flash_read_page”/“flash_write_page”. Codes about flash access and erasing

operation are available in “proj/drivers/flash.c” and “flash.h”.

1) Flash Read/Write access operation

The functions including “flash_read_page” and “flash_write_page” serve to read

or write the Flash space correspondingly.

void flash_read_page(u32 addr, u32 len, u8 *buf);

void flash_write_page(u32 addr, u32 len, u8 *buf)

Flash read operation example via “flash_read_page”:

void flash_read_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0 };

flash_read_page(0x11000, 6, data); //read 6 bytes starting from flash

0x11000 into the array “data”

Flash write operation example via “flash_write_page”:

flash_write_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0x11,0x22,0x33,0x44,0x55,0x66 };

flash_write_page(0x12000, 6, data); //write 6-byte data “0x665544332211”

into flash starting from 0x12000

Since the “flash_write_page” function accesses flash area starting from the “addr”

within a page, the maximum allowed “len” should be the page size, i.e. 256 bytes.

It’s not allowed to operate flash area across two or more pages in this function.

 If the “addr” is the starting address of one page, the “len” cannot exceed 256.

flash_write_page(0x12000, 256 , data) //correct, write 256 bytes into the page starting

from 0x12000

flash_write_page(0x12000, 257 , data) //wrong, 257 bytes exceed page size “256”, and

the final byte belongs to the next page

 If the “addr” is not the starting address of one page, the “len” cannot exceed (the

end address of the page - “addr” + 1). For example, if the “addr” is 0x120f0, the

“len” cannot exceed (0x120ff - 0x120f0 + 1)=16.

flash_write_page(0x120f0, 20 , data) // wrong, 20 bytes exceed the maximum allowed

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 44 Ver1.3.0

length “16”, the first 16 bytes belong to the page starting from 0x12000, but the last 4 bytes

belong to the page starting from 0x12100.

For the “flash_read_page” function, one operation can read data more than 256

bytes, i.e. it’s allowed to read flash area across pages in this function.

2) Flash erase operation

The function “flash_erase_sector” serves to erase flash.

 void flash_erase_sector(u32 addr);

One sector contains 4096 bytes, e.g. 0x13000 ~0x13fff.

The “addr” must be the starting address of one sector, and each erase operation

erases a complete sector.

In the case of 16M system clock, it takes round 30~100ms or even longer time to

erase a sector.

3) Influence to system interrupt caused by flash access/erasing operation

System interrupt must be disabled via “irq_disable()” when the flash access or

erasing function is executed, and then restored via “irq_restore()” after the

operation is finished. This will ensure integrity and continuity of flash MSPI timing

operation, and avoid hardware resource reentry due to MSPI bus lines invoking by

flash operation in interrupt.

Since timing sequence of BLE SDK RF packet transmission and reception is always

controlled by interrupt, when system interrupt is disabled during flash operation,

it may ruin the timing sequence, thus MCU fails to respond in time.

The influence to BLE interrupt by execution time of the flash access function is

almost negligible; howerver, the “len” in the function will determine the time to

access the flash area, it’s highly recommended not to set the “len” as large value

in BLE connection state during mainloop.

It takes tens of milliseconds to hundreds of milliseconds to execute the

“flash_erase_sector” function. Therefore, during mainloop of main program, once

MCU enters BLE connection state, try not to invoke the “flash_erase_sector” to

avoid disconnection. If it’s inevitable to erase flash during BLE connection, BLE

timing sequence protection as introduced in 3.2.4.7 Conn state Slave role timing

protection should be adopted.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 45 Ver1.3.0

4) Read flash via pointer

Firmware of 826x BLE SDK is stored in Flash. When the firmware is running, only

former part of the code in Flash (memory resident) is stored and executed in RAM,

and the majority will be transferred to the high-speed “Cache” of RAM from Flash

when needed. MCU will automatically control internal MSPI hardware module to

read Flash.

Flash can also be read via pointer: When data are accessed by MCU system bus, if

the data address is not in the memory resident ramcode, system bus will

automatically switch to MSPI, and read data from flash by using MSCN, MCLK,

MSDI and MSDO lines to operate SPI timing sequence.

Following shows three examples:：

u16 x = *(volatile u16*)0x10000; //read two bytes from flash 0x10000

u8 data[16];

memcpy(data, 0x20000, 16); //read 16 bytes from flash 0x20000 and copy

to data

if(!memcmp(data, 0x30000, 16)){ // read 16 bytes from flash 0x30000 and

compare with data

//……

}

In user_init, when calibration values are read from flash and set to corresponding

registers, the reading is implemented via pointer. Please refer to the function

below in the SDK:

static inline void blc_app_loadCustomizedParameters(void);

Flash can be read by using the function “flash_read_page” or pointer, but it can

be written via the “flash_write_page” function only. Pointer access is not

supported for Flash writing operation.

*Note: When flash is read by using pointer, since data read by system bus will be

buffered in cache, MCU may directly use the buffered data as the result of the new

reading operation.

Example:

 u8 result;

result = *(volatile u16*)0x40000; //read flash via pointer

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 46 Ver1.3.0

u8 data = 0x5A;

 flash_write_page(0x40000, 1, &data);

result = *(volatile u16*)0x40000; // read flash via pointer

 if(result != 0x5A){ }

The original data in flash 0x40000 is 0xff; the result of the first reading operation

is 0xff; then 0x5A is written into flash 0x40000 by the following writing operation;

in theory, the result of the second reading operation should be the new value

“0x5A”, but the actual result is still the old data buffered in the cache, i.e. “0xff”.

Therefore, in the case of multiple reading of the same address, if its value will be

modified, use the API “flash_read_page” rather than pointer, to ensure the result

of reading operation is the new value written into this address rather than the old

value in the cache.

The following format is correct:

 u8 result;

flash_read_page(0x40000, 1, &result); // read flash via API

 u8 data = 0x5A;

 flash_write_page(0x40000, 1, &data);

 flash_read_page(0x40000, 1, &result); // read flash via API

if(result != 0x5A){ }

2.1.4 SDK FLASH space allocation

 Flash uses a sector (4K bytes) as unit to store and erase information (Note: Erase

function is “flash_erase_sector”). In theory, information of the same type should be

stored in a sector, and different information types should be stored in different sectors

to avoid unexpected erasing. It’s recommended for user to follow this rule to store

customized information in Flash.

Two allocation methods of Flash space are supported depending on flash size:

one method is for 512kB flash (8266/8267/8269), while the other method is for 128kB

flash (8261).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 47 Ver1.3.0

2.1.4.1 Space allocation for 512kB Flash

0x00000

0x40000

ota_boot.bin
0x72000

0x73000
ota boot_flag

0x78000

0x77000

0x76000

0x74000

MAC address

Customed value

Pair&Sec info

0x20000

Old Firmware
bin

OTA New bin
storage Area

0x80000

User Data Area

User Data Area

0x00000

0x40000

0x78000

0x77000

0x76000

0x74000

MAC address

Customed value

Pair&Sec info

0x20000

Old Firmware
bin

OTA New bin
storage Area

0x80000

User Data Area

User Data Area

8266 8267/8269

Figure2-5 512kB FLASH address space allocation

The figure above shows the default address allocation for the 512K flash of

8266/8267/8269. Corresponding interfaces are supplied for user to modify flash

address allocation.

1. The sector from 0x76000 to 0x76fff serves to store MAC address. Actually the 6-

byte MAC address is stored in flash area from 0x76000 (for lower byte of MAC

address) to 0x76005 (for higher byte of MAC address). For example, if “0x11 0x22

0x33 0x44 0x55 0x66” are stored in FLASH 0x76000~0x76005, the MAC address is

“0x665544332211”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 48 Ver1.3.0

Corresponding to SDK, MAC address of actual product will be downloaded into its

flash starting from 0x76000 by Telink jig system. If it’s needed to modify this

starting address to store MAC address, user should ensure the consistency. The

“user_init” function in the SDK will read MAC address from flash area starting from

the macro “CFG_ADR_MAC”. This macro is modifiable in the

“proj_lib/ble/blt_config.h”.

 #ifndef CFG_ADR_MAC

 #define CFG_ADR_MAC 0x76000

#endif

2. The sector from 0x77000 to 0x77fff serves store customized calibration

information for Telink MCU. Only this sector does not follow the rule that puts

different information types into different sectors; the 4096 bytes in this sector are

divided into 64 units with 64 bytes each, and each unit stores one type of

calibration information. Since calibration information are burned to

corresponding addresses by jig, they can be stored in the same sector; when

firmware is running, these calibration information are read only and they’re not

allowed to be written or erased.

1) The first 64-byte unit serves to store frequency offset calibration information.

Actually this calibration value is 1 byte stored in 0x77000.

2) The second 64-byte unit serves to store calibration value of TP value. Actually

this calibration information is 2 bytes (TP0, TP1) stored in 0x77040 and

0x77041.

3) The third 64-byte unit serves to store capacitance calibration value of external

32kHz crystal.

4) Following units are reserved for other potential calibration values.

Calibration values of actual product will be downloaded into its flash area

corresponding to SDK by Telink jig system. If it’s needed to modify the starting

address to store calibration value, user should ensure the consistency. In the

“user_init” function of SDK, the “rf_customized_param_load()” function will read

calibration values from flash area starting from the following macros. These

macros are modifiable in the “proj_lib/ble/blt_config.h”.

 #ifndef CUST_CAP_INFO_ADDR

 #define CUST_CAP_INFO_ADDR 0x77000

 #endif

 #ifndef CUST_TP_INFO_ADDR

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 49 Ver1.3.0

 #define CUST_TP_INFO_ADDR 0x77040

 #endif

 #ifndef CUST_32KPAD_CAP_INFO_ADDR

 #define CUST_32KPAD_CAP_INFO_ADDR 0x77080

 #endif

3. The two sectors 0x74000 ~ 0x75FFF are occupied by BLE stack system, and the 8kB

area is used to store pairing and security information. User can modify the starting

address of this 8k area to store pairing and security information by invoking the

function below:

proj_lib/ble/blt_smp_nv.h

void bls_smp_configParingSecurityInfoStorageAddr (int addr);

4. For 8266, the sector 0x73000 ~ 0x73FFF is occupied by BLE stack system, and it

serves to store the ota boot_flag for OTA firmware upgrade. User can follow the

instructions in section 6.2.4.3 to modify the starting address to store the boot_flag.

For 8267/8269 which supports flash multi-address booting, ota flag is not needed,

therefore, the sector 0x73000 ~ 0x73FFF is not occupied by system, and it can be

used as user data space.

5. For 8266, the sector 0x72000 ~ 0x72FFF is occupied by BLE stack system, and it

serves to store the ota_826x_boot.bin for OTA firmware upgrade. User can follow

the instructions in section 6.2.4.2 to modify the starting address to store the boot

bin.

For 8267/8269 which supports flash multi-address booting, the sector 0x72000 ~

0x72FFF is not occupied by system, and it can be used as user data space.

6. The 256kB area 0x00000 ~ 0x3FFFF is used as program space by default:

 The first 128kB area 0x00000 ~ 0x1FFFF is used as storage space for old

firmware.

 The second 128kB area 0x20000 ~ 0x3FFFF is used as storage space for OTA

new firmware.

 If firmware doesn’t need to occupy the whole 128kB space 0x00000 ~ 0x3FFFF,

user can use corresponding API to modify the allocation as needed, thus the

remaining space can be used as data storage space. Please refer to section

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 50 Ver1.3.0

6.1.3 and 6.2.4.1 for details.

7. The remaining flash space are all used as user data area (storage space for user

data).

2.1.4.2 Space allocation for 128kB Flash

0x00000

0x10000

ota_boot.bin
0x1a000

0x1b000
ota boot_flag

0x20000

0x1f000

0x1e000

0x1c000

MAC address

Customed value

Pair&Sec info

0x0a000

User Area

0x00000

0x1a000

0x20000

System use
Area(24K)

Old Firmware
bin

OTA New bin
storage Area

User Data Area

Figure2-6 128kB Flash address space allocation

The figure above shows the default address allocation for the 128kB flash of 8261:

The 24kB area 0x1A000 ~ 0x1FFFF is occupied by system, while the 104kB area

0x00000 ~ 0x19FFF is used as storage space for user code and user data.

Corresponding interfaces are supplied for user to modify flash address allocation.

1. The sector 0x1F000~0x1FFFF serves to store MAC address. Actually the 6-byte

MAC address is stored in area from 0x1F000 (for lower byte of MAC address) to

0x1F005 (for higher byte of MAC address). For example, if “0x11 0x22 0x33 0x44

0x55 0x66” are stored in FLASH 0x1F000~0x1F005, the MAC address is

“0x665544332211”.

Corresponding to SDK, MAC address of actual product will be downloaded into its

flash starting from 0x1F000 by Telink jig system. If it’s needed to modify this

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 51 Ver1.3.0

starting address to store MAC address, user should ensure the consistency. The

“user_init” function in the SDK will read MAC address from flash area starting from

the macro “CFG_ADR_MAC”. This macro is modifiable in the

“proj_lib/ble/blt_config.h”.

 #ifndef CFG_ADR_MAC

 #define CFG_ADR_MAC 0x1F000

#endif

2. The sector 0x1E000~0x1EFFF serves store customized calibration information for

Telink MCU. Only this sector does not follow the rule that puts different

information types into different sectors; the 4096 bytes in this sector are divided

into 64 units with 64 bytes each, and each unit stores one type of calibration

information. Since calibration information are burned to corresponding addresses

by jig, they can be stored in the same sector; when firmware is running, these

calibration information are read only and they’re not allowed to be written or

erased.

1) The first 64-byte unit serves to store frequency offset calibration information.

Actually this calibration value is 1 byte stored in 0x1E000.

2) The second 64-byte unit serves to store calibration value of TP value. Actually

this calibration information is 2 bytes (TP0, TP1) stored in 0x1E040 and

0x1E041.

3) The third 64-byte unit serves to store capacitance calibration value of 32kHz

RC (reserved in current 8261 BLE SDK).

4) Following units are reserved for other potential calibration values.

Calibration values of actual product will be downloaded into its flash area

corresponding to SDK by Telink jig system. If it’s needed to modify the starting

address to store calibration value, user should ensure the consistency. In the

“user_init” function of SDK, the “rf_customized_param_load()” function will read

calibration values from flash area starting from the following macros. These

macros are modifiable in the “proj_lib/ble/blt_config.h”.

 #ifndef CUST_CAP_INFO_ADDR

 #define CUST_CAP_INFO_ADDR 0x1E000

 #endif

 #ifndef CUST_TP_INFO_ADDR

 #define CUST_TP_INFO_ADDR 0x1E040

 #endif

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 52 Ver1.3.0

 #ifndef CUST_RC32K_CAP_INFO_ADDR

 #define CUST_RC32K_CAP_INFO_ADDR 0x1E080

 #endif

3. The two sectors 0x1C000 ~ 0x1DFFF are occupied by BLE stack system, and the

8kB area is used to store pairing and security information. User can modify the

starting address of the 8K area to store pairing and security information by

invoking the function below:

void bls_smp_configParingSecurityInfoStorageAddr (int addr);

4. The sector 0x1B000 ~ 0x1BFFF is occupied by BLE stack system, and it serves to

store the ota boot_flag for OTA firmware upgrade. User can follow the instructions

in section 6.3.4.3 to modify the starting address to store the boot_flag.

5. The sector 0x1A000 ~ 0x1AFFF is occupied by BLE stack system, and it serves to

store the ota_826x_boot.bin for OTA firmware upgrade. User can follow the

instructions in section 6.3.4.2 to modify the starting address to store the boot bin.

6. The remaining 104kB space 0x00000 ~ 0x19FFF are configurable area for user code

and user data. The default allocation is shown as below:

 The 40kB area 0x00000 ~ 0x09FFF is used as storage space for old firmware.

 The 40kB area 0x10000 ~ 0x19FFF is used as storage space for OTA new

firmware.

 The 24kB area 0x0A000 ~ 0x0FFFF is used as storage space for user data.

 If the default space allocation does not meet user’s requirement, e.g.

firmware size exceeds 40kB, or user data need more than 24kB space,

corresponding APIs are supplied to modify the allocation as needed. Please

refer to section 6.3.4.1 for details.

2.2 Clock module

System clock is the clock reference for MCU firmware running. The 826x system

clock supports multiple sources (PLL, internal OSC, internal RC), but only the most

accurate PLL source is used in the 826x BLE SDK. The 192M PLL clock is derived from

external 16MHz/12MHz crystal oscillator by automatical process of the internal PLL

module. Then lower-frequency system clock can be obtained by configuring related

frequency dividing register.

External crystal oscillators including 16M and 12M are supported in 826x BLE SDK.

Currently 12M crystal oscillator is used by default, and it’s configurable in app_config.h.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 53 Ver1.3.0

//////////////////Extern Crystal Type///////////////////////

#define CRYSTAL_TYPE XTAL_12M // extern 12M crystal

 By setting the value as shown below, the configured crystal type will take effect

during RF initialization of main function. “XTAL_12M” indicates 12M crystal type and

BLE 1M mode by default.

enum{

 XTAL_12M_RF_1m_MODE = 1,

 XTAL_12M_RF_2m_MODE = 2,

 XTAL_16M_RF_1m_MODE = 4,

 XTAL_16M_RF_2m_MODE = 8,

 XTAL_12M = XTAL_12M_RF_1m_MODE,

 XTAL_16M = XTAL_16M_RF_1m_MODE,

};

rf_drv_init(CRYSTAL_TYPE);

*Note: External crystal type (12M/16M) indicates specification for hardware crystal,

while system clock (16M) indicates machine cycle for MCU running. No matter which

crystal type is configured, a 192M basic clock will be derived from frequency

multiplication by internal PLL circuit. According to the system clock frequency

configured in app_config, a lower frequency is available from the 192M basic clock by

frequency division during clock_init() of main function.

2.2.1 System clock configuration

The “clock_init” function is invoked in the main.c (refer to proj/mcu/clock.c) to

configure registers related to clock source and frequency dividing factor. User only

needs to configure the following two parameters in the app_config.h.

/////////////////// Clock /////////////////////////////////

#define CLOCK_SYS_TYPE CLOCK_TYPE_PLL // Set clock source as

PLL

#define CLOCK_SYS_CLOCK_HZ 16000000 //system clock 16M

The 16M clock frequency is recommended considering BLE timing sequence and

power consumption.

Current 826x BLE SDK supports multiple system clock options: 16M (default), 32M

and 48M. To use 32M or 48M options, user needs to configure system clock and select

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 54 Ver1.3.0

lib library correspondingly. Take 8267 for example: The libraries for 16M/32M/48M

system clock are lt_8267 (default), lt_8267_32m and lt_8267_48m, respectively.

Figure2-7 Modify lib library

2.2.2 system tick usage

The configured 16M system clock starts running after clock initialization

(clock_init). The 32-bit system clock counter value (i.e. system clock tick, system tick in

brief) will be increased by 1 for each clock cycle (i.e. 1/16us). It takes 268 seconds or

so (i.e. (1/16) us * (2^32)) for the system tick to loop from the initial value 0x00000000

to the maximum value 0xffffffff.

Similarly, if the system clock is 32M, the system tick will be increased by 1 for

every 1/32us, and it loops with cycle of 134s or so (i.e. (1/32) us * (2^32)).

 The system tick won’t stop counting during firmware running process.

The function “clock_time()” serves to read system tick value.

 u32 current_tick = clock_time();

In 826x BLE SDK, the whole BLE timing sequence is based on system tick. It’s highly

recommended for user to follow the usage in firmware, i.e. use system tick to

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 55 Ver1.3.0

implement simple software timer and timeout judgment.

The software timer based on query mechanism generally applies to applications

without high real-time and small error requirement. The usage of the software timer

is shown as below:

1) Start timing: Set an u32 variable, read and record current system clock tick.

u32 start_tick = clock_time(); // clock_time() returns system tick value

2) At somewhere of the firmware, continuously query and compare (current system

clock tick - start_tick) with timing value. If the difference exceeds the timing value,

the timer is trigger to execute corresponding operation, and clear timer or start a

new timing cycle as needed.

Suppose timing value is 100ms, for 16M system clock, the following sentence can

be used to query the timer:

if((u32) (clock_time() - start_tick) > 100 * 1000 * 16)

The difference is switched to u32 type considering the case when system clock tick

counts from 0xffffffff to 0.

The following sentence shows how to query timer for 32M system clock:

if((u32) (clock_time() - start_tick) > 100 * 1000 * 32)

In SDK, a unified invoking function is provided irrespective of system clock

frequency:

if(clock_time_exceed(start_tick,100 * 1000)) // The unit of the second parameter is us

*Note: For 16M/32M clock, this function only applies to timing within 268s/134s,

if exceeds, it’s needed to add timer correspondingly.

Application example: If condition A is triggered (only once), after 2 seconds, B()

operation is executed.

u32 a_trig_tick;

int a_trig_flg = 0;

while(1)

{

 if(A){

 a_trig_tick = clock_time();

 a_trig_flg = 1;

 }

 if(a_trig_flg &&clock_time_exceed(a_trig_tick,2 *1000 * 1000)){

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 56 Ver1.3.0

 a_trig_flg = 0;

 B();

 }

}

2.3 GPIO module

For details about GPIO module, please refer to source code in

“proj/mcu_spec/gpio_826x.h”, “gpio_default_826x.h” and “gpio_826x.c”.

To understand register operation, please refer to the two documents including

“8266_gpio_lookuptable” and “8267_gpio_lookuptable”, which are available by

reading the instruction in “Getting Started with Telink BLE SDK”.

2.3.1 GPIO definition

Telink 826x SDK supports 42 GPIOs divided into six groups, including:

 GPIO_PA0 ~ GPIO_PA7, GPIO_PB0 ~ GPIO_PB7, GPIO_PC0 ~ GPIO_PC7,

 GPIO_PD0 ~ GPIO_PD7, GPIO_PE0 ~ GPIO_PE7, GPIO_PF0 ~ GPIO_PF1.

Note: Not all of the 42 GPIOs in IC core have corresponding external pins in actual IC

packages (e.g. 8261). Please refer to the corresponding pin layout.

Please follow the format above to use GPIO, and refer to

“proj/mcu_spec/gpio_826x.h” for details.

There are 7 special GPIOs:

1) MSPI pins: The four GPIOs are dedicated for Flash memory access and correspond

to Master SPI bus lines. They are used as MSPI function by default, and it’s not

recommended to use them as GPIO function or operate them in firmware. For

8266, MSPI pins are PA2, PA3, PB2 and PB3; for 8261/8267/8269, MSPI pins are

PE4~ PE7.

2) SWS (Single Wire Slave): It’s used as SWS function by default for debugging and

firmware burning. Generally it is not used in firmware. For 8266, SWS pin is PA0;

for 8261/8267/8269, SWS pin is PB0.

3) DM and DP: They are used as USB DM and DP function by default. If USB function

is not needed, the two pins can be used as GPIO function. For 8266, DM and DP

pins are PB5~ PB6; for 8261/8267/8269, DM and DP pins are PE2~PE3.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 57 Ver1.3.0

2.3.2 GPIO state control

 In this section only the basic GPIO states are listed.

 All GPIO pins contain the following states:

1) func: Configure pin as special function or general GPIO. To use input/output

function, the pin should be configured as general GPIO.

void gpio_set_func(u32 pin, u32 func);

Note: “pin” indicates GPIO pin (e.g. GPIO_PA0). “func” can be configured as

“AS_GPIO” or other special multiplexed function, as shown below.

#define AS_GPIO 0

#define AS_MSPI 1

#define AS_SWIRE 2

#define AS_UART 3

#define AS_PWM 4

#define AS_I2C 5

#define AS_SPI 6

#define AS_I2S 8

#define AS_SDM 9

#define AS_DMIC 10

#define AS_USB 11

#define AS_SWS 12

#define AS_SWM 13

#define AS_ADC 15

2) ie: Input enable.

void gpio_set_input_en(u32 pin, u32 value);

Note: “value”: 1-enable, 0-disable.

3) datai: Data input. When input is enabled for some GPIO pin, the datai value

indicates its current input level.

u32 gpio_read(u32 pin);

Note: If GPIO input is low level, 0 is returned; if GPIO input is high level, non-zero

value (may not be 1) is returned.

 static inline u32 gpio_read(u32 pin)

 {

 return BM_IS_SET(reg_gpio_in(pin), pin & 0xff);

}

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 58 Ver1.3.0

In firmware, it’s recommended to invert the read values rather than use the

format such as “if(gpio_read(GPIO_PA0) == 1)”. Inverted values will be either 1 or

0.

 if(!gpio_read(GPIO_PA0)) // high/low level judgment

4) oe: Output enable.

void gpio_set_output_en(u32 pin, u32 value);

Note: “value”: 1-enable, 0-disable.

5) dataO: Data output.

void gpio_write(u32 pin, u32 value)

Note: “value”: When output is enabled, “1” indicates high-level output, while “0”

indicates low-level output.

6) Internal analog pull-up/pull-down resistor: Configurable as 1M pull-up, 10K pull-

up, 100K pull-down or float.

void gpio_setup_up_down_resistor(u32 gpio, u32 up_down);

Note: “up_down” is configurable as shown below:

 PM_PIN_PULLUP_1M

 PM_PIN_PULLUP_10K

 PM_PIN_PULLDOWN_100K

 PM_PIN_UP_DOWN_FLOAT

Analog resistor has a feature: In deepsleep, all states of digital modules are

invalidated, including input/output state (cannot output level in deepsleep).

However, the configured analog resistor can still take effect in deepsleep.

Note: It’s not recommended to use 1M pull-up resistor for PC2~PC5 of

8261/8267/8269, since it cannot pull up these pins to stable high level. Therefore,

user should try to use 10K pull-up resistor for actual application.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 59 Ver1.3.0

GPIO configuration examples:

1) Configure GPIO_PA4 as high level output.

gpio_set_func(GPIO_PA4, AS_GPIO) ; // PA4 is used as general GPIO function by

default, so this step to configure “func” can be skipped.

gpio_set_input_en(GPIO_PA4, 0);

gpio_set_output_en(GPIO_PA4, 1);

gpio_write(GPIO_PA4,1)

2) Configure GPIO_PC6 as input, and check if it’s low-level input. Enable 10K pull up

resistor to avoid influence of float level.

gpio_set_func(GPIO_PC6, AS_GPIO) ; // PC6 is used as general GPIO function by

default, so this step to configure “func” can be skipped.

gpio_setup_up_down_resistor(GPIO_PC6, PM_PIN_PULLUP_10K);

 gpio_set_input_en(GPIO_PC6, 1)

 gpio_set_output_en(GPIO_PC6, 0);

 if(!gpio_read(GPIO_PC6)){ // check if PC6 input is low level

 }

3) Configure USB DM and DP pins of 8261/8267/8269 as general GPIO function.

gpio_set_func(GPIO_PE2, AS_GPIO) ;

gpio_set_func(GPIO_PE3, AS_GPIO) ;

2.3.3 GPIO initialization

The “gpio_init” function is invoked in the main.c file to initialize states of all GPIOs.

Each IO will be initialized to its default states by the “gpio_init” function, unless related

GPIO parameters are pre-configured in the app_config.h.

Default GPIO states are shown as below:

1) func

Except for the seven special GPIOs (Flash MSPI pins, USB pins, SWS) introduced in

Section 2.3.1, all other GPIOs are used as general GPIO function by default.

2) ie

For the seven special GPIOs, the default “ie” state is 1; for other GPIOs, the default

“ie” state is 0. User doesn’t need to configure “ie” of unused GPIOs as 0; however,

to enable input of a general GPIO, corresponding “ie” should be set as 1. Input

function needs to be enabled in following cases: scan pin gpio during key scan,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 60 Ver1.3.0

core/pad wakeup gpio, irq gpio and etc.

3) oe: all 0 by default.

4) dataO: all 0 by default.

5) Internal pull-up/pull-down resistor: all float by default.

Please refer to “proj/mcu_spec/gpio_826x.h” and

“proj/mcu_spec/gpio_default_826x.h” for details.

GPIO default states are indicated by corresponding macros. Take PA7 ie for

example:

#ifndef PA7_INPUT_ENABLE

#define PA7_INPUT_ENABLE 1

#endif

If some macros are pre-configured in the app_config.h, the “gpio_init” function

will initialize the corresponding GPIO to the configured value rather than the default

value. PA7 is taken as an example to show how to configure GPIO states in app_config.h.

1) Configure func: #define PA7_FUNC AS_GPIO

2) Configure ie: #define PA7_INPUT_ENABLE 1

3) Configure oe: #define PA7_OUTPUT_ENABLE 0

4) Configure dataO: #define PA7_DATA_OUT 0

5) Configure internal pull-up/pull-down resistor:

#define PULL_WAKEUP_SRC_PA7 PM_PIN_UP_DOWN_FLOAT

Conclusion: User can pre-define GPIO initial state in the app_config.h, and initialize

corresponding GPIO to the configured value by the gpio_init; or set the GPIO state by

the GPIO state control function in the user_init; or combine the two methods to

configure the GPIO state. Note that if some state of one GPIO is configured to different

values by the app_config.h and user_init, the configuration in the user_init will take

effect finally according to firmware timing sequence.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 61 Ver1.3.0

2.3.4 Configure SWS pull-up to avoid MCU error

 Telink MCU uses the SWS (Single Wire Slave) pin for debugging and firmware

burning. In final application code, the state of SWS is shown as below:

1) Set as SWS function rather than general GPIO.

2) ie =1: set as “input enable” so as to receive commands from EVK to operate MCU.

3) Both “oe” and “dataO” are set as 0.

The settings above may bring a risk: since SWS is in float state, large jitter of

system power (e.g. transient current may approach 100mA when IR command is sent)

may lead to incorrect command reception and firmware malfunction.

 By enabling internal 1M pull-up resistor for SWS to replace its float state, this

problem can be solved.

 For 8266, SWS is multiplexed with GPIO_PA0. Enable the 1M pull-up resistor for

PA0 in the “proj/mcu_spec/gpio_default_8266.h”, as shown below.

#ifndef PULL_WAKEUP_SRC_PA0

#define PULL_WAKEUP_SRC_PA0 PM_PIN_PULLUP_1M //sws pullup

#endif

 For 8261/8267/8269, SWS is multiplexed with GPIO_PB0. Enable the 1M pull-up

resistor for PB0 in the “proj/mcu_spec/gpio_default_8267.h”, as shown below.

#ifndef PULL_WAKEUP_SRC_PB0

#define PULL_WAKEUP_SRC_PB0 PM_PIN_PULLUP_1M //sws pullup

#endif

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 62 Ver1.3.0

3 BLE Module

3.1 BLE SDK software architecture

3.1.1 Standard BLE SDK architecture

 Figure3-1 shows standard BLE SDK software architecture compliant with BLE spec.

Profile 1

Generic Attribute Profile

Security Manager

Profile n

Logical Link Control and Adaption Protocol

Generic Access Profile

HCI

Attribute Protocol

Profile 2

Link Layer

Physical Layer

Controller

Host

...

Application

App

Figure3-1 BLE SDK standard architecture

As shown above, BLE protocol stack includes two parts including Host and

Controller.

 As BLE bottom-layer protocol, the “Controller” contains Physical Layer (PHY) and

Link Layer (LL). Host Controller Inter (HCI) is the sole communication interface for

all data transfer between Controller and Host.

 As BLE upper-layer protocol, the “Host” contains protocols including Logic Link

Control and Adaption Protocol (L2CAP), Attribute Protocol (ATT), Security

Manager Protocol (SMP), as well as Profiles including Generic Access Profile (GAP)

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 63 Ver1.3.0

and Generic Attribute Profile (GATT).

 The “Application” (APP) layer contains user application codes and Profiles

corresponding to various Services. User controls and accesses Host via “GAP”,

while Host transfers data with Controller via “HCI”.

BLE Host

HCI

BLE Controller

HCI
cmd

HCI
data

HCI
data

HCI
event

Figure3-2 HCI data transfer between Host and Controller

1) BLE Host will use HCI cmd to operate and set Controller. Controller API

corresponding to each HCI cmd will be introduced in section 0.

2) Controller will report various HCI events to Host via HCI.

3) Host will send target data to Controller via HCI, while Controller will directly load

data to Physical Layer for transfer.

4) When Contoller receives RF data in Physical Layer, it will first check whether the

data belong to Link Layer or Host, and then process correspondingly: If the data

belong to LL, the data will be processed directly; if the data belong to Host, the

data will be sent to Host via HCI.

3.1.2 Telink BLE SDK architecture

3.1.2.1 Telink BLE controller

Telink BLE SDK supports standard BLE Controller, including HCI, PHY (Physical

Layer) and LL (Link Layer).

Telink BLE SDK contains five standard states of Link Layer (standby, advertising,

scanning, initiating, and connection), and supports Slave role and Master role in

connection state. Currently both Slave role and Master role only support single

connection, i.e. LL can only sustain single connection, concurrent existence of multiple

Slave/Master or Slave and Master is not supported.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 64 Ver1.3.0

In SDK, 826x HCI is a Controller of BLE Slave, to form a standard BLE Slave system,

another MCU running BLE Host is needed.

HCI

Link Layer

Physical Layer

BLE
Controller

Other MCU

UART/USB

BLE
Host

Figure3-3 826x HCI architecture

Link Layer connection state supports Slave and Master of single connection, thus

826x HCI can also be used as BLE Master Controller actually. However, when a BLE Host

is running in a complex system (Linux/Android), Master Controller of single connection

can only connect with a single device, which is almost meaningless. Therefore, SDK

does not include Master role initialization in 826x HCI.

3.1.2.2 Telink BLE Slave

Telink BLE SDK in BLE Host fully supports stack of Slave; for Master with complex

SDP (Service Discovery), it’s not fully supported yet.

When user only needs to use standard BLE Slave, and Telink BLE SDK runs Host

(Slave part) + standard Controller, the actual stack architecture will be simplified based

on the standard artchitecture, so as to minimize system resource consumption of the

whole SDK (including SRAM, running time, power consumption, and etc.). Following

shows Telink BLE Slave architecture. In SDK, 826x hid sample, 826x remote and 826x

module are all based on this architecture.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 65 Ver1.3.0

826x
BLE

Stack

HIDS

Security Manager

OTA

Logical Link Control and Adaption Protocol

HCI

Attribute Protocol

BAS

Link Layer

Physical Layer

Controller

Host

…

Application

App
GAP

Generic Attribute Profile

AUDIO

Power

 Management

Profile

Figure3-4 Telink BLE Slave architecture

In Figure3-4, solid arrows indicate data transfer controllable via user APIs, while

hollow arrows indicate data transfer within the protocol stack independent of user.

Controller can still communicate with Host (L2CAP layer) via HCI; however, the

HCI is no longer the sole interface, and the APP layer can directly transfer data with

Link Layer of the Controller. Power Manager (PM) is embedded in the Link Layer, and

the APP layer can invoke related PM interfaces to set power management.

The implementation of Generic Access Profile is deleted from the Host layer, only

the service declaration of the GAP profile is retained in the APP layer. Data transfer

between the APP layer and the Host is no longer controlled via GAP; the ATT, SMP and

L2CAP can directly communicate with the APP layer via corresponding interface.

Generic Attribute Profile (GATT) is implemented in the Host layer based on

Attribute Protocol. Various Profiles and Services can be defined in the APP layer based

on GATT. Basic Profiles including HIDS, BAS, AUDIO and OTA are provided in 826x BLE

SDK demo code.

 Physical Layer is totally controlled by Link Layer, and it does not involve the APP

layer.

Though HCI still implements part of data transfer between Host and Controller, it

is basically implemented by the protocol stack of Host and Controller with few

involvement of the APP layer. User only needs to resgiter HCI data callback processing

function in the L2CAP layer.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 66 Ver1.3.0

3.1.2.3 Telink BLE master

Implementation of Telink BLE Master is different from that of Slave: Standard

Controller is supplied in SDK and assembled in library, while the APP layer implements

Host and user application.

HCI

GAP

Link Layer

Physical Layer

Controller

App

Application

SMP
 SDP (simple

reference)

Host

ATT

L2CAP

Figure3-5 Telink BLE Master architecture

 In SDK, demo code of “826x master kma dongle” project is implemented based

on this architecture. Almost all code of Host layer are implemented in APP, and SDK

supplies various standard interfaces for user to use these functions.

Standard l2cap and att processing are implemented in APP layer, while the SMP

only supplies the basic “just work” method. In the “826x master kma dongle”, SMP is

disabled by default, so user needs to enable the corresponding macro to enable SMP.

Since SMP implementation is complex, the code is assembled in the library, and the

APP layer only needs to invoke related interface. User can search for the corresponding

code via the key word “BLE_HOST_SMP_ENABLE”.

#define BLE_HOST_SMP_ENABLE 0

//1 for standard security management,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 67 Ver1.3.0

// 0 for telink referenced paring&bonding(no security)

Telink BLE Master does not supply standard implementation for the most complex

SDP part, but only gives a simple reference: service discovery of 826x remote. In the

“826x master kma dongle”, this simple reference SDP is enabled by default.

#define BLE_HOST_SIMPLE_SDP_ENABLE 1 //simple service discovery

In SDK, standard interfaces are supplied for all ATT operations related to service

discovery. User can refer to service discovery of 826x remote to implement his own

service discovery, or disable “BLE_HOST_SIMPLE_SDP_ENABLE”, and use the service

ATT handle agreed by Slave to implement data access.

Since suspend processing is not included for scanning and connection master role

of Link Layer, Telink BLE Master does not support Power Management.

3.2 BLE controller

3.2.1 BLE controller introduction

BLE Controller contains Physical Layer, Link Layer, HCI and Power Management.

Telink BLE SDK fully assembles Physical Layer in the library (corresponding to c file

of rf_drv_826x in driver file), while user does not need to learn about it. Power

Management will be introduced in detail in section 4.

This section will focus on Link Layer, and also introduce HCI related interfaces to

operate Link Layer and obtain data of Link Layer.

3.2.2 Link Layer state machine

Figure3-6 shows Link Layer state machine in BLE spec. Please refer to “Core_v4.2”

Page2574 1.1 LINK LAYER STATES.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 68 Ver1.3.0

Figure3-6 State diagram of the Link Layer state machine in BLE Spec

Telink BLE SDK Link Layer state machine is shown as below.

Power
Management

Slave role

Advertising Idle

Scanning

initiating

Master
role

connection

Figure3-7 Telink Link Layer state machine

 Telink BLE SDK Link Layer state machine is consistent with BLE spec, and it

contains five basic states: Idle (Standby), Scanning, Advertising, Initiating, and

Connection. Connection state contains Slave Role and Master Role.

As introduced above, currently both Slave Role and Master Role design are based

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 69 Ver1.3.0

on single connection. Slave Role is single connection by default; while Master Role is

marked as “Master role single connection”, so as to differentiate from “Master Role

multi connection” which will be supported in the future.

In this document, Slave Role will be marked as “Conn state Slave role” or

“ConnSlaveRole/Connection Slave Role”, or “ConnSlaveRole” in brief; while Master

Role will be marked as “Conn state Master role” or “ConnMasterRole/Connection

Master Role”, or “ConnMasterRole” in brief.

“Power Management” in Figure3-7 is not a state of LL, but a functional module

which indicates SDK only implements low power processing for Advertising and

Connection Slave Role. If Idle state needs low power, user can invoke related APIs in

the APP layer. For the other states, SDK does not manage low power, while user cannot

implement low power in the APP layer.

Based on the five states above, corresponding state machine names are defined

in “proj_lib/ble/ll/ll.h”. “ConnSlaveRole” and “ConnMasterRole” correspond to state

name “BLS_LINK_STATE_CONN”.

//ble link layer state

#define BLS_LINK_STATE_IDLE 0

#define BLS_LINK_STATE_ADV BIT(0)

#define BLS_LINK_STATE_SCAN BIT(1)

#define BLS_LINK_STATE_INIT BIT(2)

#define BLS_LINK_STATE_CONN BIT(3)

Link Layer state machine switch is automatically implemented in BLE stack bottom

layer. Therefore, user cannot modify state in APP layer, but can obtain current state by

invoking the API below. The return value will be one of the five states.

u8 blc_ll_getCurrentState(void);

3.2.3 Link Layer state machine combined application

3.2.3.1 Link Layer state machine initialization

Telink BLE SDK Link Layer fully supports all states, however, it’s flexible in design.

Each state can be assembled as a module; be default there’s only the basic Idle module,

and user needs to add modules and establish state machine combination for his

application.

For example, for BLE Slave application, user needs to add Advertising module and

ConnSlaveRole, while the remaining Scanning/Initiating modules are not included so

as to save code size and ramcode. The code of unused states won’t be compiled.

Following is the API to add the basic Idle module. This API is necessary, since all

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 70 Ver1.3.0

BLE applications need initialization.

void blc_ll_initBasicMCU (u8 *public_adr);

Following are initialization APIs of modules corresponding to the other states

(Scanning, Advertising, Initiating, Slave Role, Master Role Single Connection).

void blc_ll_initAdvertising_module(u8 *public_adr);

void blc_ll_initScanning_module(u8 *public_adr);

void blc_ll_initInitiating_module(void);

void blc_ll_initSlaveRole_module(void);

void blc_ll_initMasterRoleSingleConn_module(void);

The actual parameter “public_adr” is the pointer of BLE public mac address.

User can flexibly establish Link Layer state machine combination by using the APIs

above. Following shows some common combination methods and corresponding

application scenes.

3.2.3.2 Idle + Advtersing

Advertising Idle
bls_ll_setAdvEnable(0)

bls_ll_setAdvEnable(1)

Figure3-8 Idle + Advertising

 As shown above, only Idle and Advertising module are initialized, and it applies

to applications which use basic advertising function to advertise product information

in single direction, e.g. beacon.

Following is module initialization code of Link Layer state machine.

u8 tbl_mac [6] = {……};

blc_ll_initBasicMCU(tbl_mac);

 blc_ll_initAdvertising_module(tbl_mac);

State switch of Idel and Advertising is implemented via “bls_ll_setAdvEnable”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 71 Ver1.3.0

3.2.3.3 Idle + Scannning

Idle

Scanning

blc_ll_setScanEnable(0,x)

blc_ll_setScanEnable(1,x)

Figure3-9 Idle + Scanning

 As shown above, only Idle and Scanning module are initialized, and it applies to

applications which use basic scanning function to implement scanning discovery of

product advertising information, e.g. beacon.

Following is module initialization code of Link Layer state machine.

u8 tbl_mac [6] = {……};

blc_ll_initBasicMCU(tbl_mac);

blc_ll_initScanning_module(tbl_mac);

State switch of Idel and Scanning is implemented via “blc_ll_setScanEnable”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 72 Ver1.3.0

3.2.3.4 Idle + Advtersing + ConnSlaveRole

Advertising Idle
bls_ll_setAdvEnable(0)

bls_ll_setAdvEnable(1)

Connection
Slave role

A
ccept m

aster’
s conn_req

term
inate/connection tim

eout te
rm

in
at

e/
co

nn
ec

tio
n

tim
eo

ut

Figure3-10 BLE Slave LL state

 The figure above shows a Link Layer state machine combination for a basic BLE

Slave application. In SDK, 826x hci/826x hid sample/826x remote/826x module are all

based on this combination.

Following is module initialization code of Link Layer state machine.

u8 tbl_mac [6] = {……};

blc_ll_initBasicMCU(tbl_mac);

 blc_ll_initAdvertising_module(tbl_mac);

blc_ll_initSlaveRole_module();

State switch in this combination is shown as below:

1) After power on, 826x MCU enters Idle state. In Idle state, adv is enabled, and Link

Layer switches to Advertising state; when adv is disabled, it will return to Idle state.

The API “bls_ll_setAdvEnable” serves to enable/disable Adv.

After power on, Link Layer is in Idle state by default. Generally it’s needed to

enable Adv in “user_init” so as to enter Advertising state.

2) When Link Layer is in Idle state, Physical Layer won’t take any RF operation

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 73 Ver1.3.0

including packet transmission and reception.

3) When Link Layer is in Advertising state, advertising packets are transmitted in adv

channels. Master will send conneciton request if it receives adv packet. After Link

Layer receives this connection request, it will respond, establish connection and

enter ConnSlaveRole.

4) When Link Layer is in ConnSlaveRole, it will return to Idle State or Advertising state

in any of the following cases:

a) Master sends “terminate” command to Slave and requests disconnection.

Slave will exit ConnSlaveRole after it receives this command.

b) By sending “terminate” command to Master, Slave actively terminates the

connection and exits ConnSlaveRole.

c) If Slave fails to receive any packet due to Slave RF Rx abnormity or Master Tx

abnormity until BLE connection supervision timeout is triggered, Slave will

exit ConnSlaveRole.

When Link Layer exits ConnSlaveRole state, it will switch to Adv/Idle state

according to whether Adv is enabled or disabled which depends on the value

configured during last invoking of “bls_ll_setAdvEnable” in APP layer. If Adv is

enabled, Link Layer returns to Advertising state; if Adv is disabled, Link Layer

returns to Idle state.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 74 Ver1.3.0

3.2.3.5 Idle + Scannning + Initiating + ConnMasterRole

Idle

Scanning

Initiating

Connection
Master role

blc_ll_setScanEnable(1,x)

blc_ll_createConnection

blc_ll_setScanEnable(0,x)

blc_ll_createConnection

term
inate/connection tim

eout

cr
ea

te
 c

on
ne

ct
io

n
su

cc
es

s

create connection timeout

create connection timeout

Figure3-11 BLE Master LL state

The figure above shows a Link Layer state machine combination for a basic BLE

Master application. In SDK, 826x master kma dongle is based on this combination.

Following is module initialization code of Link Layer state machine.

u8 tbl_mac [6] = {……};

blc_ll_initBasicMCU(tbl_mac);

blc_ll_initScanning_module(tbl_mac);

 blc_ll_initInitiating_module();

 blc_ll_initMasterRoleSingleConn_module();

State switch in this combination is shown as below:

1) After power on, 826x MCU enters Idle state. In Idle state, scan is enabled, and Link

Layer switches to Scanning State; in Scanning State, when scan is disabled, it will

return to Idle state.

The API “blc_ll_setScanEnable” serves to enable/disable scan.

After power on, Link Layer is in Idle state by default. Generally it’s needed to

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 75 Ver1.3.0

enable Scan in “user_init” so as to enter Scanning state.

When Link Layer is in Scanning state, the scanned adv packet will be reported to

BLE Host via the event “HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

2) In Idle and Scanning state, Link Layer can be triggered to enter Initiating state via

the API “blc_ll_createConnection”.

“blc_ll_createConnection” specifies MAC address of one or multiple BLE devices

to be connected. After Link Layer enters Initiating state, it will continuously scan

specific BLE device; after it receives a correct and connectable adv packet, it will

send connection request and enter ConnMasterRole. If specific BLE device is not

scanned in Initiating state, and fails to initiate connecton until “create connection

timeout” is triggered, it will return to Idle state or Scanning state.

Note that Link Layer can enter Initiating state from Idle state or Scanning state (for

example, in the “826x master kma dongle”, LL directly enters Initiating state from

Scanning state). After create connection timeout, it will return to previous Idle

state or Scanning state.

3) When Link Layer is in ConnMasterRole, it will return to Idle State in any of the

following cases:

a) Slave sends “terminate” command to Master and requests disconnection.

Master will exit ConnMasterRole after it receives this command.

b) By sending “terminate” command to Slave, Master actively terminates the

connection and exits ConnMasterRole.

c) If Master fails to receive any packet due to Master RF Rx abnormity or Slave

Tx abnormity until BLE connection supervision timeout is triggered, Master

will exit ConnMasterRole.

When Link Layer exits ConnMasterRole state, it will switch to Idle state. If it’s

needed to continue scanning, the API “blc_ll_setScanEnable” should be used to

set Link Layer to re-enter Scanning state.

3.2.4 Link Layer timing sequence

In this section, Link Layer timing sequence in various states will be illustrated

combining with irq_handler and mainloop of 826x BLE SDK.

_attribute_ram_code_ void irq_handler(void)

{

 ……

 irq_blt_sdk_handler ();

 ……

}

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 76 Ver1.3.0

void main_loop (void)

{

///////////////////// BLE entry ////////////////////////////

 blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////////

 ……

}

 The “blt_sdk_main_loop” function at BLE entry serves to process data and events

related to BLE protocol stack. UI entry is for user application code.

3.2.4.1 Timing sequence in Idle state

 When Link Layer is in Idle state, no task is processed in Link Layer and Physical

Layer, the “blt_sdk_main_loop” function doesn’t act and won’t generate any interrupt,

i.e. the whole timing sequence of mainloop is occupied by UI entry.

3.2.4.2 Timing sequence in Advertising state

Adv event Adv event

Adv interval

chn 37 chn 38 chn 39

TX RX TX TXRX RX

UI task/suspend UI task/suspend

Figure3-12 Timing sequence chart in Advertising State

 As shown in Figure3-12, an Adv event is triggered by Link Layer during each adv

interval. A typical Adv event with three active adv channels will send an advertising

packet in channel 37, 38 and 39, respectively. After an adv packet is sent, Slave enters

Rx state, and waits for response from Master: If Slave receives a scan request from

Master, it will send a scan response to Master; if Slave receives a connect request from

Master, it will establish BLE connection with Master and enter Connection state Slave

Role.

 Code execution of adv event has some differences in different SDK versions:

1) In BLE SDK 3.0 and 3.1, code of the whole adv event is executed in interrupt irq.

MCU will enter interrupt every other adv interval to send and receive packets in

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 77 Ver1.3.0

three channels. Adv event will be triggered by system tick irq to enter irq handler.

2) In BLE SDK 3.2, code of adv event is executed in the “blt_sdk_main_loop” function

of mainloop instead of interrupt irq. Therefore, adv event won’t occupy irq time

and lead to failure in real-time irq response.

Code of UI entry in mainloop is executed during UI task/suspend part in

Figure3-12. This duration can be used for UI task only, or MCU can enter suspend for

the redundant time so as to reduce power consumption.

 In Advertising state, the “blt_sdk_main_loop” function does not need to process

many tasks, only some callback events related to Adv will be triggered, including

BLT_EV_FLAG_ADV_DURATION_TIMEOUT, BLT_EV_FLAG_SCAN_RSP,

BLT_EV_FLAG_CONNECT, and etc.

3.2.4.3 Timing sequence in Scanning state

Channel 37

Scan interval

Scanning/UI task

Channel 38 Channel 39

Scanning/UI task Scanning/UI task

Figure3-13 Timing sequence chart in Scanning state

Scan interval is configured by the API “blc_ll_setScanParameter”. During a whole

Scan interval, packet reception is implemented in one channel, and Scan window is

not designed in SDK. Therefore, SDK won’t process the setting of Scan window in

“blc_ll_setScanParameter”.

After the end of each Scan interval, it will switch to the next listening channel,

and start a new Scan interval. Channel switch action is triggered by interrupt, and it’s

executed in irq which takes very short time.

In Scanning interval, PHY Layer of Scan state is always in RX state, and it depends

on MCU hardware to implement packet reception. Therefore, all timing in software

are for UI task.

 After correct BLE packet is received in Scan interval, the data are first buffered in

software RX fifo (corresponding to “my_fifo_t blt_rxfifo” in code), and the

“blt_sdk_main_loop” function will check if there are data in software RX fifo. If correct

adv data are discovered, the data will be reported to BLE Host via the event

“HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 78 Ver1.3.0

3.2.4.4 Timing sequence in Initiating state

Channel 37

Scan interval

Scanning/UI task

Channel 38 Channel 39

Scanning/UI task Scanning/UI task

Figure3-14 Timing sequence chart in Initiating state

Timing sequence of Initiating state is similar to that of Scanning state, except that

Scan interval is configured by the API “blc_ll_createConnection”. During a whole Scan

interval, packet reception is implemented in one channel, and Scan window is not

designed in SDK. Therefore, SDK won’t process the setting of Scan window in

“blc_ll_createConnection”.

After the end of each Scan interval, it will switch to the next listening channel,

and start a new Scan interval. Channel switch action is triggered by interrupt, and it’s

executed in irq which takes very short time.

In Scanning state, BLE Controller will report the received adv packet to BLE Host;

however, in Initiating state, adv won’t be reported to BLE Host, it only scans for the

device specified by the “blc_ll_createConnection”. If the specific device is scanned, it

will send connection_request and establish connection, then Link Layer enters

ConnMasterRole.

3.2.4.5 Timing sequence in Conn state Slave role

Conn interval

UI task/suspend UI task/suspendUI task UI task

brx
event

brx
event

brx
post

brx
start

brx
working

Figure3-15 Timing sequence chart in Conn state Slave role

 As shown in Figure3-15, each conn interval starts with a brx event, i.e. transfer

process of BLE RF packets by Link Layer: PHY enters Rx state, and an ack packet will be

sent to respond to each received data packet from Master.

 In 826x BLE SDK, each brx process consists of three phases.

1) brx start phase

When Master needs to send packet, an interrupt is triggered by system tick irq to

enter brx start phase. During this interrupt, MCU sets BLE state machine of PHY to

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 79 Ver1.3.0

enter brx state, hardware in bottom layer prepares for packet transfer, and then

MCU exits from the interrupt irq.

2) brx working phase

After brx start phase ends and MCU exits from irq, hardware in bottom layer

enters Rx state first and waits for packet from Master. An ack packet will be sent

to respond to each received data packet from Master. During the brx working

phase, all packet reception and transmission are implemented automatically

without involvement of software.

3) brx post phase

After packet transfer is finished, the brx working phase is finished. System tick irq

triggeres an interrupt to switch to the brx post phase. During this phase, protocol

stack will process BLE data and timing sequence according to packet transfer in

the brx working phase.

 During the three phases, brx start and brx post are implemented in interrupt,

while brx working phase does not need the involvement of software, and UI task can

be executed normally. During the brx working phase, MCU can’t enter suspend since

hardware needs to transfer packets.

Within each conn interval, the duration except for brx event can be used for UI

task only, or MCU can enter suspend for the redundant time so as to reduce power

consumption.

 In the ConnSlaveRole, “blt_sdk_main_loop” needs to process the data received

during the brx process. During the brx working phase, the data packet received from

Master will be copied out during RX interrupt irq handler; these data won’t be

processed immediately, but buffered in software RX fifo (corresponding to my_fifo_t

blt_rxfifo in code). The “blt_sdk_main_loop” function will check if there are data in

software RX fifo, and process the detected data packet correspondingly:

1) Decrypt data packet

2) Analyze data packet

If the analyzed data belongs to the control command sent by Master to Link Layer,

this command will be executed immediately; if it’s the data sent by Master to Host

layer, the data will be transferred to L2CAP layer via HCI interface.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 80 Ver1.3.0

3.2.4.6 Timing sequence in Conn state Master role

Conn interval

UI task UI taskUI task UI task

btx
event

btx
event

btx
post

btx
start

btx
working

Figure3-16 Timing sequence chart in ConnMasterRole

As shown in Figure3-16, each conn interval starts with a btx event, i.e. transfer

process of BLE RF packets by Link Layer: PHY enters Tx state, and waits for an ack packet

from Slave for each transmitted data packet.

In 826x BLE SDK, each btx process consists of three phases.

1) btx start phase

When Master needs to send packet, an interrupt is triggered by system tick irq to

enter btx start phase. During this interrupt, MCU sets BLE state machine of PHY to

enter btx state, hardware in bottom layer prepares for packet transfer, and then

MCU exits from the interrupt irq.

2) btx working phase

After btx start phase ends and MCU exits from irq, hardware in bottom layer

enters Tx state first. Master will send packet to Slave and wait for an ack packet

from Slave for each transmitted packet. During the btx working phase, all packet

reception and transmission are implemented automatically without involvement

of software.

3) btx post phase

After packet transfer is finished, the btx working phase is finished. System tick irq

triggeres an interrupt to switch to the btx post phase. During this phase, protocol

stack will process BLE data and timing sequence according to packet transfer in

the btx working phase.

 During the three phases, btx start and btx post are implemented in interrupt,

while btx working phase does not need the involvement of software, and UI task can

be executed normally.

 In the ConnMasterRole, “blt_sdk_main_loop” needs to process the data received

during the btx process. During the btx working phase, the data packet received from

Master will be copied out during RX interrupt irq handler; these data won’t be

processed immediately, but buffered in software RX fifo. The “blt_sdk_main_loop”

function will check if there are data in software RX fifo, and process the detected data

packet correspondingly:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 81 Ver1.3.0

1) Decrypt data packet

2) Analyze data packet

If the analyzed data belongs to the control command sent by Slave to Link Layer,

this command will be executed immediately; if it’s the data sent by Master to Host

layer, the data will be transferred to L2CAP layer via HCI interface.

3.2.4.7 Conn state Slave role timing protection

 In ConnSlaveRole state, each interval contains a Brx Event to transfer BLE RF

packets. In 826x SDK, since Brx Event is triggered by interrupt, it’s needed to enable

MCU system interrupt all the time. If user needs to process some time-consuming

tasks and must disable system interrupt in Conn state (e.g. erase flash), Brx Event will

be stopped, BLE timing sequence will be disturbed, thus connection is terminated.

A timing sequence protection mechanism is supplied in 826x SDK. User should

strictly follow this mechanism, so that BLE timing sequence won’t be disturbed when

Brx Event is stopped. Corresponding APIs are shown as below:

 int bls_ll_requestConnBrxEventDisable(void);

 void bls_ll_disableConnBrxEvent(void);

 void bls_ll_restoreConnBrxEvent(void);

 The API “bls_ll_requestConnBrxEventDisable” serves to send a request to disable

Brx Event.

1) If the return value is 0, it indicates the request to disable Brx Event is rejected.

During Brx working phase in Conn state, the return value must be 0; this request

won’t be accepted until a whole Brx Event is finished, i.e. it can be accepted only

during the remaining UI task/suspend duration.

2) If the return value is not zero, it indicates this request can be accepted, and the

returned non-zero value indicates the time (unit: ms) allowed to stop Brx Event.

A. If Link Layer is in Advertising state or Idle state without Brx Event, the return

value is “0xffff”. In this case, user can disable system interrupt at will.

B. If Link Layer is in Conn state, and Slave receives “update map” or “update

connection parameter” request from Master but does not start updating yet,

the retun value should be the difference value of the time to start updating

and current time, i.e. it’s only allowed to stop Brx Event before the time to

start updating, otherwise all following packets won' be received and it will

result in disconnection.

C. If Link Layer is in Conn state, and no update request is received from Master,

the return value should be half of the current connection supervision timeout

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 82 Ver1.3.0

value. For example, suppose current timeout is 1s, the return value should be

500ms.

 After the API “bls_ll_requestConnBrxEventDisable” is invoked and the request is

accepted, if the time (ms) corresponding to the return value is enough to process user

task, the task will be executed. Before the task starts, the API

“bls_ll_disableConnBrxEvent” should be invoked to disable Brx Event. After the task is

finished, the API “bls_ll_restoreConnBrxEvent” should be invoked to enable Brx Event

and restore BLE timing sequence.

 The reference code is shown as below. Time values in the code depend on actual

task.

3.2.5 Link Layer state machine extension

The sections about BLE Link Layer state machine and timing sequence introduced

some basic states, which can meet requirements of basic BLE Slave/Master

applications.

However, considering the requirement of some special applications (e.g.

advertising is needed in Conn sate Slave role), some special extended functions are

added to Link Layer state machine in Telink BLE SDK.

3.2.5.1 Scanning in Advertising state

When Link Layer is in Advertising state, Scanning feature can be added.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 83 Ver1.3.0

The API below serves to add Scanning feature:

ble_sts_t blc_ll_addScanningInAdvState(void);

The API below serves to remove Scanning feature:

ble_sts_t blc_ll_removeScanningFromAdvState(void);

For the two APIs above, the return value of ble_sts_t type should be BLE_SUCCESS.

By combining timing sequence chart of Advertising state and Scanning state,

when Scanning feature is added to Advertising state, the extended timing sequence is

shown as below.

Adv event

Adv interval

Adv event Adv event

Set Scan Set Scan

Scanning/UI task Scanning/UI task

Figure3-17 Timing sequence chart with Scanning in Advertising state

Curretnly Link Layer is still in Advertising state (BLS_LINK_STATE_ADV). During

each Adv interval, the remaining time except for Adv event is used for Scanning.

During each “Set Scan”, the difference of current time and previous “Set Scan”

will be checked whether it exceeds a Scan interval (setting from

“blc_ll_setScanParameter”). If the difference exceeds a Scan interval, Scan channel

(channel 37/38/39) will be switched.

For usage of Scanning in Advertising state, please refer to

“TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE” in 826x feature test.

3.2.5.2 Scanning in ConnSlaveRole

When Link Layer is in ConnSlaveRole state, Scanning feature can be added.

The API below serves to add Scanning feature:

ble_sts_t blc_ll_addScanningInConnSlaveRole(void);

The API below serves to remove Scanning feature:

ble_sts_t blc_ll_removeScanningFromConnSLaveRole(void);

For the two APIs above, the return value of ble_sts_t type should be BLE_SUCCESS.

By combining timing sequence chart of Scanning state and ConnSlaveRole, when

Scanning feature is added to ConnSlaveRole, the extended timing sequence is shown

as below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 84 Ver1.3.0

Conn interval

UI task UI task

brx
event

brx
event

Set Scan Set Scan

Scanning/UI task Scanning/UI task

Figure3-18 Timing sequence chart with Scanning in ConnSlaveRole

Curretnly Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). During

each Conn interval, the remaining time except for brx event is used for Scanning.

During each “Set Scan”, the difference of current time and previous “Set Scan”

will be checked whether it exceeds a Scan interval (setting from

“blc_ll_setScanParameter”). If the difference exceeds a Scan interval, Scan channel

(channel 37/38/39) will be switched.

For usage of Scanning in ConnSlaveRole, please refer to

“TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE” in 826x feature test.

3.2.5.3 Advertising in ConnSlaveRole

When Link Layer is in ConnSlaveRole, Advertising feature can be added.

The API below serves to add Advertising feature:

ble_sts_t blc_ll_addAdvertisingInConnSlaveRole(void);

The API below serves to remove Advertising feature:

ble_sts_t blc_ll_removeAdvertisingFromConnSLaveRole(void);

For the two APIs above, the return value of ble_sts_t type should be BLE_SUCCESS.

By combining timing sequence chart of Advertising state and ConnSlaveRole,

when Advertising feature is added to ConnSlaveRole, the extended timing sequence is

shown as below.

Conn interval

UI task

brx
event

Adv event UI task/suspend

Figure3-19 Timing sequence chart with Advertising in ConnSlaveRole

Curretnly Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). During

each Conn interval, after a brx event is finished, an adv event is executed immediately,

and the remaining time is used for UI task or suspend to save power.

For usage of Advertising in ConnSlaveRole, please refer to

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 85 Ver1.3.0

“TEST_ADVERTISING_IN_CONN_SLAVE_ROLE” in 826x feature test.

3.2.5.4 Advertising and Scanning in ConnSlaveRole

By combining usage of Scanning in ConnSlaveRole and Advertising in

ConnSlaveRole, Scanning and Advertising can be added to ConnSlaveRole. Timing

sequence is shown as below.

Conn interval

UI task

brx
event

Adv event Scanning/UI task

Set Scan

Figure3-20 Timing sequence chart with Advertising and Scanning in

ConnSlaveRole

Curretnly Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). During

each Conn interval, after a brx event is finished, an adv event is executed immediately,

and the remaining time is used for Scanning.

During each “Set Scan”, the difference of current time and previous “Set Scan”

will be checked whether it exceeds a Scan interval (setting from

“blc_ll_setScanParameter”). If the difference exceeds a Scan interval, Scan channel

(channel 37/38/39) will be switched.

For usage of Advertising and Scanning in ConnSlaveRole , please refer to

“TEST_ADVERTISING_SCANNING_IN_CONN_SLAVE_ROLE” in 826x feature test.

3.2.6 Link Layer TX fifo & RX fifo

All RF data of APP layer and BLE Host should be transmitted via Link Layer of

Controller. A BLE TX fifo is designed in Link Layer, which can be used to buffer the

received data and send data after brx/btx starts.

All data received from peer device during Link Layer brx/btx will be buffered in a

BLE RX fifo, and then transmitted to BLE Host or APP layer for processing.

BLE TX fifo and BLE RX fifo of Slave role and Master role have some differences in

processing, as shown below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 86 Ver1.3.0

3.2.6.1 Slave role fifo

Both BLE TX fifo and BLE RX fifo in Slave role are defined in APP layer:

MYFIFO_INIT(blt_rxfifo, 64, 8);

MYFIFO_INIT(blt_txfifo, 40, 16);

 By default, RX fifo size is 64, and TX fifo size is 40. It’s not allowed to modify the

two size values unless it’s needed to use “data length extension” in core 4.2.

Both TX fifo number and RX fifo number must be configured as a power of 2, i.e.

2, 4, 8, 16, and etc. User can modify as needed.

Default RX fifo number is 8, which is a reasonable value to ensure up to 8 data

packets can be buffered in Link Layer bottom layer. If it’s set as large value, it will

occupy large SRAM area. If it’s set as small value, it may bring the risk of data coverage.

During brx event, Link Layer is likely to be in more data mode in an interval and

continuously reveive multiple packets; if RX fifo number is set as 4, there may be five

or six packets in an interval (e.g. in cases such as OTA, play Master audio data),

however, due to long decryption time, response to these data by upper layer cannot

be processed in real time, then some data may be overflowed. Similarly, if there are

more than 8 valid packets in an interval, the default number 8 is not enough.

Below is an example for RX overflow, suppose:

1) RX fifo number is 8;

2) Read/write pointer of RX fifo is 0/2 respectively before brx_event(n) is

enabled

3) There are tasks blocked in main_loop during bothbrx_event(n) and

brx_event(n+1) stage, and RX fifo is not read in time;

4) Both brx_event stages receive multiple packets.

As described in above “Timing Sequence in Conn State Slave Role”, during

brx_working stage, the received BLE packets will only be copied into RX fifo(RX fifo

write pointer++), while reading RX fifo data(RX fifo read pointer++) is executed during

main_loop stage, so, the 6th data packet will cover read pointer 0 area. Please be noted,

the UI task time interval during brx working stage is the time exclude interrupt time

like RX, TX, system timer and ect.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 87 Ver1.3.0

UI task/sleep

UI task

Brx event(n)

brx
post

brx
start brx working

RX1 TX1 RX2 TX2

Brx event(n+1)

RX3 TX3 RX6 TX6

UI task

brx
post

brx
start brx working

UI task/sleep

wptr:2

0

1

2

34

5

6

7

rptr:0

RX4 TX4 RX5 TX5

wptr(2+6)&(8-1)=0

0(6)

1

2

3(1)4(2)

5(3)

6(4)

7(5)

rptr:0

If the RX fifo rptr is 0 before the
pkt is received, assuming that
there are multiple pkts in one brx
event and main_loop does not
process RX fifo(means rptr not ++),
then after receiving the 6th RX
data, the RX fifo wptr will cross
the rptr area, causing 1st pkt to
be covered.

RX overflow diagram 1

This is an extreme example, because there is a connection interval, and tasks are

blocked for a long enough time. Below is a more frequently-seen case: duiring a brx-

event, master write multiple data packets into slave, and slave can not process these

data in time. As shown below, read pointer shifts 2 bits while write pointer shift 8 bits,

this will result in data overflow.

UI task

Brx event(n)

brx
post

brx
start brx working

RX8 TX8RX1 TX1 RX2 TX2 RX5 TX5 UI task/sleep

wptr:2

0

1

2

34

5

6

7

RX3 TX3 RX4 TX4

wptr(2+8)&(8-1)=2

0(6)

1(7)

2(8)

3(1)4(2)

5(3)

6(4)

7(5)

rptr:0

If the RX fifo rptr is 0 before the
pkt is received, assuming that
there is multiple pkts in one brx
event and main_loop does process 2
RX pkts(means rptr point to 2),
then after receiving the 8th RX
data, the RX fifo wptr will cross
the rptr area, causing 2nd pkt to
be covered.

RX6 TX6 RX7 TX7

rptr:2

RX overflow Diagram 2

Overflow will result in data loss, and will thus cause connection termination of

MIC failure for encryption system. (In former version of SDK, brx event Rx IRQ staffs

data to RX fifo without overflow checking, so, if main_loop process RX fifo too slow

there will be overflow. To avoid this risk, master should avoid sending too many data

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 88 Ver1.3.0

packets during one connection interval, and UI task processing time should be as short

as possible to avoid task blocking).

In new SDK version, we add RX overflow checking: check the difference between

write pointer and read pointer of RX fifo and compare it with RX fifo number, if RX fifo

is full, then RF will not ACK it, BLE protocol will guarantee re-transmiting the data. SDK

also offers RX overflow callback function to acknowledge user, please refer to “Telink

defined event” for detail.

If there are more than 8 effective data packets in one interval, the default 8 is not

enough.

Default TX fifo number is 16, which is enough to process common audio remote

control function with large data volume. User can modify this number as 8 to save fifo

space.

If it’s set as large value (e.g. 32), it will occupy large SRAM area.

In TX fifo, stack in SDK bottom layer needs two fifos, while APP layer can use the

remaing fifos. If TX fifo number is 16, APP layer can use 14 fifos; if TX fifo number is 8,

APP layer can use 6 fifos.

To send data in APP layer (e.g. invoke “bls_att_pushNotifyData”), user should

check current number of TX fifo available for Link Layer.

The API below serves to check current occupied number of TX fifo (note that it’s

not the remaining fifo number).

 u8 bls_ll_getTxFifoNumber (void);

 For example, TX fifo number is the default value 16, among which 14 fifos are

available for user. Therefore, as long as the return value is less than 14, there are still

fifos available for user: if the return value is 13, there is 1 fifo remaining; if the return

value is 0, there are 14 fifos remaining.

In audio processing of 826x remote, since a sum of audio data (128-byte) is

disassembled into five packets, five TX fifos are needed. Implementation is shown as

below (the number of occupied fifos should not exceed 9).

 if (blc_ll_getTxFifoNumber() < 10)

 {

 ……

 }

To deal with data overflow issue, beside pre-overflow auto-processing

mechanism, SDK bottom provides the following API to limit the more data receiving

number during 1 interval(users can use this API when they want to limit the data when

RX fifo has enough space).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 89 Ver1.3.0

void blc_ll_init_max_md_nums(u8 num);

The range of more data number for parameter num should not exceed RX fifo

number.

Please be noted, the API will enable more data limit function only when be called

in APP layer (num > 0).

3.2.6.2 Master role fifo

The design of BLE TX fifo and BLE RX fifo in Master role is similar to that of Slave

role.

RX fifo is defined in APP layer:

MYFIFO_INIT(blt_rxfifo, 64, 8);

 However, user cannot modify TX fifo pre-defined in library. TX fifo number is 8:

two fifos are used for stack, while the remaining six fifos are used for APP layer.

 The API below serves to check current occupied number of TX fifo (note that it’s

not the remaining fifo number).

u8 blm_ll_getTxFifoNumber (u16 connHandle);

 “connHandle” specifies connection.

Master RX overflow is the same with that in slave. Please refer to RX overflow.

3.2.7 Controller HCI Event

Considering user may need to record and process some key actions of BLE stack

bottom layer in APP layer, Telink BLE SDK supplies two types of event: standard HCI

event defined by BLE Controller; Telink defined event.

Basically the two sets of event are independent of each other, except for the

connect and disconnet event of Link Layer.

User can select one set or use both as needed. In Telink BLE SDK, 826x

remote/826x module/826x hid sample use Telink defined event, while 826x hci/826x

master kma dongle use Controller HCI event.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 90 Ver1.3.0

As shown in the “Host + Controller” architecture below, Controller HCI event

indicates all events of Controller are reported to Host via HCI.

BLE Host

HCI

BLE Controller

HCI
cmd

Host
data

Controller
data

HCI
event

Figure3-21 HCI event

 For definition of Controller HCI event, please refer to “Core_v4.2” Page 1152 7.7

“Event”. “LE Meta Event” in 7.7.65 indicates HCI LE (low energy) Event, while the others

are commom HCI events. As defined in Spec, Telink BLE SDK also divides Controller HCI

event into two types: HCI Event and HCI LE event. Since Telink BLE SDK focuses on BLE,

it supports most HCI LE events and only a few basic HCI events.

 For the definition of macros and interfaces related to Controller HCI event, please

refer to head files under “proj_lib/ble/hci”.

 To receive Controller HCI event in Host or APP layer, user should register callback

function of Controller HCI event, and then enable mask of corresponding event.

 Following are callback function prototype and register interface of Controller HCI

event:

 typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);

void blc_hci_registerControllerEventHandler(

hci_event_handler_t handler);

 In the callback function prototype, “u32 h” is a mark which will be used frequently

in bottom-layer stack, and user only needs to know the following:

#define HCI_FLAG_EVENT_TLK_MODULE (1<<24)

#define HCI_FLAG_EVENT_BT_STD (1<<25)

“HCI_FLAG_EVENT_TLK_MODULE” will be introduced in “Telink defined event”,

while “HCI_FLAG_EVENT_BT_STD” indicates current event is Controller HCI event.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 91 Ver1.3.0

In the callback function prototype, “para” and “n” indicate data and data length

of event. The data is consistent with the definition in BLE spec. User can refer to usage

in 826x master kma dongle as well as implementation of “app_event_callback”

function.

 blc_hci_registerControllerEventHandler(app_event_callback);

3.2.7.1 HCI event

Telink BLE SDK supports a few HCI events. Following lists some events for user.

Note: In BLE SDK 3.2.0, “HCI_EVT_DISCONNECTION_COMPLETE” is actually named as

“HCI_CMD_DISCONNECTION_COMPLETE”, which is not very reasonable and will be

revised in following SDK versions. This document uses

“HCI_EVT_DISCONNECTION_COMPLETE” for illustration.

#define HCI_EVT_DISCONNECTION_COMPLETE 0x05

#define HCI_EVT_ENCRYPTION_CHANGE 0x08

#define HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE 0x0C

#define HCI_EVT_ENCRYPTION_KEY_REFRESH 0x30

#define HCI_EVT_LE_META 0x3E

1) HCI_EVT_DISCONNECTION_COMPLETE

Please refer to “Core_v4.2” Page 1158 7.7.5 “Disconnection Complete

Event”. Total data length of this event is 7, and 1-byte “param len” is 4, as

shown below. Please refer to BLE spec for data definition.

hci event

0x04

event
code

0x05

param
len

status connection handle reason

4 0x00

Figure3-22 Disconnection Complete Event

2) HCI_EVT_ENCRYPTION_CHANGE and HCI_EVT_ENCRYPTION_KEY_REFRESH

The two events (available in 826x master kma dongle) are related to

Controller encryption, and the processing is assembled in library.

3) HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE

When Host uses “HCI_CMD_READ_REMOTE_VER_INFO” command to

exchange version information between Controller and BLE peer device, and

version of peer device is received, this event will be reported to Host.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 92 Ver1.3.0

Please refer to “Core_v4.2” Page 1158 7.7.12 “Read Remote Version

Information Complete Event”. Total data length of this event is 11, and 1-byte

“param len” is 8, as shown below. Please refer to BLE spec for data definition.

hci event

0x04

event
code

0x0c

param
len

status connection handle version

0x00

manufacture name subversion

8

Figure3-23 Read Remote Version Information Complete Event

4) HCI_EVT_LE_META

It indicates current event is HCI LE event, and event type can be checked

according to sub event code.

 Except for HCI_EVT_LE_META, other HCI events should use the interface below

to enable corresponding mask.

ble_sts_t blc_hci_setEventMask_cmd(u32 evtMask); //eventMask:

BT/EDR

Following is definition of mask:
#define HCI_EVT_MASK_DISCONNECTION_COMPLETE 0x0000000010

#define HCI_EVT_MASK_ENCRYPTION_CHANGE 0x0000000080

#define HCI_EVT_MASK_READ_REMOTE_VERSION_INFORMATION_COMPLETE

 0x0000000800

 If user does not set HCI event mask via this API, by default only the mask

corresponding to “HCI_CMD_DISCONNECTION_COMPLETE” is enabled in SDK, i.e. SDK

only ensures report of “Controller disconnect event” by default.

3.2.7.2 HCI LE event

When event code in HCI event is “HCI_EVT_LE_META” to indicate HCI LE event,

common subevent code are shown as below:

#define HCI_SUB_EVT_LE_CONNECTION_COMPLETE 0x01

#define HCI_SUB_EVT_LE_ADVERTISING_REPORT 0x02

#define HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

0x03

#define HCI_SUB_EVT_LE_CONNECTION_ESTABLISH 0x20 //telink private

1) HCI_SUB_EVT_LE_CONNECTION_COMPLETE

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 93 Ver1.3.0

When Controller Link Layer establishes connection with peer device, this

event will be reported. Please refer to “Core_v4.2” Page1238 7.7.65.1 “LE

Connection Complete Event”. Total data length of this event is 22, and 1-byte

“param len” is 19, as shown below. Please refer to BLE spec for data definition.

hci event
event
code

param
len

subevent
code

connection handle Role
peerAddrt

ype

peer addr

supervision
timeout

conn interval

conn latecncy

0x04 0x3e 19 0x01

status

master
clock

accuracy

Figure3-24 LE Connection Complete Event

2) HCI_SUB_EVT_LE_ADVERTISING_REPORT

When Controller Link Layer scans right adv packet, it will be reported to Host

via “HCI_SUB_EVT_LE_ADVERTISING_REPORT”. Please refer to “Core_v4.2”

Page1241 7.7.65.2 “LE Advertising Report Event”. Data length of this event is

not fixed and it depends on payload of adv packet, as shown below. Please

refer to BLE spec for data definition.

hci event
event
code

param
len

subevent
code

event
type

address[1...i]

0x04 0x3e 0x02

num
report

address type[1...i]

length[1..i]

data[1...i] rssi[1..i]

Figure3-25 LE Advertising Report Event

Note: In Telink BLE SDK, each “LE Advertising Report Event” only reports an

adv packet, i.e. “i” in Figure3-25 is 1.

3) HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

When “connection update” in Controller takes effect,

“HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE” will be reported to

Host. Please refer to “Core_v4.2” Page1243 7.7.65.3 “LE Connection Update

Complete Event”. Total data length of this event is 13, and 1-byte “param

len” is 10, as shown below. Please refer to BLE spec for data definition.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 94 Ver1.3.0

hci event
event
code

param
len

subevent
code

connection handle

conn interval conn latency

0x04 0x3e 10 0x03

status

supervision
timeout

Figure3-26 LE Connection Update Complete Event

4) HCI_SUB_EVT_LE_CONNECTION_ESTABLISH

“HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” is a supplement to

“HCI_SUB_EVT_LE_CONNECTION_COMPLETE”, so all the parameters except

for subevent is the same. In SDK, 826x master kma dongle uses this event.

This Telink private defined event is the sole event which is not standard in

BLE spec. This event is only used in 826x master kma dongle.

Following illustrates the reason for Telink to define this event.

When BLE Controller in Initiating state scans adv packet from specific device

to be connected, it will send connection request packet to peer device; no

matter whether this connection request is received, it will be considered as

“Connection complete”, “LE Connection Complete Event” will be reported to

Host, and Link Layer immediately enters Master role. Since this packet does

not support ack/retry mechanism, Slave may miss the connection request,

thus it cannot enter Slave role, and won’t enter brx mode to transfer packets.

In this case, Master Controller will process according to the mechanism

below: After it enters Master role, it will check whether any packet is

received from Slave during the beginning 6~10 conn intervals (CRC check is

negligible). If no packet is received, it’s considered that Slave does not

receive connection request, suppose “LE Connection Complete Event” has

already been reported, it must report a “Disconnection Complete Event”

quickly, and indicate disconnect reason is “0x3E

(HCI_ERR_CONN_FAILED_TO_ESTABLISH)”. If there’s packet received from

Slave, it can determine Connection Established, thus Master can continue

the following flow.

According to the description above, the processing method of BLE Host

should be: After it receives “Connection Complete Event” of Controller, it

cannot consider connection has already been established, but starts a timer

based on conn interval (timing value should be configured as 10 intervals or

above to cover the longest time). After the timer is started, it will check

whether there is “Disconnection Complete Event” with disconnect reason of

0x3E; if there is no such event, it will be considered as “connection

Established”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 95 Ver1.3.0

Considering this processing of BLE Host is very complex and error prone, SDK

defines “HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” in the bottom layer.

When Host receives this event, it indicates that Controller has determined

connection is OK on Slave side and can continue the following flow.

“HCI LE event” needs the interface below to enable mask.

ble_sts_t blc_hci_le_setEventMask_cmd(u32 evtMask);

//eventMask: LE

 Following lists some evtMask definitions. User can view the other events in the

“hci_const.h”.

#define HCI_LE_EVT_MASK_CONNECTION_COMPLETE 0x00000001

#define HCI_LE_EVT_MASK_ADVERTISING_REPORT 0x00000002

#define HCI_LE_EVT_MASK_CONNECTION_UPDATE_COMPLETE 0x00000004

#define HCI_LE_EVT_MASK_CONNECTION_ESTABLISH 0x80000000

 //telink private

If user does not set HCI LE event mask via this API, mask of all HCI LE events in

SDK are disabled by default.

3.2.8 Telink defined event

Besides standard Controller HCI event, SDK also supplies Telink defined event.

In terms of user application, events are from two parts including Host and

Controller (equivalent to the whole BLE stack). Most events are from Controller, and

will be introduced in this section. The Host part will introduce a few events from Host.

Application

BLE Host +
BLE Controller

cmd

data data
Telink
defined
event

Figure3-27 Architecture of Telink defined event

 Up to 20 Telink defined events are supported, which are defined by using macros

in “proj_lib/ble/ll/ll.h”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 96 Ver1.3.0

 Current new SDK supports the following callback events.

“BLT_EV_FLAG_CONNECT/BLT_EV_FLAG_TERMINATE” has the same function as

“HCI_SUB_EVT_LE_CONNECTION_COMPLETE”

/“HCI_EVT_DISCONNECTION_COMPLETE” in HCI event, but data definition of these

events are different.

#define BLT_EV_FLAG_ADV 0

#define BLT_EV_FLAG_ADV_DURATION_TIMEOUT 1

#define BLT_EV_FLAG_SCAN_RSP 2

#define BLT_EV_FLAG_CONNECT 3

#define BLT_EV_FLAG_TERMINATE 4

#define BLT_EV_FLAG_PAIRING_BEGIN 5

#define BLT_EV_FLAG_PAIRING_END 6

#define BLT_EV_FLAG_ENCRYPTION_CONN_DONE 7

#define BLT_EV_FLAG_DATA_LENGTH_EXCHANGE 8

#define BLT_EV_FLAG_GPIO_EARLY_WAKEUP 9

#define BLT_EV_FLAG_CHN_MAP_REQ 10

#define BLT_EV_FLAG_CONN_PARA_REQ 11

#define BLT_EV_FLAG_CHN_MAP_UPDATE 12

#define BLT_EV_FLAG_CONN_PARA_UPDATE 13

#define BLT_EV_FLAG_SUSPEND_ENTER 14

#define BLT_EV_FLAG_SUSPEND_EXIT 15

#define BLT_EV_FLAG_READ_P256_KEY 16

#define BLT_EV_FLAG_GENERATE_DHKEY 17

Telink defined event is only used in BLE Slave applications (remote/module), and

won’t be triggered in BLE Master. Libraries of BLE Slave can be divided into “Control

Core + Bluetooth” type and “SPP” type (826x module, Bluetooth only), which

correspond to different event callback processing in SDK by APP layer.

For libraries of “Control Core + Bluetooth” type, e.g. lib_8267/lib_8269,

prototype of callback function is shown as below:

 typedef void (*blt_event_callback_t)(u8 e, u8 *p, int n);

“e”: event number.

“p”: It’s the pointer to the data transmitted from the bottom layer when callback

function is executed, and it varies with the callback function.

“n”: length of valid data pointed by pointer.

The API below serves to register callback function:

void bls_app_registerEventCallback (u8 e, blt_event_callback_t

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 97 Ver1.3.0

p);

Whether each event will respond depends on whether corresponding callback

function is registered in APP layer.

 Take “BLT_EV_FLAG_CONNECT” as an example to illustrate the usage of register

function. When advertising device sends adv packet, Master sends “connection

request” to request connection; after this request is received, advertising device

processes correspondingly and enters Conn state Slave role. Then stack checks

whether the callback function of the event “BLT_EV_FLAG_CONNECT” is registered: if

registered, the registered function will be invoked to implement user-defined

operations (e.g. recording or related setting when device enters connection).

 void task_connect (u8 e, u8 *p, int n)

 {

 // add your code

 }

 bls_app_registerEventCallback (BLT_EV_FLAG_CONNECT, &task_connect);

The setting above will invoke the “task_connect” function each time when BLE

slave receives connection request and enters connection state.

For libraries of “SPP” type, e.g. lib_8261_mod/lib_8266_mod, function prototype

and the interface to register callback function is the similar to HCI event.

typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);

void blc_hci_registerControllerEventHandler (hci_event_handler_t

handler);

 The difference is actual value of “u32 h”:

 h = HCI_FLAG_EVENT_TLK_MODULE | e;

#define HCI_FLAG_EVENT_TLK_MODULE (1<<24)

 “e”: event number of Telink defined event.

Similar to mask of HCI event, the API below serves to set the mask to determine

whether each event will be responded.

ble_sts_t bls_hci_mod_setEventMask_cmd(u32 evtMask)

 The relationship between evtMask and event number is shown as below:

 evtMask = BIT(e);

User can refer to processing of Telink defined event in 826x module to help

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 98 Ver1.3.0

understanding.

In the following sub-sections, all events, event trigger condition and parameters

of corresponding callback function for Controller will be introduced in detail.

“BLT_EV_FLAG_PAIRING_BEGIN” and “BLT_EV_FLAG_PAIRING_END” event, which do

not belong to Controller, will be introduced in Host SMP.

3.2.8.1 BLT_EV_FLAG_ADV

This event is not used in current SDK.

3.2.8.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT

1) Event trigger condition: If the API “bls_ll_setAdvDuration” is invoked to set

advertising duration, a timer will be started in BLE stack bottom layer. When the

timer reaches the specified duration, advertising is stopped, and this event is

triggered. In the callback function of this event, user can implement operations

such as modifying adv event type, re-enabling advertising, re-configuring

advertising duration and etc.

2) Pointer “p”: null pointer.

3) Data length “n”: 0.

Note: This event won’t be triggered in “advertising in ConnSlaveRole” which is an

extended state of Link Layer.

3.2.8.3 BLT_EV_FLAG_SCAN_RSP

1) Event trigger condition: When Slave is in advertising state, this event will be

triggered if Slave responds with scan response to the scan request from Master.

2) Pointer “p”: null pointer.

3) Data length “n”: 0.

3.2.8.4 BLT_EV_FLAG_CONNECT

1) Event trigger condition: When Link Layer is in advertising state, this event will be

triggered if it responds to connect reqeust from Master and enters Conn state

Slave role.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 99 Ver1.3.0

2) Data length “n”: 34.

3) Pointer “p”: p points to one 34-byte RAM area, corresponding to the “connect

request PDU” below.

Figure3-28 Connect request PDU

 Please refer to “rf_packet_connect_t” defined in “ble_common.h”. In the

structure below, the connect request PDU is from scanA[6] (corresponding to InitA in

Figure3-28) to hop.

 typedef struct{

 u32 dma_len;

 u8 type;

 u8 rf_len;

 u8 scanA[6];

 u8 advA[6];

 u8 accessCode[4];

 u8 crcinit[3];

 u8 winSize;

 u16 winOffset;

 u16 interval;

 u16 latency;

 u16 timeout;

 u8 chm[5];

 u8 hop;

 }rf_packet_connect_t;

3.2.8.5 BLT_EV_FLAG_TERMINATE

1) Event trigger condition: This event will be triggered when Link Layer state machine

exits Conn state Slave role in any of the three specific cases.

2) Pointer “p”: p points to an u8-type variable “terminate_reason”. This variable

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 100 Ver1.3.0

indicates the reason for disconnection of Link Layer.

3) Data length “n”: 1.

 Three cases to exit Conn state Slave role and corresponding reasons are listed as

below:

1) If Slave fails to receive packet from Master for a duration due to RF communication

problem (e.g. bad RF or Master is powered off), and “connection supervision

timeout” expires, this event will be triggered to terminate connection and return

to None Conn state. The terminate reason is HCI_ERR_CONN_TIMEOUT (0x08).

2) If Master sends “terminate” command to actively terminate connection, after

Slave responds to the command with an ack, this event will be triggered to

terminate connection and return to None Conn state. The terminate reason is the

Error Code in the “LL_TERMINATE_IND” control packet received in Slave Link Layer.

The Error Code is determined by Master. Common Error Codes include

HCI_ERR_REMOTE_USER_TERM_CONN (0x13),

HCI_ERR_CONN_TERM_MIC_FAILURE (0x3D), and etc.

3) If Slave invokes the API “bls_ll_terminateConnection(u8 reason)” to actively

terminate connection, this event will be triggered. The terminate reason is the

actual parameter “reason” of this API.

3.2.8.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE

1) Event trigger condition: This event will be triggered when encryption of Link Layer

is finished (i.e. Link Layer receives “start encryption response” from Master).

2) Pointer “p”: p points to an u8-type variable “smp_flag”, which indicates current

encryption of Link Layer is triggered during first pairing or auto re-connection. If

“smp_flag” is 0, it indicates first pairing; if “smp_flag” is 1, it indicates auto re-

connection.

#define SMP_STANDARD_PAIR 0

#define SMP_FAST_CONNECT 1

3) Data length “n”: 1.

3.2.8.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

1) Event trigger condition: This event will be triggered when Slave and Master

exchange max data length of Link Layer, i.e. one side sends “ll_length_req”, while

the other side responds with “ll_length_rsp”. If Slave actively sends

“ll_length_req”, this event won’t be triggered until “ll_length_rsp” is received. If

Master initiates “ll_length_req”, this event will be triggered immediately after

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 101 Ver1.3.0

Slave responds with “ll_length_rsp”.

2) Data length “n”: 12.

3) Pointer “p”: p points to data of a memory area, corresponding to the beginning

six u16-type variables in the structure below.

typedef struct {

 u16 connEffectiveMaxRxOctets;

 u16 connEffectiveMaxTxOctets;

 u16 connMaxRxOctets;

 u16 connMaxTxOctets;

 u16 connRemoteMaxRxOctets;

 u16 connRemoteMaxTxOctets;

 u16 supportedMaxRxOctets;

 u16 supportedMaxTxOctets;

 u16 connInitialMaxTxOctets;

 u8 connMaxTxRxOctets_req;

}ll_data_extension_t;

“connEffectiveMaxRxOctets” and “connEffectiveMaxTxOctets” are max RX and TX

data length finally allowed in current connection;

“connMaxRxOctets” and “connMaxTxOctets” are max RX and TX data length of

the device;

“connRemoteMaxRxOctets” and “connRemoteMaxTxOctets” are max RX and TX

data length of peer device.

connEffectiveMaxRxOctets = min(supportedMaxRxOctets,connRemoteMaxTxOctets);

connEffectiveMaxTxOctets = min(supportedMaxTxOctets, connRemoteMaxRxOctets);

3.2.8.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP

1) Event trigger condition: Slave will calculate wakeup time before it enters suspend,

so that it can wake up when the wakeup time is due (It’s realized via timer in

suspend state). Since user tasks won’t be processed until wakeup from suspend,

long suspend time may bring problem for real-time demanding applications. Take

keyboard scanning as an example, if user presses keys fast, to avoid key press loss

and process debouncing, it’s recommended to set the scan interval as 10~20ms;

longer suspend time (e.g. 400ms or 1s, which may be reached when latency is

enabled) will lead to key press loss. So it’s needed to judge current suspend time

before MCU enters suspend; if it’s too long, the wakeup method of user key press

should be enabled, so that MCU can wake up from suspend in advance (i.e. before

timer timeout) if any key press is detected. This will be introduced in details in

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 102 Ver1.3.0

following PM module section.

The event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP” will be triggered if MCU is woke

up from suspend by GPIO in advance before wakeup timer expires.

2) Data length “n”: 1.

3) Pointer “p”: p points to an u8-type variable “wakeup_status”. This variable

indicates valid wakeup source status for current suspend. Following types of

wakeup status are defined in “proj_lib/pm_826x.h” (“WAKEUP_STATUS_COMP” is

not used in SDK).

 enum {

 WAKEUP_STATUS_COMP = BIT(0),

 WAKEUP_STATUS_TIMER = BIT(1),

 WAKEUP_STATUS_CORE = BIT(2),

 WAKEUP_STATUS_PAD = BIT(3),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),

 };

 For parameter definition above, please refer to the return value “int” of the API

in “Power Management”:

int cpu_sleep_wakeup (int deepsleep, int wakeup_src, u32 wakeup_tick);

3.2.8.9 BLT_EV_FLAG_CHN_MAP_REQ

1) Event trigger condition: When Slave is in Conn state, if Master needs to update

current connection channel list, it will send a “LL_CHANNEL_MAP_REQ”

command to Slave; this event will be triggered after Slave receives this request

from Master and has not processed the request yet.

2) Data length “n”: 5.

3) Pointer “p”: p points to the starting address of the following channel list array.

 unsigned char type bltc.conn_chn_map[5]

Note: When the callback function is executed, p points to the old channel map before

update.

 Five bytes are used in “conn_chn_map” to indicate current channel list by

mapping. Each bit indicates a channel:

conn_chn_map[0] bit0-bit7 indicate channel0~channel7, respectively.

conn_chn_map[1] bit0-bit7 indicate channel8~channel15, respectively.

conn_chn_map[2] bit0-bit7 indicate channel16~channel23, respectively.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 103 Ver1.3.0

conn_chn_map[3] bit0-bit7 indicate channel24~channel31, respectively.

conn_chn_map[4] bit0-bit4 indicate channel32~channel36, respectively.

3.2.8.10 BLT_EV_FLAG_CHN_MAP_UPDATE

1) Event trigger condition: When Slave is in connection state, this event will be

triggered if Slave has updated channel map after it receives the

“LL_CHANNEL_MAP_REQ” command from Master.

2) Pointer “p”: p points to the starting address of the new channel map

conn_chn_map[5] after update.

3) Data length “n”: 5.

3.2.8.11 BLT_EV_FLAG_CONN_PARA_REQ

1) Event trigger condition: When Slave is in connection state (Conn state Slave role),

if Master needs to update current connection parameters, it will send a

“LL_CONNECTION_UPDATE_REQ” command to Slave; this event will be triggered

after Slave receives this request from Master and has not processed the request

yet.

2) Data length “n”: 11.

3) Pointer “p”: p points to the 11-byte PDU of the LL_CONNECTION_UPDATE_REQ.

Figure3-29 LL_CONNECTION_UPDATE_REQ format in BLE stack

3.2.8.12 BLT_EV_FLAG_CONN_PARA_UPDATE

1) Event trigger condition: When Slave is in connection state, this event will be

triggered if Slave has updated connection parameters after it receives the

“LL_CONNECTION_UPDATE_REQ” from Master.

2) Data length “n”: 6.

3) Pointer “p”: p points to the new connection parameters after update, as shown

below.

p[0] | p[1]<<8: new connection interval in unit of 1.25ms.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 104 Ver1.3.0

p[2] | p[3]<<8: new connection latency.

p[4] | p[5]<<8: new connection timeout in unit of 10ms.

3.2.8.13 BLT_EV_FLAG_SUSPEND_ENETR

1) Event trigger condition: When Slave executes the function “blt_sdk_main_loop”,

this event will be triggered before Slave enters suspend.

2) Pointer “p”: Null pointer.

3) Data length “n”: 0.

3.2.8.14 BLT_EV_FLAG_SUSPEND_EXIT

1) Event trigger condition: When Slave executes the function “blt_sdk_main_loop”,

this event will be triggered after Slave is woke up from suspend.

2) Pointer “p”: Null pointer.

3) Data length “n”: 0.

Note: This callback is executed after SDK bottom layer executes “cpu_sleep_wakeup”

and Slave is woke up, and this event will be triggered no matter whether the actual

wakeup source is gpio or timer. If the event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP”

occurs at the same time, for the sequence to execute the two events, please refer to

pseudo code in “Power Management – PM Working Mechanism”.

3.2.8.15 BLT_EV_FLAG_READ_P256_KEY

To be added.

3.2.8.16 BLT_EV_FLAG_GENERATE_DHKEY

To be added.

3.2.8.17 BLT_EV_FLAG_LL_REJECT_IND

1) Event trigger condition: when master send LL_ENC_REQ(encryption request) in link

layer, and claim using the allocated LTK, and slave can not find the respective LTK,

send LL_REJECT_IND(or LL_REJECT_EXT_IND).

2) Pointer ”p”: point to sending command (LL_REJECT_IND or LL_REJECT_EXT_IND).

3) Data length “n”: 0.

Please refer to 《Core_v5.0》(Vol 6/Part B/2.4.2) for more information.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 105 Ver1.3.0

3.2.8.18 BLT_EV_FLAG_RX_DATA_ABANDOM

1) Event trigger condition: when BLE RX fifo overflow(refer to “Link Layer TX fifo & RX

fifo”), or in a continuous interval, received packet number > set packet number

threshold(when user call API: blc_ll_init_max_md_nums, and the parameter is not

0, SDK bottom layer will check the packet number), trigger

BLT_EV_FLAG_RX_DATA_ABANDOM.

2) Pointer ”p”:Null pointer.

3) Data length “n”: 0.

3.2.8.19 BLT_EV_FLAG_PHY_UPDATE

1) Event trigger condition: when PHY(BLE1M/BLE2M) reaches update time, trigger

this even.

2) Pointer ”p”: Point to updated PHY, PHY values are the emumeration value, listed as

following:

BLE_PHY_1M = BIT(0),

BLE_PHY_2M = BIT(1),

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 106 Ver1.3.0

3.2.9 Controller API

3.2.9.1 Controller API brief

 In standard BLE stack architecture (see Figure3-1), APP layer cannot directly

communicate with Link Layer of Controller, i.e. data of APP layer must be first

transferred to Host, and then Host can transfer control command to Link Layer via HCI.

All control commands from Host to LL via HCI follow the definition in BLE spec

“Core_v4.2”, please refer to Vol2: Core System Package[BR/EDR Controller volume],

Part E：Host Controller Interface Functional Specification.

Telink BLE SDK based on standard BLE architecture can serve as a Controller and

work together with Host system. Therefore, all APIs to operate Link Layer strictly follow

the data format of Host commands in the spec.

Although the architecture in Figure3-4 is used in Telink BLE SDK, during which APP

layer can directly operate Link Layer, it still use the standard APIs of HCI part.

The APIs below correspond to Host commands in Spec.

In BLE spec, all HCI commands to operate Controller have corresponding “HCI

command complete event” or “HCI command status event” as response to Host layer.

However, in Telink BLE SDK, the following cases apply:

1) For applications such as 826x_hci, Telink IC only serves as BLE controller, and

needs to work together with BLE Host MCU. Each HCI command will generate

corresponding “HCI command complete event” or “HCI command status

event”.

2) For applications such as 826x master kma dongle, both BLE Host and

Controller run on Telink IC, when Host invokes interface to send HCI

command to Controller, Controller can receive all data correctly without loss.

Therefore, when Controller processes HCI command, it won’t reply with “HCI

command complete event” or “HCI command status event”.

 Controller API declaration is available in head files under “proj_lib/ble/ll” and

“proj_lib/ble/hci”. Corresponding to Link Layer state machine functions, the “ll”

directory contains ll.h, ll_adv.h, ll_scan.h, ll_init.h, ll_slave.h and ll_master.h, e.g. APIs

related to advertising function should be in ll_adv.h.

3.2.9.2 API return type ble_sts_t

 An enum type “ble_sts_t” defined in “proj_lib/ble/ble_common.h” is used as

return value type for most APIs in SDK. When API invoking with right parameter setting

is accepted by the protocol stack, it will return “0” to indicate BLE_SUCCESS; if any non-

zero value is returned, it indicates a unique error type. All possible return values and

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 107 Ver1.3.0

corresponding error reason will be listed in the subsections below for each API.

The “ble_sts_t” applies to APIs of all layers, including the Link Layer.

3.2.9.3 MAC address initialization

 In this document, “BLE MAC address” indicates “public address” by default.

As introduced above, the 6-byte BLE MAC address will be downloaded into

specific flash area of the actual product by Telink jig system. User needs to obtain the

MAC address from the Bluetooth SIG.

Take 8267 512K Flash for example: Currently during debugging phase, the MAC

address is processed by SDK as shown below. When it’s first time to power on Slave, if

the MAC address read from flash 0x76000 is null, the MAC address will be set as

“0xC7E4E3E2E1xx” (The former five bytes are fixed, and the final one byte is randomly

generated); then the six bytes will be written into flash 0x76000~0x76005. After power

cycle, the MAC address read from flash 0x76000 already exists and it can be used

directly to ensure MAC address consistency of Slave.

 Related code sample is shown below for reference, and user can refer to flash

access introduction to understand the code. User can also modify the code as needed.

 u8 tbl_mac [] = {0xe1, 0xe1, 0xe2, 0xe3, 0xe4, 0xc7};

 u32 *pmac = (u32 *) CFG_ADR_MAC;

 if (*pmac != 0xffffffff)

 {

 memcpy (tbl_mac, pmac, 6);

 }

 else{

 tbl_mac[0] = (u8)rand();

 flash_write_page (CFG_ADR_MAC, 6, tbl_mac);

 }

The Link Layer initialization API can be invoked to load the obtained MAC address

into BLE prototol stack.

 blc_ll_initBasicMCU(tbl_mac); //mandatory

 In order to use Advertising state or Scanning state in Link Layer state machine, it’s

also needed to load MAC address, as shown below:

 blc_ll_initAdvertising_module（tbl_mac）;

blc_ll_initScanning_module（tbl_mac）;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 108 Ver1.3.0

3.2.9.4 Link Layer state machine initialization

The APIs below serve to configure initializaiont of each module when BLE state

machine is established. Please refer to introduction of Link Layer state machine.

 void blc_ll_initBasicMCU (u8 *public_adr)

void blc_ll_initAdvertising_module(u8 *public_adr);

void blc_ll_initScanning_module(u8 *public_adr);

void blc_ll_initInitiating_module(void);

void blc_ll_initSlaveRole_module(void);

void blc_ll_initMasterRoleSingleConn_module(void);

3.2.9.5 bls_ll_setAdvData

 Please refer to “Core_v4.2” Page1282 LE Set Advertising Data Command.

Figure3-30 Adv packet format in BLE stack

As shown above, an Adv packet in BLE stack contains 2-byte header, and Payload

(PDU). The maximum length of Payload is 31 bytes.

The API below serves to set PDU data of adv packet:

 ble_sts_t bls_ll_setAdvData(u8 *data, u8 len);

Note: The “data” pointer points to the starting address of the PDU, while the “len”

indicates data length. The table below lists possible results for the return type

“ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12
Len exceeds the

maximum length 31.

This API can be invoked during initialization to set adv data, or invoked in

mainloop to modify adv data when firmware is running.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 109 Ver1.3.0

 In “826x ble remote” project of 826x BLE SDK, Adv PDU definition is shown as

below. Please refer to “Data Type Specifcation” in BLE Spec “CSS v6” (Core Specification

Supplement v6.0) for introduction to various fields.

u8 tbl_advData[] = {

 0x05, 0x09, 't', 'h', 'i', 'd',

 0x02, 0x01, 0x05,

 0x03, 0x19, 0x80, 0x01,

 0x05, 0x02, 0x12, 0x18, 0x0F, 0x18,

};

 As shown in the adv data above, the adv device name is set as "thid".

3.2.9.6 bls_ll_setScanRspData

Please refer to “Core_v4.2” Page1283 LE Set Scan response Data Command.

The API below serves to set PDU data of scan response packet.

 ble_sts_t bls_ll_setScanRspData(u8 *data, u8 len);

Note: The “data” pointer points to the starting address of the PDU, while the “len”

indicates data length. The table below lists possible results for the return type

“ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12
Len exceeds the

maximum length 31.

This API can be invoked during initialization to set Scan response data, or invoked

in mainloop to modify Scan response data when firmware is running.

In “826x ble remote” project of 826x BLE SDK, definition of Scan response data is

shown as below. Please refer to “Data Type Specifcation” in BLE Spec “CSS v6” (Core

Specification Supplement v6.0) for introduction to various fields.

u8 tbl_scanRsp [] = {

 0x08, 0x09, 't', 'R', 'e', 'm', 'o', 't', 'e',

 };

As shown in the Scan response data above, the scan device name is set as

"tRemote".

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 110 Ver1.3.0

Since device name configured in Adv data and scan response data differ, the

device name scanned by a mobile phone or IOS system may be different:

1) If some device only listens for Adv packets, the scanned device name is "thid".

2) If some device sends scan request after Adv packet is received, and reads the scan

response, the scanned device name may be "tRemote".

User can configure device name in the two packets (Adv packet & scan response

packet) as the same name, so that the scanned device name is consistent. Actually

when Master reads device’s Attribute Table after connection is established, the

obtained “gap device name” of device will be shown according to the configuration in

Attribute Table. Please refer to Attribute Table section for details.

3.2.9.7 bls_ll_setAdvParam

 Please refer to “Core_v4.2” Page1277 LE Set Advertising Parameters Command.

Figure3-31 Advertising Event in BLE stack

 The figure above shows Advertising Event (Adv Event in brief) in BLE stack. It

indicates during each T_advEvent, Slave implements one advertising process, and

sends one packet in three advertising channels (channel 37, 38 and 39) respectively.

The API below serves to set parameters related to Adv Event.

 ble_sts_t bls_ll_setAdvParam(u16 intervalMin, u16 intervalMax,

 u8 advType, u8 ownAddrType,

 u8 peerAddrType, u8 *peerAddr,

 u8 adv_channelMap, u8 advFilterPolicy);

1) intervalMin & intervalMax：

The two parameters serve to set the range of advertising interval in unit of

0.625ms. The valid range is from 20ms to 10.24s, and intervalMin should not

exceed intervalMax.

As required by BLE spec, it’s not recommended to set adv interval as fixed value;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 111 Ver1.3.0

in Telink BLE SDK, the eventual adv interval is random variable within the range of

intervalMin ~ intervalMax. If intervalMin and intervalMax are set as same value,

adv interval will be fixed as the intervalMin.

Adv packet type has limits to the setting of intervalMin and intervalMax. Please

refer to “Core_v4.2” Page2609 4.4.2.2 Advertising Interval for details.

2) advType

As specified in “Core_v4.2” Page2607 Advertising State, the following four basic

advertising event types are supported.

Figure3-32 Four adv events in BLE stack

In the “Allowable response PDUs for advertising event” column, “YES” and “NO”

indicate whether corresponding adv event type can respond to “Scan request”

and “Connect Request” from other device. For example, “Connectable Undirected

Event” can respond to both “Scan request” and “Connect Request”, while “Non-

connectable Undireted Event” will respond to neither “Scan request” nor

“Connect Request”.

For “Connectable Directed Event”, “YES” marked with an asterisk indicates the

matched “Connect Request” received won’t be filtered by whitelist and this event

will surely respond to it. Other “YES” not marked with asterisk indicate

corresponding request can be responded depending on the setting of whitelist

filter.

The “Connectable Directed Event” supports two sub-types including “Low Duty

Cycle Directed Advertising” and “High Duty Cycle Directed Advertising”. Therefore,

five types of adv events are supported in all, as defined in

“proj_lib/ble/ble_common.h”. Please refer to “Core_v4.2” Page2609 ~ Page2615.

/* Advertisement Type */

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 112 Ver1.3.0

typedef enum{

ADV_TYPE_CONNECTABLE_UNDIRECTED = 0x00, // ADV_IND

ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY = 0x01,

//ADV_INDIRECT_IND (high duty cycle)

ADV_TYPE_SCANNABLE_UNDIRECTED = 0x02 //ADV_SCAN_IND

ADV_TYPE_NONCONNECTABLE_UNDIRECTED = 0x03,

//ADV_NONCONN_IND

ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY = 0x04,

//ADV_INDIRECT_IND (low duty cycle)

}advertising_type;

By default, the most common adv event type is

“ADV_TYPE_CONNECTABLE_UNDIRECTED”.

3) ownAddrType

It serves to specify MAC address type in adv packet.

There are two basic address types: public and random.

 /* Device Address Type */

 #define BLE_ADDR_PUBLIC 0

 #define BLE_ADDR_RANDOM 1

There are four optional values for “ownAddrType” to specify adv address type.

Please refer to “Core_v4.2” Page1279 for address generation method.

 typedef enum{

 OWN_ADDRESS_PUBLIC = 0,

 OWN_ADDRESS_RANDOM = 1,

 OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

 OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

Only the most basic “OWN_ADDRESS_PUBLIC” is introduced herein. Actually the

eventual address is the setting from API “blc_ll_initAdvertising_module(u8

*public_adr)” during MAC address initialization.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 113 Ver1.3.0

4) peerAddrType & *peerAddr

When advType is set as directed adv type

(ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY or

ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY), the “peerAddrType” and

“*peerAddr” serve to specify the type and address of peer device MAC Address.

When advType is set as type other than directed adv, the two parameters are

invalid, and they can be set as “0” and “NULL”.

5) adv_channelMap

The “adv_channelMap” serves to set advertising channel. It can be selectable

from channel 37, 38, 39 or combination.

 #define BLT_ENABLE_ADV_37 BIT(0)

 #define BLT_ENABLE_ADV_38 BIT(1)

 #define BLT_ENABLE_ADV_39 BIT(2)

 #define BLT_ENABLE_ADV_ALL

 (BLT_ENABLE_ADV_37 | BLT_ENABLE_ADV_38 | BLT_ENABLE_ADV_39)

6) advFilterPolicy

The “advFilterPolicy” serves to set filtering policy for scan request/connect

request from other device when adv packet is transmitted. Address to be filtered

needs to be pre-loaded in whitelist.

Filtering type options are shown as below. The “ADV_FP_NONE” can be selected

if whitelist filter is not needed.

 #define ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY 0x00

 #define ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_ANY 0x01

 #define ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_WL 0x02

 #define ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_WL 0x03

 #define ADV_FP_NONE ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY

The table below lists possible values and reasons for the return value “ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12

The intervalMin or intervalMax

value does not meet the

requirement of BLE spec.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 114 Ver1.3.0

According to Host command design in HCI part of BLE spec, eight parameters are

configured simultaneously by the “bls_ll_setAdvParam” API. This setting also

takes some coupling parameters into consideration. For example, the “advType”

has limits to the setting of intervalMin and intervalMax, and range check depends

on the advType; if advType and advInterval are set in two APIs, the range check is

uncontrollable.

Since user often needs to modify some parameters, three independent APIs are

supplied, so that user can directly invoke one API to modify corresponding

parameter(s), rather than invoking the “bls_ll_setAdvParam” to set eight

parameters simultaneously.

 ble_sts_t bls_ll_setAdvInterval(u16 intervalMin, u16 intervalMax);

 ble_sts_t bls_ll_setAdvChannelMap(u8 adv_channelMap);

ble_sts_t bls_ll_setAdvFilterPolicy(u8 advFilterPolicy);

Please refer to the “bls_ll_setAdvParam” API for the parameters of the three APIs

above.

Return value ble_sts_t:

1) “bls_ll_setAdvChannelMap” and “bls_ll_setAdvFilterPolicy” will always return

“BLE_SUCCESS”.

2) “bls_ll_setAdvInterval” will return “BLE_SUCCESS” or

“HCI_ERR_INVALID_HCI_CMD_PARAMS”.

3.2.9.8 bls_ll_setAdvEnable

Please refer to “Core_v4.2” Page1284 LE Set Advertising Enable Command.

 ble_sts_t bls_ll_setAdvEnable(u8 en);

en”: 1 - Enable Advertising; 0 - Disable Advertising.

1) In Idle state, by enabling Advertising, Link Layer will enter Advertising state.

2) In Advertising state, by disabling Advertising, Link Layer will enter Idle state.

3) In other states, Link Layer state won’t be influenced by enabling or disabling

Advertising.

4) ble_sts_t will always return “BLE_SUCCESS”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 115 Ver1.3.0

3.2.9.9 bls_ll_setAdvDuration

ble_sts_t bls_ll_setAdvDuration (u32 duration_us, u8 duration_en);

 After the “bls_ll_setAdvParam” is invoked to set all adv parameters successfully,

and the “bls_ll_setAdvEnable (1)” is invoked to start advertising, the API

“bls_ll_setAdvDuration” can be invoked to set duration of adv event, so that

advertising will be automatically disabled after this duration.

“duration_en”: 1-enable timing function; 0-disable timing function.

“duration_us”: The “duration_us” is valid only when the “duration_en” is set as 1,

and it indicates the advertising duration in unit of us. When this duration expires,

“AdvEnable” becomes unvalid, and advertising is stopped. None Conn state will swtich

to Idle State. The Link Layer event “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be

triggered.

 As specified in BLE spec, for the adv type

“ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY”, the duration time is fixed as

1.28s, i.e. advertising will be stopped after the 1.28s duration. Therefore, for this adv

type, the setting of “bls_ll_setAdvDuration” won’t take effect.

 The return value “ble_sts_t” is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12

Duration Time can’t be configured for

“ADV_TYPE_CONNECTABLE_DIRECTED_HIGH

_DUTY”.

 When Adv Duratrion Time expires, advertising is stopped, if user needs to re-

configure adv parameters (such as AdvType, AdvInterval, AdvChannelMap), first the

parameters should be set in the callback function of the event

“BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, then the “bls_ll_setAdvEnable (1)”

should be invoked to start new advertising.

To trigger the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, a special case should

be noted:

 Suppose the “duration_us” is set as “2000000” (i.e. 2s).

- If Slave stays in advertising state, when adv time reaches the preset 2s timeout,

the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered to execute

corresponding callback function.

- If Slave is connected with Master when adv time is less than the 2s timeout

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 116 Ver1.3.0

(suppose adv time is 0.5s), the timeout timing is not cleared but cached in bottom

layer. When Slave stays in connection state for 1.5s (i.e. the preset 2s timeout

moment is reached), since Slave won’t check adv event timeout in connection

state, the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” won’t be

triggered. When Slave stays in connection state for certain duration (e.g. 10s),

then terminates connection and returns to adv state, before it sends out the first

adv packet, the Stack will regard current time exceeds the preset 2s timeout and

trigger the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”. In this case,

the callback triggering time largely exceeds the preset timeout moment.

3.2.9.10 blc_ll_setAdvCustomedChannel

The API below serves to customize special advertising channel/scanning channel,

and it only applies some special applications such as BLE mesh. It’s not recommended

to use this API for other conventional application cases.

void blc_ll_setAdvCustomedChannel (u8 chn0, u8 chn1, u8 chn2);

chn0/chn1/chn2: customized channel. Default standard channel is 37/38/39.

For example, to set three advertising channels as 2420MHz, 2430MHz and

2450MHz, the API below should be invoked:

blc_ll_setAdvCustomedChannel (8, 12, 22);

3.2.9.11 rf_set_power_level_index

 826x BLE SDK supplies the API to set output power for BLE RF packet, as shown

below.

void rf_set_power_level_index (int level);

The “level” is selectable from the corresponding enum variable in the

“proj_lib/rf_drv_826x.h”. Take 8267 for example:

 enum {

 RF_POWER_8dBm = 0,

 RF_POWER_4dBm = 1,

 RF_POWER_0dBm = 2,

 RF_POWER_m4dBm = 3,

 RF_POWER_m10dBm = 4,

 RF_POWER_m14dBm = 5,

 RF_POWER_m20dBm = 6,

 RF_POWER_m24dBm = 8,

 RF_POWER_m28dBm = 9,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 117 Ver1.3.0

 RF_POWER_m30dBm = 10,

 RF_POWER_m37dBm = 11,

 RF_POWER_OFF = 16,

};

 Suppose it’s needed to set the Tx power as the maximum value 8dbm:

 rf_set_power_level_index(RF_POWER_8dBm);

 The Tx power configured by this API will take effect for both adv packet and conn

packet, and it can be set freely in firmware. The actual Tx power will be determined by

the latest setting.

3.2.9.12 blc_ll_setScanParameter

Please refer to “Core_v4.2” Page1286 LE Set Scan Parameters Command.

ble_sts_t blc_ll_setScanParameter (u8 scan_type,

u16 scan_interval, u16 scan_window,

u8 ownAddrType, u8 filter_policy);

Parameters:

1) scan_type

This parameter can be set as “passive scan” or “active scan”. The difference is: For

active scan, when adv packet is received, scan_req will be sent to obtain more

information of scan_rsp, and scan rsp packet will also be transmitted to BLE Host

via adv report event. For passive scan, scan req won’t be sent.

typedef enum {

 SCAN_TYPE_PASSIVE = 0x00,

 SCAN_TYPE_ACTIVE,

} scan_type_t;

2) scan_inetrval/scan window

“scan_interval” serves to set channel switch time in Scanning state (unit: 0.625ms).

“scan_window” is not processed in current Telink BLE SDK. Actual scan window is

set as scan_interval.

3) ownAddrType

This parameter serves to specify MAC address type in adv packet.

 /* Device Address Type */

 #define BLE_ADDR_PUBLIC 0

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 118 Ver1.3.0

 #define BLE_ADDR_RANDOM 1

There are four optional values for “ownAddrType” to specify address type of scan

req packet. Please refer to “Core_v4.2” Page1287 for address generation method.

 typedef enum{

 OWN_ADDRESS_PUBLIC = 0,

 OWN_ADDRESS_RANDOM = 1,

 OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

 OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

Only the most basic “OWN_ADDRESS_PUBLIC” is introduced herein. Actually the

eventual address is the setting from API “blc_ll_initScanning_module(u8

*public_adr)” during MAC address initialization.

4) filter_policy

Currently supported scan filter policies include:

#define SCAN_FP_ALLOW_ADV_ANY 0x00

#define SCAN_FP_ALLOW_ADV_WL 0x01

“SCAN_FP_ALLOW_ADV_ANY” indicates Link Layer won’t filter scanned adv

packet, but directly report it to BLE Host.

“SCAN_FP_ALLOW_ADV_WL” indicates scanned adv packet must be in whitelist

so that it can be reported to BLE Host.

The return value “ble_sts_t” is always “BLE_SUCCESS”. Since API won’t check

rationality of parameters, user should pay attention to this point when setting

parameters.

3.2.9.13 blc_ll_setScanEnable

Please refer to “Core_v4.2” Page1289 LE Set Scan Enable Command.

ble_sts_t blc_ll_setScanEnable (u8 scan_enable, u8 filter_duplicate);

 “scan_enable”: 1 - Enable Scanning; 0 - Disable Scanning.

1) In Idle state, by enabling Scanning, Link Layer will enter Scanning state.

2) In Scanning state, by disabling Scanning, Link Layer will enter Idle state.

“filter_duplicate”: If it’s set as 1, it indicates enabling filter for repeated packet,

i.e. for each different adv packet, Controller only reports one “adv report event” to

Host. If it’s set as 0, it indicates disabling filter for repeated packet, i.e. all scanned adv

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 119 Ver1.3.0

packets will be reported to Host.

 The return value “ble_sts_t” is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_CONTROLLER_BUSY 0x3A
Link Layer is in BLS_LINK_STATE_ADV

/BLS_LINK_STATE_CONN state.

When “scan_type” is set as “active scan”, and Scanning is enabled, for each device,

scan_rsp will be read only once and reported to Host. Since after each “enable

scanning”, Controller will record and store scan_resp of different devices in a scan_rsp

list, thus scan_req won’t be sent to the device repeatedly.

In order to report scan_rsp of a device for multiple times, user can use

“blc_ll_setScanEnable” to repeatedly set “Enable Scanning”, since scan_rsp list will be

cleared for each “Enable/Disable Scanning”.

3.2.9.14 blc_ll_createConnection

Please refer to “Core_v4.2” Page1291 LE Create Connection Command.

ble_sts_t blc_ll_createConnection (u16 scan_interval, u16 scan_window,

u8 initiator_filter_policy,

 u8 adr_type, u8 *mac,

u8 own_adr_type,

 u16 conn_min, u16 conn_max, u16 conn_latency, u16 timeout,

 u16 ce_min, u16 ce_max);

1) scan_inetrval/scan window

“scan_interval” serves to set Scan channel switch time in Initiating state (unit:

0.625ms).

“scan_window” is not processed in current Telink BLE SDK. Actual scan window is

set as scan_interval.

2) initiator_filter_policy

This parameter serves to specify device filter policy for current connection, and it

has two options as shown below:

#define INITIATE_FP_ADV_SPECIFY 0x00 //adv specified by host

#define INITIATE_FP_ADV_WL 0x01 //adv in whitelist

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 120 Ver1.3.0

“INITIATE_FP_ADV_SPECIFY” indicates device address of connection is

adr_type/mac;

“INITIATE_FP_ADV_WL” device connection depends on whitelist rather than

adr_type/mac.

3) adr_type/ mac

When “initiator_filter_policy” is set as “INITIATE_FP_ADV_SPECIFY”, the device

with address type of adr_type (BLE_ADDR_PUBLIC or BLE_ADDR_RANDOM) and

address of mac[5…0] will be connected.

4) own_adr_type

This parameter serves to specify MAC address type used by Master role to

establish connection. “ownAddrType” has four optional values, as shown below.

 typedef enum{

 OWN_ADDRESS_PUBLIC = 0,

 OWN_ADDRESS_RANDOM = 1,

 OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

 OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

Only the most basic “OWN_ADDRESS_PUBLIC” is introduced herein. Actually the

eventual address is the setting from API “blc_ll_initBasicMCU(u8 *public_adr)”

during MAC address initialization.

5) conn_min/ conn_max/ conn_latency/ timeout

The four parameters specify connection parameters of Master role after

connection is established. Since these parameters will be sent to Slave via

“connection request”, Slave will use the same connection parameters.

“conn_min” and “conn_max” specify the range of conn interval. In Telink BLE SDK,

Master role Single Connection directly uses the value of “conn_min”. Unit is

0.625ms.

“conn_latency” specifies connection latency, and generally it’s set as 0.

“timeout” specifies connection supervision timeout in unit of 10ms.

6) ce_min/ ce_max

“ce_min”/“ce_max” are not processed in current SDK.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 121 Ver1.3.0

 The return value is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_CONN_REJ_LIMITED_RESOURCES 0x0D

Link Layer is already in Initiating state,

and won’t receive new “create

connection”.

HCI_ERR_CONTROLLER_BUSY 0x3A
Link Layer is in Advertising state or

Connection state.

3.2.9.15 blc_ll_setCreateConnectionTimeout

ble_sts_t blc_ll_setCreateConnectionTimeout (u32 timeout_ms);

The return value is “BLE_SUCCESS”, and the unit of “timeout_ms” is ms.

As introduced in Link Layer state machine, when “blc_ll_createConnection”

triggers Idle state/Scanning state to enter Initiating state, if if connection fails to be

established until “Initiate timeout” is triggered, it will exit Initiating state.

Whenever “blc_ll_createConnection” is invoked, by default current “Initiate

timeout” is set as “connection supervision timeout *2” in SDK. User can modify this

“Initiate timeout” as needed by invoking “blc_ll_setCreateConnectionTimeout”

following “blc_ll_createConnection”.

3.2.9.16 blm_ll_updateConnection

Please refer to “Core_v4.2” Page1302 LE Connection Update Command.

ble_sts_t blm_ll_updateConnection (u16 connHandle,

 u16 conn_min, u16 conn_max, u16 conn_latency, u16 timeout,

 u16 ce_min, u16 ce_max);

1) connection handle

This parameter serves to specify connection to updata connection parameters.

2) conn_min/ conn_max/ conn_latency/ timeout

The four parameters serve to specify new connection parameters. Currently

“Master role single connection” directly use “conn_min” as new interval.

3) ce_min/ce_max

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 122 Ver1.3.0

The two parameters are not processed currently.

The return value “ble_sts_t” is always “BLE_SUCCESS”. Since API won’t check

rationality of parameters, user should pay attention to this point when setting

parameters.

3.2.9.17 bls_ll_terminateConnection

Please refer to “Core_v4.2” Page2593 LL_TERMINATE_IND.

 ble_sts_t bls_ll_terminateConnection (u8 reason);

This API is used for BLE Slave device, and it only applies to Connection state Slave

role.

In order to actively terminate connection, this API can be invoked by APP Layer to

send a “Terminate” to Master in Link Layer. “reason” indicates reason for

disconnection and it corresponds to the “ble_sts_t” defined in “ble_common.h”.

Please refer to “Core_v4.2” Page680 Error Code Descriptions.

 If connection is not terminated due to system operation abnormity, generally

APP layer specifies the “reason” as:

 HCI_ERR_REMOTE_USER_TERM_CONN = 0x13

 bls_ll_terminateConnection(HCI_ERR_REMOTE_USER_TERM_CONN);

In bottom-layer stack of Telink BLE SDK, this API is invoked only in one case to

actively terminate connection: When data packets from peer device are decrpted, if

an authentication data MIC error is detected, the

“bls_ll_terminateConnection(HCI_ERR_CONN_TERM_MIC_FAILURE)” will be invoked

to inform the peer device of the decryption error, and connection is terminated.

 After Slave invokes this API to actively initiate disconnection, the event

“BLT_EV_FLAG_TERMINATE” will be triggered. The terminate reason in the callback

function of this event will be consistent with the reason manually configured in this

API.

 In Connection state Slave role, generally connection will be terminated

successfully by invoking this API; however, in some special cases, the API may fail to

terminate connection, and the error reason will be indicated by the return value

“ble_sts_t”. It’s recommended to check whether the return value is “BLE_SUCCESS”

when this API is invoked by APP layer.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 123 Ver1.3.0

ble_sts_t Value ERR Reason

HCI_ERR_CONN_NOT_ESTABLISH 0x3E Link Layer is not in Connection state Slave role.

HCI_ERR_CONTROLLER_BUSY 0x3A

Controller busy (mass data are being

transferred), this command cannot be

accepted for the moment.

3.2.9.18 blm_ll_disconnect

Please refer to “Core_v4.2” Page2593 LL_TERMINATE_IND.

ble_sts_t blm_ll_disconnect (u16 handle, u8 reason);

This API is used for BLE Master device and it only applies to Connection Master

role.

This API is similar to the function of the API “API bls_ll_terminateConnection” of

Slave role, except that a conn handle parameter is added. Since in Telink BLE SDK, Slave

role design can only sustain single connection, while Master role supports multi

connection, it’s necessary to specify connection handle of disconnect.

The return value is shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_UNKNOWN_CONN_ID 0x02
Handle error, cannot find corresponding

connection.

HCI_ERR_CONTROLLER_BUSY 0x3A

Controller busy (mass data are being

transferred), this command cannot be

accepted for the moment.

3.2.9.19 Get Connection Parameters

 The following APIs serves to obtain current connection paramters including

Connection Interval, Connection Latency and Connection Timeout (only apply to Slave

role).

u16 bls_ll_getConnectionInterval(void);

u16 bls_ll_getConnectionLatency(void);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 124 Ver1.3.0

u16 bls_ll_getConnectionTimeout(void);

1) If return value is 0, it indicates current Link Layer state is None Conn state without

connection parameters available.

2) The returned non-zero value indicates the corresponding parameter value.

 Actual conn interval divided by 1.25ms will be returned by the API

“bls_ll_getConnectionInterval”. Suppose current conn interval is 10ms, the

return value should be 10ms/1.25ms=8.

 Acutal Latency value will be returned by the API

“bls_ll_getConnectionLatency”.

 Actual conn timeout divided by 10ms will be returned by the API

“bls_ll_getConnectionTimeout”. Suppose current conn timeout is 1000ms,

the return value would be 1000ms/10ms=100.

3.2.9.20 blc_ll_getCurrentState

The API below serves to obtain current Link Layer state.

u8 blc_ll_getCurrentState(void);

 User can invoke the “bls_ll_getCurrentState()” in APP layer to judge current state,

e.g.

 if(bls_ll_getCurrentState() == BLS_LINK_STATE_ADV)

 if(bls_ll_getCurrentState() == BLS_LINK_STATE_CONN)

3.2.9.21 blc_ll_getLatestAvgRSSI

The API serves to obtain latest average RSSI of connected peer device after Link

Layer enters Slave role or Master role.

u8 blc_ll_getLatestAvgRSSI(void)

 The return value is u8-type rssi_raw, and the real RSSI should be: rssi_real =

rssi_raw- 110. Suppose the return value is 50, rssi = -60 db.

3.2.9.22 Whitelist & Resolvinglist

As introduced above, “filter_policy” of Advertising/Scanning/Initiating state

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 125 Ver1.3.0

involves Whitelist, and actual operation may depend on devices in Whitelist. Actually

Whitelist contains two parts: Whitelist and Resolvinglist.

User can check whether address type of peer device is RPA (Resolvable Private

Address) via “peer_addr_type” and “peer_addr”. The API below can be invoked

directly.

#define IS_NON_RESOLVABLE_PRIVATE_ADDR(type, addr)

((type)==BLE_ADDR_RANDOM && (addr[5] & 0xC0) == 0x00)

Only non-RPA address can be stored in whitelist. In current SDK, whitelist can

store up to four devices.

#define MAX_WHITE_LIST_SIZE 4

The API below serves to reset whitelist:

ble_sts_t ll_whiteList_reset(void);

The return value is “BLE_SUCCESS”.

The API below serves to add a device into whitelist:

ble_sts_t ll_whiteList_add(u8 type, u8 *addr);

The return value is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

HCI_ERR_MEM_CAP_EXCEEDED 0x07 Whitelist is already full, add failure

The API below serves to delete a device from whitelist:

ble_sts_t ll_whiteList_delete(u8 type, u8 *addr);

The return value is “BLE_SUCCESS”.

RPA (Resolvable Private Address) device needs to use Resolvinglist. To save RAM

space, “Resolvinglist” can store up to two devices in current SDK.

 #define MAX_WHITE_IRK_LIST_SIZE 2

The API below serves to reset Resolvinglist.

ble_sts_t ll_resolvingList_reset(void);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 126 Ver1.3.0

The return value is “BLE_SUCCESS”.

 The API below serves to enable/disable device address resolving for Resolvinglist.

ble_sts_t ll_resolvingList_setAddrResolutionEnable (u8 resolutionEn);

The API below serves to add device using RPA address into Resolvinglist.
ble_sts_t ll_resolvingList_add(u8 peerIdAddrType, u8 *peerIdAddr,

u8 *peer_irk, u8 *local_irk);

peerIdAddrType/ peerIdAddr and peer-irk indicate identity address and irk

declared by peer device. These information will be stored into flash during pairing

encryption process, and corresponding interfaces to obtain the info are available in

SMP part. “local_irk” is not processed in current SDK, and it can be set as “NULL”.

The API below serves to delete a RPA device from Resolvinglist.
ble_sts_t ll_resolvingList_delete(u8 peerIdAddrType, u8 *peerIdAddr);

 For usage of address filter based on Whitelist/Resolvinglist, please refer to

“TEST_WHITELIST” in 826x feature test.

Figure3-33 Whitelist/Resolvinglist address filter

3.2.9.23 blc_ll_set_CustomedAdvScanAccessCode

In some snerio, user need to modify accesscode, SDK now provides API

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 127 Ver1.3.0

blc_ll_set_CustomedAdvScanAccessCode() for this.

Original function:

static inline void blc_ll_set_CustomedAdvScanAccessCode(u32 accss_code);

User can call this function when accesscode need to be modified.

3.2.10 2M PHY Supported

2M PHY is a new Link layer feature supported since BLE Core 5.0. Please refer to

BLE Spec《Core_v5.0》(Vol 6/Part B/ Link Layer Specification) for detail.

2M PHY use 3 PDU(LL_PHY_REQ/LL_PHY_RSP/LL_PHY_UPDATE_IND) to interact

between master and slave contollers, and to set the transmit frenquency of RF

transceiver. 2M PHY feature is only avialble when the connection is estabilished.

Both master and slave can enable this process, when master enables this process,

master will send LL_PHY_REQ PDU, slave will send LL_PHY_RSP PDU to answer, this is

master and slave change the first priority PHY they support, then, master will sent

LL_PHY_UPDATE_IND, when the instance reaches, master and slave will use new PHY

to send/receive data; if slave enable this process, slave will send LL_PHY_REQ PDU,

master will send LL_PHY_UPDATE_IND to answer, and when instance reaches, master

and slave will use new PHY to send/receive data.

SDK3.3.0 also supports 2M PHY, but it is only applicable for 8269 SoC series. The

function is default enabled. SDK provides APIs for users to support 2M PHY function,

details as following. Please be noted, SDK supports only symmetrical PHY, i.e., RX PHY

and TX PHY should be set as the same.

 For Slave, please refer to Demo “8269_feature_test”,

Define macro in vendor/8269_feature_test/app_config.h

#define FEATURE_TEST_MODE TEST_2M_PHY_CONNECTION

 For master, please refer to Demo “8269_master_kma_dongle”.

All equipments supporting 2M PHY are compatible with Telink Slave equipment,

users can choose freely.

If user use Telink SDK, please add API

blc_ll_init2MPhy_feature ();

in function void user_init(void) in

vendor/8269_master_kma_dongle/app.c(disabled by default in SDK).

2M PHY API detail as following:

1. void blc_ll_init2MPhy_feature(void);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 128 Ver1.3.0

This API initialize 2M PHY related parameters.

If PHY Update is started by master, user only need to call this initialization function,

and BLE stack will do the rest.

2. void blc_ll_setPhy()

ble_sts_t blc_ll_setPhy(u16 connHandle,

le_phy_prefer_mask_t all_phys,

le_phy_prefer_type_t tx_phys,

le_phy_prefer_type_t rx_phys);

Function description as following:

Parameter Description

connHandle Connection Handle, for slave, it is BLS_CONN_HANDLE, for master,

it is BLM_CONN_HANDLE

all_phys Set if there are preferred TX and RX PHY. This is emumerated

parameter, common value is PHY_TRX_PREFER. Refer to

le_phy_prefer_mask_t definition for other value.

tx_phys

Preferred TX PHY. This is emumerated parameter, available values are

PHY_PREFER_1M and PHY_PREFER_2M. Whether this parameter is

used depends on whether all_phys defines preferred tx phy.

rx_phys Preferred RX PHY. This is emumerated parameter, available values are

PHY_PREFER_1M and PHY_PREFER_2M. Whether this parameter is

used depends on whether all_phys defines preferred rx phy.

If PHY update is started by slave, then user need to call this API to set preferred PHY.

3. void bls_app_registerEventCallback(u8 e, blt_event_callback_t p)

If user want to execute some user-defined operation after PHY Update, they can

register callback function. Parameter: BLT_EV_FLAG_PHY_UPDATE. Check ”Telink

defined event” for detail of this API usage.

3.2.11 Data Length Extension

BLE spec supports data length extension (DLE) for core_4.2 and abover verison.

This BLE SDK supports data length extension on Link Layer, and rf_len supports up

to BLE spec max length 251 bytes.

Please refer to 《 Core_v5.0 》 (Vol 6/Part B/2.4.2.21 “LL_LENGTH_REQ and

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 129 Ver1.3.0

LL_LENGTH_RSP”) for detail.

Please follow the following steps to use data length extension function.

1) Set suitable TX & RX fifo size

Long packets need bigger TX&RX fifo size, these fifo will take large SRAM space,

sol user should set suitable fifo size to avoid wasting SRAM space.

Sending long packet need bigger TX fifo size. TX fifo size should be at least bigger

than TX rf_len plus 12, and it must be configured as 4 KB aligned. E.g.:

TX rf_len = 56 bytes： MYFIFO_INIT(blt_txfifo, 68, 8);

TX rf_len = 141 bytes： MYFIFO_INIT(blt_txfifo, 156, 8);

TX rf_len = 191 bytes： MYFIFO_INIT(blt_txfifo, 204, 8);

Recieving long packet need bigger RX fifo size. RX fifo size should be at least bigger

than TX rf_len plus 24, and it must be configured as 16 KB aligned. E.g.:

RX rf_len = 56 bytes： MYFIFO_INIT(blt_rxfifo, 80, 8);

RX rf_len = 141 bytes： MYFIFO_INIT(blt_rxfifo, 176, 8);

RX rf_len = 191 bytes： MYFIFO_INIT(blt_rxfifo, 224, 8);

If both TX and RX max supporting length is 200 bytes, the configuration should be:

MYFIFO_INIT(blt_txfifo, 212, 8);

MYFIFO_INIT(blt_rxfifo, 224, 8);

2) data length exchange

Before sending/receiving long packet, data length exchange operation must

succeed in BLE connection.

data length exchange operation is the interaction of LL_LENGTH_REQ and

LL_LENGTH_RSP on Link Layer. Either slave or master can start this by sending

LL_LENGTH_REQ, and the other part will answer LL_LENGTH_RSP. By this

interaction of the 2 packets, master and slave will be acknowledged of the max

length of TX and RX packet of each other, the smaller value will define the max

sending/receiving packet length.

No matter which side start LL_LENGTH_REQ, when data length exchange

operation succeeds, SDK will generate BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

callback (in case the callback has been registered), users can refer to "Telink

defined event” for the definition of this callback function’s parameters.

In this BLT_EV_FLAG_DATA_LENGTH_EXCHANGE callback functions, user can

get the final max length of TX packet and RX packet respectively.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 130 Ver1.3.0

When 826x severs as BLE slave equipment, master may or may not actively

start LL_LENGTH_REQ. If master does not actively start LL_LENGTH_REQ, then

slave need to start LL_LENGTH_REQ. SDK provides the following API to start

LL_LENGTH_REQ.

ble_sts_t blc_ll_exchangeDataLength (u8 opcode, u16 maxTxOct);

in which, configure opcode as LL_LENGTH_REQ, configure maxTxOct as the

max supported TX packet length, e.g, when max TX packet length is 200 bytes, the

configuration is as following:

blc_ll_exchangeDataLength(LL_LENGTH_REQ , 200);

Slave is unaware of whether master start LL_LENGTH_REQ, here is one way

to check: register BLT_EV_FLAG_DATA_LENGTH_EXCHANGE callback, after

connention is established, enable a software timer (e.g, 2S) to time, if the callback

is not triggered when the timing is over, it means master does not start

LL_LENGTH_REQ, in this case, slave need to call API blc_ll_exchangeDataLength to

start LL_LENGTH_REQ actively.

3) MTU size exchange

MTU size exchange operation must also succeed to ensure max MTU size is

effective, so that to guarantee the opposite equipment can deal with long packet.

MTU size should be equal or bigger than max TX&RX packet length. User can set

MTU size by calling blc_att_setRxMtuSize() when initialazition, otherwise the

default value is 23 bytes.

For MTU size exchange realization, please refer to " ATT & GATT” section, or

826x_feature_test demo.

4) Sending/receiving long packet operation

Please refer to “ATT & GATT” first, including Handle Value Notification and Handle

Value Indication，Write request and Write Command.

After the 3 operation described above succeed, user can sending/receiving long

packet.

To send long packet, call Handle Value Notification and Handle Value Indication

related API in ATT layer, as shown below, just input the sending data address and length

in formal parameter *p” and "len” respectively.

ble_sts_t bls_att_pushNotifyData (u16 handle, u8 *p, int len);

ble_sts_t bls_att_pushIndicateData (u16 handle, u8 *p, int len);

To receive long packet, call callback function "w” of Write request and Write

Command, use the data that the formal parameter pointer point to.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 131 Ver1.3.0

3.3 L2CAP

 As specified in BLE Spec, L2CAP is mainly used for data transfer between Controller

and Host. Most work are finished in stack bottom layer with little involvement of user.

User only needs to invoke the following APIs to set correspondingly.

3.3.1 Register L2CAP data processing function

 In BLE SDK architecture, Controller transfers data with Host via HCI. Data from HCI

to Host will be processed in L2CAP layer first. The API below serves to register this

processing function.

 void blc_l2cap_register_handler (void *p);

 In BLE Slave applications such as 826x remote/826x module, the function to

process data of Controller in L2CAP layer of SDK is shown as below:

 int blc_l2cap_packet_receive (u16 connHandle, u8 * p);

 This function is already implemented in stack, which it will analyze the received

data and transfer the data to ATT or SMP.

 Initialization:

 blc_l2cap_register_handler (blc_l2cap_packet_receive);

In 826x master kma dongle, APP layer contains BLE Host function, and its

processing function is supplied in source code for user reference:

int app_l2cap_handler (u16 conn_handle, u8 *raw_pkt);

Initialization:

 blc_l2cap_register_handler (app_l2cap_handler);

 In 826x hci, only Slave controller is implemented. The function

“blc_hci_sendACLData2Host” serves to transmit data of controller to BLE Host device

via hardware interface such as UART/USB.

 int blc_hci_sendACLData2Host (u16 handle, u8 *p)

 Initialization: blc_l2cap_register_handler (blc_hci_sendACLData2Host);

3.3.2 Update connection parameters

3.3.2.1 Slave requests for connection parameter update

In BLE stack, Slave can actively apply for a new set of connection parameters by

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 132 Ver1.3.0

sending a “CONNECTION PARAMETER UPDATE REQUEST” command to Master in

L2CAP layer. The figure below shows the command format. Please refer to “Core_v4.2”

Page 1775 CONNECTION PARAMETER UPDATE REQUEST.

Figure3-34 Connection Para update Req format in BLE stack

 826x BLE SDK supplies an API in L2CAP layer for Slave to send a “CONNECTION

PARAMETER UPDATE REQUEST” command to Master and actively apply for a new set

of connection parameters.

 void bls_l2cap_requestConnParamUpdate (u16 min_interval,

 u16 max_interval,

 u16 latency, u16 timeout);

*Note: The four parameters of this API correspond to the parameters in the “data”

field of the “CONNECTION PARAMETER UPDATE REQUEST”. The “min_interval” and

“max_interval” are the actual interval time divided by 1.25ms (e.g. for 7.5ms

connection interval, the value should be 6); the “timeout” is actual supervision

timeout divided by 10ms (e.g. for 1s timeout, the value should be 100).

Application example: Slave requests for new connection parameters when connection

is established.

 void task_connect (u8 e, u8 *p)

 {

bls_l2cap_requestConnParamUpdate (6, 6, 99, 400);

//interval=7.5ms latency=99 timeout=4s

 }

Figure3-35 BLE sniffer packet sample: conn para update request & response

3.3.2.2 Master responds to connection parameter update request

After Master receives the “CONNECTION PARAMETER UPDATE REQUEST”

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 133 Ver1.3.0

command from Slave, it will respond with a “CONNECTION PARAMETER UPDATE

RESPONSE” command. Please refer to “Core_v4.2” Page 1776 CONNECTION

PARAMETER UPDATE RESPONSE.

The figure below shows the command format: if “result” is “0x0000”, it indicates

the request command is accepted; if “result” is “0x0001”, it indicates the request

command is rejected. Whether actual Android/iOS device will accept or reject the

connection parameter update request is determined by corresponding BLE Master.

User can refer to Master compatibility test.

As shown in Figure3-35, Master accepts the request.

Figure3-36 conn para update rsp format in BLE stack

 Following shows demo code to process connection parameter update request of

Slave in Telink 826x master kma dongle.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 134 Ver1.3.0

After “L2CAP_CMD_CONN_UPD_PARA_REQ” is received in

“L2CAP_CID_SIG_CHANNEL”, it will read interval_min (used as eventual interval),

supervision timeout and long suspend time (interval * (latency +1)), and check the

rationality of these data. If interval < 200ms, long suspend time<20s and supervision

timeout >= 2* long suspend time, this request will be accepted; otherwise this request

will be rejected. User can modify as needed based on this simple demo design.

No matter whether parameter request of Slave is accepted, the API below can be

invoked to respond to this request.

void blc_l2cap_SendConnParamUpdateResponse(u16 connHandle,

int result);

 “connHandle” indicates current connection ID.

“result” has two options to indicate “accept” and “reject”, respectively.

 typedef enum{

 CONN_PARAM_UPDATE_ACCEPT = 0x0000,

 CONN_PARAM_UPDATE_REJECT = 0x0001,

}conn_para_up_rsp;

 If 826x Master accepts request of Slave, it must send a update cmd to Controller

via the API “blm_ll_updateConnection” within certain duration. In demo code,

“host_update_conn_param_req” is used as mark, and a 50ms delay is set in mainloop

to initiate this update.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 135 Ver1.3.0

3.3.2.3 Master updates connection parameters in Link Layer

 After Master responds with “conn para update rsp” to accept the “conn para

update req” from Slave, Master will send a “LL_CONNECTION_UPDATE_REQ”

command in Link Layer.

Figure3-37 BLE sniffer packet sample: ll conn update req

Slave will mark the final parameter as the instant value of Master after it receives

the update request. When the instant value of Slave reaches this value, connection

parameters are updated, and the callback of the event

“BLT_EV_FLAG_CONN_PARA_UPDATE” is triggered.

 The “instant” indicates connection event count value maintained by Master and

Slave, and it ranges from 0x0000 to 0xffff. During a connection, Master and Slave

should always have consistent “instant” value. When Master sends “conn_req” and

establishes connection with Slave, Master switches state from scanning to connection,

and clears the “instant” of Master to “0”. When Slave receives the “conn_req”, it

switches state from advertising to connection, and clears the instant of Slave to “0”.

Each connection packet of Master and Slave is a connection event. For the first

connection event after the “conn_req”, the instant value is “1”; for the second

connection event, the instant value is 2, and so on.

 When Master sends a “LL_CONNECTION_UPDATE_REQ”, the final parameter

“instant” indicates during the connection event marked with “instant”, Master will use

the values corresponding to the former connection parameters of the

“LL_CONNECTION_UPDATE_REQ” packet. After the “LL_CONNECTION_UPDATE_REQ”

is received, the new connection parameters will be used during the connection event

when the instant of Slave equals the declared instant of Master, thus Slave and Master

can finish switch of connection parameters synchronously.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 136 Ver1.3.0

3.4 ATT & GATT

3.4.1 GATT basic unit “Attribute”

GATT defines two roles: Server and Client. In 826x BLE SDK, Slave is Server, and

corresponding Android/iOS device is Client. Server needs to supply multiple Services

for Client to access.

Each Service of GATT consists of multiple Attributes, and each Attribute contains

certain information.

Figure3-38 GATT service containing Attribute group

 The basic contents of Attribute are shown as below:

1) Attribute Type: UUID

The UUID is used to identify Attribute type, and its total length is 16 bytes. In BLE

standard protocol, the UUID length is defined as two bytes, since Master devices follow

the same method to transform 2-byte UUID into 16 bytes.

When standard 2-byte UUID is directly used, Master should know device types

indicated by various UUIDs. 826x BLE stack defines some standard UUIDs in

“proj_lib/ble_l2cap/hids.h”, “proj_lib/ble_l2cap/gatt_uuid.h” and

“proj_lib/ble_l2cap/service.h”.

Telink proprietary profiles (OTA, MIC, SPEAKER, and etc.) are not supported in

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 137 Ver1.3.0

standard Bluetooth. The 16-byte proprietary device UUIDs are defined in

“proj_lib/ble_l2cap/service.h”.

2) Attribute Handle

Slave supports multiple Attributes which compose an Attribute Table. In Attribute

Table, each Attribute is identified by an Attribute Handle value. After connection is

established, Master will analyze and obtain the Attribute Table of Slave via “Service

Discovery” process, then it can identify Attribute data via the Attribute Handle during

data transfer.

3) Attribute Value

Attribute Value corresponding to each Attribute is used as request, response,

notification and indication data. In 826x BLE stack, Attribute Value is indicated by one

pointer and the length of the area pointed by the pointer.

3.4.2 Attribute and ATT Table

To implement GATT Service on Slave, an Attribute Table is defined in 826x BLE SDK

and it consists of multiple basic Attributes. Attribute definition is shown as below.

 typedef struct attribute

 {

 u16 attNum;

 u8 perm;

 u8 uuidLen;

 u32 attrLen; //4 bytes aligned

 u8* uuid;

 u8* pAttrValue;

 att_readwrite_callback_t w;

 att_readwrite_callback_t r;

 } attribute_t;

Attribute Table code is available in “app_att.c”, as shown below:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 138 Ver1.3.0

Figure3-39 Attribute Table in 826x BLE SDK

*Note: The key word “const” is added before Attribute Table definition:

 const attribute_t my_Attributes[] = { ... };

 By adding the “const”, the compiler will store the array data to flash rather than

RAM, while all contents of the Attribute Table defined in flash are read only and not

modifiable.

3.4.2.1 attNum

The “attNum” supports two functions.

1) The “attNum” can be used to indicate the number of valid Attributes in current

Attribute Table, i.e. the maximum Attribute Handle value. This number is only used

in the invalid Attribute item 0 of Attribute Table array.

 {50,0,0,0,0,0},

“attNum = 50” indicates there are 50 valid Attributes in current Attribute Table.

In BLE, Attribute Handle value starts from 0x0001 with increment step of 1, while

the array index starts from 0. When this virtual Attribute is added to the Attribute Table,

each Attribute index equals its Attribute Handle value. After the Attribute Table is

defined, Attribute Handle value of an Attribute can be obtained by counting its index

in current Attribute Table array.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 139 Ver1.3.0

 The final index is the number of valid Attributes (i.e. attNum) in current Attribute

Table. In current SDK, the attNum is set as 50; if user adds or deletes any Attribute, the

attNum needs to be modified correspondingly.

2) The “attNum” can also be used to specify Attributes constituting current Service.

 The UUID of the first Attribute for each Service must be

“GATT_UUID_PRIMARY_SERVICE(0x2800)”; the first Attribute of a Service sets

“attNum” and it indicates following “attNum” Attributes constitute current Service.

 As shown in Figure3-39, for the gap service, the Attribute with UUID of

“GATT_UUID_PRIMARY_SERVICE” sets the “attNum” as 7, it indicates the seven

Attributes from Attribute Handle 1 to Attribute Handle 7 constitute the gap service.

 Similarly, for the HID service, the “attNum” of the first Attribute is set as 27, and it

indicates the following 27 Attributes constitute the HID service.

 Except for Attribute item 0 and the first Attribute of each Service, attNum values

of all Attributes must be set as 0.

3.4.2.2 perm

 The “perm” is the simplified form of “permission” and it serves to specify access

permission of current Attribute by Client.

The “perm” of each Attribute is configurable as one or combination of following

values.

 #define ATT_PERMISSIONS_READ 0x01

 #define ATT_PERMISSIONS_WRITE 0x02

 #define ATT_PERMISSIONS_AUTHEN_READ 0x04

 #define ATT_PERMISSIONS_AUTHEN_WRITE 0x08

 #define ATT_PERMISSIONS_AUTHOR_READ 0x10

 #define ATT_PERMISSIONS_AUTHOR_WRITE 0x20

 #define ATT_PERMISSIONS_ENCRYPT_READ 0x40

 #define ATT_PERMISSIONS_ENCRYPT_WRITE 0x80

3.4.2.3 uuid and uuidLen

As introduced above, UUID supports two types: BLE standard 2-byte UUID, and

Telink proprietary 16-byte UUID. The “uuid” and “uuidLen” can be used to describe the

two UUID types simultaneously.

The “uuid” is an u8-type pointer, and “uuidLen” specifies current UUID length, i.e.

the uuidLen bytes starting from the pointer are current UUID. Since Attribute Table

and all UUIDs are stored in flash, the “uuid” is a pointer pointing to flash.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 140 Ver1.3.0

1) BLE standard 2-byte UUID：

E.g. For the Attribute “devNameCharacter” with Attribute Handle of 2, related

code is shown as below:

 #define GATT_UUID_CHARACTER 0x2803

 static const u16 my_characterUUID = GATT_UUID_CHARACTER;

 {0,2,1,1,(u8*)(&my_characterUUID), (u8*)(&my_devNameCharacter), 0},

“UUID=0x2803” indicates “character” in BLE and the “uuid” points to the address

of “my_devNameCharacter” in flash. The “uuidLen” is 2. When Master reads this

Attribute, the UUID would be “0x2803”.

2) Telink proprietary 16-byte UUID：

E.g. For the Attribute MIC of audio, related code is shown as below:

 #define TELINK_MIC_DATA

 {0x18,0x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01,0x00}

 const u8 my_MicUUID[16] = TELINK_MIC_DATA;

 {0,16,1,1,(u8*)(&my_MicUUID), (u8*)(&my_MicData), 0},

The “uuid” points to the address of “my_MicData” in flash, and the “uuidLen” is

16. When Master reads this Attribute, the UUID would be

“0x000102030405060708090a0b0c0d2b18”.

3.4.2.4 pAttrValue and attrLen

Each Attribute corresponds to an Attribute Value. The “pAttrValue” is an u8-type

pointer which points to starting address of Attribute Value in RAM/Flash, while the

“attrLen” specifies the data length. When Master reads the Attribute Value of certain

Attribute from Slave, the “attrLen” bytes of data starting from the area (RAM/Flash)

pointed by the “pAttrValue” will be read by 826x BLE SDK to Master.

 Since UUID is read only, the “uuid” is a pointer pointing to flash; while Attribute

Value may involve write operation into RAM, so the “pAttrValue” may points to RAM

or flash.

 E.g. For the Attribute hid Information with Attribute Handle of 35, related code is

as shown below:

 const u8 hidInformation[] =

 {

 U16_LO(0x0111), U16_HI(0x0111), // bcdHID (USB HID version)，0x11,0x01

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 141 Ver1.3.0

 0x00, // bCountryCode

 0x01 // Flags

};

{0,2, sizeof(hidInformation), sizeof(hidInformation),(u8*)(&hidinformationUUID),

 (u8*)(hidInformation), 0},

In actual application, the key word “const” can be used to store the read-only 4-

byte hid information “0x01 0x00 0x01 0x11” into flash. The “pAttrValue” points to the

starting address of hidInformation in flash, while the “attrLen” is the actual length of

hidInformation. When Master reads this Attribute, “0x01000111” will be returned to

Master correspondingly.

Figure3-40 shows a packet example captured by BLE sniffer when Master reads

this Attribute. Master uses the “ATT_Read_Req” command to set the target AttHandle

as 0x23 (35), corresponding to the hid information in Attribute Table of SDK.

Figure3-40 BLE sniffer packet sample when Master reads hidInformation

E.g. For the Attribute “battery value” with Attribute Handle of 40, related code is

as shown below:

 u8 my_batVal[1] = {99};

 {0,2,1,1,(u8*)(&my_batCharUUID), (u8*)(my_batVal), 0},

 In actual application, the “my_batVal” indicates current battery level and it will be

updated according to ADC sampling result; then Slave will actively notify or Master will

actively read to transfer the “my_batVal” to Master. The starting address of the

“my_batVal” stored in RAM will be pointed by the “pAttrValue”.

3.4.2.5 Callback function w

The callback function w is write function with prototype as below:

 typedef int (*att_readwrite_callback_t)(void* p);

 User must follow the format above to define callback write function. The callback

function w is optional, i.e. for an Attribute, user can select whether to set the callback

write function as needed (null pointer 0 indicates not setting callback write function).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 142 Ver1.3.0

The trigger condition for callback function w is: When Slave receives any Attribute

PDU with Attribute Opcode as shown below, Slave will check whether the callback

function w is set.

1) opcode = 0x12, Write Request, refer to “Core_v4.2” Page2191.

2) opcode = 0x52, Write Command, refer to “Core_v4.2” Page2193.

After Slave receives a write command above, if the callback function w is not set,

Slave will automatically write the area pointed by the “pAttrValue” with the value sent

from Master, and the data length equals the “l2capLen” in Master packet format minus

3; if the callback function w is set, Slave will execute user-defined callback function w

after it receives the write command, rather than writing data into the area pointed by

the “pAttrValue”. Note: Only one of the two write operations is allowed to take effect.

By setting the callback function w, user can process Write Request and Write

Command in ATT layer of Master. If the callback function w is not set, user needs to

evaluate whether the area pointed by the “pAttrValue” can process the command (e.g.

If the “pAttrValue” points to flash, write operation is not allowed; or if the “attrLen” is

not long enough for Master write operation, some data will be modified unexpectedly.)

Figure3-41 Write Request in BLE stack

Figure3-42 Write Command in BLE stack

The void-type pointer “p” of the callback function w points to the value of Master

write command. Actually “p” points to a memory area, the value of which is shown as

the following structure.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 143 Ver1.3.0

typedef struct{

 u32 dma_len;

 u8 type;

 u8 rf_len;

 u16 l2cap; //l2cap_length

 u16 chanid;

 u8 att; //opcode

 u8 hl; //low byte of Atthandle

 u8 hh; //high byte of Atthandle

 u8 dat[20];

}rf_packet_att_data_t;

“p” points to “dma_len”, valid length of data is l2cap minus 3, and the first valid

data is pw->dat[0].

 int my_WriteCallback (void *p)

 {

 rf_packet_att_data_t *pw = (rf_packet_att_data_t *)p;

 int len = pw->l2cap - 3;

 //add your code

 //valid data is pw->dat[0] ~ pw->dat[len-1]

 return 1;

 }

 The structure “rf_packet_att_data_t” above is available in

“proj_lib/ble/ble_common.h”.

3.4.2.6 Callback function r

The callback function r is read function with prototype as below:

 typedef int (*att_readwrite_callback_t)(void* p);

 User must follow the format above to define callback read function. The callback

function r is also optional, i.e. for an Attribute, user can select whether to set the

callback read function as needed (null pointer 0 indicates not setting callback read

function).

The trigger condition for callback function r is: When Slave receives any Attribute

PDU with Attribute Opcode as shown below, Slave will check whether the callback

function r is set.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 144 Ver1.3.0

1) opcode = 0x0A, Read Request, refer to “Core_v4.2” Page2184.

2) opcode = 0x0C, Read Blob Request, refer to “Core_v4.2” Page2185.

After Slave receives a read command above,

1) If the callback read function is set, Slave will execute this function, and determine

whether to respond with “Read Response/Read Blob Response” according to the

return value of this function.

A. If the return value is 1, Slave won’t respond with “Read Response/Read Blob

Response” to Master.

B. If the return value is not 1, Slave will automatically read “attrLen” bytes of

data from the area pointed by the “pAttrValue”, and the data will be

responded to Master via “Read Response/Read Blob Response”.

2) If the callback read function is not set, Slave will automatically read “attrLen” bytes

of data from the area pointed by the “pAttrValue”, and the data will be responded

to Master via “Read Response/Read Blob Response”.

Therefore, after a Read Request/Read Blob Request is received from Master, if it’s

needed to modify the content of Read Response/Read Blob Response, user can

register corresponding callback function r, modify contents in RAM pointed by the

“pAttrValue” in this callback function, and the return value must be 0.

3.4.2.7 Attribute Table layout

Figure3-43 shows Service/Attribute layout based on Attribute Table. The “attnum”

of the first Attribute indicates the number of valid Attributes in current ATT Table; the

remaining Attributes are assigned to different Services, the first Attribute of each

Service is the “declaration”, and the following “attnum” Attributes constitute current

Service. Actually the first item of each Service is a Primary Service.

const u16 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

#define GATT_UUID_PRIMARY_SERVICE 0x2800 //!< Primary Service

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 145 Ver1.3.0

Figure3-43 Service/Attribute Layout

3.4.2.8 ATT table Initialization

GATT & ATT initialization only needs to transfer the pointer of Attribute Table in

APP layer to protocol stack, and the API below is supplied:

 void bls_att_setAttributeTable (u8 *p);

 “p” is the pointer of Attribute Table.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 146 Ver1.3.0

3.4.3 Attribute PDU & GATT API

 As required by BLE spec, the following Attribute PDU types are supported in

current 826x BLE SDK.

1) Requests: Data request sent from Client to Server.

2) Responses: Data response sent by Server after it receives request from Client.

3) Commands: Command sent from Client to Server.

4) Notifications: Data sent from Server to Client.

5) Indications: Data sent from Server to Client.

6) Confirmations: Confirmation sent from Client after it receives data from Server.

The subsections below will introduce all ATT PDUs in ATT layer. Please refer to

structure of Attribute and Attribute Table to help understanding.

3.4.3.1 Read by Group Type Request, Read by Group Type Response

The “Read by Group Type Request” command sent by Master specifies starting

and ending attHandle, as well as attGroupType. After the request is received, Slave will

check through current Attribute Table according to the specified starting and ending

attHandle, and find the Attribute Group that matches the specified attGroupType.

Then Slave will respond to Master with Attribute Group information via the “Read by

Group Type Response” command.

Figure3-44 Read by Group Type Request/Read by Group Type Response

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 147 Ver1.3.0

 As shown above, Master requests from Slave for Attribute Group information of

the “primaryServiceUUID” with UUID of 0x2800.

 #define GATT_UUID_PRIMARY_SERVICE 0x2800

 const u16 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

The following groups in Slave Attribute Table meet the requirement according to

current demo code.

1) Attribute Group with attHandle from 0x0001 to 0x0007, Attribute Value is

SERVICE_UUID_GENERIC_ACCESS (0x1800).

2) Attribute Group with attHandle from 0x0008 to 0x000a, Attribute Value is

SERVICE_UUID_DEVICE_INFORMATION (0x180A).

3) Attribute Group with attHandle from 0x000B to 0x0025, Attribute Value is

SERVICE_UUID_HUMAN_INTERFACE_DEVICE (0x1812).

4) Attribute Group with attHandle from 0x0026 to 0x0028, Attribute Value is

SERVICE_UUID_BATTERY (0x180F).

5) Attribute Group with attHandle from 0x0029 to 0x0032, Attribute Value is

TELINK_AUDIO_UUID_SERVICE(0x11,0x19,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,

0x06,0x05,0x04,0x03,0x02,0x01,0x00).

Slave responds to Master with the attHandle and attValue information of the five

Groups above via the “Read by Group Type Response” command. The final

ATT_Error_Response indicates end of response. When Master receives this packet, it

will stop sending “Read by Group Type Request”. Please refer to “Core_v4.2” Page2188

for details about the “Read by Group Type Request” and “Read by Group Type

Response” commands.

3.4.3.2 Find by Type Value Request, Find by Type Value Response

The “Find by Type Value Request” command sent by Master specifies starting and

ending attHandle, as well as AttributeType and Attribute Value. After the request is

received, Slave will check through current Attribute Table according to the specified

starting and ending attHandle, and find the Attribute that matches the specified

AttributeType and Attribute Value. Then Slave will respond to Master with the

Attribute via the “Find by Type Value Response” command.

Please refer to “Core_v4.2” Page2179 for details about the “Find by Type Value

Request” and “Find by Type Value Response” commands.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 148 Ver1.3.0

Figure3-45 Find by Type Value Request/Find by Type Value Response

3.4.3.3 Read by Type Request, Read by Type Response

The “Read by Type Request” command sent by Master specifies starting and

ending attHandle, as well as AttributeType. After the request is received, Slave will

check through current Attribute Table according to the specified starting and ending

attHandle, and find the Attribute that matches the specified AttributeType. Then Slave

will respond to Master with the Attribute via the “Read by Type Response”.

Figure3-46 Read by Type Request/Read by Type Response

As shown above, Master reads the Attribute with attType of 0x2A00, i.e. the

Attribute with Attribute Handle of 00 03 in Slave.

 const u8 my_devName [] = {'t', 'S', 'e', 'l', 'f', 'i'};

 #define GATT_UUID_DEVICE_NAME 0x2a00

 const u16 my_devNameUUID = GATT_UUID_DEVICE_NAME;

 {0,2,sizeof (my_devName), sizeof (my_devName),(u8*)(&my_devNameUUID),

 (u8*)(my_devName), 0},

In the “Read by Type response”, attData length is 8, the first two bytes are current

attHandle “0003”, followed by 6-byte Attribute Value.

Please refer to “Core_v4.2” Page2181 for details about the “Read by Type Request”

and “Read by Type Response” commands.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 149 Ver1.3.0

3.4.3.4 Find information Request, Find information Response

The “Find information request” command sent by Master specifies starting and

ending attHandle. After the request is received, Slave will respond to Master with

Attribute UUIDs according to the specified starting and ending attHandle via the “Find

information response”.

As shown below, Master requests for information of three Attributes with

attHandle of 0x0016~0x0018, and Slave responds with corresponding UUIDs.

Figure3-47 Find information request/Find information response

Please refer to “Core_v4.2” Page2177 for details about the “Find information

request” and “Find information response” commands.

3.4.3.5 Read Request, Read Response

The “Read Request” command sent by Master specifies certain attHandle. After

the request is received, Slave will respond to Master with the Attribute Value of the

specified Attribute via the “Read Response” command (If the callback function r is set,

this function will be executed), as shown below.

Figure3-48 Read Request/Read Response

Please refer to “Core_v4.2” Page2184 for details about the “Read Request” and

“Read Response” commands.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 150 Ver1.3.0

3.4.3.6 Read Blob Request, Read Blob Response

If some Slave Attribute corresponds to Attribute Value with length exceeding

MTU_SIZE (It’s set as 23 in current SDK), Master needs to read the Attribute Value via

the “Read Blob Request” command, so that the Attribute Value can be sent in packets.

This command specifies the attHandle and ValueOffset. After the request is received,

Slave will find corresponding Attribute, and respond to Master with the Attribute Value

via the “Read Blob Response” command according to the specified ValueOffset. (If the

callback function r is set, this function will be executed.)

As shown below, when Master needs the HID report map of Slave (report map

length largely exceeds 23), first Master sends “Read Request”, then Slave responds to

Master with part of the report map data via “Read response”; Master sends “Read

Blob Request”, and then Slave responds to Master with data via “Read Blob Response”.

Figure3-49 Read Blob Request/Read Blob Response

Please refer to “Core_v4.2” Page2185 for details about the “Read Blob Request”

and “Read Blob Response” commands.

3.4.3.7 Exchange MTU Request, Exchange MTU Response

As shown below, Master and Slave obtain MTU size of each other via the

“Exchange MTU Request” and “Exchange MTU Response” commands.

Figure3-50 Exchange MTU Request/Exchange MTU Response

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 151 Ver1.3.0

Please refer to “Core_v4.2” Page2175 for details about the “Exchange MTU

Request” and “Exchange MTU Response” commands.

During data access process of Telink BLE Slave GATT layer, if there’s data exceeding

a RF packet length, which involves packet assembly and disassembly in GATT layer,

Slave and Master need to exchange RX MTU size of each other in advance. Transfer of

long packet data in GATT layer can be implemented via MTU size exchange.

1) Callback function of MTU size exchange

Function prototype:

typedef int (*att_mtuSizeExchange_callback_t)(u16, u16);

The first u16 is current connection handle, and it should be “BLS_CONN_HANDLE”

in Slave applications.

The second u16 is ClientRxMTU of Master, based on which Slave can determine

the maximum length for data transfer.

The API below serves to register this callback function:

void blc_att_registerMtuSizeExchangeCb

(att_mtuSizeExchange_callback_t cb);

2) Processing of long Rx packet data in 826x Slave GATT layer

826x Slave ServerRxMTU is set as 23 by default. Actually maximum ServerRxMTU

can reach 241, i.e. 241-byte packet data on Master can be correctly re-assembled

on Slave. When it’s needed to use packet re-assembly of Master in an application,

the API below should be invoked to modify RX size of Slave first.

ble_sts_t blc_att_setRxMtuSize(u16 mtu_size);

The return value is shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

ATT_ERR_INVALID_PARAMETER 0x12 mtu_size exceeds the max value 241.

When Master GATT layer needs to send long packet data to Slave, Master will

actively initiate “ATT_Exchange_MTU_req”, and Slave will respond with

“ATT_Exchange_MTU_rsp”. “ServerRxMTU” is the configured value of the API

“blc_att_setRxMtuSize”. The callback function registered via

“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 152 Ver1.3.0

parameter of the callback is “ClientRxMTU” of Master.

3) Processing of long Tx packet data in 826x Slave GATT layer

When 826x Slave needs to send long packet data in GATT layer, it should obtain

Client RxMTU of Master first, and the eventual data length should not exceed

ClientRxMTU.

First Slave should invoke the API “blc_att_setRxMtuSize” to set its ServerRxMTU.

Suppose it’s set as 158.

blc_att_setRxMtuSize (158);

Then the API below should be invoked to actively initiate an

“ATT_Exchange_MTU_req”.

ble_sts_t blc_att_requestMtuSizeExchange (

u16 connHandle, u16 mtu_size);

“connHandle” is ID of Slave conection, i.e. “BLS_CONN_HANDLE”, while “mtu_size”

is ServerRxMTU.

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 158);

After the “ATT_Exchange_MTU_req” is received, Master will respond with

“ATT_Exchange_MTU_rsp”. Then the callback function registered via

“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second

parameter of the callback function is ClientRxMTU of Master.

3.4.3.8 Write Request, Write Response

The “Write Request” command sent by Master specifies certain attHandle and

attaches related data. After the request is received, Slave will find the specified

Attribute, determine whether to process the data by using the callback function w or

directly write the data into corresponding Attribute Value depending on whether the

callback function w is set by user. Finally Slave will respond to Master via “Write

Response”.

As shown in below, by sending “Write Request”, Master writes Attribute Value of

0x0001 to the Slave Attribute with the attHandle of 0x0016. Then Slave will execute

the write operation and respond to Master via “Write Response”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 153 Ver1.3.0

Figure3-51 Write Request/Write Respons

Please refer to “Core_v4.2” Page2191 for details about the “Write Request” and

“Write Response” commands.

3.4.3.9 Write Command

 The “Write Command” sent by Master specifies certain attHandle and attaches

related data. After the command is received, Slave will find the specified Attribute,

determine whether to process the data by using the callback function w or directly

write the data into corresponding Attribute Value depending on whether the callback

function w is set by user. Slave won’t respond to Master with any information.

 Please refer to “Core_v4.2” Page2193 for details about the “Write Command”.

3.4.3.10 Handle Value Notification

 Please refer to “Core_v4.2” Page2199.

Figure3-52 Handle Value Notification in BLE Spec

The figure above shows the format of “Handle Value Notification” in BLE Spec.

 826x BLE SDK supplies an API for Handle Value Notification of an Attribute. By

invoking this API, user can push the notify data into bottom-layer BLE software fifo.

Stack will push the data of software fifo into hardware fifo during the latest packet

transfer interval, and finally send the data out via RF.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 154 Ver1.3.0

 ble_sts_t bls_att_pushNotifyData (u16 handle, u8 *p, int len);

 “handle” is attHandle of Attribute, “p” is the head pointer of successive memory

data to be sent, while “len” specifies byte number of data to be sent. Since this API

supports auto packet disassembly, long notify data to be sent can be disassembled into

multiple BLE RF packets, large “len” is supported.

 When Link Layer is in Conn state, generally data can be successfully pushed into

bottom-layer software fifo by invoking this API. However, some special cases may

result in invoking failure, and the return value “ble_sts_t” will indicate the

corresponding error reason.

 When this API is invoked in APP layer, it’s recommended to check whether the

return value is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is

needed to re-push the data. The return value is shown as below:

ble_sts_t Value ERR reason

BLE_SUCCESS 0

HCI_ERR_CONN_NOT_ESTABLISH 0x3E Link Layer is in None Conn state.

SMP_EER_PAIRING_IS_GOING_ON 0x8F
Data cannot be sent during pairing

phase.

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUGH 0x3A

Since task with mass data is being

executed, software Tx fifo is not

enough.

3.4.3.11 Handle Value Indication

 Please refer to “Core_v4.2” Page2199.

Figure3-53 Handle Value Indication in BLE spec

 The figure above shows the format of “Handle Value Indication” in BLE Spec.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 155 Ver1.3.0

826x BLE SDK supplies an API for Handle Value Indication of an Attribute. By

invoking this API, user can push the indicate data into bottom-layer BLE software fifo.

Stack will push the data of software fifo into hardware fifo during the latest packet

transfer interval, and finally send the data out via RF.

 ble_sts_t bls_att_pushIndicateData (u16 handle, u8 *p, int len);

“handle” is attHandle corresponding to Attribute, “p” is the head pointer of

successive memory data to be sent, while “len” specifies byte number of data to be

sent. Since this API supports auto packet disassembly, long indicate data to be sent can

be disassembled into multiple BLE RF packets, large “len” is supported.

As specified in BLE Spec, Slave won’t regard data indication as success until

Master confirms the data, and the next indicate data won’t be sent until the previous

data indication is successful.

When Link Layer is in Conn state, generally data will be successfully pushed into

bottom-layer software FIFO by invoking this API; however, some special cases may

result in invoking failure, and the return value “ble_sts_t” will indicate the

corresponding error reason.

When this API is invoked in APP layer, it’s recommended to check whether the

return value is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is

needed to re-push the data. The return value is shown as below:

ble_sts_t Value ERR reason

BLE_SUCCESS 0

HCI_ERR_CONN_NOT_ESTABLISH 0x3E Link Layer is in None Conn state.

SMP_EER_PAIRING_IS_GOING_ON 0x8F
Data cannot be sent during pairing

phase.

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUGH 0x3A

Task with mass data is being

executed, and software Tx fifo is

not enough.

ATT_ERR_PREVIOUS_INDICATE_DATA_HAS_NOT_

CONFIRMED
0x6B

The previous indicate data has not

been confirmed by Master.

3.4.3.12 Handle Value Confirmation

Please refer to “Core_v4.2” Page2200.

 Whenever the API “bls_att_pushIndicateData” is invoked by APP layer to send an

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 156 Ver1.3.0

indicate data to Master, Master will respond with “Confirmation” to confirm the data,

then Slave can continue to send the next indicate data.

 Figure3-54 Handle Value Confirmation in BLE Spec

As shown above, “Confirmation” is not specific to indicate data of certain handle,

and the same “Confirmation” will be responded irrespective of handle.

 A callback function is supplied in SDK for the APP layer to check whether the

indicate data has already been confirmed by Master. The registered callback function

will be executed once when a Handle Value Confirmation is received.

 Type definition of the callback function is shown as below:

 typedef int (*att_handleValueConfirm_callback_t)(void);

 The API below serves to register the callback function:

 void bls_att_registerHandleValueConfirmCb

 (att_handleValueConfirm_callback_t cb);

3.4.4 826x master GATT

In 826x master kma dongle, the following GATT APIs are supplied for simple

service discovery or other data access functions.

void att_req_find_info(u8 *dat, u16 start_attHandle, u16

end_attHandle);

Actual length (byte) of dat: 11.

void att_req_find_by_type (u8 *dat, u16 start_attHandle, u16

end_attHandle, u8 *uuid, u8* attr_value, int len);

Actual length (byte) of dat: 13 + attr_value length.

void att_req_read_by_type (u8 *dat, u16 start_attHandle, u16

end_attHandle, u8 *uuid, int uuid_len);

Actual length (byte) of dat: 11 + uuid length.

void att_req_read (u8 *dat, u16 attHandle);

Actual length (byte) of dat: 9.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 157 Ver1.3.0

void att_req_read_blob (u8 *dat, u16 attHandle, u16 offset);

Actual length (byte) of dat: 11.

void att_req_read_by_group_type (u8 *dat, u16 start_attHandle, u16

end_attHandle, u8 *uuid, int uuid_len);

Actual length (byte) of dat: 11 + uuid length.

void att_req_write (u8 *dat, u16 attHandle, u8 *buf, int len);

Actual length (byte) of dat: 9 + buf data length.

void att_req_write_cmd (u8 *dat, u16 attHandle, u8 *buf, int len);

Actual length (byte) of dat: 9 + buf data length.

For the APIs above, it’s needed to pre-define memory space *dat, then invoke

corresponding API to assemble data, finally invoke “blm_push_fifo” to send “dat” to

Controller for transmission. Note that it’s needed to check whether the return value is

TRUE. The API “att_req_find_info” is taken as an example for user reference.

 u8 cmd[12];

att_req_find_info(cmd, 0x0001, 0x0003);

 if(blm_push_fifo (BLM_CONN_HANDLE, cmd)){
 //cmd send OK

 }

As shown above, after a cmd (e.g. “find info req”/“read req”) is received, Slave

will respond with corresponding response information (e.g. “find info rsp”/“read rsp”)

soon. It’s only needed to process in “int app_l2cap_handler (u16 conn_handle, u8

*raw_pkt)” according to the frame below:

 if(ptrL2cap->chanId == L2CAP_CID_ATTR_PROTOCOL) //att data

 {

 if(pAtt->opcode == ATT_OP_EXCHANGE_MTU_RSP){

 //add your code

 }

 if(pAtt->opcode == ATT_OP_FIND_INFO_RSP){

 //add your code

 }

 else if(pAtt->opcode == ATT_OP_FIND_BY_TYPE_VALUE_RSP){

 //add your code

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 158 Ver1.3.0

 }

 else if(pAtt->opcode == ATT_OP_READ_BY_TYPE_RSP){

 //add your code

 }

 else if(pAtt->opcode == ATT_OP_READ_RSP){

 //add your code

 }

 else if(pAtt->opcode == ATT_OP_READ_BLOB_RSP){

 //add your code

 }

 else if(pAtt->opcode == ATT_OP_READ_BY_GROUP_TYPE_RSP){

 //add your code

 }

 else if(pAtt->opcode == ATT_OP_WRITE_RSP){

 //add your code

 }

 }

3.5 SMP

3.5.1 SMP parameter configuration

 Parameter configuration related to SMP initialization include device bonding and

OOB (Out-Of-Band) data verification.

3.5.1.1 Device bonding

 When it’s needed to bond peer device information after pairing, the function

below should be invoked to enable current device bonding request.

 int blc_smp_enableBonding (int en);

*Note: “en” = 0, disable current device bonding;

 “en”=1 (default), enable current device bonding.

3.5.1.2 Device OOB data verification

 The function below is used for OOB data verification.

 void blc_smp_enableOobFlag (int en, u8 *oobData);

*Notes: en: enable (en=1) or disable (en=0, default) OOB data verification.

oobData: OOB data verification value, pointer to a group of 16-byte data.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 159 Ver1.3.0

3.5.2 SMP enable
 int bls_smp_enableParing (smp_paringTrriger_t encrypt_en);

 Following introduces the definition of the enum-type “smp_paringTrriger_t” and

each parameter.

 typedef enum{

 SMP_PARING_DISABLE_TRRIGER = 0,

 SMP_PARING_CONN_TRRIGER ,

 SMP_PARING_PEER_TRRIGER,

 }smp_paringTrriger_t;

1) encrypt_en = SMP_PARING_DISABLE_TRRIGER;

It indicates pairing encryption is disabled for current device connection. Even if

peer device requests for pairing encryption, the device will reject this request.

It applies to the case when current device does not support encrypted pairing.

As shown below, Master sends pairing request, and then Slave responds with

“SM_Pairing_Failed”.

Figure3-55 Pairing Disable

2) encrypt_en = SMP_PARING_CONN_TRRIGER;

It indicates current device will actively initiate pairing encryption request once it’s

connected with peer device. If peer device initiates pairing request first, current

device will still send pairing request and also respond to the request from peer

device. As shown below, Slave actively sends the “SM_Security_Req”.

Figure3-56 Pairing Conn Trigger

3) encrypt_en = SMP_PARING_PEER_TRRIGER;

It indicates current device won’t actively intiate pairing request, and it will only

respond to the pairing request from peer device. If peer device does not send

pairing request, current device won’t implement encrypted pairing.

As shown below, Slave will respond to the “SM_Pairing_Req” from Master, but

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 160 Ver1.3.0

won’t actively initiate pairing request.

Figure3-57 Pairing Peer Trigger

Note: This function can only be invoked before connection. It’s recommended to

invoke this function during initialization.

3.5.3 SMP event

 As introduced in Controller part, except for Telink defined events, there are some

SMP events, e.g. “BLT_EV_FLAG_PAIRING_BEGIN”, “BLT_EV_FLAG_PAIRING_END”.

3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN

1) Event trigger condition: When Slave just establishes connection with Master and

enters connection state, Slave sends “SM_Security_Req” command, and then

Master sends “SM_Pairing_Req” to request for pairing. After Slave receives this

pairing request, this event will be triggered to indicate pairing starts.

Figure3-58 Pairing_Req sent from Master

2) Pointer “p”: Null pointer.

3) Data length “n”: 0.

3.5.3.2 BLT_EV_FLAG_PAIRING_END

1) Event trigger condition: This event will be triggered when pairing is finished with

success or failure. If Slave or Master fails to follow standard pairing procedure, or

communication abnormity occurs (e.g. report error), pairing will fail.

2) Data length “n”: 1.

3) Pointer “p”: It points to a flag variable, which should be either 0 (pairing success)

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 161 Ver1.3.0

or non-zero value (pairing failure).

3.5.4 SMP bonding information

Please refer to the code of “set direct adv” during initialization of 826x remote.

Slave can store pairing information of up to four Master devices at the same time.

All of the four devices can be re-connected successfully.

The API below serves to set the maximum device number for current storage,

which should not exceed 4 (SMP_BONDING_DEVICE_MAX_NUM). The default value is

4.

#define SMP_BONDING_DEVICE_MAX_NUM 4

ble_sts_t blc_smp_param_setBondingDeviceMaxNumber(int device_num);

Suppose it’s set as “blc_smp_param_setBondingDeviceMaxNumber (4)”: When

pairing information of four paired devices are stored, if the 5th device is paired, the

pairing info of the oldest device will be deleted automatically, so that the pairing info

of the 5th device can be stored.

Suppose it’s set as “blc_smp_param_setBondingDeviceMaxNumber (2)”: When

pairing information of two paired devices are stored, if the 3rd device is paired, the

pairing info of the oldest device will be deleted automatically, so that the pairing info

of the 3rd device can be stored.

 The API below serves to obtain the number of successfully paired Master devices

with pairing info stored in Slave flash.

u8 blc_smp_param_getCurrentBondingDeviceNumber(void);

If the return value is 3, it indicates three paired devices are stored in flash

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 162 Ver1.3.0

currently, and all of the three devices can be re-connected successfully.

“index” is related to “BondingDeviceNumber”: If “BondingDeviceNumber” is 1,

there is only one bonding device, and its index is 0. If “BondingDeviceNumber” is 2,

there are two bonding devices, and the index of the two devices are 0 and 1,

respectively. The index sequence is determined by the latest successful connection

rather than the latest pairing: Suppose Slave is successfully paired with MasterA and

MasterB, successively, since MasterB is the latest device at this moment, in Slave flash

storage, MasterA is index 0, while MasterB is index 1. Then Slave is re-connected with

MasterA successfully, since the latest device is MasterA at this moment, MasterB is

index 0, while MasterA is index 1.

If “BondingDeviceNumber” is 3, the index of the three devices are 0 (the first

connected device), 1, 2 (the latest connected device).

If “BondingDeviceNumber” is 4, the index of the four devices are 0 (the first

connected device), 1, 2, 3 (the latest connected device). As introduced above, if Slave

is successively paired with MasterA, B, C and D, since MasterD is the latest device at

this moment, MasterD is index 3. Then Slave is re-connected with MaserB, since the

latest device at this moment, MasterB is index 3.

Please pay attention to the case when more than four Master devices are paired:

When Slave is successively paired with MasterA, B, C and D, if it’s paired with a new

device MasterE, the first paired device MasterA will be deleted automatically. When

Slave is successively paired with MasterA, B, C and D, if Slave is re-connected with

MasterA (the index sequence is B, C, D, A) and then paired with MasterE, pairing info

of MasterB will be deleted.

 Master device bonding information are stored in flash with format below:

Bonding info contains 64 bytes:

 “peer_addr_type” and “peer_addr” indicate connection address of Master in Link

Layer, which will be used during device direct adv.

 “peer_id_adrType”/“peer_id_addr” and “peer_irk” indicate identity address and

irk declared by Master during “key distribution” phase. Related info won’t be

added to resolving list, unless “peer_addr_type” and “peer_addr” are PRA

(Resolvable Private Addr) and user needs to use adderess filter (Please refer to

“TEST_WHITELIST” in 8267 feature test).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 163 Ver1.3.0

 Other parameters are negligible to user.

The API below serves to obtain device information from flash via “index”.

u32 blc_smp_param_loadByIndex(u8 index,

smp_param_save_t* smp_param_load);

 If the return value is 0, it indicates info obtaining failure; if the return value is

non-zero value, it indicates the starting address of the info in flash.

 E.g. There are three bonding devices currently, to obtain info of the latest

connected device, “index” should be set as “2”:

blc_smp_param_loadByIndex(2， …)

The API below serves to obtain information of bonding device from flash via

Master address (connection addr in Link Layer).

u32 blc_smp_param_loadByAddr(u8 addr_type,

u8* addr, smp_param_save_t* smp_param_load);

 If the return value is 0, it indicates info obtaining failure; if the return value is

non-zero value, it indicates the starting address of the info in flash.

3.6 826x master customized pairing management

In 826x master kma dongle, if SMP is disabled, SDK cannot automatically

implement operations such as pairing/un-pairing. Therefore, it’s needed to add pairing

management in APP layer.

#define BLE_HOST_SMP_ENABLE 0

 A set of demo code is supplied in current SDK, based on which user can extend

and modify as needed.

3.6.1 Design of Flash storage method

By default, sector of flash data area is 0x78000~0x78FFF, which is modifiable in

“app_config.h”.

 #define FLASH_ADR_PARING 0x78000

Starting from flash 0x78000, every 8 bytes constitute an area (8 bytes area). Each

area can store one Slave MAC address: 1-byte mark, 1-byte address type, 6-byte MAC

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 164 Ver1.3.0

address.

typedef struct {

 u8 bond_mark;

 u8 adr_type;

 u8 address[6];

} macAddr_t;

All valid Slave MAC addresses are stored in 8 bytes areas successively: The first

valid MAC adderss is stored in 0x78000~0x78007, and the first byte mark of 0x78000

should be set as “0x5A” to indicate current addr is valid; the second valid MAC address

should be stored in 0x78008~0x7800f, and the mark of 0x78008 should be set as

“0x5A”; the third valid MAC address should be stored in 0x78010~0x78017, and the

mark of 0x78010 should be set as “0x5A”……

To un-pair some Slave device, it’s needed to erase its MAC address in Dongle by

setting the mark of the corresponding 8 bytes area as “0x00”. For example, to erase

the MAC address of the first device as shown above, user should set 0x78000 as “0x00”.

When firmware is being executed, it’s not allowed to invoke the function

“flash_erase_sector” to erase flash, since this operation takes 20~200ms to erase a 4K

sector of flash and will result in BLE timing error. Therefore, the storage method of 8

bytes areas above is used to store MAC address.

Mark of “0x5A” and “0x00” are used to indicate pairing storage and un-pairing

erasing of all Slave MAC addresses. Considering 8 bytes areas may occupy the whole

sector 4K flash and thus result in error, a special processing is added during

initialization: read valid MAC address information from 8 bytes areas starting from

0x78000, and deliver them to slave mac table in RAM. During this process, it will check

whether there are too many 8 bytes areas. If so, the whole sector will be erased, the

slave mac table in RAM will be re-writen into 8 bytes areas starting from 0x78000.

3.6.2 Slave Mac table

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 165 Ver1.3.0

user_salveMac_t user_tbl_slaveMac;

The structure above serves to use slave mac table in RAM to maintain all paired

devices.

The macro “USER_PAIR_SLAVE_MAX_NUM” serves to set the number of

maintainable paired devices. Its default value is 1, which indicates one paired device is

maintainable. User can modify this value as needed.

 Suppose user needs to maintain three devices, “USER_PAIR_SLAVE_MAX_NUM”

should be set as 3. In “user_tbl_slaveMac”, “curNum” indicates the number of current

valid Slave devices in flash; “bond_flash_idx” array records corresponding offset based

on 0x78000 for starting address of each 8 bytes area in flash (during device un-pairing,

based on corresponding offset, the mark of 8 bytes area can be found and it should be

set as “0x00”); “bond_device” array record MAC addresses.

3.6.3 API

Based on the design of flash storage method and slave mac table, a few APIs are

supplied, as shown below.

3.6.3.1 user_tbl_slave_mac_add

int user_tbl_slave_mac_add(u8 adr_type, u8 *adr);

The API above should be invoked when there’s new device paired, and it serves

to add a Slave MAC address.

The return value should be either 1 (success) or 0 (failure).

First this function will check whether current number of devices in flash and

slave mac table has reached the maximum.

 If not, the MAC address of new device will be added into slave mac table, and

stored in an 8 bytes area of flash.

 If the number has reached the maximum, the processing policy can be “pairing is

not allowed” or “the oldest device is directly deleted”. In Telink demo, the latter

policy is adopted, since the maximum number of paired device is set as 1, the

“user_tbl_slave_mac_delete_by_index(0)” should be used to delete current

paired device, then the new device can be added into slave mac table.

User can modify the implementation of this function according to his policy.

3.6.3.2 user_tbl_slave_mac_search

int user_tbl_slave_mac_search(u8 adr_type, u8 * adr)

The API above serves to search device according to device address of adv report,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 166 Ver1.3.0

and check whether slave mac table contains this device. That is: It will check whether

current device sending adv packet is ever paired with Master; if the device is ever

paired, it can be directly connected.

3.6.3.3 user_tbl_slave_mac_delete_by_adr

int user_tbl_slave_mac_delete_by_adr(u8 adr_type, u8 *adr)

The API above serves to delete a paired device from slave mac table by a specified

address.

3.6.3.4 user_tbl_slave_mac_delete_by_index

void user_tbl_slave_mac_delete_by_index(int index)

The API above serves to delete a paired device from slave mac table by a specified

index. “Index” value indicates device pairing sequence. If the maximum pairing

number is 1, the index of paired device is always 0; if the maximum pairing number is

2, the index of the first paired device is 0, and the index of the second paired device is

1……

3.6.3.5 user_tbl_slave_mac_delete_all

void user_tbl_slave_mac_delete_all(void)

The API above serves to delete all paired devices from slave mac table.

3.6.3.6 user_tbl_salve_mac_unpair_proc

void user_tbl_salve_mac_unpair_proc(void)

The API above serves to process un-pairing command. The processing method in

reference code about “delete all paired devices” corresponds to the default maximum

pairing number (1).

3.6.4 Connection and pairing

When Master receives adv packet reported by Controller, it will connect with

Slave in the following cases:

1) The function “user_tbl_slave_mac_search” is invoked to check whether current

device is already paired with Master and un-pairing is not implemented. If yes,

connection can be established automatically.

master_auto_connect = user_tbl_slave_mac_search(pa->adr_type, pa->mac);

if(master_auto_connect) { create connection }

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 167 Ver1.3.0

2) If current adv device is not in slave mac table, auto connection won’t be initiated,

thus it’s needed to check whether the manual pairing condition is met. In SDK, if

current adv device is near enough, two manual pairing solutions are supported by

default: pairing button on Master dongle is pressed; current adv data is Telink-

defined pairing adv packet data. Following is the reference code:

if(user_manual_paring) { create connection }

 If connection is triggered by manual pairing, after connection is established

successfully, i.e. when “HCI LE CONECTION ESTABLISHED EVENT” is reported, current

device will be added into slave mac table.

// if this connection establish is a new device manual paring, should

add this device to slave table

if(user_manual_paring && !master_auto_connect){

 user_tbl_slave_mac_add(pc->peer_adr_type, pc->mac);

}

3.6.5 Un-pairing

As shown in the reference code above, when un-pairing condition is triggered,

Master will invoke “blm_ll_disconnect” to terminate connection, then invoke

“user_tbl_salve_mac_unpair_proc” to process un-pairing. Demo code will directly

delete all paired devices, since the maximum number of paired devices is 1 by default,

only one device will be deleted. If the configured maximum number exceeds 1,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 168 Ver1.3.0

“user_tbl_slave_mac_delete_by_adr” or “” should be invoked to delete specific device.

In Demo code, un-pairing condition will be triggered in the following two cases:

 Un-pairing button on Master dongle is pressed;

 Un-pairing key value “0xFF” is received in “HID keyboard report service”.

User can modify the trigger condition of un-pairing as needed.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 169 Ver1.3.0

4 Power Management (PM)

4.1 PM driver

 Driver files related to PM are available in proj_lib/pm_826x.h, proj_lib/pm_826x.c,

proj/mcu_spec/gpio_826x.h and proj/mcu_spec/gpio_826x.c.

4.1.1 Low power modes

 826x MCU supports three basic modes.

1) Working mode: In this mode, MCU executes firmware, hardware digital modules

work normally, related analog modules and BLE RF transceiver can be enabled

depending on firmware. The current in this mode is about 10~30mA.

2) Suspend mode: Low power mode 1. In this mode, firmware stops running, similar

to suspend function. Most hardware modules in IC are powered down, while the

PM module still works normally. All digital registers, analog registers and memory

are non-volatile in this mode, i.e. all data and states are held and won’t be lost.

The pure IC current in this mode is about 7~8uA. After wakeup from suspend,

firmware continues running from the break point.

3) Deepsleep mode: Low power mode 2. In this mode, firmware stops running, the

vast majority of hardware modules in IC are powered down, while the PM module

still works. Only a few retention analog registers are non-volatile in this mode;

other (digital and analog) registers and memory are volatile, i.e. all data won’t be

held. The retention analog registers (DEEP_ANA_REG in pm_826x.h) can be used

to store some necessary information. After wakeup from deepsleep, MCU is

rebooted, and it’s equivalent to power cycle (power cycle will reset all registers);

firmware restarts running and enters initialization. User can store some

information in DEEP_ANA_REG before MCU enters deepsleep. Then user can

judge whether it’s pure power cycle or wakeup from deepsleep, by reading

retention analog registers during initialization and checking whether there’re pre-

configured information. The pure IC current in this mode is about 0.7uA; if internal

flash current (~1uA) is added, the total current is about 1.7uA.

As introduced in Link Layer timing sequence, during each Adv Interval /

Connection Interval, MCU works with low duty cycle and enters suspend after tasks

are processed. Since MCU stays in suspend state at most time and current in suspend

is very low, the average current is decreased largely to enable low power.

 When MCU does not need to work, it can be configured to enter deepsleep to

minimize power, and certain sources can be configured to wake up MCU.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 170 Ver1.3.0

4.1.2 Hardware wakeup sources

 Figure4-1 shows wakeup sources available for 826x MCU: In suspend mode, it can

be woke up by CORE and timer sources; while in deepsleep mode, it can be woke up

by PAD and timer sources. In 826x BLE SDK, the following three types of wakeup

sources are selectable.

 enum {

 PM_WAKEUP_PAD = BIT(4),

 PM_WAKEUP_CORE = BIT(5),

 PM_WAKEUP_TIMER = BIT(6),

};

CORE

32k timer

PAD

Suspend
Mode

Deepsleep
Mode

PA0

wakeup

wakeupPA1

PF0
PF1

GPIO
WAKEUP
MODULE

.

.

.

.

.

.

.

.

.

wakeup

wakeup

wakeup

Figure4-1 Hardware wakeup sources for 826x MCU

 As shown above, MCU can be woke up from low-power mode (suspend or

deepsleep) by hardware wakeup source TIMER, CORE or PAD.

The wakeup source “PM_WAKEUP_TIMER” is derived from hardware 32kHz RC

timer. This timer is correctly initialized in SDK, and user only needs to set this wakeup

source in “cpu_sleep_wakeup()”.

 The two wakeup sources including “PM_WAKEUP_CORE” and “PM_WAKEUP_PAD”

are derived from GPIO. High/Low level of all GPIOs can be configured to wakeup MCU

from suspend/deepsleep via the CORE/PAD module. The CORE module can only

wakeup MCU from suspend, while the PAD module can wakeup MCU from both

suspend and deepsleep. However, in 826x BLE SDK, GPIO CORE is appointed as wakeup

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 171 Ver1.3.0

source for suspend, while GPIO PAD is appointed as wakeup source for deepsleep.

The APIs below can be invoked to enable high or low level wakeup of certain GPIO

source.

1) Configure GPIO CORE as wakeup source for suspend:

 void gpio_set_wakeup(u32 pin, u32 level, int en);

Note: “pin” indicates GPIO pin; “level” indicates wakeup trigger level, 1-high level

wakeup, 0-low level wakeup; “en”: 1-enable, 0-disable.

Examples:

 gpio_set_wakeup(GPIO_PC2, 1, 1); // Enable GPIO_PC2 CORE high level wakeup

 gpio_set_wakeup(GPIO_PC2, 1, 0); // Disable GPIO_PC2 CORE wakeup

 gpio_set_wakeup(GPIO_PB5, 0, 1); // Enable GPIO_PB5 CORE low level wakeup

 gpio_set_wakeup(GPIO_PB5, 0, 0); // Disable GPIO_PB5 CORE wakeup

2) Configure GPIO PAD as wakeup source for deepsleep:

 void cpu_set_gpio_wakeup (int pin, int pol, int en);

Note: “pin” indicates GPIO pin; “pol” indicates wakeup trigger polarity, 1-high level

wakeup, 0-low level wakeup; en: 1-enable, 0-disable.

Examples:

 cpu_set_gpio_wakeup (GPIO_PC2, 1, 1); // Enable GPIO_PC2 PAD high level wakeup

 cpu_set_gpio_wakeup (GPIO_PC2, 1, 0); // Disable GPIO_PC2 PAD wakeup

 cpu_set_gpio_wakeup (GPIO_PB5, 0, 1); // Enable GPIO_PB5 PAD low level wakeup

 cpu_set_gpio_wakeup (GPIO_PB5, 0, 0); // Disable GPIO_PB5 PAD wakeup

4.1.3 Low power mode entry and wakeup

The API “cpu_sleep_wakeup” in “proj_lb/pm_826x.h” can be invoked to

configure MCU to enter low power mode and set wakeup source(s).

 int cpu_sleep_wakeup (int deepsleep, int wakeup_src, u32 wakeup_tick);

Notes:

1) “deepsleep”: 0-enter suspend, 1-enter deepsleep.

2) “wakeup_src”: It’s used to configure wakeup source(s) for current

suspend/deepsleep, and it’s selectable from PM_WAKEUP_PAD,

PM_WAKEUP_CORE and PM_WAKEUP_TIMER correspondingly. Note that

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 172 Ver1.3.0

PM_WAKEUP_TIMER and PM_WAKEUP_CORE can be used as wakeup source for

suspend, while PM_WAKEUP_TIMER and PM_WAKEUP_PAD can be used as

wakeup source for deepsleep. If wakeup_src is set as 0, MCU can’t be woke up

after it enters low power mode.

3) “wakeup_tick”: If the PM_WAKEUP_TIMER is not configured, this parameter is

invalid. Only when the PM_WAKEUP_TIMER is configured in the wakeup_src, the

wakeup_tick (absolute value) needs to be configured as current system tick plus

sleep time tick, and it determines when MCU will be woke up by timer. When

system tick value matches the configured wakeup_tick, MCU is woke up from low

power mode. If the wakeup_tick is directly configured not considering system tick,

wakeup time can’t be effectively controlled.

The absolute wakeup_tick value must be within the range of 32-bit system tick,

the maximum sleep time configured by this API is limited. In current design, maximum

sleep time is set as 32bit max system tick * 3/4. For 16MHz clock, max system tick is

268s, the maximum suspend/deepsleep should be 268s*3/4=201s

 The int return value is one or “logic or” result of the five values in the enum below.

 enum {

 WAKEUP_STATUS_COMP = BIT(0),

 WAKEUP_STATUS_TIMER = BIT(1),

 WAKEUP_STATUS_CORE = BIT(2),

 WAKEUP_STATUS_PAD = BIT(3),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),

 };

1) WAKEUP_STATUS_COMP is never used in BLE SDK, and it’s negligible to user.

2) WAKEUP_STATUS_TIMER/ WAKEUP_STATUS_CORE/ WAKEUP_STATUS_PAD

correspond to PM_WAKEUP_TIMER/ PM_WAKEUP_CORE/ PM_WAKEUP_PAD, which

indicate wakeup source to trigger current low power mode.

3) STATUS_GPIO_ERR_NO_ENTER_PM is a special state, and indicates a GPIO wakeup

error occurs currently. E.g. When a GPIO CORE high level wakeup is configured,

when this GPIO is high level, it tries to invoke “cpu_sleep_wakeup” to enter

suspend and wakeup source is set as “PM_WAKEUP_CORE”. In this case, MCU

cannot enter suspend, but will exit “cpu_sleep_wakeup” immediately and return

the value “STATUS_GPIO_ERR_NO_ENTER_PM”.

4) Note: The return value may be (WAKEUP_STATUS_TIMER | WAKEUP_STATUS_CORE)

and it indicates two wakeup sources take effect simultaneously.

Generally the following method is used to control sleep time:

cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() + delta_Tick);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 173 Ver1.3.0

 “delta_Tick” is a relative time (e.g. 100*CLOCK_SYS_CLOCK_1MS). The result of

“clock_time()” plus “delta_Tick” is absolute time.

 cpu_sleep_wakeup usage examples:

1) cpu_sleep_wakeup (0, PM_WAKEUP_CORE, 0);

MCU enters suspend mode when this function is executed, and it can be woke up

by GPIO CORE only.

2) cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() +

10*CLOCK_SYS_CLOCK_1MS);

MCU enters suspend mode when this function is executed, and it can be woke up

by TIMER only; suspend time is 10ms, i.e. wakeup time is function execution

moment plus 10ms.

3) cpu_sleep_wakeup (0, PM_WAKEUP_CORE | PM_WAKEUP_TIMER,clock_time() +

50*CLOCK_SYS_CLOCK_1MS);

MCU enters suspend mode when this function is executed, and it can be woke up

by GPIO CORE and TIMER. Timer wakeup time is set as 50ms relative to function

execution moment; if GPIO CORE wakeup is triggered before 50ms expires, MCU

will be woke up by GPIO, otherwise MCU will be woke up by Timer.

4) cpu_sleep_wakeup (1, PM_WAKEUP_PAD, 0);

MCU enters deepsleep mode when this function is executed, and it can be woke

up by GPIO PAD.

5) cpu_sleep_wakeup (1, PM_WAKEUP_TIMER, clock_time() + 8*

CLOCK_SYS_CLOCK_1S);

MCU enters deepsleep mode when this function is executed, and it can be woke

up by Timer. Deep sleep time is 8s.

6) cpu_sleep_wakeup (1, PM_WAKEUP_PAD | PM_WAKEUP_TIMER,clock_time() +

10*CLOCK_SYS_CLOCK_1S);

MCU enters deepsleep mode when this function is executed, and it can be woke

up by GPIO PAD and Timer. Timer wakeup time is 10s relative to function execution

moment. If GPIO PAD wakeup is triggered before 10s expires, MCU will be woke

up by GPIO, otherwise MCU will be woke up by Timer.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 174 Ver1.3.0

4.2 BLE low power management

 In 826x BLE SDK, low power management is implemented via power management

of Link Layer.

 In current Telink BLE SDK, stack bottom layer only implements low power

management for Advertising state and Connection state Slave role, and a set of APIs

are supplied for user. As for other states, low power management is not directly

supplied, or it’s needed to invoke PM driver to implement PM, e.g. PM in Idle state.

4.2.1 PM in Idle state

 When Link Layer is in Idle state, the “blt_sdk_main_loop” does not execute any

operation, and low power management is not supplied in SDK. User needs to invoke

the API “cpu_sleep_wakeup()” to implement low power management, i.e. configure

MCU to enter suspend or deepsleep mode, and set wakeup source correspondingly.

Figure4-2 PM in Link Layer Idle state

 The figure above shows simple reference code: When Link Layer is in Idle state,

there’s 10ms suspend during each mainloop.

 In Idle state, MCU can also enter deepsleep mode directly.

4.2.2 PM in BLE Adv state & Conn state

When Link Layer is in Advertising state or Conn state Slave role:

1) In Advertising state, during each Adv Interval, the remaining time except for Adv

Event can be used to process UI task or enter suspend.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 175 Ver1.3.0

2) In Conn state Slave role, during each Conn interval, the remaining time except for

Brx Event (brx start + brx working + brx post) can be used to process UI task or

enter suspend.

Actually BLE PM includes the management of the UI task/suspend duration. User

can manage this duration, and determine whether to run UI task or enter suspend to

save power.

BLE PM does not include the management of deepsleep. User can directly invoke

“cpu_sleep_wakeup” in UI layer to enter deepsleep.

 BLE PM does not need user to directly invoke the API “cpu_sleep_wakeup” in PM

driver layer. In BLE stack part of 826x BLE SDK, according to states and low power

modes of Link Layer, a PM mechanism is supplied (code is in “blt_sdk_main_loop”).

User only needs to invoke corresponding API to configure and manage low power.

4.3 BLE PM configuration

4.3.1 PM module initialization

Similar to the design of Link Layer state machine, it’s needed to enable PM

module during initialization by invoking the API below.

void blc_ll_initPowerManagement_module(void);

 Applications without the need of PM won’t invoke this API, thus PM related code

and variables won’t be compiled to firmeware, and resources can be saved.

4.3.2 Set low power mode via “bls_pm_setSuspendMask”

 The API below serves to configure PM for Link Layer Advertising state and Conn

state in 826x BLE SDK:

 void bls_pm_setSuspendMask (u8 mask);

 u8 bls_pm_getSuspendMask (void);

By using the “bls_pm_setSuspendMask”, a bottom-layer variable “SuspendMask”

is set to configure low power mode. Actually the variable in code is

“bls_pm.suspend_mask”, and its default value is “SUSPEND_DISABLE”.

 The “bls_pm_getSuspendMask” serves to obtain current SuspendMask value,

which equals the value configured by previous invoked “bls_pm_setSuspendMask”. If

the variable is not configured, the value equals the default “SUSPEND_DISABLE”.

The SuspendMask is selectable from the values below.

////////////////// Power Management ///////////////////////

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 176 Ver1.3.0

#define SUSPEND_DISABLE 0

#define SUSPEND_ADV BIT(0)

#define SUSPEND_CONN BIT(1)

#define MCU_STALL BIT(6)

MCU_STALL is a special mode and it will be introduced later.

Please refer to Link Layer timing sequence (section 3.2.4) and working mechanism

of low power management (section 4.3.4) to help understand the configuration of

“bls_pm_setSuspendMask”.

SuspendMask can be selectable as any one of the values above, or combination

value (“or” operation) of Advertising state and Conn state, as shown below:

 bls_pm_setSuspendMask(SUSPEND_ADV);

 bls_pm_setSuspendMask(SUSPEND_CONN);

 bls_pm_setSuspendMask(MCU_STALL);

 bls_pm_setSuspendMask(SUSPEND_DISABLE);

 bls_pm_setSuspendMask(SUSPEND_ADV | SUSPEND_CONN);

4.3.3 Set low power wakeup source via “bls_pm_setWakeupSource”

 MCU can enter suspend or deepsleep by invoking the “bls_pm_setSuspendMask”.

The API below serves to set corresponding wakeup souce.

 void bls_pm_setWakeupSource(u8 source);

 This API sets a bottom-layer variable “WakeupSource”. Actually the variable in

code is “bls_pm.wakeup_src”.

The WakeupSource is selectable from PM_WAKEUP_PAD, PM_WAKEUP_CORE,

PM_WAKEUP_TIMER or corresponding combination (“or” operation).

 If MCU enters suspend mode from Advertising state or Conn state Slave role,

actual system wakeup source should be:

 WakeupSource | PM_WAKEUP_TIMER

The “PM_WAKEUP_TIMER” is necessary and it does not depend on user

configuration, which ensures MCU can be woke up to process Adv Event or Brx Event.

The wakeup source configured by “bls_pm_setWakeupSource” only applies to

current low power mode; once MCU is woke up from suspend/deepsleep, the

WakeupSource will be cleared in bottom layer and become invalid. It’s needed to re-

configure the wakeup source for each subsequent low power mode.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 177 Ver1.3.0

4.3.4 Working mechanism of low power managment

 To help understand the configuration of “SuspendMask” and “WakeupSource”,

this section will introduce the principle of low power management mechanism.

 In SDK, mainloop is a structure of while(1):

 while(1)

 {

 blt_sdk_main_loop();

 //UI task

 }

 As long as UI task does not take especially long time, the “blt_sdk_main_loop”

including the code of BLE low power management mechanism will always be executed.

Corresponding to BLE Link Layer timing sequence (section 3.2.4), two time

parameters are defined: “T_advertising” indicates the start time of Link Layer Adv

Event in Advertising state; “T_brx” indicates the start time of Link Layer Brx Event in

Conn state Slave role.

 In blt_sdk_main_loop, the pseudo code corresponding to low power management

is shown as below:

int blt_sdk_main_loop (void)

{

 ……

 if(SuspendMask == SUSPEND_DISABLE) // SUSPEND_DISABLE, not enter low
power mode

 {

 return 0;

 }

 if(Link Layer State is in Advertising state or Conn state Slave role)

{

 if(Link Layer is in Adv Event or Brx Event) // BLE packet transfer is
onging, not enter low power mode

 {

 return 0;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 178 Ver1.3.0

 }

 else

 {

 blt_brx_sleep ();//suspend & wakeup processing function

}

}

 return 1;

}

void blt_brx_sleep (void)

{

if((Link Layer state == Adv state)&& (SuspendMask&SUSPEND_ADV))

{ // Enter suspend from current Adv state

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_ENTER”

 cpu_sleep_wakeup (0, PM_WAKEUP_TIMER | WakeupSource,

 T_advertising + advInterval); //suspend

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_EXIT”

 if(current suspend is woke up by GPIO CORE in advance)

 {

 Execute callback function of event

“BLT_EV_FLAG_GPIO_EARLY_WAKEUP”

 Re-enter suspend, until wakeup at

“T_advertising+advInterval”

 }

 }

else if((Link Layer state == Conn state Slave role)&&

 (SuspendMask&SUSPEND_CONN))// Enter suspend from current Conn

state

{

 u32 wakeup_tick;

 if(conn_latency is not 0) //conn_latency != 0

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 179 Ver1.3.0

 {

 // refer to section 4.4 for latency_use

 u16 latency_use = bls_calculateLatency();

 wakeup_tick = T_brx + (latency_use+1) * conn_interval;

 }

 else //conn_latency == 0

 {

 wakeup_tick = T_brx + conn_interval;

 }

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_ENTER”

 cpu_sleep_wakeup(0,PM_WAKEUP_TIMER|WakeupSource, wakeup_tick);

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_EXIT”

 if(current suspend is woke up by GPIO CORE in advance)

 {

 Execute callback function of event

“BLT_EV_FLAG_GPIO_EARLY_WAKEUP”

 BLE timing sequence adjustment related processing

 }

 }

 // clear low power configuration parameters related to user

 WakeupSource= 0;// clear wakeup source configuration

 user_latecny = 0xffff;

}

4.4 “latency_use” configuration and calculation

 As introduced in working mechanism of low power management (section 4.3.4),

if the “suspendMask” is set as “SUSPEND_CONN” in Conn state Slave role, the actual

wakeup time should be:

 wakeup_tick = T_brx + (latency_use+1) * conn_interval;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 180 Ver1.3.0

 “T_brx”: Brx Event Rx time during current interval.

If “latency_use” is 0, MCU must be woke up during next interval to listen for

packets; if “latency_use” is not 0, MCU can skip “latency_use” intervals to save power.

 latency_use = bls_calculateLatency();

 The calculation of “latency_use” involves a “user_latency” with configurable value:

 void bls_pm_setManualLatency(u16 latency)

 {

 user_latency = latency;

 }

 “latency_use” calculation process is shown as below.

First calculate system latency:

1) If connection latency in current connection parameters is 0, system latency would

be 0.

2) If connection latency in current connection parameters is not 0:

A. If current system has unfinished task (e.g. there are data to be sent, or there

are data received from Master to be processed), MCU must be woke up during

next interval to continue the task, so system latency should be 0.

B. If current system has no task to process, system latency should equal

connection latency except in the case below: If “update map request” or

“update connection parameter request” is received from Master, and the

actual update moment is earlier than (connection latency+1) intervals, the

actual system latency would ensure MCU is woke up during the interval before

the actual update moment, so as not to disturb BLE timing sequence.

 Acutally the eventual latency_use equals min(system latency, user_latency), i.e.

the minimum value of system latency and user_latency.

 If the latency manually configured by invoking “bls_pm_setManualLatency”

during UI entry is smaller than system latency, it can be used as the eventual

latency_use. It only applies to non-zero system latency.

Note that the final sentence of each “blt_sdk_main_loop” will set “user_latency”

as “0xffff”. Therefore, the user latency configured by invoking

“bls_pm_setManualLatency” only applies to the current suspend.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 181 Ver1.3.0

4.5 Other APIs

4.5.1 bls_pm_getSystemWakeupTick

The API below serves to obtain suspend wakeup time (system tick value)

calculated by PM module.

 u32 bls_pm_getSystemWakeupTick(void);

 According to section 4.3.4, this API can be invoked only in the callback function of

“BLT_EV_FLAG_SUSPEND_ENTER” event.

When the “blt_brx_sleep” function is executed by PM module, the suspend

wakeup time is calculated according to current Link Layer state and the “SuspendMask”

set in APP layer. APP layer can read this value only via the callback function of

“BLT_EV_FLAG_SUSPEND_ENTER” event.

For example, MCU needs to enter suspend from Conn state, and conn latency is

not 0:

 u16 latency_use = bls_calculateLatency();

 wakeup_tick = T_brx + (latency_use+1) * conn_interval;

 cpu_sleep_wakeup(0,PM_WAKEUP_TIMER|WakeupSource, wakeup_tick);

 APP layer can’t predict in advance the latency_use calculated by

“bls_calculateLatency” and thus does not know the actual wakeup_tick; the wakeup

time can be obtained only by invoking “bls_pm_getSystemWakeupTick” in the callback

function of “BLT_EV_FLAG_SUSPEND_ENTER” event.

Following is a key scan application example to illustrate the usage of

“BLT_EV_FLAG_SUSPEND_ENTER” callback function and

“bls_pm_getSystemWakeupTick”.

 bls_app_registerEventCallback(BLT_EV_FLAG_SUSPEND_ENTER,

 &ble_remote_set_sleep_wakeup);

voidble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{

 if(bls_ll_getCurrentState() == BLS_LINK_STATE_CONN &&

 ((u32)(bls_pm_getSystemWakeupTick() - clock_time())) >

 80 * CLOCK_SYS_CLOCK_1MS)

 {

 //gpio CORE wakeup suspend

 bls_pm_setWakeupSource(PM_WAKEUP_CORE);

 }

}

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 182 Ver1.3.0

 The callback function is used to avoid key press loss. Generally, a key press lasts

for hundreds of milliseconds~100ms. When “bls_pm_setSuspendMask” configures

MCU to enter suspend from both Advertising state and Conn state, if “Conn Latency”

is not enabled (0), as long as Adv interval and Conn interval is not especially large

(generally set as a value not exceeding 100ms), suspend time won’t exceed Adv

interval and Conn interval; since it can ensure key scan frequency, key press loss can

be avoided. In this case, GPIO wakeup is not configured, so that key press won’t

wakeup MCU.

However, if latency is enabled, (e.g. conn_interval is 10ms, latency is 99), suspend

may last for 1s in Conn state. During this process, there may be key press lost. Check

in the “BLT_EV_FLAG_SUSPEND_ENTER” callback, if current state is Conn state, and

wakeup time for the following suspend is more than 80ms from current time, GPIO

CORE wakeup will be added. If timer wakeup is not triggered yet, and GPIO level

changes due to key press, MCU wakeup is triggered in advance, so that key press won’t

be lost and key scan task can be processed.

4.5.2 bls_pm_enableAdvMcuStall

The API below serves to decrease peak current during advertising.

void bls_pm_enableAdvMcuStall(u8 en);

“en”: 1-Enable MCU stall; 0-Disable MCU stall.

Note: Timer0 is used in stack bottom layer to implement MCU stall during advertising.

If this power optimization is added, APP layer should use Timer1/Timer2 rather than

Timer0.

4.5.3 cpu_sleep_wakeup2

The API below serves to set long deep or suspend time, and wake up automatically when

setting time is over. The max time interval supports by this API is 71 minutes.

int cpu_sleep_wakeup2(int deepsleep,

int wakeup_src,

unsigned long SleepDurationUs);

Please be noted, the unit of parameter SleepDurationUs is us, and it is an abosulte value,

i.e., just input sleep duration (differ from relatively value of cpu_sleep_wakeup). E.g., if

the sleep duration is 10 min,

cpu_sleep_wakeup2(DEEPSLEEP_MODE, PM_WAKEUP_TIMER, 10*60*1000*1000);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 183 Ver1.3.0

4.6 Notes about GPIO wakeup

4.6.1 Fail to enter suspend/deepsleep when wakeup level is valid

 Since 826x CORE/PAD wakeup is triggered by high/low level rather than

positive/negative edge, after GPIO CORE or PAD source is configured, e.g. MCU is

configured to wake up from suspend by high level of certain GPIO CORE, the GPIO

input must be low level when MCU invokes “cpu_wakeup_sleep” to enter suspend. If

the GPIO is already high level input currently, the configuration won’t take effect, and

Slave doesn’t enter suspend. This also applies to GPIO PAD wakeup.

The situation above may lead to unexpected problems. For example, MCU is

expected to enter deepsleep and execute firmware after wakeup; however, MCU can’t

enter deepsleep and continues to execute the code unexpectedly, thus firmware

running flow may be messed.

 In code of 826x ble remote, a solution is given to solve the problem.

 Via configuration in “BLT_EV_FLAG_SUSPEND_ENTER”, GPIO CORE wakeup won’t

be enabled unless suspend time exceeds the specified time (e.g. 80ms).

void ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{

 if(bls_ll_getCurrentState() == BLS_LINK_STATE_CONN &&

 ((u32)(bls_pm_getSystemWakeupTick() - clock_time())) >

 80 * CLOCK_SYS_CLOCK_1MS)

 {

 bls_pm_setWakeupSource(PM_WAKEUP_CORE);

 }

}

 When there’s key not released, user can ensure suspend time won’t exceed 80ms

by manually setting latency as 0 or a small value, thus GPIO CORE high-level wakeup

won’t be enabled with key held (high level in drive pin). The sample code is shown as

below:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 184 Ver1.3.0

 MCU will enter deepsleep in following cases:

1) There is no task (including key press task) for successive 60s duration. In this case,

the problem MCU can’t enter deepsleep due to high level from drive pin can be

avoided.

2) Some button is stuck for 60s. In this case, though high level is input in drive pin,

by inverting the polarity of the stuck drive pin to low-level wakeup, MCU is allowed

to enter deepsleep (refer to section 7.7).

 User should pay attention to this problem when using Telink GPIO CORE/PAD

wakeup.

4.7 BLE system PM reference

As introduced above, user can flexibly configure low power management in UI

entry.

In this section, low power management code sample of 826x remote (audio RC)

is given for user reference.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 185 Ver1.3.0

Figure4-3 Reference code of 8267 remote low power management

The “blt_pm_proc()” function is included in UI entry of main_loop.

Note: If UI entry needs to process multiple tasks, the “blt_pm_proc()” should be close

to the “blt_sdk_main_loop”, since its setting depends on processing result of other

tasks in UI entry.

Conclusions about low power management are shown as below:

1) If it’s needed to disable suspend for task such as audio (ui_mic_enable) or IR, the

“SuspendMask” should be set as “SUSPEND_DISABLE”.

2) In Advertising state, if Slave continuous adv time reaches 60s, it should be

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 186 Ver1.3.0

configured to enter deepsleep in current main_loop, and wakeup source should

be set as “GPIO PAD” (enable key press wakeup in advance). Software timer is used

to check whether adv time exceeds 60s, and the variable “advertise_begin_tick”

serves to record the system tick when adv starts.

Slave is configured to enter deepsleep after 60s of no advertising, so as to save

power and avoid Slave from advertising when Master fails to respond. Actually

user needs to evaluate power consumption and then determine how to process

time for Adv state.

3) In Conn state, if Slave has no audio task or LED task, and all keys are released, Slave

is configured to enter deepsleep in current main_loop when it exceeds 60s away

from the latest valid task, and wakeup source is set as “GPIO PAD” (enable key

press wakeup in advance). It will be recorded in the retention register

DEEP_ANA_REG0 it’s the Conn state from which MCU enters current deepsleep.

After wakeup, Slave can configure fast adv packet to establish connection with

Master as soon as possible.

Slave is configured to enter deepsleep after 60s of no valid task, so as to save

power. Actually MCU can be configured not to enter deepsleep, as long as its

power consumption is very low to maintain connection. User needs to determine

the implementation considering actual requirement and power consumption.

When MCU enters deepsleep from Conn state, first Slave should invoke the

“bls_ll_terminateConnection” to send a “TERMINATE” command to Master, and

enter deepsleep after this command is acked or the “BLT_EV_FLAG_TERMINATE”

is triggered by timeout.

4) User needs to manually set latency as 0, if long time sleep (long suspend duration)

is not allowed for task processing, such as key_not_released, DEVICE_LED_BUSY

(LONG_PRESS_KEY_POWER_OPTIMIZE is 0).

5) Based on step 4), after latency is disabled manually, MCU will wake up in each

conn_interval, thus power consumption is increased; since it’s not needed to

detect key press and process LED task in every conn_interval, user can manually

set latency as other value and further optimize power consumption.

When the” LONG_PRESS_KEY_POWER_OPTIMIZE” is 1, after key press is stabilized

(key_matrix_same_as_last_cnt > 5), user can set latency value manually. If it’s

configured as “bls_pm_setManualLatency (4)”, suspend will last for 5

conn_intervals. When conn_interval is 10 ms, MCU will wake up for every 50 ms

(10*(4+1) = 50ms) to process LED task and detect key press. Actually user needs

to consider the conn_interval value and task response time, and optimize power

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 187 Ver1.3.0

consumption without influencing function correspondingly.

4.8 Timer wakeup of APP layer

In Advertising state or Conn state Slave role, once MCU enters suspend, it can be

woke up by stack only in specific moment, and user can hardly wake up MCU in

advance. To add flexibility of PM, a timer wakeup API in APP layer and corresponding

callback function are supplied in SDK. Following is the timer wakeup API in APP layer:

void bls_pm_setAppWakeupLowPower(u32 wakeup_tick, u8 enable);

“wakeup_tick” indicates absolute system tick value for timer wakeup.

“enable”: 1-enable this wakeup function; 0-disable this wakeup function.

When timer wakeup in APP layer is triggered, the callback function registerd by

“bls_pm_registerAppWakeupLowPowerCb” is executed.

typedef void (*pm_appWakeupLowPower_callback_t)(int);

void bls_pm_registerAppWakeupLowPowerCb(

pm_appWakeupLowPower_callback_t cb);

When “bls_pm_setAppWakeupLowPower” is used to set app wakeup_tick for

timer wakeup in APP layer, before SDK bottom enters suspend, it will check whether

this app wakeup tick is within current suspend time. If yes, suspend will be triggered

to wake up in advance at app wakeup_tick (as shown in Figure4-4). If not, this

wakeup_tick is negligible to bottom layer, and wakeup time depends on BLE timing

sequence.

Conn interval

UI task

brx
event

suspend

app wakeup tick

Figure4-4 Trigger app wakup tick in advance

5 Audio Processing

In SDK, only 8267 and 8269 support audio processing function.

5.1 Audio initialization

Figure5-1 shows hardware connection about audio MIC.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 188 Ver1.3.0

Figure5-1 Audio circuit

Note: The audio circuit shown in Figure5-1 is just supplied for reference. Please refer

to actual schematic.

Software Initialization:

 config_mic_buffer ((u32)buffer_mic, TL_MIC_BUFFER_SIZE); // configure audio buffer

audio_amic_init(DIFF_MODE, 26, 9, R2, CLOCK_SYS_TYPE); // configure MIC module

sampling rate as 16K

audio_finetune_sample_rate(2);

audio_amic_input_set(PGA_CH); //audio input set, ignore the input parameter

The API below serves to configure hardware MIC:

void audio_amic_init(enum audio_mode_t mode_flag,

unsigned short misc_sys_tick,

unsigned short left_sys_tick,

enum audio_deci_t d_samp,

unsigned char fhs_source);

“audio_amic_init” is used to configure parameters of ADC module, decimation

filter, LPF (low pass filter), HPF (high pass filter) and ALC (volume control). For function

of each module, please refer to corresponding Datasheet. Parameters in various cases

are configured in SDK, and user can select as needed. Except for a few interface

parameters, most parameters are assembled in functions (User does not need to

modify this tested part).

Hardware block diagram of MIC configuration is shown as below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 189 Ver1.3.0

Figure5-2 MIC configuration HW block diagram

1) mode_flag

ADC sampling mode includes differential mode and single-end. Please configure

according to descripton of AMIC sensor.

2) misc_sys_tick, left_sys_tick

They are used to configure output rate of ADC module combining the parameter

of “audio_finetune_sample_rate(unsigned char fine_tune)”.

adc_out_rate =
system clock

𝐦𝐢𝐬𝐜_𝐬𝐲𝐬_𝐭𝐢𝐜𝐤∗4+𝐥𝐞𝐟𝐭_𝐬𝐲𝐬_𝐭𝐢𝐜𝐤∗16+𝐟𝐢𝐧𝐞_𝐭𝐮𝐧𝐞

3) d_samp

It’s used to configure ratio of decimation filter, so that adc_out_rate can be down-

sampled to the needed rate. In SDK, there are two optional rate including 16K and

32K, which can meet most requirements. If user has other requirements of rate,

please refer to the formula above for configuration, or contact Telink for support.

4) fhs_source

It’s used to select clock source of FHS (see Datasheet). Generally it’s not needed

to modify it.

void audio_amic_input_set(enum audio_input_t adc_ch);

This function serves to configure amplifier and select AMIC input pin. User can

directly set amplifier as the supplied value, and select AMIC input pin as

ANA_C<3>/ANA_C<2> or ANA_C<5>/ANA_C<4> (default) as needed. To select

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 190 Ver1.3.0

ANA_C<3>/ANA_C<2>, it’s needed to set the parameter of “setChannel(0)” in pgaInit

function as 0.

“audio_amic_input_set()” also configures whether to bypass HPF, LPF and ALC.

Current setting is bypass LPF, enable HPF and ALC.

When audio starts, PC6 AMIC BIAS needs to output high level to drive audio. After

audio ends, it’s needed to disable AMIC BIAS to avoid current leakage during suspend.

 void ui_enable_mic (u8 en)

 {

 ui_mic_enable = en;

 gpio_set_output_en (GPIO_PC6, en); //AMIC Bias output

 gpio_write (GPIO_PC6, en);

 // ...

 }

Audio task should be executed in UI entry of mainloop.

 #if (BLE_AUDIO_ENABLE)

 if(ui_mic_enable){ //audio

 task_audio();

 }

 #endif

5.2 Processing of MIC sampled audio data

5.2.1 Audio data compression and RF transfer

 The raw data sampled by hardware MIC adopt pcm format. The pcm-to-adpcm

algorithm can be used to compress the raw data into adpcm format with compression

ratio of 25%, thus BLE RF data volume will be decreased largely. Master will

decompress the received adpcm-format audio data back to pcm format.

Sampling rate of 8267 hardware MIC is 16K*16bit, so 16K samples of raw data are

generated per second, i.e. 16 samples per millisecond (16*16bit=32byte per ms).

For every 15.5ms, 496-byte (15.5*16=248 samples) raw data are generated. Via

pcm-to-adpcm transformation with compression ratio of 1/4, the 496-byte data are

compressed into 124 bytes. The 128-byte data including 4-byte header and 124-byte

compressed data will be disassembled into five packets and sent to Master in L2CAP

layer; since the maximum length of each packet is 27 bytes, the first packet must

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 191 Ver1.3.0

contain 7-byte l2cap information, including: 2-byte l2caplen, 2-byte chanid, 1-byte

opcode and 2-byte AttHandle.

Figure5-3 shows the audio data captured by sniffer. The first packet contains 7-

byte extra information and 20-byte audio data, followed by four packets with 27-byte

audio data each. As a result, total audio data length is 20 + 27*4 = 128 bytes.

Figure5-3 Audio data sample

 According to “Exchange MTU size” in ATT & GATT (section 3.4) of BLE Module,

since 128-byte long audio data packet are disassembled on Slave side, if peer device is

expected to re-assemble these received packets, “Exchange MTU size” should be used

to determine maximum ClientRxMTU of peer device. Only when “ClientRxMTU” is 128

or above, can the 128-byte long packet of Slave be correctly processed by peer device.

In 826x remote demo, if audio is started, to send 128-byte long packe,

“blc_att_requestMtuSizeExchange” will be invoked to Exchange MTU size.

 void voice_press_proc(void)

 {

 key_voice_press = 0;

 ui_enable_mic (1);

if(ui_mtu_size_exchange_req &&

blc_ll_getCurrentState() == BLS_LINK_STATE_CONN){

ui_mtu_size_exchange_req = 0;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 192 Ver1.3.0

 blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 0x009e);

 }

 }

Standard method is shown as below: It’s also needed to invoke

“blc_att_registerMtuSizeExchangeCb” to register the callback function of MTU size

Exchange, check in the callback whether “ClientRxMTU” of peer device exceeds or

equals 128. Generally ClientRxMTU of Master device is larger than 128, “826x remote”

does not check actual ClientRxMTU via callback.

Following is the audio MIC service in Attribute Table:

Figure5-4 MIC service in Attribute Table

 The Attribute in the middle is used to transfer audio data. Currently its AttHandle

value in the Attribute Table is 43 (0x2B) and may be updated in following versions.

Data are sent to Master via “Handle Value Notification”; if it’s the notification

corresponding to the AttHandle of 0x2B, the Attribute Value will be assembled into

128 bytes, and transferred to pre-configured buffer. Then the data are decompressed

back to the pcm-format audio data.

 Both packet disassembly on Slave and assembly on Master follow BLE stack

standard.

5.2.2 Audio data compression processing

 Related macros are defined in “app_config.h”, as shown below:

#define ADPCM_PACKET_LEN 128

#define TL_MIC_ADPCM_UNIT_SIZE 248

#define TL_SDM_BUFFER_SIZE 992

#define TL_MIC_32K_FIR_16K 1

#if TL_MIC_32K_FIR_16K

 #define TL_MIC_BUFFER_SIZE 1984

#else

 #define TL_MIC_BUFFER_SIZE 992

#endif

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 193 Ver1.3.0

 config_mic_buffer ((u32)buffer_mic, TL_MIC_BUFFER_SIZE);

Each compression needs to process 248-sample, i.e. 496-byte data. Since

hardware MIC continuously samples audio data and transfers the processed pcm-

format data into buffer_mic, considering data buffering and preservation, this buffer

should be pre-configured so that it can store result of two compressions, i.e. 496

samples.

If 16K sampling rate is directly used, then 496 samples correspond to 992 bytes,

i.e. “TL_MIC_BUFFER_SIZE” should be configured as 992.

If MIC adopts 32K sampling rate and transfers the data into buffer with 16K speed

after FIR processing, each sample corresponds to four bytes (during compression, the

former two bytes are processed as one 16bit raw data, and the latter two bytes are

discarded), and the buffer size “TL_MIC_BUFFER_SIZE” should be configured as 1984.

The following example shows the TL_MIC_BUFFER_SIZE is configured as 1984

when the macro TL_MIC_32K_FIR_16K is enabled (enable FIR).

 buffer_mic is defined as below:

 s16 buffer_mic[TL_MIC_BUFFER_SIZE>>1]; // Totally 496 samples, 1984

bytes

 config_mic_buffer ((u32)buffer_mic, TL_MIC_BUFFER_SIZE);

Buffer is configured for hardware MIC data output, and the sampled data are

transferred into memory starting from buffer_mic address with 16K speed; once the

maximum length 1984 is reached, data transfer address returns to the buffer_mic

address, the old data will be replaced directly without checking whether it’s read.

It’s needed to maintain a write pointer “reg_audio_wr_ptr” (hardware register

value) when transferring data into RAM; the pointer is used to indicate the address in

RAM for current newest audio data.

The “buffer_mic_enc” is defined to store the compressed 128-byte data; buffer

number is configured as 4 to indicate result of four compressions can be buffered at

most.

 int buffer_mic_enc[BUFFER_PACKET_SIZE];

 Since “BUFFER_PACKET_SIZE” is 128, and “int” occupies four bytes, it’s equivalent

to 128*4 signed char.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 194 Ver1.3.0

248
sample

248
sample

128 byte

128 byte

128 byte

128 byte

buffer_mic buffer_mic_enc

Write pointer

Hardware auto maintain

Read pointer

Write pointer

Read pointer

Compression Processing

New location

for read pointer

New location for

write pointer

New location

for read pointer

Figure5-5 Compression processing

The figure above shows the compression processing method:

The buffer_mic automatically maintains a write pointer by hardware, and

maintains a read pointer by software. Whenever the write pointer is beyond 248

samples away from the read pointer via software detection, the compression

processing function is invoked to read 248-sample data starting from the read pointer

and compress them into 128 bytes; the read pointer moves to a new location to

indicate following data are new and not read.

The buffer_mic is continuously checked whether there’re enough 248-sample

data; if so, the data are compressed and transferred into the buffer_mic_enc. Since

248-sample data are generated for every 15.5ms, the firmware must check the

buffer_mic with maximum frequency of 1/15.5ms. The firmware only executes the

task_audio once during each main_loop, so the main_loop duration must be less than

15.5ms to avoid audio data loss. In Conn state, the main_loop duration equals

connection interval; so for applications with audio task, connection interval must be

less than 15.5ms. It’s recommended to configure connection interval as 10ms or 7.5ms;

in current SDK, 7.5ms connection interval is used.

The buffer_mic_enc maintains the write pointer and read pointer by software:

after the 248-sample data are compressed into 128 bytes, the compressed data are

copied into the buffer address starting from the write pointer, and the buffer_mic_enc

is checked whether there’s overflow; if so, the oldest 128-byte data are discarded and

the read pointer switches to the next 128 bytes.

The compressed data are copied into the BLE RF data Tx buffer as below: The

buffer_mic_enc is checked if it’s non-empty (when writer pointer equals read pointer,

it indicates “empty”, otherwise it indicates “non-empty); if the buffer is non-empty,

the 128-byte data starting from the read pointer are copied into the BLE RF data Tx

buffer (if security is enabled, encryption step is also needed), then the read pointer

moves to the new location.

Following is the sample code for audio data compression processing:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 195 Ver1.3.0

void proc_mic_encoder (void)

{

 staticu16 buffer_mic_rptr;

 u16 mic_wptr = reg_audio_wr_ptr;

 u16 l = ((mic_wptr<<1) >= buffer_mic_rptr) ? ((mic_wptr<<1) -

buffer_mic_rptr) : 0xffff;

 if (l >=(TL_MIC_BUFFER_SIZE>>2)) {

 log_task_begin (TR_T_adpcm);

 s16 *ps = buffer_mic + buffer_mic_rptr;

 mic_to_adpcm_split (ps, TL_MIC_ADPCM_UNIT_SIZE,

 (s16 *)(buffer_mic_enc + (ADPCM_PACKET_LEN>>2) *

 (buffer_mic_pkt_wptr & (TL_MIC_PACKET_BUFFER_NUM

- 1))), 1);

 buffer_mic_rptr = buffer_mic_rptr ? 0 : (TL_MIC_BUFFER_SIZE>>2);

 buffer_mic_pkt_wptr++;

 int pkts = (buffer_mic_pkt_wptr - buffer_mic_pkt_rptr) &

(TL_MIC_PACKET_BUFFER_NUM*2-1);

 if (pkts > TL_MIC_PACKET_BUFFER_NUM) {

 buffer_mic_pkt_rptr++;

 log_event (TR_T_adpcm_enc_overflow);

 }

 log_task_end (TR_T_adpcm);

 }

}

5.3 Compression and decompression algorithm

The following function is used to invoke the compression algorithm:

 void mic_to_adpcm_split (signed short *ps, int len, signed short *pds, int start);

Notes:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 196 Ver1.3.0

 “ps” points to the starting storage address for data before compression, which

corresponds to the read pointer location of the buffer_mic as shown in Figure5-5;

 “len” is configured as TL_MIC_ADPCM_UNIT_SIZE (248), which indicates 248

samples;

 “pds” points to the starting storage address for compressed data, which

corresponds to the write pointer location of the buffer_mic_enc as shown in

Figure5-5.

predict

predict_idx
124

124 bytes
248 sample
496 bytes

1/4 compression

0
1
2
3
4

127

audio data len

Figure5-6 Data corresponding to compression algorithm

The memory space for compressed data stores 2-byte predict, 1-byte predict_idx,

1-byte length of current valid adpcm-format audio data (i.e. 124), and followed by 124-

byte data compressed from the 496-byte raw data with compression ratio of 1/4.

The following function is used to invoke the decompression algorithm:

 void adpcm_to_pcm (signed short *ps, signed short *pd, int len);

Notes:

 “ps” points to the starting storage address for data to be decompressed (i.e. 128-

byte adpcm-format data). This address needs user to define a buffer to store 128-

byte data copied from BLE RF.

 “pd” points to the starting storage address for decompressed 496-byte pcm-

format audio data. This address needs user to define a buffer to store data to be

transferred when playing audio.

 “len” is 248, same as the “len” during compression.

As shown in Figure5-6, during decompression, the data read from the buffer are

two-byte predict, 1-byte predict_idx, 1-byte valid audio data length “124”, and the

124-byte adpcm-format data which will be decompressed into 496-byte pcm-format

audio data.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 197 Ver1.3.0

6 OTA

Since 8267 and 8269 support 512K flash, as well as flash multi-address booting

from multiples of 128KB offsets (e.g. boot from 0, 0x20000 or other address), they

have the same flash architecture and OTA procedure.

Since 8261/8266 can only boot from address 0 without flash multi-address

booting support, they have the same OTA procedure. Flash size for 8261 and 8266 is

128K and 512K, respectively; they have similar flash architecture.

To implement OTA for 826x Slave, a device is needed to act as BLE OTA Master,

which can be the Bluetooth device (supporting OTA in APP) combined with Slave, or

simply Telink BLE Master Dongle.

In this section, Telink kma dongle is taken as an example of OTA Master to

illustrate how 826x BLE OTA is realized.

6.1 8267/8269 Flash architecture and OTA procedure

6.1.1 8267/8269 FLASH storage architecture

In SDK, by default firmware size should not exceed 128K, i.e. the flash area

0~0x20000 serves to store firmware.

0x00000

0x20000

Firmware_1.bin

0x40000

0x80000

8267 slave ota_master

0x00000

Ota_master.bin

0x20000

0x40000

Firmware_2.bin

RF
transfer

New_firmware
storage area

0x00000

0x20000

Firmware_2.bin

0x40000

8267 slave ota_master

0x00000

0x20000

Ota_master.bin

0x40000

Firmware_3.bin

RF
 t
ra
ns
fe
r

New_firmware
storage area

OTA of the (2n+1)-th time OTA of the (2n+2)-th time

0x80000

Figure6-1 8267/8269 default Flash storage structure

1) OTA Master burns new firmware2 into the Master flash area starting from

0x20000.

2) OTA for the first time:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 198 Ver1.3.0

A. When power on, Slave starts booting and executing firmware1 from flash

0~0x20000.

B. When firmware1 is running, the area of Slave flash starting from 0x20000 (i.e.

flash 0x20000~0x40000) is cleared during initialization and will be used as

storage area for new firmware.

C. OTA process starts, Master transfers firmware2 into Slave flash area starting

from 0x20000 via RF. Then Slave sets bootloader to boot from the new

firmware offset and reboots (similar to power cycle).

3) For subsequent OTA updates, OTA Master first burns new firmware3 into the

Master flash area starting from 0x20000.

4) OTA for the second time:

A. When power on, Slave starts booting and executing firmware2 from flash

0x20000~0x40000.

B. When firmware2 is running, the area of Slave flash starting from 0x0 (i.e. flash

0~0x20000) is cleared during initialization and will be used as storage area for

new firmware.

C. OTA process starts, Master transfers firmware3 into Slave flash area starting

from 0x0 via RF. Then Slave sets bootloader to boot from the new firmware

offset and reboots.

5) Subsequent OTA process repeats steps 1)~4): 1)~2) represents OTA of the (2n+1)-

th time, while 3)~4) represents OTA of the (2n+2)-th time.

6.1.2 8267/8269 OTA update procedure

Based on the flash storage structure introduced in Section 6.1.1, the OTA update

procedure is illustrated as below:

8267/8269 multi-address booting mechanism: OTA only uses two addresses

booting (boot from 0 or 0x20000). After MCU is powered on, Slave boots from flash

address 0 by default. First flash address 0x8 is read, if its value is 0x4b, the code starting

from 0 are transferred to RAM, and the following instruction fetch address equals 0

plus PC pointer value; if the value of flash 0x8 is not 0x4b, MCU directly reads flash

address 0x20008, if its value is 0x4b, the code starting from 0x20000 are transferred

to RAM, and the following instruction fetch address equals 0x20000 plus PC pointer

value. By modifying flag bit value of flash 0x8 and 0x20008, the part of flash code to

be executed will be determined.

In 8267/8269 SDK with OTA function support, the OTA upgrade process of the

(2n+1)-th or (2n+2)-th time is shown as below:

1) After MCU is powered on, read flash address 0x8 and 0x20008, and compare the

value with 0x4b to determine the booting address; then Slave boots from

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 199 Ver1.3.0

corresponding address (0 or 0x20000) and starts executing the code. This function

is automatically completed by MCU hardware.

2) During firmware initialization, read MCU hardware register to judge the booting

address.

a) If booting address is 0, the ota_program_offset is set as 0x20000, and the area

of Slave flash starting from 0x20000 (i.e. 0x20000~0x40000) will be all erased

to “0xff”, which indicates the new firmware will be transferred into this area

by Master during the following OTA process.

b) If booting address is 0x20000, the ota_program_offset is set as 0x0, and the

area of Slave flash starting from 0x0 (i.e. 0~0x20000) will be all erased to 0xff,

which indicates the new firmware will be transferred into this area by Master

during the following OTA process.

3) Slave MCU executes the firmware after booting; OTA Master is powered on and

establishes BLE connection with Slave.

4) Trigger OTA Master to enter OTA mode by UI (e.g. button press, write memory by

PC tool, etc.). After entering OTA mode, OTA Master needs to obtain Handle value

of Slave OTA Service Data Attribute (The handle value can be pre-appointed by

Slave and Master, or obtained via “read_by_type”.)

5) After the Atrribute Handle value is obtained, OTA Master may need to obtain

version number of current Slave Flash firmware, and compare it with the version

number of local stored new firmware. This step is determined by user.

6) To enable OTA upgrade, OTA Master will send an OTA_start command to inform

Slave to enter OTA mode.

7) After the OTA_start command is received, Slave enters OTA mode and waits for

OTA data to be sent from Master.

8) Master reads the firmware stored in the flash area starting from 0x20000, and

continuously sends OTA data to Slave until the whole firmware is sent.

9) After the OTA data are received, Slave stores the data into the area starting from

ota_program_offset.

10) After the OTA data are sent, Master will check if all data are correctly received by

Slave (invoke related BLE function in bottom layer to judge whether Link Layer

data are all correctly acked).

11) After Master confirms all OTA data are correctly received by Slave, it will send an

OTA_END command.

12) After Slave receives the OTA_END command, offset address 8 based on the new

firmware starting address (i.e. ota_program_offset+8) is written with “0x4b”, and

offset address 8 based on the old firmware starting address is written with “0x00”.

This indicates Slave will execute the firmware from the new area after the next

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 200 Ver1.3.0

booting.

13) Slave reboots, and the new firmware will take effect.

14) During the whole OTA upgrade process, Slave will continuously check whether

there’s packet error, packet loss or timeout (A timer is started when OTA starts).

Once packet error, packet loss or timeout is detected, Slave will determine the OTA

process fails. Then Slave reboots, and executes the old firmware.

The OTA related operations on Slave side described above have been realized in

826x BLE SDK and can be used by user directly. On Master side, extra firmware design

is needed and it will be introduced later.

6.1.3 Modify Flash storage architecture

 Since 8267/8269 uses booting address of 0x00000 and 0x20000 alternately, the

starting address of flash area to store new firmware during an OTA upgrade is fixed,

user can only modify firmware size.

 By default, maximum firmware size is 128KB, and the flash space 0x00000 ~

0x40000 can only be used to store firmware. If firmware does not need such a large

storage area, e.g. maximum firmware size does not exceed 30KB, only part of the two

128KB space (0x00000 ~ 0x20000, 0x20000 ~ 0x40000) are used.

To use the redundant space as data storage area, the API below can be invoked

to configure the maximum firmware size as needed.

 void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k,

 u32 ota_offset);

 The API declaration is available in “proj_lib/ble/service/ble_ll_ota.h”.

 For 8267/8269, the parameter “ota_offset” in this API is invalid.

“firmware_size_k”: This parameter indicates the maximum firmware size in KB,

and it must be configured as 4KB aligned. For example, suppose the maximum

firmware size is 57KB, this parameter should be configured as “60”. This API can only

be invoked before the cpu_wakeup_init() of main.c to take effect, as shown below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 201 Ver1.3.0

 By configuration above, the two 60K flash areas 0x00000 ~ 0x0F000 and 0x20000

~ 0x2F000 can be used as firmware storage space, while the two 68K flash areas

0x0F000 ~ 0x20000 and 0x2F000 ~ 0x40000 can be used as user data storage space.

6.2 8266 Flash architecture and OTA procedure

6.2.1 8266 FLASH storage architecture

0x00000

0x40000

ota_boot.bin
0x72000

0x73000
ota boot_flag

0x74000

0x20000

Old Firmware
bin

OTA New bin
storage Area

0x80000

8266

New_firmware.
bin

0x00000

0x20000

ota_master.bin

0x40000

ota_master

RF transfer

Code
transfer

Figure6-2 8266 default Flash storage structure

In SDK, by default firmware size should not exceed 128K, i.e. the area 0~0x20000

in flash serves to store firmware.

 On Slave side, current old firmware is stored in the flash starting from 0 (128K area

0~0x20000), ota_boot.bin is stored in the flash starting from 0x72000 (1.5K area

0x72000~0x72600); flash starting from 0x20000 (the 128K area 0x20000~0x40000) is

used to store the New_firmware.bin obtained from OTA_Master via RF transfer, 1-byte

boot_flag in address 0x73000 is used as check flag during booting.

 On OTA_Master side, ota_master.bin is stored in the flash starting from 0 (128K

area 0~0x20000), while the new firmware of Slave is stored in the flash starting from

0x20000 (128K area 0x20000~0x40000).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 202 Ver1.3.0

6.2.2 8266 OTA upgrade procedure

Based on the flash storage structure introduced in Section 6.2.1, the OTA update

procedure is illustrated as below:

1) Power on Slave normally

After Slave flash is burned with Old_firmware.bin and ota_boot.bin, the boot_flag

in flash 0x73000 is 0xff.

After power on, Slave MCU transfers beginning instructions of Old_firmware.bin

starting from flash 0x00000 into SRAM address starting from 0x808000, and

executes starting code corresponding to cstartup_8266.S. The starting code

checks boot_flag value; since the value is not 0xa5, it serves as normal Slave

function and executes c code of “Old_firmware.bin”.

2) Power on OTA_Master normally

Power on sequence for OTA_Master and Slave does not matter. After Master and

Slave are powered on and booted normally, BLE connection is established to

ensure normal communication.

3) Trigger OTA mode

Trigger OTA_Master to enter OTA mode (by button press or memory writting via

PC tool). Send “OTA start” command by Master to make Slave enter OTA mode.

4) Transfer New_firmware.bin from OTA_Master to Slave via RF.

After OTA_Master and Slave enter OTA mode, OTA_Master sends OTA packets with

New_firmware data to Slave via RF. Slave will burn the analyzed data into its flash

area starting from 0x20000 (new_firmware storage area 0x20000~0x40000).

5) After all OTA data are sent, OTA_Master sends “OTA End” command, and Slave is

rebooted.

After OTA process is finished successfully, New_firmware.bin is already stored in

Slave flash starting from 0x20000. Slave will set the boot_flag value in flash

0x73000 as “0xa5”, then reboot MCU.

6) Slave executes ota_boot.bin.

After Slave is rebooted, MCU transfers beginning instructions of Old_firmware.bin

starting from flash 0x00000 into SRAM starting from 0x808000, and executes the

starting code corresponding to cstartup_8266.S in Old_firmware.bin. The starting

code checks boot_flag value in flash 0x73000; since the value is “0xa5”, Slave does

not execute code of Old_firmware.bin, but transfers ota_boot.bin from 1.5K flash

area 0x72000~0x72600 into SRAM starting from 0x808000. After data transfer is

finished, reset MCU so that MCU will execute code starting from SRAM 0x808000

(equivalent to executing ota_boot.bin) rather than re-transfer code from flash into

SRAM.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 203 Ver1.3.0

7) ota_boot updates code, and Slave is rebooted.

After the ota_boot.bin is executed, contents of New_firmware.bin will be read

page by page starting from flash 0x20000 and written into flash starting from

0x00000. It’s equivalent to updating New_firmware.bin to flash starting from 0.

Slave will set boot_flag value in flash 0x73000 as “0x00”, then reboot MCU.

8) New_firmware.bin is executed normally.

After Slave MCU is rebooted, it transfers code starting from flash 0 into SRAM

starting from 0x808000, and checks the boot_flag. Since the value is not “0xa5”, it

serves as normal Slave function.

Similar to Old_firmware.bin, the New_firmware.bin supports OTA function, and

user can restart OTA mode to upgrade firmware (the new code should be burned

into OTA_Master flash starting from 0x20000 before OTA process).

6.2.3 cstartup_8266.S, reset, reboot, code transfer

6.2.3.1 boot_flag detect and process by cstartup_8266.S

The ota_master.bin is executed on OTA_Master side and its starting file has no

special requirement.

Old_firmware.bin, New_firmware.bin and ota_boot.bin are all executed on Slave

side; they must have the same cstartup_8266.S in corresponding project, and

consistent locations of iCache and iTag. Since New_firmware.bin is the update

firmware to replace Old_firmware.bin, they have the same starting code of course.

Old_firmware.bin differs from ota_boot.bin in starting code as shown below:

1) Old_firmware sets iCache and iTag; when ota_boot is executed, MCU is still

powered on, and configuration of Old_firmware can be used directly.

2) ota_boot does not check boot_flag value; while Old_firmware will check boot_flag

and process accordingly: if it’s not 0xa5, the Old_firmware is normally executed;

if it’s 0xa5, ota_boot.bin from flash area 0x72000~0x72600 will be copied into

SRAM starting from 0x808000, and MCU is reset.

According to the two points above, configurations in cstartup_8266.S from SETIC

to COPY_DATA should be modified as below.

First define “MCU_CORE_8266_OTA_BOOT” in the bottom layer of ota_boot

compile option (It can’t be defined in other projects).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 204 Ver1.3.0

Figure6-3 8266_ota_boot project setting

SETIC:

 tloadr r1, DAT0 + 24

 tloadr r0, DAT0 + 36 @ IC tag start

#ifdefMCU_CORE_8266_OTA_BOOT

 tloadr r0, DAT0 + 36 @ The three sentences are only for

aligning.

 tloadr r0, DAT0 + 36

 tloadr r0, DAT0 + 36

#else

 tstorerb r0, [r1, #0]

 tadd r0, #1 @ IC tag end

 tstorerb r0, [r1, #1]

#endif

 @tmov r0, #0;

 @tstorerb r0, [r1, #2]

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 205 Ver1.3.0

COPY_CODE_INIT:

 tmov r3, #115 @ OTA FW ready flag at 0x73000;

 (0x73000 = #115<< 12)

 tshftl r3, r3, #12 @ 0x73<<12 = 0x73000

 tloadr r3, [r3, #0] @ read value of flash 0x73000

into R3

#ifdefMCU_CORE_8266_OTA_BOOT

tcmp r3, #0 @ when ota boot starts, compare R3 with 0 (only

for aligning)

#else

 tcmp r3, #165 @ when firmware starts, compare R3 with

0xa5

#endif

 tjne COPY_DATA_INIT @ if not equal, directly jump to

COPY_DATA_INIT,start executing firmware noramlly; if equeal,

execute the following sentences, transfer the contents of flash

0x72000~0x72600 (i.e. ota_boot.bin) to SRAM 0x8000~0x8600.

 tmov r2, #114@ OTA boot code at: 0x72000

 tloadr r3, COPY_CODE_DAT

 tloadr r0, COPY_CODE_DAT + 4

 tshftl r2, r2, #12 @ 0x72<<12

COPY_CODE_START:

 tloadm r2!, {r1}

 tstorem r3!, {r1}

 tcmp r3, r0

 tjne COPY_CODE_START

 After data transfer, write register “core_602” with “0x88”,

reset MCU, restart to execute ota_boot.bin.

 tloadr r3, COPY_CODE_DAT + 8

 tmov r2, #136 @0x88

 tstorerb r2, [r3, #0]

COPY_CODE_END:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 206 Ver1.3.0

 tj COPY_CODE_END

 .balign 4

COPY_CODE_DAT:

 .word (0x808000)

 .word (0x808600)

 .word (0x800602)

COPY_DATA_INIT:

 tloadr r1, DATA_I

 tloadr r2, DATA_I+4

 tloadr r3, DATA_I+8

COPY_DATA:

6.2.3.2 Firmware size

After OTA_Master enters OTA mode, New_firmware.bin is read from flash

0x20000. The size value of the bin file is stored in cstartup_8266.S 0x18~0x1b.

 cstartup_8266.S：

 .org 0x18

 .word (_bin_size_)

 boot.link:

 PROVIDE(_bin_size_ = _code_size_ + _end_data_ - _start_data_);

Thus 4-byte data in firmware starting from 0x18 indicates firmware size. Since

New_firmware.bin starts from 0x20000, the firmware size is stored in 0x20018. When

New_firmware.bin is read by OTA_Master, the firmware size is read first.

As shown in Figure6-4 and Figure6-5, the firmware size is 0x5570, and the bin file

actually ranges from flash 0x0000 to 0x556f.

Figure6-4 firmware size inforamtion

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 207 Ver1.3.0

Figure6-5 firmware ending

6.2.3.3 Reset and reboot

1) Reset MCU: Write “core_0x602” with “0x88”. MCU starts to execute the firmware

in SRAM with PC pointer starting from 0.

2) Reboot MCU: MCU enters deepsleep, and it’s woke up by timer after 5ms. MCU

starts to load firmware from flash, and executes firmware with PC pointer staring

from 0.

3) Slave obtains “New_firmware.bin” via RF in OTA mode, and stores the firmware in

flash starting from 0x20000. Then Slave sets “boot_flag” as “0xa5”, and reboots

MCU.

 flash_erase_sector (0x73000);

 u32 flag = 0xa5;

 flash_write_page (0x73000, 4, &flag); // set boot_flag 0xa5

start_reboot();

 void start_reboot(void)

 {

 irq_disable ();

 cpu_sleep_wakeup (1, PM_WAKEUP_TIMER, clock_time() +

 5*CLOCK_SYS_CLOCK_1MS);

 }

4) ota_boot transfers New_firmware.bin starting from flash 0x20000 to location

starting from 0, clears boot_flag and reboots MCU.

 buff[0] = 0;

 flash_write_page (0x73000, 1, buff);

 REG_ADDR8(0x6f) = 0x20;// ”writing core_6f with 0x20” is reboot

equivalent to ”start_reboot()”, need to load flash.

 while(1);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 208 Ver1.3.0

No other modifications are needed for starting code since all necessary contents

are already added to Cstartup_8266.S of 8266. 8266 ota_boot can use the compiled

firmware of 8266_ota_boot branch in SDK.

6.2.4 Modify Flash storage architecture

 In SDK, by default maximum firmware size should not exceed 128K, the 128K flash

area 0x00000~0x20000 serves to store firmware, 0x20000~0x40000 serves to store

OTA new firmware, the sector starting from 0x72000 serves to store

8266_ota_boot.bin, and 0x73000 serves to store 1-byte ota boot_flag. All the

addresses and firmware size above are modifiable via corresponding API.

6.2.4.1 Modify firmware size and OTA FW storage address

 The API below serves to modify maximum firmware size and the starting address

to store OTA new firmware.

 void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k,

 u32 ota_offset);

 The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.

 “ota_offset”: This parameter indicates the starting address to store OTA new

firmware.

“firmware_size_k”: This parameter indicates the maximum firmware size in KB,

and it must be configured as 4KB aligned. For example, suppose the maximum

firmware size is 57KB, this parameter should be configured as “60”. This API can only

be invoked before the cpu_wakeup_init() of main.c to take effect.

 Suppose maximum firmware size is 64K, the 64K flash space 0x00000~0x10000 is

used to store firmware, and the 64K space 0x10000 ~ 0x20000 is used to store OTA

new firmware, the configuration is shown as below:

 By configuration above, the redundant 128K flash space 0x20000 ~ 0x40000 can

be used to store user data.

Note: The value of “NEW_FW_SIZE” and “NEW_FW_ADR” in

vendor/826x_ota_boot/main.c of SDK must be modified correspondingly, as shown

below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 209 Ver1.3.0

6.2.4.2 Modify storage address of OTA boot bin

 In SDK, 8266_ota_boot.bin is stored in the flash sector starting from 0x72000 by

default, and its maximum size is 1.5K. The starting address to store 8266_ota_boot.bin

is modifiable in cstartup_8266.S.

Suppose the sector starting from 0x40000 serves to store 8266_ota_boot.bin,

replace “114” with “64” (64=0x40, 0x40<<12=0x40000) in the code below

(proj/mcu_spec/cstartup_8266.S).

6.2.4.3 Modify storage addrss of OTA boot flag

 In SDK, 1-byte ota boot flag is stored in flash address 0x73000 by default. The

address to store ota boot flag is modifiable.

Suppose the address 0x41000 serves to store ota boot flag, follow the

modifications below:

1) Invoke the API below during initialization:

 void bls_ota_setBootFlagAddr(u32 bootFlag_addr);

 The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.

 bls_ota_setBootFlagAddr(0x41000);

2) Modify proj/mcu_spec/cstartup_8266.S:

Replace “115” with “65” (65=0x41, 0x41<<12=0x41000) in the code below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 210 Ver1.3.0

3) Modify “vendor/826x_ota_boot/main.c” correspondingly:

Modify the value of OTA_FLG_ADR as 0x41000.

 #ifndef OTA_FLG_ADR

 #define OTA_FLG_ADR 0x41000

#endif

6.3 8261 Flash architecture and OTA procedure

6.3.1 8261 FLASH storage architecture

0x00000

0x10000

Old Firmware
bin

ota_boot.bin

New_firmware.
bin

0x1A000

0x1B000
ota boot_flag

0x00000

0x20000

ota_master.bin

8261 ota_master

OTA New bin
storage Area

RF transfer

Code
transfer

0x20000

0x1C000

0x0A000

Figure6-6 8261 default Flash storage structure

 In SDK, 104K flash space 0x00000 ~ 0x1A000 of 8261 is allocated as “40K+24K

+40K” by default.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 211 Ver1.3.0

Figure6-6 shows the default Flash storage structure in 8261 BLE SDK. To realize

OTA based on this structure, firmware size should not exceed 40K.

On Slave side, current old firmware is stored in the flash starting from 0 (40K area

0~0x0A000), ota_boot.bin is stored in the flash starting from 0x1A000 (1.5K area

0x1A000~0x1A600); flash starting from 0x10000 (40K area 0x10000~0x1A000) is used

to store the New_firmware.bin obtained from OTA_Master via RF transfer, 1-byte

boot_flag in address 0x1B000 is used as check flag during booting.

On OTA_Master side, ota_master.bin is stored in the flash starting from 0 (128K

area 0~0x20000), while the new firmware of Slave is stored in the flash starting from

0x20000.

6.3.2 8261 OTA update procedure

Based on the flash storage structure introduced in Section 6.3.1, the OTA update

procedure is illustrated as below:

1) Power on Slave normally

After Slave flash is burned with Old_firmware.bin and ota_boot.bin, the boot_flag

in flash 0x1B000 is 0xff.

After power on, Slave MCU transfers beginning instructions of Old_firmware.bin

starting from flash 0x00000 into SRAM address starting from 0x808000, and

executes starting code corresponding to cstartup_8261.S. The starting code

checks boot_flag value; since the value is not 0xa5, it serves as normal Slave

function and executes c code of “Old_firmware.bin”.

2) Power on OTA_Master normally

Power on sequence for OTA_Master and Slave does not matter. After OTA_Master

and Slave are powered on and booted normally, BLE connection is established to

ensure normal communication.

3) Trigger OTA mode

Trigger OTA_Master to enter OTA mode (by button press or memory writting via

PC tool). Send “OTA start” command by Master to make Slave enter OTA mode.

4) Transfer New_firmware.bin from OTA_Master to Slave via RF.

After OTA_Master and Slave enter OTA mode, OTA_Master sends OTA packets with

New_firmware data to Slave via RF. Slave will burn the analyzed data into its flash

starting from 0x10000 (new_firmware storage area 0x10000~0x1A000).

5) After all OTA data are sent, OTA_Master sends “OTA End” command, and Slave is

rebooted.

After OTA process is finished successfully, New_firmware.bin is already stored in

Slave flash starting from 0x10000. Slave will set the boot_flag value in flash

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 212 Ver1.3.0

0x1B000 as “0xa5”, then reboot MCU.

6) Slave executes ota_boot.bin.

After Slave is rebooted, MCU transfers beginning instructions of Old_firmware.bin

starting from flash 0x00000 into SRAM starting from 0x808000, and executes the

starting code corresponding to cstartup_8261.S in Old_firmware.bin. The starting

code checks boot_flag value in flash 0x1B000; since the value is “0xa5”, Slave does

not execute code of Old_firmware.bin, but transfers ota_boot.bin from 1.5K flash

area 0x1A000~0x1A600 to SRAM starting from 0x808000 (0x808000~0x808600).

After data transfer is finished, reset MCU so that MCU will execute code starting

from SRAM 0x808000 (equivalent to executing ota_boot.bin) rather than re-

transfer code from flash to SRAM.

7) ota_boot updates code, and Slave is rebooted.

After the ota_boot.bin is executed, contents of New_firmware.bin will be read

page by page starting from flash 0x10000 and written into flash starting from

0x00000. It’s equivalent to updating New_firmware.bin to flash starting from 0.

Slave will set boot_flag value in flash 0x1B000 as “0x00”, then reboot MCU.

8) New_firmware.bin is executed normally.

After Slave MCU is rebooted, it transfers code starting from flash 0 to SRAM

starting from 0x808000, and checks the boot_flag. Since the value is not “0xa5”, it

serves as normal Slave function.

Similar to previous Old_firmware.bin, the New_firmware.bin supports OTA

function, and user can restart OTA mode to upgrade firmware (the new code

should be burned into OTA_Master flash starting from 0x20000 before OTA

process).

The OTA related operations on Slave side decribed above have been realized in

8261 BLE SDK and can be used by user directly. On Master side, extra firmware design

is needed and it will be introduced later.

6.3.3 cstartup_8261.S, reset, reboot , code transfer

6.3.3.1 boot_flag detect and process by cstartup_8261.S

The ota_master.bin is executed on OTA_Master side and its starting file has no

special requirement.

Old_firmware.bin, New_firmware.bin and ota_boot.bin are all executed on Slave

side; they must have the same cstartup_8261.S in corresponding project, and

consistent locations of iCache and iTag. Since New_firmware.bin is the update

firmware to replace Old_firmware.bin, they have the same starting code of course.

Old_firmware.bin differs from ota_boot.bin in starting code as shown below:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 213 Ver1.3.0

1) Old_firmware sets iCache and iTag; when ota_boot is executed, MCU is still

powered on, and configuration of Old_firmware can be used directly.

2) ota_boot does not check boot_flag value; while Old_firmware will check boot_flag

and process accordingly: if it’s not 0xa5, the Old_firmware is normally executed;

if it’s 0xa5, ota_boot.bin in flash 1.5K area starting from 0x1A000 will be copied

into SRAM starting from 0x808000, and MCU is reset.

According to the two points above, configurations in cstartup_8261.S from SETIC

to COPY_DATA should be modified as below.

First define “MCU_CORE_8261_OTA_BOOT” in the bottom layer of ota_boot

compile option (It can’t be defined in other projects).

Figure6-7 8261_ota_boot project setting

SETIC:

 tloadr r1, DAT0 + 24

 tloadr r0, DAT0 + 36 @ IC tag start

#ifdefMCU_CORE_8261_OTA_BOOT

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 214 Ver1.3.0

 tloadr r0, DAT0 + 36 @ The three sentences are only for

aligning.

 tloadr r0, DAT0 + 36

 tloadr r0, DAT0 + 36

#else

 tstorerb r0, [r1, #0]

 tadd r0, #1 @ IC tag end

 tstorerb r0, [r1, #1]

#endif

COPY_CODE_INIT:

 tmov r3, #27 @ OTA FW ready flag at 0x1B000;

 tshftl r3, r3, #12 @ 0x1B<<12 = 0x1B000

 tloadr r3, [r3, #0] @ read value of flash 0x1B000

into R3

#ifdefMCU_CORE_8261_OTA_BOOT

tcmp r3, #0 @ when ota boot starts, compare R3 with 0 (only

for aligning)

#else

 tcmp r3, #165 @ when firmware starts, compare R3 with

0xa5

#endif

 tjne COPY_DATA_INIT @ if not equal, directly jump to

COPY_DATA_INIT,start executing firmware normally; if equeal,

execute the following sentences, transfer the contents of flash

0x1A000~0x1A600 (i.e. ota_boot.bin) to SRAM 0x8000~0x8600.

 tmov r2, #26 @ OTA boot code at: 0x1A000

 tloadr r3, COPY_CODE_DAT

 tloadr r0, COPY_CODE_DAT + 4

 tshftl r2, r2, #12 @ 0x1A<<12 = 0x1A000

COPY_CODE_START:

 tloadm r2!, {r1}

 tstorem r3!, {r1}

 tcmp r3, r0

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 215 Ver1.3.0

 tjne COPY_CODE_START

 After data transfer, write register “core_602” with “0x88”,

reset MCU, restart to execute ota_boot.bin.

 tloadr r3, COPY_CODE_DAT + 8

 tmov r2, #136 @0x88

 tstorerb r2, [r3, #0]

COPY_CODE_END:

 tj COPY_CODE_END

 .balign 4

COPY_CODE_DAT:

 .word (0x808000)

 .word (0x808600)

 .word (0x800602)

COPY_DATA_INIT:

 tloadr r1, DATA_I

 tloadr r2, DATA_I+4

 tloadr r3, DATA_I+8

COPY_DATA:

6.3.3.2 Firmware size, reset and reboot

 Please refer to section 6.2.3.2 and 6.2.3.3 for details about firmware size, reset

and reboot.

6.3.4 Modify Flash storage architecture

 In SDK, by default maximum firmware size should not exceed 40K, the 40K flash

area 0x00000~0x0A000 serves to store firmware, 0x10000~0x1A000 serves to store

OTA new firmware, the sector starting from 0x1A000 serves to store

8261_ota_boot.bin, and 0x1B000 serves to store 1-byte ota boot_flag. The remaining

24K space 0x0A000~0x10000 is used as user data storage area.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 216 Ver1.3.0

 All the addresses and firmware size above are modifiable via corresponding API.

6.3.4.1 Modify firmware size and OTA FW storage address

 The API below serves to modify maximum firmware size and the starting address

to store OTA new firmware.

 void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k,

 u32 ota_offset);

 The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.

 “ota_offset”: This parameter indicates the starting address to store OTA new

firmware.

 “firmware_size_k”: This parameter indicates the maximum firmware size in KB,

and it must be configured as 4KB aligned. For example, suppose the maximum

firmware size is 25KB, this parameter should be configured as “28”. This API can only

be invoked before the cpu_wakeup_init() of main.c to take effect.

 Suppose maximum firmware size is 25K, the 28K flash space 0x00000~0x07000 is

used to store firmware, and the 28K space 0x07000 ~ 0x0E000 is used to store OTA

new firmware, the remaining 48K space 0x0E000 ~ 0x1A000 is used to store user data,

the configuration is shown as below:

 Note that the value of “NEW_FW_SIZE” and “NEW_FW_ADR” in

vendor/826x_ota_boot/main.c of SDK must be modified correspondingly, as shown

below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 217 Ver1.3.0

6.3.4.2 Modify storage address of OTA boot bin

 In SDK, 8261_ota_boot.bin is stored in the flash sector starting from 0x1A000 by

default, and its maximum size is 1.5K. The starting address to store 8261_ota_boot.bin

is modifiable in cstartup_8261.S.

 Suppose the sector starting from 0x18000 serves to store 8261_ota_boot.bin,

replace “26” with “24” (24=0x18, 0x18<<12=0x18000) in the code below

(proj/mcu_spec/cstartup_8261.S).

6.3.4.3 Modify storage addrss of OTA boot flag

 In SDK, 1-byte ota boot flag is stored in flash address 0x1B000 by default. The

address to store ota boot flag is modifiable.

Suppose the address 0x19000 serves to store ota boot flag, follow the

modifications below:

1) Invoke the API below during initialization:

 void bls_ota_setBootFlagAddr(u32 bootFlag_addr);

 The API declaration is available in proj_lib/ble/service/ble_ll_ota.h.

 bls_ota_setBootFlagAddr(0x19000);

2) Modify proj/mcu_spec/cstartup_8261.S:

Replace “27” with “25” (25=0x19, 0x19<<12=0x19000) in the code below.

3) Modify vendor/826x_ota_boot/main.c:

Modify the value of OTA_FLG_ADR as 0x19000.

 #ifndef OTA_FLG_ADR

 #define OTA_FLG_ADR 0x19000

#endif

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 218 Ver1.3.0

6.4 RF data proceesing for OTA mode

6.4.1 OTA processing in Attribute Table on Slave side

First, it’s needed to add ota reference in app_att.c which contains the Attribute

Table:

#include "../../proj_lib/ble/service/ble_ll_ota.h"。

Second, add OTA related contents in the Attribute Table. The

“att_readwrite_callback_t r” and “att_readwrite_callback_t w” of the OTA data

Attribute should be set as otaRead and otaWrite, respectively; the attribute should be

set as Read and Write_without_Rsp (Master sends data via Write Command, and does

not need Slave to respond with ack to enable faster speed).

static u8 my_OtaProp= CHAR_PROP_READ | CHAR_PROP_WRITE_WITHOUT_RSP;

{0,2,1,1,(u8*)(&my_characterUUID), (u8*)(&my_OtaProp), 0},

{0,2,1,1,(u8*)(&my_OtaUUID), (&my_OtaData), &otaWrite, &otaRead},

{0,2,sizeof (my_OtaName), sizeof (my_OtaName),(u8*)(&userdesc_UUID),

 (u8*)(my_OtaName), 0},

When Master sends OTA data to Slave, it actually writes data to the second

Attribute as shown above, so Master needs to know the Attribute Handle of this

Attribute in the Attribute Table. To use the Attribute Handle value pre-appointed by

Master and Slave, user needs to count the Attribute Handle value, and then define it

on Master side.

6.4.2 OTA data packet format

Master sends command and data to Slave via “Write Command” in L2CAP layer.

Figure6-8 Write Command format in BLE stack

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 219 Ver1.3.0

The Attribute Handle value is the handle_value of OTA data on Slave side.

The Attribute Value length is set as 20, and its format is shown as below.

CRC

10

OTA_CMD invalid data

19
OTA_cmd

10 2 191817OTA_data

adr_index firmware data:adr_index*16 - adr_index*16+15

Figure6-9 Format of OTA command and data

When the first two bytes are 0xff00 ~0xff10, it indicates it’s an OTA command,

and the command type is determined by the two bytes:

1) 0xff00: OTA_FW_VERSION, request to obtain current Slave firmware version

number. This command is reserved and optional. To use this command,

corresponding callback function is available on Slave side for user to transfer

firmware version number.

2) 0xff01: OTA_Start command. To start OTA upgrade process, Master needs to send

this command to Slave.

3) 0xff02: OTA_end command. When Master confirms all OTA data are correctly

received by Slave, it will send this command, which can be followed by four valid

bytes to double check Slave has received all data from Master.

4) 0xff03 ~ 0xff0f: to be added.

When the first two bytes are 0~0x1000, it indicates it’s an OTA data. Each OTA

data packet transfers 16-byte firmware data, and the adr_index is the actual firmware

address divided by 16. “adr_index=0” indicates OTA data are values of firmware

addresses 0x0~0xf; “adr_index=1” indicates OTA data are values of firmware addresses

0x10~0x1f. The last two bytes are the first CRC value calculated by CRC_16 operation

to the former 18 bytes. After Slave receives the OTA data, it will also carry out CRC

calculation, the data will be regarded as valid only when the result matches the CRC

(19th~20th byte) of the data.

6.4.3 RF transfer processing on Master side

Since BLE link-layer RF data will be automatically responded with ack to avoid

packet loss, during OTA data transfer Master won’t check if every OTA data is

responded with ack, that is, after sending an OTA data via write command, Master

won’t check if there’s ack response from Slave by software, and directly push the

following data into TX buffer as long as the number of data to be sent in TX buffer does

not reach the threshold.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 220 Ver1.3.0

The OTA Master processes RF transfer by software as below:

1) Check if there’s any action to trigger entering OTA mode. If so, Master enters OTA

mode.

2) To send OTA commands and data to Slave, Master needs to know the Attribute

Handle value of current OTA data Atrribute on Slave side. User can decide to

directly use the pre-appointed value or obtain the Handle value via “Read By Type

Request”. UUID of OTA data in Telink BLE SDK is always 16-byte value as shown

below:

#define TELINK_SPP_DATA_OTA

 {0x12,0x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,

0x03,0x02,0x01,0x00} //!< TELINK_SPP data for ota

In “Read By Type Request” from Master, the “Type” is set as the 16-byte UUID.

The Attribute Handle for the OTA UUID is available from “Read By Type Rsp”

responded by Slave. In the figure below, the Attribute Handle value is shown as

“0x0031”.

 Figure6-10 Master obtains OTA Attribute Handle via “Read By Type Request”

3) (optional) Obtain current Slave firmware version number. User can check if it’s the

newest version and decide whether to start OTA upgrade correspondingly. In 826x

BLE SDK, user needs to determine the method to obtain FW version number.

An OTA version command is reserved, however, the transfer of version number is

not realized in current 826x BLE SDK. An “OTA version cmd” can be sent to Slave

in the form of “write cmd”; Slave only supplies a callback function after it receives

the request, and user needs to decide in the callback function how to transfer

Slave firmware version number to Master (e.g. manually send a NOTIFY/INDICATE

data).

4) Start a timer when OTA starts, and continuously check if the count value exceeds

the timeout duration (e.g. 15s, only for reference). If so, it’s regarded as OTA failure

due to timeout. Since Slave will check CRC after the OTA data are received, once

there’s CRC error or any other error (e.g. flash burning error), OTA fails, and

firmware is directly rebooted; the link layer can’t respond to Master with ack, and

Master fails to send data until timeout.

5) Read four bytes of Master flash 0x20018~0x2001b to determine firmware size

which is realized by compiler. Suppose firmware size is 20k (0x5000), the value of

firmware 0x18~0x1b is 0x00005000, so the firmware size can be read from

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 221 Ver1.3.0

20018~0x2001b. As shown below, 0x18~0x1b of “8267_remote.bin” is

“0x00005a98”, so the firmware size is 0x5a98, i.e. 23192 bytes from 0 to 0x5a97.

 Figure6-11 firmware sample: starting part

Figure6-12 firmware sample: ending part

6) Master sends an OTA start command “0xff01” to Slave, so as to inform it to enter

OTA mode and wait for OTA data from Master, as shown below.

 Figure6-13 master sends “OTA start”

7) Read 16-byte firmware each time starting from Master flash 0x20000, assemble

them into OTA data packet, set corresponding adr_index, calculate CRC value, and

push the packet into TX FIFO, until all data of the firmware are sent to Slave. OTA

data format is used in data transfer : 20-byte valid data contains 2-byte adr_index,

16-byte firmware data and 2-byte CRC value to the former 18 bytes.

Note: If firmware data for the final transfer are less than 16 bytes, the remaining

bytes should be complemented with “0xff” and need to be considered for CRC

calculation.

The 8267_remote.bin as shown in Figure6-11 and Figure6-12 is taken as an

example to illustrate how to assemble OTA data.

Data for first transfer: “adr_index” is “0x00 00”, 16-byte data are values of addresses

0x0000 ~ 0x000f. Suppose CRC calculation result for the former 18 bytes is “0xXYZW”,

the 20-byte data should be:

0x00 0x00 0x0e 0x80 ... (12 bytes not listed)... 0x88 0x00 0xZW 0xXY

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 222 Ver1.3.0

Data for second transfer:

0x01 0x00 0x5e 0x80 ... (12 bytes not listed)... 0x00 0x00 0xJK 0xHI

Data for third transfer:

0x02 0x00 0x25 0x08 ... (12 bytes not listed)... 0xfa 0x87 0xNO 0xLM

........

Data for penultimate transfer:

0xa8 0x05 0x02 0x04 ... (12 bytes not listed)... 0x00 0x00 0xST 0xPQ

Data for final transfer:

0xa9 0x05 0x44 0x58 0x00 0x00 0x01 0x00 0x00 0x00

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xWX 0xUV

Since the firmware data for final transfer are only 8 bytes, eight “0xff” are added

to complement 16 bytes. CRC calculation result for the former 18 bytes (0xa9 ~ 0xff) is

“0xUVWX”.

 Figure6-14 Master OTA data

8) After firmware data are sent, Master checks if BLE link-layer data are all sent out

(Only when link-layer data is acked by Slave, it’s considered the data is sent

successfully). If all data are sent, Master will send an ota_end command to inform

Slave.

“OTA end” packet is set as 6 valid bytes: first two bytes are “0xff02”, followed by

maximum adr_index value of new firmware (the two bytes are used to double

check if there’re OTA data lost on Slave side), the final two bytes are inverted value

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 223 Ver1.3.0

of the maximum adr_index (equivalent to simple check). CRC check is not needed

for “OTA end”.

The maximal adr_index and inverted value of “8267_remote.bin” are “0x05a9”

and “0xfa56”, respectively. Figure6-14 shows the final OTA end packet.

9) Check if link-layer TX FIFO on Master side is empty: If it’s empty, it indicates all

data and commands in above steps are sent successfully, i.e. OTA process on

Master succeeds.

Please refer to Appendix for CRC_16 calculation function.

6.4.4 RF receive processing on Slave side

As introduced above, Slave can directly invoke the otaWrite and otaRead in OTA

Attribute. After Slave receives write command from Master, it will be parsed and

processed automatically in BLE stack by invoking the otaWrite function. In the otaWrite

function, the 20-byte packet data will be parsed: first judge whether it’s OTA CMD or

OTA data, then process correspondingly (respond to OTA cmd; check CRC to OTA data

and burn data into specific addresses of flash).

 The OTA related operations on Slave side are shown as below:：

1) OTA_FIRMWARE_VERSION command is received (first two bytes are 0xff00):

Master requests to obtain Slave firmware version number. In 826x BLE SDK, after

Slave receives this command, it will only check whether related callback function

is registered and determine whether to trigger the callback function

correspondingly.

The interface in ble_ll_ota.h to register this callback function is shown as below:

 typedef void (*ota_versionCb_t)(void);

 void bls_ota_registerVersionReqCb(ota_versionCb_t cb);

2) OTA start command is received (first two bytes are 0xff01): Slave enters OTA mode.

If the “bls_ota_registerStartCmdCb” function is used to register the callback

function of OTA start, then the callback function is executed to modify some

parameter states after entering OTA mode (e.g. disable PM to stabilize OTA data

transfer). Slave starts and maintains a slave_adr_index to record the adr_index of

the latest correct OTA data. The initial value of slave_adr_index is -1, and it’s used

to judge whether there’s packet loss in the whole OTA process; if so, OTA fails,

Slave MCU exits OTA and reboots, since Master can’t receive any ack packet from

Slave, it will discover OTA failure by software after timeout.

The following interface is used to register the callback function of OTA start:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 224 Ver1.3.0

 typedefvoid (*ota_startCb_t)(void);

 void bls_ota_registerStartCmdCb(ota_startCb_t cb);

User needs to register this callback function to carry out operations when OTA

starts, for example, configure LED blinking to indicate OTA process. After Slave

receives “OTA start”, it enters OTA and starts a timer (The timeout duration is set

as 30s by default in current SDK). If OTA process is not finished within the duration,

it’s regarded as OTA failure due to timeout. User can evaluate firmware size (larger

size takes more time) and BLE data bandwidth on Master (narrow bandwidth will

influence OTA speed), and modify this timeout duration accordingly via the

interface as shown below.

 void bls_ota_setTimeout(u32 timeout_us);// unit: us

3) Valid OTA data are received (first two bytes are 0~0x1000): Whenever Slave

receives one 20-byte OTA data packet, it will first check if the adr_index equals

slave_adr_index plus 1. If not equal, it indicates packet loss and OTA failure; if

equal, the slave_adr_index value is updated. Then carry out CRC_16 check to the

former 18 bytes; if not match, OTA fails; if match, the 16-byte valid data are written

into corresponding addresses of flash (ota_program_offset+adr_index*16 ~

ota_program_offset+adr_index*16 + 15). During flash writing process, if there’s

any error, OTA also fails.

4) “OTA end” command is received (first two bytes are 0xff02): Check whether

adr_max in OTA end packet and the inverted check value are correct. If yes, the

adr_max can be used to double check whether maximum index value of data

received by Slave from Master equals the adr_max in this packet. If equal, OTA

succeeds; if not equal, OTA fails due to packet loss.

After successful OTA, Slave will set the booting flag of the old firmware address in

flash as 0, set the booting flag of the new firmware address in flash as 0x4b, then

MCU reboots.

5) Slave supplies OTA state callback function:

After Slave starts OTA, MCU will finally reboot regardless of OTA result. If OTA

succeeds, Slave will set flag before rebooting so that MCU executes the new

firmware; if OTA fails, the incorrect new firmware will be erased before rebooting,

so that MCU still executes the old firmare. Before rebooting, user can judge

whether the OTA state callback function is registered and determine whether to

trigger it correspondingly.

 typedef void (*ota_resIndicateCb_t)(int result);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 225 Ver1.3.0

 enum{

 OTA_SUCCESS = 0, //success

 OTA_PACKET_LOSS, //lost one or more OTA PDU

 OTA_DATA_CRC_ERR, //data CRC err

 OTA_WRITE_FLASH_ERR, //write OTA data to flash ERR

 OTA_DATA_UNCOMPLETE, //lost last one or more OTA PDU

 OTA_TIMEOUT, //

 };

 void bls_ota_registerResultIndicateCb

 (ota_resIndicateCb_t cb);

The “enum” lists the 6 options for parameter “result”: the first value indicates OTA

success; the other five values indicate reasons for OTA failure. The “result” is

mainly used for debugging: When OTA fails, user can read the “result”, stop MCU

by using “while(1)”, and find the reason for current OTA failure.

LED indication can be added to indicate OTA success, as shown below:

 void LED_show_ota_result(int result)

 {

 irq_disable();

 WATCHDOG_DISABLE;

 gpio_set_output_en(GPIO_LED, 1);

 if(result == OTA_SUCCESS){ //OTA success

 gpio_write(GPIO_LED, 1);

 sleep_us(2000000); //led on for 2s

 gpio_write(GPIO_LED, 0);

 }

 else{ //OTA fail

 }

 gpio_set_output_en(GPIO_LED, 0);

}

bls_ota_registerResultIndicateCb (LED_show_ota_result);

The otaWrite function on Slave is assembled in lib, while other related interfaces

are available in proj_lib/ble/service/ble_ll_ota.h of SDK.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 226 Ver1.3.0

7 Key Scan

Keyscan architecture based on row/column scan is used to detect and process key

state update (press/release). User can directly use the sample code, or realize the

function by developing his own code.

7.1 Key matrix

 Take Telink 8267 Demo board as an example: It’s a 4*6 matrix and supports up to

24 buttons. Four drive pins (Row0~Row3) serve to output drive level, while six scan

pins (CoL0~CoL5) serve to scan for button press in current column.

VCCVCC VCC VCC VCC VCC

Drive

Pin

Scan

Pin

Row0

Row1

Row2

Row3

CoL0

CoL1

CoL2

CoL3

CoL4

CoL5

Figure7-1 Row/Column key matrix

 Keyscan related configurations in app_config.h are shown as below:

 On Telink demo board, Row0~Row3 pins are PB1, PB2, PB3 and PB6, while

CoL0~CoL5 pins are PD4, PD5, PD6, PD7, PE0 and PE1.

Define drive pin array and scan pin array:

 #define KB_DRIVE_PINS {GPIO_PB1, GPIO_PB2, GPIO_PB3, GPIO_PB6}

 #define KB_SCAN_PINS {GPIO_PD4, GPIO_PD5, GPIO_PD6, GPIO_PD7,

 GPIO_PE0, GPIO_PE1}

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 227 Ver1.3.0

 Keyscan adopts analog pull-up/pull-down resistor in 8267 IC: drive pins use 100K

pull-down resistor, and scan pins use 10K pull-up resistor. When no button is pressed,

scan pins act as input GPIOs and read high level due to 10K pull-up resistor. When key

scan starts, drive pins output low level; if low level is detected on a scan pin, it indicates

there’s button pressed in current column (Note: Drive pins are not in float state, if

output is not enabled, scan pins still detect high level due to voltage division of 100K

and 10K resistor.)

 Define valid voltage level detected on scan pins when drive pins output low level

in Row/Column scan:

 #define KB_LINE_HIGH_VALID 0

 Define pull-up resistor for scan pins and pull-down resistor for drive pins:

 #define MATRIX_ROW_PULL PM_PIN_PULLDOWN_100K

 #define MATRIX_COL_PULL PM_PIN_PULLUP_10K

 #define PULL_WAKEUP_SRC_PB1 MATRIX_ROW_PULL

 #define PULL_WAKEUP_SRC_PB2 MATRIX_ROW_PULL

 #define PULL_WAKEUP_SRC_PB3 MATRIX_ROW_PULL

 #define PULL_WAKEUP_SRC_PB6 MATRIX_ROW_PULL

 #define PULL_WAKEUP_SRC_PD4 MATRIX_COL_PULL

 #define PULL_WAKEUP_SRC_PD5 MATRIX_COL_PULL

 #define PULL_WAKEUP_SRC_PD6 MATRIX_COL_PULL

 #define PULL_WAKEUP_SRC_PD7 MATRIX_COL_PULL

 #define PULL_WAKEUP_SRC_PE0 MATRIX_COL_PULL

 #define PULL_WAKEUP_SRC_PE1 MATRIX_COL_PULL

 Since “ie” of general GPIOs is set as 0 by default in gpio_init, to read level on scan

pins, corresponding “ie” should be enabled.

 #define PD4_INPUT_ENABLE 1

 #define PD5_INPUT_ENABLE 1

 #define PD6_INPUT_ENABLE 1

 #define PD7_INPUT_ENABLE 1

 #define PE0_INPUT_ENABLE 1

 #define PE1_INPUT_ENABLE 1

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 228 Ver1.3.0

 When MCU enters suspend or deepsleep, it’s needed to configure CORE/PAD GPIO

wakeup. Set drive pins as high level wakeup; when there’s button pressed, drive pin

reads high level, which is 10/11 VCC (i.e. VCC * 100K/(100K+10K)). To read level state

of drive pins, corresponding “ie” should be enabled.

 #define PB1_INPUT_ENABLE 1

 #define PB2_INPUT_ENABLE 1

 #define PB3_INPUT_ENABLE 1

 #define PB6_INPUT_ENABLE 1

7.2 Keyscan, keymap and keycode

7.2.1 Keyscan

 After configuration as shown in section 7.1, the function below is invoked in

mainloop to implement keyscan.

 u32 kb_scan_key (int numlock_status, int read_key)

 numlock_status: Generally set as 0 when invoked in mainloop. Set as

“KB_NUMLOCK_STATUS_POWERON” only for fast keyscan after wakeup from

deepsleep (refer to section 7.5, corresponding to

DEEPBACK_FAST_KEYSCAN_ENABLE).

 read_key: Buffer processing for key values, generally not used and set as 1 (if it’s

set as 0, key values will be pushed into buffer and not reported to upper layer).

 The return value is used to inform user whether matrix keyboard update is

detected by current scan: if yes, return 1; otherwise return 0.

 The kb_scan_key function is invoked in mainloop. As introduced in section 3.2.4,

each main loop is an adv_interval or conn_interval. In advertising state (suppose

adv_interval is 30ms), key scan is processed once for each 30ms; in connection state

(suppose conn_interval is 10ms), key scan is processed once for each 10ms.

 In theory, when button states in matrix are different during two adjacent key scans,

it’s considered as an update. In actual code, a debounce filtering processing is enabled:

It will be considered as a valid update, only when button states stay the same during

two adjacent key scans, but different with the latest stored matrix keyboard state. “1”

will be returned by the function to indicate valid update, matrix keyboard state will be

indicated by the structure “kb_event”, and current button state will be updated to the

newest matrix keyboard state. Corresponding code in keyboard.c is shown as below:

 unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 229 Ver1.3.0

The newest button state means press or release state set of all (24) buttons in the

matrix. When power on, initial matrix keyboard state shows all buttons are “released”

by default, and debounce filtering processing is enabled; as long as valid update occurs

to the button state, “1” will be returned, otherwise “0” will be returned. For example:

press a button, a valid update is returned; release a button, a valid update is returned;

press another button with a button held, a valid update is returned; press the third

button with two buttons held, a valid update is returned; release a button of the two

pressed buttons, a valid update is returned……

7.2.2 Keymap &kb_event

 If a valid button state update is detected by invoking the “kb_scan_key”, user can

obtain current button state via a global structure variable “kb_event”.

 #define KB_RETURN_KEY_MAX 6

 typedef struct{

 u8 cnt;

 u8 ctrl_key;

 u8 keycode[KB_RETURN_KEY_MAX];

 }kb_data_t;

 kb_data_t kb_event;

 The “kb_event” consists of 8 bytes:

“cnt” serves to indicate valid count number of pressed buttons currently;

“ctrl_key” is not used generally, and it will be used only for standard USB HID

keyboard (user is not allowed to set keycode in keymap as 0xe0~0xe7).

 keycode[6] indicates keycode of up to six pressed buttons can be stored (if more

than six buttons are pressed actually, only the former six can be reflected).

 Keycode definition of 24 buttons in app_config.h is shown as below:

 #define KB_MAP_NORMAL {\

 {CR_VOL_MUTE, VK_3, VK_1, VK_MEDIA, }, \

 {VK_2, VK_5, VK_M, VK_4, }, \

 {CR_RIGHT, VK_NONE, CR_SEL, CR_LEFT, }, \

 {CR_REWIND, VK_NONE, CR_DN, CR_HOME, }, \

 {CR_VOL_UP, VK_NONE, VK_MMODE, CR_VOL_DN, }, \

 {VK_WEB, VK_NONE, CR_UP, CR_POWER, }, }

 The keymap follows the format of 4*6 matrix structure. The keycode of pressed

button can be configured accordingly, for example, the keycode of the button between

Row0 and CoL0 is “CR_VOL_MUTE”.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 230 Ver1.3.0

 In the “kb_scan_key” function, the “kb_event.cnt” will be cleared before each

scan, while the array “kb_event.keycode[]” won’t be cleared automatically. Whenever

“1” is returned to indicate valid update, the “kb_event.cnt” will be used to check

current valid count number of pressed buttons.

1) If current kb_event.cnt = 0, previous valid matrix state “kb_event.cnt” must be

uncertain non-zero value; the update must be button release, but the released

button number is uncertain. Data in kb_event.keycode[] (if available) is invalid.

2) If kb_event.cnt = 1, the previous kb_event.cnt indicates button state update. If

previous kb_event.cnt is 0, it indicates the update is one button is pressed; if

previous kb_event.cnt is 2, it indicates the update is one of the two pressed

buttons is released; if previous kb_event.cnt is 3, it indicates the update is two of

the three pressed buttons are released……

kb_event.keycode[0] indicates the key value of currently pressed button. The

subsequent keycodes are negligible.

3) If kb_event.cnt = 2, the previous kb_event.cnt indicates button state update. If

previous kb_event.cnt is 0, it indicates the update is two buttons are pressed at

the same time; if previous kb_event.cnt is 1, it indicates the update is another

button is pressed with one button held; if previous kb_event.cnt is 3, it indicates

the update is one of the three pressed buttons is released……

kb_event.keycode[0] and kb_event.keycode[1] indicate key values of the two

pressed buttons currently. The subsequent keycodes are negligible.

User can manually clear the “kb_event.keycode” before each key scan, so that it

can be used to check whether valid update occurs, as shown in the example below.

In the sample code, when kb_event.keycode[0]is not zero, it’s considered a

button is pressed, but the code won’t check further whether two buttons are pressed

at the same time or one of the two pressed buttons is released.

 kb_event.keycode[0] = 0;// manually clear keycode[0]

 int det_key = kb_scan_key (0, 1);

 if (det_key)

 {

 key_not_released = 1;

 u8 key = kb_event.keycode[0];

 if (key) //key press

 {

 key_buf[2] = key;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 231 Ver1.3.0

 //send key press

 blt_push_notify_data (HID_HANDLE_KEYBOARD_REPORT, key_buf,

 8);

 }

 else

 {

 key_not_released = 0;

 key_buf[2] = 0;

 //send key release

 blt_push_notify_data (HID_HANDLE_KEYBOARD_REPORT, key_buf,

 8);

 }

 }

7.3 Keycode

The section above introduces keymap definition in app_config.h and keycode

filling in KB_MAP_NORMAL. To realize standard USB HID keyboard, some special

keycodes need to be processed, so user should pay attention to details for keycode

definition.

 The “kb_remap_key_row” function in keyboard.c serves to process keycode.

 void kb_remap_key_row(int drv_ind, u32 m, int key_max, kb_data_t

 *kb_data)

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 232 Ver1.3.0

Figure7-2 keycode processing function

CTRL KEY will be obtained by kb_event.ctrl_key, and its keycode ranges from 0xe0

to 0xe7 which cannot be used by user.

 In proj/drivers/usbkeycode.h:

 #define VK_CTRL 0xe0

 #define VK_SHIFT 0xe1

 #define VK_ALT 0xe2

 #define VK_WIN 0xe3

 #define VK_RCTRL 0xe4

 #define VK_RSHIFT 0xe5

 #define VK_RALT 0xe6

 #define VK_RWIN 0xe7

 For the following key values, after they are transferred by Slave to Telink Master

Dongle, special processing will be realized by PC, and it depends on report descriptor

configuration of BLE HID in app_att.c.

enum{

VK_EXT_START = 0xa0,

VK_SYS_START = VK_EXT_START, //0xa0

VK_SLEEP = VK_SYS_START, //0xa0, sleep

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 233 Ver1.3.0

VK_POWER, //0xa1, power

VK_WAKEUP, //0xa2, wake-up

VK_SYS_END, //0xa3

 VK_SYS_CNT = (VK_SYS_END - VK_SYS_START),//0xa3-0xa0=0x03

VK_MEDIA_START = VK_SYS_END, //0xa3

VK_W_SRCH = VK_MEDIA_START, //0xa3

VK_WEB, //0xa4

VK_W_BACK,

VK_W_FORWRD,

VK_W_STOP,

VK_W_REFRESH,

VK_W_FAV, //0xa9

VK_MEDIA,

VK_MAIL,

VK_CAL,

VK_MY_COMP,

VK_NEXT_TRK,

VK_PREV_TRK,

VK_STOP, //b0

VK_PLAY_PAUSE,

VK_W_MUTE,

VK_VOL_UP,

VK_VOL_DN,

VK_MEDIA_END,

VK_EXT_END = VK_MEDIA_END,

 VK_MEDIA_CNT = (VK_MEDIA_END - VK_MEDIA_START),//0xb5-0xa3=0x12

 VK_ZOOM_IN = (VK_MEDIA_END + 1),//0xb6

VK_ZOOM_OUT , //0xb7

}

7.4 Keyscan flow

7.4.1 Basic keyscan flow

When kb_scan_key is invoked, a basic keyscan flow is shown as below:

1) Initial full scan through the whole matrix.

All drive pins output drive level (0). Meanwhile read all scan pins, check for valid

level, and record the column on which valid level is read. (The scan_pin_need is

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 234 Ver1.3.0

used to mark valid column number.)

 scan_pin_need = kb_key_pressed (gpio);

If row-by-row scan is directly adopted without initial full scan through the whole

matrix, each time all rows (four rows in current demo firmware) should be

scanned at least, even if no button is pressed. To save scan time, initial full scan

through the whole matrix can be added, thus it will directly exit keyscan if no

button press is detected on any column.

In the kb_key_pressed function, all rows output low level, and stabilized level of

scan pins will be read after 20us delay. A release_cnt is set as 6; if a detection

shows all pressed buttons in the matrix are released, it won’t consider no button

is pressed and stop row-by-row scan immediately, but buffers for six frames. If six

successive detections show buttons are all released, it will stop row-by-row scan.

Thus key debounce processing is realized.

2) Scan row by row according to full scan result through the whole matrix.

If button press is detected by full scan, row-by-row scan is started: Drive pins

(ROW0~ROW3) output valid drive level row by row; read level on columns, and

find the pressed button. Following is related code:

 u32 pressed_matrix[ARRAY_SIZE(drive_pins)] = {0};

 kb_scan_row (0, gpio);

 for (int i=0; i<=ARRAY_SIZE(drive_pins); i++) {

 u32 r = kb_scan_row (i < ARRAY_SIZE(drive_pins) ? i : 0,

gpio);

 if (i) {

 pressed_matrix[i - 1] = r;

 }

 }

The following methods are used to optimize code execution time for row-by-row

scan.

 When a row outputs drive level, it’s not needed to read level of all columns

(CoL0~CoL5). Since the scan_pin_need marks valid column number, user can read

the marked columns only.

 After a row outputs drive level, a 20us or so delay is needed to read stabilized level

of scan pins, and a buffer processing is used to utilize the waiting duration.

The array variable “u32 pressed_matrix[4]” (up to 32 columns are supported) is

used to store final matrix keyboard state: pressed_matrix[0] bit0~bit5 mark

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 235 Ver1.3.0

button state on CoL0~CoL5 crossed with Row0……pressed_matrix[3] bit0~bit5

mark button state on CoL0~CoL5 crossed with Row3.

3) Debounce filtering for pressed_matrix[].

 unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

 u32 key_changed = key_debounce_filter(pressed_matrix, \

 (numlock_status & KB_NUMLOCK_STATUS_POWERON) ? 0 : 1);

During fast keyscan after wakeup from deepsleep, “numlock_status” equals

“KB_NUMLOCK_STATUS_POWERON”, the “filt_en” is set as 0 to skip filtering and

fast obtain key values. In other cases, the “filt_en” is set as 1 to enable filtering.

Only when pressed_matrix[] stays the same during two adjacent key scans, but

different from the latest valid pressed_matrix[], the “key_changed” is set as 1 to

indicate valid update in matrix keyboard.

4) Buffer processing for pressed_matrix[].

Push pressed_matrix[] into buffer. When the “read_key” in “kb_scan_key (int

numlock_status, int read_key)” is set as 1, the data in the buffer will be read

out immediately. When the “read_key” is set as 0, the buffer stores the data

without notification to the upper layer; the buffered data won’t be read until the

read_key is 1.

In current SDK, the “read_key” is fixed as 1, i.e. the buffer does not take effect

actually.

5) According to pressed_matrix[], look up the KB_MAP_NORMAL table and return

key values.

Corresponding functions are “kb_remap_key_code” and “kb_remap_key_row”.

7.4.2 Keyscan flow timing optimization

 As introduced above, even if no button is pressed, each mainloop takes about

100us to execute initial full scan through the whole matrix at least.

 GPIO IRQ status bit inquiry can be used to optimize the time for full scan with no

button pressed.

 As shown in PM section, in “user_init” all drive GPIO pins are configured as high-

level CORE wakeup for suspend.

 u32 pin[] = KB_DRIVE_PINS;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 236 Ver1.3.0

 for (int i=0; i<(sizeof (pin)/sizeof(*pin)); i++)

 {

 gpio_set_wakeup(pin[i],1,1); //drive pin core(gpio) high

 wakeup suspend

 }

 The “gpio_set_wakeup(pin[i],1,1)” sets wakeup polarity of drive pins as high level

and enables wakeup.

Since GPIO interrupt enabling and polarity adopts the same configuration

registers as wakeup, the “gpio_set_wakeup(pin[i],1,1)” will also enable GPIO interrupt

and set interrupt polarity as high level.

 High level on GPIO will set GPIO IRQ service flag bit (core_648 BIT(18)); this flag

bit can be used to check whether any button is pressed (when a button is pressed,

10/11 VCC high level will be read on corresponding drive pin).

 #define reg_irq_mask REG_ADDR32(0x640)

 #define reg_irq_src REG_ADDR32(0x648)

 FLD_IRQ_GPIO_EN = BIT(18),

 As long as GPIO interrupt mask bit (core_640 BIT(18)) is not enabled, the

configuration will only set the IRQ flag bit, but won’t trigger interrupt.

 The “KEYSCAN_IRQ_TRIGGER_MODE” definition in app_config.h serves to enable

time optimization for the keyscan flow.

 #define KEYSCAN_IRQ_TRIGGER_MODE 1

 Initialization:

 gpio_core_irq_enable_all(1);

 reg_irq_src = FLD_IRQ_GPIO_EN;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 237 Ver1.3.0

Figure7-3 Keyscan time optimization

As shown above, it will first check whether IRQ flag bit is set after previous

keyscan is finished. If yes, it indicates there’s button press action during this duration;

since manual button press lasts for 200ms at least, the pressed button is not released

yet, and the subsequent basic keyscan flow (including full scan and row-by-row scan)

will be executed.

 After the pressed button is released, the debounce function in kb_key_pressed

takes effect. Only when six successive detections all show button release state, the

keyscan flow will be stopped.

7.5 Deepsleep wakeup fast keyscan

After Slave enters deepsleep during connection state, it can be woke up by button

press action. After wakeup, firmware is rebooted; in mainloop following user_init,

Slave will first send adv packets, establishes connection, and then sends the key value

to BLE Master.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 238 Ver1.3.0

 Though 826x BLE SDK adopts some processing to speed up the deepback

(resumption after wakeup from deepsleep), the duration may still reach several

hundreds of milliseconds (e.g. 300ms). To avoid action loss of the wakeup pin, fast

keyscan and data buffer are added. Fast keyscan is designed to avoid potential button

action loss caused by re-initialization time after MCU reboots and debounce filter

processing time during keyscan in mainloop. Data buffer is designed considering valid

button data detected in adv state and pushed into BLE TX FIFO will be cleared after

entering connection state.

 The macro “DEEPBACK_FAST_KEYSCAN_ENABLE” in app_config.h is used to

control fast keyscan and data buffer.

#define DEEPBACK_FAST_KEYSCAN_ENABLE 1

void deep_wakeup_proc(void)

{

 #if(DEEPBACK_FAST_KEYSCAN_ENABLE)

 if(analog_read(DEEP_ANA_REG0) == CONN_DEEP_FLG){

 if(kb_scan_key (KB_NUMLOCK_STATUS_POWERON,1) && kb_event.cnt){

 deepback_key_state = DEEPBACK_KEY_CACHE;

 key_not_released = 1;

 memcpy(&kb_event_cache,&kb_event,sizeof(kb_event));

 }

 }

 #endif

}

During initialization key scan is processed before user_init. After it’s detected by

reading retention analog register that MCU enters deep wakeup from connection state,

the “kb_scan_key” is invoked to directly obtain the whole matrix button state without

enabling the debounce filtering. If key scan process shows a button is pressed (button

state update is returned, and kb_event.cnt in non-zero value), the “kb_event” variable

will be copied to the cache variable “kb_event_cache”.

The “deepback_pre_proc” and “deepback_post_proc” processing are added in

keyscan during mainloop.

void proc_keyboard (u8 e, u8 *p)

{

 kb_event.keycode[0] = 0;

 int det_key = kb_scan_key (0, 1);

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

 if(deepback_key_state != DEEPBACK_KEY_IDLE){

 deepback_pre_proc(&det_key);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 239 Ver1.3.0

 }

#endif

 if (det_key){

 key_change_proc();

 }

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

 if(deepback_key_state != DEEPBACK_KEY_IDLE){

 deepback_post_proc();

 }

#endif

}

The “deepback_pre_proc” realizes buffer processing of fast keyscan value, as

shown below: After connection is established between Slave and Master, if no button

state update is detected in a kb_key_scan, the buffered kb_event_cache value will be

used as the current newest button state update.

For button release processing, it’s needed to check current matrix keyboard state:

If there’s button pressed, since actual button release generates a release action, it’s

not needed to add manual release; if current button is released, it’s needed to mark

that a manual release event should be added, otherwise button may fail to be released

since buffered button press event stays valid.

 The “deepback_pre_proc” specifies whether manual release is needed. The

“deepback_post_proc” will determine whether to push a button release event into BLE

TX FIFO accordingly.

7.6 Repeat Key processing

When a button is pressed and held, it’s needed to enable repeat key function to

repeatedly send the key value with a specific interval.

The “repeat key” function is masked by default. By configuring related macros in

app_config.h, this function can be controlled correspondingly.

//repeat key

#define KB_REPEAT_KEY_ENABLE 0

#defineKB_REPEAT_KEY_INTERVAL_MS 200

#define KB_REPEAT_KEY_NUM 1

#define KB_MAP_REPEAT {VK_1, }

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 240 Ver1.3.0

1) KB_REPEAT_KEY_ENABLE

This macro serves to enable or mask the repeat key function. To use this function,

first set “KB_REPEAT_KEY_ENABLE” as 1.

2) KB_REPEAT_KEY_INTERVAL_MS

This macro serves to set the repeat interval time. For example, if it’s set as 200ms,

it indicates when a button is held, kb_key_scan will return an update with the

interval of 200ms. Current button state will be available in kb_event.

3) KB_REPEAT_KEY_NUM 和 KB_MAP_REPEAT

The two macros serve to define current repeat key values: KB_REPEAT_KEY_NUM

specifies the number of keycodes, while the KB_MAP_REPEAT defines a map to

specify all repeat keycodes. Note that the keycodes in the KB_MAP_REPEAT must

be the values in the KB_MAP_NORMAL.

Following example shows a 6*6 matrix keyboard: by configuring the four macros,

eight buttons including UP, DOWN, LEFT, RIGHT, V+, V-, CHN+ and CHN- are set as

repeat keys with repeat interval of 100ms, while other buttons are set as non-repeat

keys.

User can search for the four macros in the project to locate the code about repeat

key.

7.7 Stuck Key processing

 Stuck key processing is used to save power when one or multiple buttons of a

remote control/keyboard is/are pressed and held for a long time unexpectedly, for

example a RC is pressed by a cup or ashtray. If keyscan detects some button is pressed

and held, without the stuck key processing, MCU won’t enter deepsleep or other low

power state since it always considers the button is not released.

 Following are two related macros in the app_config.h:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 241 Ver1.3.0

 //stuck key

 #define STUCK_KEY_PROCESS_ENABLE 0

 #define STUCK_KEY_ENTERDEEP_TIME 60//in s

 By default the stuck key processing function is masked. User can set the

“STUCK_KEY_PROCESS_ENABLE” as 1 to enable this function. The

“STUCK_KEY_ENTERDEEP_TIME” serves to set the stuck key time: if it’s set as 60s, it

indicates when button state stays fixed for more than 60s with some button held, it’s

considered as stuck key, and MCU will enter deepsleep.

 User can search for the macro “STUCK_KEY_PROCESS_ENABLE” to locate related

code in keyboard.c, as shown below:

 #if (STUCK_KEY_PROCESS_ENABLE)

 u8 stuckKeyPress[ARRAY_SIZE(drive_pins)];

 #endif

 An u8-type array stuckKeyPress[4] is defined to record row(s) with stuck key in

current key matrix. The array value is obtained in the function “key_debounce_filter”.

 Upper-layer processing is shown as below:

 kb_event.keycode[0] = 0;

 int det_key = kb_scan_key (0, 1);

 if (det_key){

 #if (STUCK_KEY_PROCESS_ENABLE)

 if(kb_event.cnt){ //key press

 stuckKey_keyPressTime = clock_time();

 }

 #endif

 }

For each button state update, when button press is detected (i.e. kb_event.cnt is

non-zero value), the “stuckKey_keyPressTime” is used to record the time for the latest

button press state.

Processing in the blt_pm_proc is shown as below:

 #if (STUCK_KEY_PROCESS_ENABLE)

 if(key_not_released && clock_time_exceed(stuckKey_keyPressTime,

STUCK_KEY_ENTERDEEP_TIME*1000000)){

 u32 pin[] = KB_DRIVE_PINS;

 for (int i=0; i<(sizeof (pin)/sizeof(*pin)); i++)

 {

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 242 Ver1.3.0

 extern u8 stuckKeyPress[];

 if(stuckKeyPress[i]){

 cpu_set_gpio_wakeup (pin[i],0,1); //reverse stuck

 key pad wakeup

level

 }

 }

cpu_sleep_wakeup(1, PM_WAKEUP_PAD, 0); //deepsleep

 }

 #endif

 Check whether the latest pressed button is held for more than 60s: if yes, it’s

considered as stuck key, all row numbers with stuck key will be obtained via the

bottom-layer “stuckKeyPress[]”; then modify corresponding PAD wakeup polarity as

low level from high level, so that MCU can enter deepsleep and wake up by button

release normally (when button is pressed, corresponding drive pin reads high level of

10/11 VCC; after release, the drive pin turns to low level).

7.8 Power optimization for long key press

Power optimization can be enabled for long pressed keys, by enabling the macro

“LONG_PRESS_KEY_POWER_OPTIMIZE”. Please refer to the PM section for details.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 243 Ver1.3.0

8 LED Management

8.1 LED task related invoking functions

Source code about LED management is available in vendor/common/blt_led.c of

826x BLE SDK for user reference. User can directly include the

“vendor/common/blt_led.h” into his C file.

 User needs to invoke the following three functions:

 void device_led_init(u32 gpio,u8 polarity);

 int device_led_setup(led_cfg_t led_cfg);

 static inline void device_led_process(void);

 During initialization, the “device_led_init(u32 gpio,u8 polarity)” is used to set

current GPIO and polarity corresponding to LED. If “polarity” is set as 1, it indicates

LED will be turned on when GPIO outputs high level; if “polarity” is set as 0, it indicates

LED will be turned on when GPIO outputs low level.

 The “device_led_process” function is added in UI Entry of mainloop. It’s used to

check whether LED task is not finished (DEVICE_LED_BUSY). If yes, MCU will carry out

corresponding LED task operation.

8.2 LED task configuration and management

8.2.1 Led event definition

 The following structure serves to define a LED event.

 typedef struct{

 unsigned short onTime_ms;

 unsigned short offTime_ms;

 unsigned char repeatCount; //0xff special for long

 on(offTime_ms=0)/long off(onTime_ms=0)

 unsigned char priority; //0x00 < 0x01 < 0x02 < 0x04 < 0x08

< 0x10 < 0x20 < 0x40 < 0x80

 } led_cfg_t;

The unsigned short int type “onTime_ms” and “offTime_ms” specify light on and

off time (unit: ms) for current LED event, respectively. The two variables can reach the

maximum value of 65535.

The unsigned char type “repeatCount” specifies blinking times (i.e. repeat times

for light on and off action specified by the “onTime_ms” and “offTime_ms”). The

variable can reach the maximum value of 255.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 244 Ver1.3.0

The “priority” specifies the priority level for current LED event.

 To define a LED event when the LED light stays on/off, set the “repeatCount” as

255(0xff), set “onTime_ms”/“offTime_ms” as 0 or non-zero correspondingly.

 LED event examples:

1) Blink for 3s with the frequency of 1Hz: turn on for 500ms, turn off for 500ms, and

repeat for 3 times.

led_cfg_t led_event1 = {500, 500 , 3, 0x00, };

2) Blink for 50s with the frequency of 4Hz: turn on for 125ms, turn off for 125ms, and

repeat for 200 times.

led_cfg_t led_event2 = {125, 125 , 200, 0x00, };

3) Always on: onTime_ms is non-zero, offTime_ms is zero, and repeatCount is 0xff.

led_cfg_t led_event3 = {100, 0 , 0xff, 0x00, };

4) Always off: onTime_ms is zero, offTime_ms is non-zero, and repeatCount is 0xff.

led_cfg_t led_event4 = {0, 100, 0xff, 0x00, };

5) Turn on for 3s, and then turn off: onTime_ms is 1000, offTime_ms is 0, and

repeatCount is 0x3.

led_cfg_t led_event5 = {1000, 0, 3, 0x00, };

The “device_led_setup” can be invoked to deliver a led_event to LED task

management.

device_led_setup(led_event1);

8.2.2 Led event priority

 User can define multiple LED events in SDK, however, only a LED event is allowed

to be executed at the same time. No task list is set for the simple LED management:

When LED is idle, LED will accept any LED event delivered by invoking the

“device_led_setup”. When LED is busy with a LED event (old LED event), if another

event (new LED event) comes, MCU will compare priority level of the two LED events;

if the new LED event has higher priority level, the old LED event will be discarded and

MCU starts to execute the new LED event; if the new LED event has the same or lower

priority level, MCU continues executing the old LED event, while the new LED event

will be completely discarded, rather than buffered.

 By defining LED events with different priority levels, user can realize

corresponding LED indicating effect.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 245 Ver1.3.0

Since inquiry scheme is used for LED management, MCU should not enter long

suspend (e.g. 10ms * 50 = 500ms) with latency enabled and LED task ongoing

(DEVICE_LED_BUSY); otherwise LED event with small onTime_ms value (e.g. 250ms)

won’t be responded in time, thus LED blinking effect will be influenced.

 #define DEVICE_LED_BUSY (device_led.repeatCount)

 The corresponding processing is needed to add in blt_pm_proc, as shown below:

 user_task_flg = scan_pin_need || key_not_released || DEVICE_LED_BUSY;

 if(user_task_flg){

 bls_pm_setManualLatency(0); // manually disable latency

 }

 User can refer to the code in current 826x ble remote project for LED related

processing.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 246 Ver1.3.0

9 blt software timer

Telink BLE SDK supplies source code of blt software timer demo for user reference

on timer task. User can directly use this timer or modify as needed.

Source code are available in “vendor/common/blt_soft_timer.c” and

“blt_soft_timer.h”. To use this timer, the macro below should be set as 1.

#define BLT_SOFTWARE_TIMER_ENABLE 0 //enable or disable

Since blt software timer is inquiry timer based on system tick, it cannot reach the

accuracy of hardware timer, and it should be continuously inquired during mainloop.

The blt soft timer applies to the use case with timing value more than 5ms and without

high requirement for time error.

Its key feature is: This timer will be inquired during mainloop, and it ensures MCU

can wake up in time from suspend and execute timer task. This design is implemented

based on “Timer wakeup of APP layer” (section 4.8).

 Current design can run up to four timers, and maximum timer number is

modifiable via the macro below:

#define MAX_TIMER_NUM 4 //timer max number

9.1 Timer initialization

The API below is used for blt software timer initialization:

void blt_soft_timer_init(void);

Timer initialization only registers “blt_soft_timer_process” as callback function of

APP layer wakeup in advance.

void blt_soft_timer_init(void)

{

 bls_pm_registerAppWakeupLowPowerCb(blt_soft_timer_process);

}

9.2 Timer inquiry processing

The function “blt_soft_timer_process” serves to implement inquiry processing of

blt software timer.

void blt_soft_timer_process(int type);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 247 Ver1.3.0

On one hand, mainloop should always invoke this function in the location as

shown in the figure below. On the other hand, this function must be registered as

callback function of APP layer wakeup in advance. Whenever MCU is woke up from

suspend in advace by timer, this function will be quickly executed to process timer task.

The parameter “type” of the “blt_soft_timer_process” indicates two cases to

enter this function: If “type” is 0, it indicates entering this function via inquiry in

mainloop; if “type” is 1, it indicates entering this function when MCU is woke up in

advance by timer.

#define MAINLOOP_ENTRY 0

#define CALLBACK_ENTRY 1

The implementation of “blt_soft_timer_process” is rather complex, and its basic

principle is shown as below:

1) First check whether there is still user-defined timer in current timer table.If not,

directly exit the function and disable timing wakeup of APP layer; if there’s timer

task, continue the flow.

 if(!blt_timer.currentNum){

 bls_pm_setAppWakeupLowPower(0, 0); //disable

 return;

}

2) Check whether the nearest timer task is reached: if the task is not reached, exit

the function; otherwise continue the flow. Since the design will ensure all timers

are time-ordered, herein it’s only needed to check the nearest timer.

 if(!blt_is_timer_expired(blt_timer.timer[0].t, now)){

 return;

}

3) Inquire all current timer tasks, and execute corresponding task as long as timer

value is reached.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 248 Ver1.3.0

The code above shows processing of timer task function: If the return value of this

function is less than 0, this timer task will be deleted and won’t be responded; if

the return value is 0, the previous timing value will be retained; if the return value

is more than 0, this return value will be used as the new timing cycle (unit: us).

4) In step 3), if tasks in timer task table change, the previous time sequence may be

disturbed, and re-ordering is needed.

if(change_flg){

 blt_soft_timer_sort();

}

5) If the nearest timer task will be responded within 3s (it can be modified as a value

larger than 3s as needed) from now, the response time will be set as wakeup time

of APP layer in advance; otherwise APP layer wakeup in advance will be disabled.

 if((u32)(blt_timer.timer[0].t - now) < 3000 *

CLOCK_SYS_CLOCK_1MS){

 bls_pm_setAppWakeupLowPower(blt_timer.timer[0].t, 1);

 }

 else{

 bls_pm_setAppWakeupLowPower(0, 0); //disable

}

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 249 Ver1.3.0

9.3 Add timer task

The API below serves to add timer task.

typedef int (*blt_timer_callback_t)(void);

int blt_soft_timer_add(blt_timer_callback_t func, u32 interval_us);

“func”: timer task function.

“interval_us”: timing value (unit: us).

The int-type return value correspons to three processing methods:

1) If the return value is less than 0, this executed task will be automatically deleted.

2) If the return value is 0, the old interval_us will be used as timing cycle.

3) If the return value is more than 0, this return value will be used as the new timing

cycle (unit: us).

As shown in the implementation code, if timer number exceeds the maximum

value, the adding operation will fail. Whenever a new timer task is added, re-ordering

must be implemented to ensure timer tasks are time-ordered, while the index

corresponding to the nearest timer task should be 0.

9.4 Delete timer task

As introduced above, timer task will be automatically deleted when the return

value is less than 0. Except for this case, the API below can be invoked to specify the

timer task to be deleted.

int blt_soft_timer_delete(blt_timer_callback_t func);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 250 Ver1.3.0

9.5 Demo

For Demo code of blt soft timer, please refer to “TEST_USER_BLT_SOFT_TIMER” in

826x feature.

 int gpio_test0(void)

 {

 DBG_CHN0_TOGGLE; //gpio 0 toggle to see the effect

 return 0;

 }

 int gpio_test1(void)

 {

 DBG_CHN1_TOGGLE; //gpio 1 toggle to see the effect

 static u8 flg = 0;

 flg = !flg;

 if(flg){

 return 7000;

 }

 else{

 return 17000;

 }

 }

 int gpio_test2(void)

 {

 DBG_CHN2_TOGGLE; //gpio 2 toggle to see the effect

 //timer last for 5 second

 if(clock_time_exceed(0, 5000000)){

 //return -1;

 blt_soft_timer_delete(&gpio_test2);
 }

 return 0;

 }

 int gpio_test3(void)

 {

 //gpio 3 toggle to see the effect

 DBG_CHN3_TOGGLE;
 return 0;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 251 Ver1.3.0

 }

Initialization:

 blt_soft_timer_init();

 blt_soft_timer_add(&gpio_test0, 23000);

 blt_soft_timer_add(&gpio_test1, 7000);

 blt_soft_timer_add(&gpio_test2, 13000);

 blt_soft_timer_add(&gpio_test3, 27000);

 Four tasks are defined with differenet features:

1) Toggle gpio_test0 once for every 23ms.

2) gpio_test1 uses 7ms/17ms toggle timer.

3) Delete gpio_test2 after 5s, which can be implemented by invoking

“blt_soft_timer_delete(&gpio_test2)” or “return -1”.

4) Toggle gpio_test3 once for every 27ms.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 252 Ver1.3.0

10 IR

10.1 PWM Driver

Pleaser refer to PWM secion in Telink 8266/8267 IC Datasheet to help

understanding PWM driver.

Since PWM related hardware configuration basically implemented via operating

registers is very simple, BLE SDK does not use specific driver file, but define operation

interfaces in “register_8266.h/register_8267.h” which are implemented by using

“static inline function”, so as to improve efficiency and save code size.

10.1.1 PWM id and pin

8266/8267 supports up to 12-channel PWM: PWM0 ~ PWM5 and PWM0_N ~

PWM5_N. Six-channel PWM is defined in driver:

typedef enum {

 PWM0_ID = 0,

 PWM1_ID,

 PWM2_ID,

 PWM3_ID,

 PWM4_ID,

 PWM5_ID,

}pwm_id;

Only six-channel PWM0~PWM5 are configured in software, while the other six-

channel PWM0_N~PWM5_N is inverted output of PWM0~PWM5 waveform. For

example: PWM0_N is inverted output of PWM0 waveform. When PWM0 is high level,

PWM0_N is low level; When PWM0 is low level, PWM0_N is high level. Therefore, as

long as PWM0~PWM5 are configured, PWM0_N~PWM5_N are configured.

 For 8266, IC pins corresponding to 12-channel PWM are shown as below:

Pin PWM Pin PWM

PC0 PWM0 PB7 PWM0_N

PC3 PWM1 PC1/PC2 PWM1_N

PC4 PWM2 PC5 PWM2_N

PA1/PD2 PWM3 PA4 PWM3_N

PA5/PD3 PWM4 PA6 PWM4_N

PB0 PWM5 PB1 PWM5_N

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 253 Ver1.3.0

 For 8267, IC pins corresponding to 12-channel PWM are shown as below:

Pin PWM Pin PWM

PA0/PC0/PD5/PE0 PWM0 PA2 PWM0_N

PA3/PC1/PD6/PE1 PWM1 PA4 PWM1_N

PB0/PC2/PD7 PWM2 PA5/PB1 PWM2_N

PB2/PC3 PWM3 PB3 PWM3_N

PB4/PC4 PWM4 PB5 PWM4_N

PB6/PC5 PWM5 PB7 PWM5_N

The “void gpio_set_func(u32 pin, u32 func)” serves to set specific pin as PWM

function. E.g. To use PA0 of 8267 as PWM0:

gpio_set_func(GPIO_PA0, AS_PWM)

10.1.2 PWM clock

The “pwm_set_clk(int system_clock_hz, int pwm_clk)” serves to set PWM clock.

 “system_clock_hz”: current system clock CLOCK_SYS_CLOCK_HZ.

 “pwm_clk”: clock to be configured.

Note that “system_clock_hz” must be an integral multiple of “pwm_clk” so as to

get the wanted clock via frequency division.

To increase accuracy of PWM time, it’s recommended to set “pwm_clk” as

“system_clock_hz”, i.e.

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, CLOCK_SYS_CLOCK_HZ);

Both “system_clock_hz” and “pwm_clk” are tick value corresponding to system

clock, i.e. system clock increased value per second.

10.1.3 PWM cycle and duty

After PWM clock is configured, it’s needed to set maximum cycle and duty cycle

for each PWM waveform.

“static inline pwm_set_cycle(pwm_id id, u16 cycle_tick)” serves to set maximum

cycle of specific PWM. “cycle_tick” unit is PWM clock tick value.

“static inline pwm_set_cmp(pwm_id id, u16 cmp_tick)” serves to set high level

duration during PWM cycle. “cmp_tick” unit is PWM clock tick value.

Thus duty cycle equals cmp_tick/cycle_tick.

For PWM0~PWM5, by default hardware will set PWM output high level followed

by low level during a frame cycle. To obtain PWM waveform with low level followed by

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 254 Ver1.3.0

high level, following two methods applys:

1. Use corresponding PWM0_N~PWM5_N (inverted output of PWM0 ~ PWM5).

2. Use “void pwm_revert(pwm_id id)” to invert PWM0~PWM5 waveform.

Suppose current PWM clock is 16MHz, to set PWM cycle and duty cycle for PWM0

as 1ms and 40%:

pwm_set_cycle(PWM0_ID , 16000); //16*1000

pwm_set_cmp (PWM0_ID , 6400); //16*400

“static inline pwm_set_cycle_and_duty(pwm_id id, u16 cycle_tick, u16 cmp_tick)”

combines the two interfaces above, which can be used to improve configuration

efficiency.

10.1.4 PWM revert

“static inline void pwm_revert(pwm_id id)” serves to invert PWM0~PWM5

waveform.

“static inline pwm_n_revert(pwm_id id)” serves to invert PWM0_N~PWM5_N

waveform.

10.1.5 PWM mode

PWM supports up to three modes: PWM0~PWM5 support normal mode, while

only PWM0~PWM1 support count mode and IR mode.

typedef enum{

 PWM_NORMAL_MODE = 0x00,

 PWM_COUNT_MODE = 0x01,

 PWM_IR_MODE = 0x03,

}pwm_mode;

1. normol mode

Normal PWM mode, PWM timing sequence with configured pwm_set_clk/

pwm_set_cycle_and_duty is called a frame. After a PWM is enabled via “pwm

start”, it will continuously output frames until this PWM is disabled via “pwm

stop”.

2. count mode

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 255 Ver1.3.0

After a PWM frame is configure via “pwm_set_clk”

/“pwm_set_cycle_and_duty”, “pwm_set_pulse_num” is used to specify the

frame number, i.e. the number of pulses consisiting output waveform.

Suppose pulse number is n, after a PWM is enabled via “pwm start”, it will

continuously output n frames, and it will be stopped automatically without

the need to use “pwm stop”.

In this mode, after PWM is stopped automatically, it’s needed to use “pwm

start” to restart the PWM timing sequence. The new configuration of PWM

cycle and duty cycle during PWM timing sequence will take effect in the next

frame immediately. Suppose the initial PWM frame is set as 1ms cycle and 1/2

duty cycle, and frame number is set as 10; during the 6th frames, cycle and

duty cycle are modified as 2ms and 1/3, then the new setting will take effect

in the remaining four frames.

3. IR mode

Similar to count mode, pwm_set_clk/pwm cycle and

dut/pwm_set_pulse_num are used to set timing sequence of a group of PWM

frames (ir task, marked with ir_taskn or irn). After a PWM is enabled via “pwm

start”, hardware will continuously running this ir_task until this PWM is

disabled via “pwm stop”.

Following shows the differences between IR mode and count mode:

1) count mode will be stopped automatically, while IR mode won’t.

2) In count mode, new configuration of cycle and duty cycle will take effect

immediately in the next frame; while in IR mode, new setting won’t take

effect until the current ir_task is finished, i.e. it will take effect in the next

new ir_task.

Following shows an example of IR mode timing sequence.

t0 t1 t2 t3 t4 t5

ts0 ts1 ts2 ts3 ts4

PWM timing

PWM set

pwm
start

Figure10-1 PWM timing and PWM set

“ts0” indicates the moment to set pwm frame/pulse number for the first time.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 256 Ver1.3.0

Suppose ir_task0 is set herein.

t0 indicates the moment to start PWM IR mode via “pwm start”.

tn (t1, t2, t3……) indicates the moment when an IR task is finished and the

next IR task is started.

tsn (ts1, ts2, ts3, ts4……) indicates the moment when user can set timing

sequence of new IR task.

After “pwm start”, hardware runs ir_task0 from t0 to t1. Following shows

several setting and corresponding running state:

1) After ir_task0 is set at ts0, PWM setting is not modified, i.e. no new IR

task is set. Hardware will continuously run ir_task0 (t0~t1, t1~t2, t2~t3,

t3~t4, t4~t5) until PWM is disabled via “pwm stop”.

2) Suppose ir_task0 is set at ts0, and ir_task1 is set at ts1. Hardware will run

ir_task0 during t0~t1, and then continuously run ir_task1 (t1~t2, t2~t3,

t3~t4, t4~t5) until PWM is disabled via “pwm stop”.

3) Suppose ir_task0 is set at ts0, ir_task1 is set at ts1, and ir_task2 is set at

ts2. Hardware wil run ir_task0 during t0~t1, run ir_task1 during t1~t2,

and then continuously run ir_task2 (t2~t3, t3~t4, t4~t5) until PWM is

disabled via “pwm stop”.

10.1.6 PWM start and stop

The two interfaces below serve to enable (start)/disable (stop) certain PWM.

static inline void pwm_start(pwm_id id)

static inline void pwm_stop(pwm_id id)

10.1.7 PWM pulse number

“static inline void pwm_set_pulse_num(pwm_id id, u16 pulse_num)” serves to

specify PWM frame number in PWM0~PWM1 count mode and IR mode.

This interface does not apply to PWM2~PWM5 which support normal mode only.

10.1.8 PWM phase

“static inline pwm_set_phase(pwm_id id, u16 phase)” serves to set delay time

before PWM is started. Generally it can be set as 0 (no delay).

10.1.9 PWM interrupt

PWM supports eight types of interrupt: IRQ_PWMn_PNUM (n=0,1),

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 257 Ver1.3.0

IRQ_PWMn_FRAME (n=0,1,2,3,4,5).

typedef enum{

 FLD_IRQ_PWM0_PNUM = BIT(0),

 FLD_IRQ_PWM1_PNUM = BIT(1),

 FLD_IRQ_PWM0_FRAME = BIT(2),

 FLD_IRQ_PWM1_FRAME = BIT(3),

 FLD_IRQ_PWM2_FRAME = BIT(4),

 FLD_IRQ_PWM3_FRAME = BIT(5),

 FLD_IRQ_PWM4_FRAME = BIT(6),

 FLD_IRQ_PWM5_FRAME = BIT(7),

}PWM_IRQ;

 Whenever a frame configured by pwm_set_clk/ pwm_set_cycle_and_duty is

finished, PWMn will generate a frame-done IRQ (Interrupt Request) signal

“FLD_IRQ_PWMn_FRAME”. This applies to PWM0 ~ PWM5 normal mode/count

mode/IR mode.

 Whenever a frame group (it’s called IR task in IR mode) consisting

“pwm_set_pulse_num” frames is finished, PWMn will generate a Pnum IRQ signal

“FLD_IRQ_PWMn_PNUM”. This only applies to PWM0~PWM1 count mode/IR mode.

 Suppose PWM mode is count mode, to set cycle as 1ms, duty cycle as 1/2, pulse

number as 50:

 pwm_set_clk(16000000, 16000000);

pwm_set_cycle_and_duty(PWM0_ID , 16000, 8000);

pwm_set_pulse_num(IR_PWM_ID, 50);

PWM0 will generate a frame done IRQ “FLD_IRQ_PWM0_FRAME” for every 1ms.

After 50 frams are finished, PWM0 will generate a Pnum IRQ

“FLD_IRQ_PWM0_PNUM”. At this moment, totally “FLD_IRQ_PWM0_FRAME” have

been generated for 50 times.

To enable PWM interrupt processing during irq_hander (interrupt entry in SDK),

it’s also needed to enable the mask of corresponding PWM interrupt.

Take IRQ_PWM0_PNUM as an example.

1. Enable mask of FLD_IRQ_PWM0_PNUM:

reg_pwm_irq_mask |= FLD_IRQ_PWM0_PNUM;

Generally it’s recommended to clear the previous status before mask is

enabled, so that it won’t be triggered to enter irq_handler by previous status.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 258 Ver1.3.0

reg_pwm_irq_sta = FLD_IRQ_PWM0_PNUM;

2. Enable mask of PWM interrupt in MCU system interrupt.

reg_irq_mask |= FLD_IRQ_SW_PWM_EN;

3. Ensure MCU global interrupt is enabled, i.e. irq_enable ().

4. The settings above ensure this interrupt can trigger MCU to enter

irq_handler(). Following is suggested processing in irq_handler().

 u8 pwm_sta = reg_pwm_irq_sta;

 if(pwm_sta & FLD_IRQ_PWM0_PNUM){

 func();

 reg_pwm_irq_sta = FLD_IRQ_PWM0_PNUM;

}

10.2 IR implementation method

IR transmission needs to switch PWM output at specific time, to avoid IR error, the

switch time has high requirement of accuracy.

As introduced in BLE Link Layer timing sequence (section 3.2.4), Link Layer uses

system interrupt to process brx event (In newest SDK, processing of adv event is placed

in mainloop, and it does not occupy system interrup time). When IR is going to switch

PWM output soon, if brx event related interrupt comes first and occupies MCU time,

the time to swtich PWM output may be delayed, thus to result in IR error.

To avoid the problem above, IR implementation uses PWM IR mode. As introduced

in IR mode, BLE SDK will divides an IR data into multiple ir tasks: ir_task0, ir_task1,

ir_task2……ir_task(n-1), ir_taskn.

First set ir_task0, after pwm_start, PWM outputs ir_task0, then set ir_task1

immediately; when ir_task0 is finished, “FLD_IRQ_PWMn_PNUM” is generated, then

set ir_task2 in irq_handler(), at this moment PWM outputs ir_task1; when ir_task1 is

finished, “FLD_IRQ_PWMn_PNUM” is generated, then set ir_task3 in irq_handler(), at

this moment PWM outputs ir_task2……

The next IR task should be set when the previous IR task is output. As long as

maximum time of MCU system interrupt does not exceed the shortest IR task time, it

can ensure IR timing sequence won’t be delayed. In BLE SDK, maximum interrupt

processing time in brx event is generally shorter than IR task.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 259 Ver1.3.0

10.3 IR Demo details

10.3.1 NEC IR

NEC IR protocol is shown as below:

Figure10-2 NEC IR protocol

 To implement NEC IR by using PWM IR mode, a complete timing sequence is

divided into multiple IR tasks. Actually each IR task only contains three parameters:

Cycle, duty cycle and pulse number, which can be configured via the two APIs below.

static inline pwm_set_cycle_and_duty(pwm_id id, u16 cycle_tick, u16 cmp_tick)

static inline void pwm_set_pulse_num(pwm_id id, u16 pulse_num)

Telink BLE SDK does not need user to divide each IR task, but supplies a set of

unified processing mechanism with some configuration interfaces for user to

automatically implement IR.

User only needs to understand this IR management mechanism, and configure his

IR accordingly. Note that some interfaces are not modifiable and can only be invoked

by user, and some functions may need user to modify as needed.

The core of this mechanism is a structure, as shown below.

typedef struct{

 ir_send_ctrl_data_t data[IR_GROUP_MAX];

 u8 group_index;

 u8 group_cnt;

IR NEC protocol encoding

Red: Start

Blue: data
Green: Repeat

Address code

Data format: Address inverted code

Command inverted code

Address code and command are 8bits, so a complete signal contains 32bits.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 260 Ver1.3.0

 u8 is_sending;

 u8 repeat_timer_enable;

 u8 ir_send_irq_idx;

 u8 ir_send_start_high;

 u8 last_cmd;

 u8 rsvd;

 u16 carrier_cycle;

 u16 carrier_high;

 u32 sending_start_time;

 u32 repeat_time;

}ir_send_ctrl_t;

10.3.2 Set carrier

NEC IR carrier frequency is 38kHz, while duty cycle is 1/3.

User needs to invoke the interface below to set carrier cycle and duty cycle. This

interface can only be invoked, and user cannot modify its internal implementation.

void ir_config_carrier(u16 cycle_tick, u16 high_tick)

When system clock is CLOCK_SYS_CLOCK_HZ,

cycle_tick = CLOCK_SYS_CLOCK_HZ/38000

Since duty cycle is 1/3, high_tick should be set as (cycle_tick * 1/3).

As shown in the code, carrier cycle and duty cycle configured by user are stored in

the “carrier_cycle” and “carrier_high” variable.

10.3.3 Set logic1 and logic0 time

The interface below serves to set PWM duration of IR data bit 1 and bit 0. This

interface can only be invoked, and user cannot modify its internal implementation.

void ir_config_byte_timing(u32 tick_logic_1_carr, u32 tick_logic_1_none,

 u32 tick_logic_0_carr, u32 tick_logic_0_none)

“tick_logic_1_carr” and “tick_logic_1_none” indicate carrier and low level

duration of logic level 1.

“tick_logic_0_carr” and “tick_logic_0_none” indicate carrier and low level

duration of logic level 0.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 261 Ver1.3.0

According to NEC IR protocol, the setting of the four values is shown as below:

 ir_config_byte_timing(560 * CLOCK_SYS_CLOCK_1US,

 1690 * CLOCK_SYS_CLOCK_1US,

 560 * CLOCK_SYS_CLOCK_1US,

 560 * CLOCK_SYS_CLOCK_1US);

Each IR task only has three parameters: cycle, duty cycle and pulse number. The

structure below is used to describe an IR task.

 typedef struct{

 u32 cycle;

 u16 hich;

 u16 cnt;

}ir_ctrl_t;

Create two IR task array data for logic 1 and logic 0 with carrier and without carrier

(i.e. low level), as shown below:

ir_ctrl_t ir_bit_1_controll[2];

ir_ctrl_t ir_bit_0_controll[2];

Actually the four parameters configured by “ir_config_byte_timing(…)” are stored

in the two arrays above.

When IR sends a byte (e.g. 0x55, 8b’ 01010101), each bit 0 and bit 1 will be

configured according to the three values of IR task pre-calculated by ir_bit_1_controll

and ir_bit_0_controll. User only needs to write the data to be sent (0x55), and SDK will

automatically disassemble this data into eight corresponding IR tasks.

As shown in the code of “ir_config_byte_timing(…)”, the timing sequence of

carrier is determined by user-configured carrier parameters (cycle, high) and pulse

number which is tick_logic_1_carr duration divided by carrier cycle.

 ir_bit_1_controll[0].cycle = ir_send_ctrl.carrier_cycle;

 ir_bit_1_controll[0].hich = ir_send_ctrl.carrier_high;

ir_bit_1_controll[0].cnt=(tick_logic_1_carr)/

ir_send_ctrl.carrier_cycle;

PWM timing sequence without carrier should also be transformed to an IR task:

cycle is duration, duty cycle is 0, and pulse number is 1. Since large cycle may result in

data overflow, user can correspondingly decrease cycle and increase pulse number, e.g.

cycle is duration *1/2, duty cycle is 0, pulse number is 2.

 ir_bit_1_controll[1].cycle = tick_logic_1_none;

 ir_bit_1_controll[1].hich = 0;

ir_bit_1_controll[1].cnt = 1;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 262 Ver1.3.0

10.3.4 Configure a complete NEC IR

According to NEC IR protocol, to sent a cmd (e.g. 7), it’s needed to send start (9ms

carrier + 4.5ms low level), followed by “address+ ~address+ cmd + ~cmd”. In demo

code, address is set as 0x88.

When the final bit of the final “~cmd” is sent, whether it’s bit 0 or bit 1, a duration

of low level (without carrier) is needed; if “~cmd” is not followed by any data, there

may bring a problem on Rx side: Since no boundary of carrier is used for differentiation,

user cannot know whether the low level duration of the final bit is 560us or 190us,

thus cannot identify whether the data is 0 or 1. To solve this problem, a customized

carrier with duration of 563us is used as end.

Another problem is: In PWM IR mode, the timing sequence of the next IR task

should be configured in the previous IR task. As shown in the final three IR tasks of NEC

IR, “ir_task n-2” and “ir_task n-1” correspond to carrier and low level duration of the

final bit, while “ir_task n” corresponds to the customized 563us end carrier duration.

Tn-1 Tn

ir_task nir_task n-1ir_task n-2

Tn-3 Tn-2

Figure10-3 IR ending

Actually in software, “ir_task n-1” is set at “Tn-3” (FLD_IRQ_PWM0_PNUM

interrupt after “ir_task n-3” is finished), “ir_task n” is set at “Tn-2”

(FLD_IRQ_PWM0_PNUM interrupt after “ir_task n-2” is finished), while at “Tn-1”

(FLD_IRQ_PWM0_PNUM interrupt after “ir_task n-1” is finished), no IR task is set. At

“Tn”, if FLD_IRQ_PWM0_PNUM interrupt after “ir_task n” is finished can be responded

immediately, “pwm stop” can be used to disable PWM; if this interrupt is delayed by

BLE interrupt and cannot be responded immediately, MCU will start a new “ir_task n”,

and the carrier duration may be a unexpected value other than the customized

duration 563us (e.g. 600us). If special format (e.g. IR low level followed by carrier)

results in the final IR task with carrier, it’s not needed to add a customized carrier as

differentiation, this case may cause error.

To solve the problem above, we make an appointment: As long as an IR starts, no

matter whether the final IR task is customized, an IR task of low level (without carrier)

should be added as the eventual end, and the duration is configurable. E.g. add an IR

task of 500us low level as end, i.e. “ir_task n+1” in Figure10-4, “ir_task n+1” can be set

at “Tn-1”, at “Tn”, even if FLD_IRQ_PWM0_PNUM interrupt is not responded in time,

PWM will send a low level singal and timing sequence won’t be influenced. User only

needs to use “pwm stop” to disable PWM in FLD_IRQ_PWM0_PNUM interrupt.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 263 Ver1.3.0

Tn-1 Tn

ir_task nir_task n-1ir_task n-2

Tn-3 Tn-2

ir_task n+1

Figure10-4 Add low level ir task as IR end

According to the description above, an NEC IR data mainly contains three parts:

1. start signal, 9ms carrier + 4.5ms low level (without carrier)

2. valid data: address+ ~address+ cmd + ~cmd

3. stop signal, customized 563us carrier + 560us low level as end

10.3.5 Add timing sequence signal

In NEC IR, start and stop signal are timing sequence signal, which can be added via

the interface below. This interface can only be invoked, and user cannot modify its

internal implementation.

void ir_send_add_series_item(u32 *time_series, u8 series_cnt, ir_ctrl_t *ir_control,

u8 start_high)

“time_series” and “series_cnt” are description of timing sequence. User should

define the two parameters as const variable (store in flash) or local variable, so as to

save RAM space.

NEC IR start signal is:

const u32 ir_lead_times[] = { 9000 * CLOCK_SYS_CLOCK_1US,

 4500 * CLOCK_SYS_CLOCK_1US};

 “ir_control” is ir_ctrl_t structure used to store signals including cycle/duty/pulse

number after corresponding timing sequence is transformed to IR tasks, and user

should define it as global variable:

ir_ctrl_t nec_start[ARRAY_SIZE(ir_lead_times)];

“start_high” indicates the order of carrier and low level during IR transmission. 1-

carrier first, followed by low level; 0-low level first, followed by carrier.

 Configure NEC IR start signal as IR task:

ir_send_add_series_item(ir_lead_times, ARRAY_SIZE(ir_lead_times), &nec_start, 1);

 The configuration of NEC IR stop signal is the same as start signal.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 264 Ver1.3.0

10.3.6 Add data

The interface below serves to add data in unit of byte. This interface can only be

invoked, and user cannot modify its internal implementation.

void ir_send_add_byte_item(u8 code, u8 start_high)

“code”: data.

“start_high” indicates the order of carrier and low level during IR transmission. 1-

carrier first, followed by low level; 0-low level first, followed by carrier.

NEC IR data is: address+ ~address+ cmd + ~cmd

If address is 0x88, and cmd is 7:

 ir_send_add_byte_item(0x88, 1);

 ir_send_add_byte_item(~0x88, 1);

 ir_send_add_byte_item(0x07, 1);

 ir_send_add_byte_item(~0x07, 1);

10.3.7 NEC IR send

The figure below shows the implementation reference of “ir_nec_send”.

Figure10-5 ir_nec_send

User needs to invoke interface to configure and modify as needed, so as to realize

his own IR send function.

“int ir_sending_check(void)” checks whether PWM still sends previous IR. If yes,

new IR is not processed. This interface can only be invoked, and user cannot modify its

internal implementation.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 265 Ver1.3.0

“void ir_send_ctrl_clear(void)” must be invoked before a new IR is configured. This

interface can only be invoked, and user cannot modify its internal implementation.

 After timing sequence and data configuration are finished (see 10.3.5 and 10.3.6),

the interface below is invoked to start an IR transmission. This interface can only be

invoked, and user cannot modify its internal implementation.

void ir_send_ctrl_start(int need_repeat)

“need_start” indicates whether repeat signal is needed. 1-need repeat signal.

10.3.8 NEC IR repeat

Repeat signal will be enabled by “ir_send_ctrl_start (1)”. The configuration and

transmission of repeat signal is similar to IR data signal.

According to NEC protocal, repeat signal is “9ms carrier + 2.25ms low level

(without carrier) + 560us carrier”, with 500us end signal, the eventual repeat signal is

defined as below:

const u32 ir_repeat_times[] = { 9000 * CLOCK_SYS_CLOCK_1US,

 2250 * CLOCK_SYS_CLOCK_1US,

 560 * CLOCK_SYS_CLOCK_1US,

 500 * CLOCK_SYS_CLOCK_1US};

The analysis of the ir_nec_send_repeat is similar to ir_nec_send function. User

needs to invoke interface to configure and modify as needed, so as to realize his own

IR send repeat function.

Figure10-6 ir_nec_send_repeat

NEC IR repeat signal will be sent with interval of 110ms. In SDK, hardware Timer2

is used to implement 108ms timer. Whenever the timeout expires, one repeat signal

transmission is added. When button is released to finish IR, Timer2 should be disabled.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 266 Ver1.3.0

10.3.9 Interrupt processing

It’s not needed to modify Timer2 and FLD_IRQ_PWMn_PNUM interrupt

processing in “irq_handler” of demo code.

For FLD_IRQ_PWMn_PNUM processing, user needs to note whether PWM0 or

PWM1 is used, which is defined by the following macros in code:

#define PWM0_IR_MODE 0

#define PWM1_IR_MODE 1

#define IR_PWM_SELECT PWM0_IR_MODE

“void ir_irq_send(void)” serves to get ir_task0, ir_task1……ir_taskn successively

according to IR signal and data configuration. PWM will be automatically disabled after

all IR tasks are finished. This function is not modifiable.

“void ir_repeat_handle(void)” serves to restart an IR repeat signal with 108ms

interval.

10.3.10 APP layer checks IR busy status

User can check the two variables below, so as to determine whether current IR is

busy with transmission of data or repeat signal:

ir_send_ctrl.is_sending

ir_send_ctrl.repeat_timer_enable

Following shows the demo code in PM management to check IR busy status. When

IR is busy with transmission of data or repeat signal, MCU cannot enter suspend.

if(ir_send_ctrl.is_sending ||ir_send_ctrl.repeat_timer_enable)

{

 bls_pm_setSuspendMask(SUSPEND_DISABLE);

 }

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 267 Ver1.3.0

11 Drivers in BLE SDK

11.1 External capacitor for 12/16 MHz crystal

By default, SDK uses internal capacitor of 826x MCU (i.e. cap corresponding to

ana_81<4:0>) as matching capacitor of 12MHz/16MHz crystal oscillator, which is

measurable and adjustable in Telink jig system to reach optimal frequency point value

of final application product.

If it’s needed to use external soldered capacitor as matching capacitor of

12MHz/16MHz crystal oscillator instead, the API below should be invoked at the

beginning of main function and before “cpu_wakeup_init” function.

static inline void blc_app_setExternalCrystalCapEnable(u8 en)

{

 blt_miscParam.ext_cap_en = en;

}

As long as this API is invoked before “cpu_wakeup_init”, SDK will automatically

implement all operations (e.g. disable internal matching capacitor and stop reading

frequency offset calibration value).

11.2 External 32kHz crystal oscillator

By default SDK uses internal 32kHz crystal, i.e. 32kHz RC. The maximum error of

this capacitor is 500ppm, so its accuracy will be influenced for application with long

suspend time. Currently 32kHz RC supports up to 1.5s connection by default. Once

connection time exceeds this duration, inaccurate packet Rx time will be caused by BLE

timing error; this case usually needs packet Rx/Tx retry, thus to increase power

consumption and result in disconnection.

To ensure time accuracy for long suspend applications, external 32kHz crystal (i.e.

32kHz pad) should be used instead. Currently SDK supports this mode.

Either of the two APIs below should be invoked at the beginning of main function

and before “cpu_wakeup_init” function, so as to select 32kHz RC (default) or 32kHz

pad.

void blc_pm_select_internal_32k_crystal(void);

void blc_pm_select_external_32k_crystal(void);

Note: Currently this function is not supported by 8261, completely supported by 8266,

and only supported by 8267/8269 above A2/A1 respectively (A2 and A1 indicate

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 268 Ver1.3.0

hardware version). User must check with Telink to avoid failure to use 32kHz pad

caused by usage of incorrect IC.

11.3 PA

To use RF PA, please refer to “proj/drivers/rf_pa.c” and “rf_pa.h”.

First enable the macro below, which is disabled by default.

#ifndef PA_ENABLE

#define PA_ENABLE 0

#endif

 Invoke PA initialization during system initialization.

 void rf_pa_init(void);

 In this initialization, “PA_TXEN_PIN” and “PA_RXEN_PIN” are set as GPIO output

mode, and initial status is “output 0”. User needs to define GPIOs corresponding to TX

and RX PA.

 #ifndef PA_TXEN_PIN

#define PA_TXEN_PIN GPIO_PB2

#endif

#ifndef PA_RXEN_PIN

#define PA_RXEN_PIN GPIO_PB3

#endif

 And “void app_rf_pa_handler(int type)” is registered as callback function of PA.

Acutally this function processes the three PA status below: disable PA, enable TX PA,

and enable RX PA.
 #define PA_TYPE_OFF 0

#define PA_TYPE_TX_ON 1

#define PA_TYPE_RX_ON 2

 User only needs to invoke the “rf_pa_init” above; “app_rf_pa_handler” is

registered as the bottom-layer callback, so that it will be automatically invoked to

process correspondingly in various BLE states.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 269 Ver1.3.0

11.4 PWM

For illustration of PWM driver, please refer to section 10 IR.

11.5 UART

11.5.1 UART GPIO

Telink 8261/8266/8267/8269 embeds an UART module: 8261/8267/8269

supports three groups of GPIOs for UART, while 8266 supports one group of GPIOs for

UART, as shown in the table below.

UART GPIO mapping

IC type UART ID GPIO Pin UART Pin

8261/8267/8269

1
PA6 Tx

PA7 Rx

2
PB2 Tx

PB3 Rx

3

PC2 Tx

PC3 Rx

PC4 RTS

PC5 CTS

8266 1

PC6 Tx

PC7 Rx

PD0 RTS

PD1 CTS

To use the internal UART module, first it’s needed to configure GPIO pins for UART.

Telink GPIO pins support multiplexed functions, and default function of most pins is

GPIO function. SDK supplies GPIO configuration function for user to use other

multiplexed functions. The function prototype is shown as below:

void gpio_set_func(u32 pin, u32 func)

Parameter Description

pin GPIO pin to be set

func Function of the specific GPIO pin to be set

E.g.

gpio_set_func(GPIO_PA6,AS_UART);

gpio_set_func(GPIO_PA7,AS_UART);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 270 Ver1.3.0

To simplify the usage of UART, macros are defined in “uart.h” of SDK for GPIO

configuration of all serial pins. For example:

#define UART_GPIO_CFG_PA6_PA7()

#define UART_GPIO_CFG_PB2_PB3()

#define UART_GPIO_CFG_PC2_PC3()

#define UART_GPIO_CFG_PC6_PC7()

User only needs to invoke corresponding macro to implement UART GPIO

configuration.

11.5.2 UART configuration

11.5.2.1 UART common configuration

UART module of Telink 826x MCU is basically the same. Common UART

configuration parameters include baudrate, data bit, parity check bit, stop bit, and etc.

UART initialization function can be invoked to configure the common parameters

above. The function prototype is shown as below:

unsigned char uart_Init(unsigned short uartCLKdiv,

unsigned char bwpc,

UART_ParityTypeDef Parity,

UART_StopBitTypeDef StopBit)

Parameter Description

uartCLKdiv The two parameters serve to determine Baudrate (See IC

Datasheet). Parameter values corresponding to common

Baudrates will be listed below.
bwpc

Parity Set parity check bit (enum-type value).

StopBit Set stop bit (enum-type value).

E.g.

uart_Init（9,13,PARITY_NONE,STOP_BIT_ONE）;

Enum type definition for parity check bit:

typedef enum {

 PARITY_NONE = 0,

PARITY_EVEN,

PARITY_ODD,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 271 Ver1.3.0

} UART_ParityTypeDef;

Enum type definition for stop bit:

typedef enum{

STOP_BIT_ONE = 0,

STOP_BIT_ONE_DOT_FIVE = BIT(12),

STOP_BIT_TWO = BIT(13),

} UART_StopBitTypeDef;

The table below shows “clk_div” and “bwpc” parameter values corresponding to

common baudrates.

Common Baudrates

Baudrate
clk_div bwpc

sys_clk 16MHz sys_clk 32MHz sys_clk 16MHz sys_clk 32MHz

4800 302 605 10 10

9600 118 302 13 10

19200 118 118 6 13

38400 25 118 15 6

57600 30 36 8 14

115200 9 30 13 8

User can use Telink tool “TScript” to obtain “clk_div” and “bwpc” parameter

values corresponding to other baudrates. Please refer to section 11.5.5 for the usage

of “TScript”.

11.5.2.2 UART proprietary configuration

Except for UART common confirmation as introduced in section 11.5.2.1, some

UART proprietary configurations are needed. Telink UART module supports two

working modes: DMA mode, and non-DMA mode (Normal mode). Via proprietary

configuration, UART can work in either of the two modes.

1) Proprietary configuration for UART DMA mode

When UART works in DMA mode, it’s needed to configure DMA channel of UART

via DMA initialization funcation. The function prototype is shown as below:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 272 Ver1.3.0

void uart_DmaModeInit(unsigned char dmaTxIrqEn,

unsigned char dmaRxIrqEn)

Parameter Description

dmaTxIrqEn UART Tx interrupt enable (1)/disable (0)

dmaRxIrqEn UART Rx interrupt enable (1)/disable (0)

E.g.

uart_DmaModeInit(1,0);

In UART DMA mode, user also needs to configure a Rx buffer via “uart_RecBufInit()”

function, so that DMA can store received UART data in this buffer. The function

prototype is shown as below:

void uart_RecBuffInit(unsigned char *recAddr,

unsigned short recBuffLen)

Parameter Description

recAddr Pointer pointing to Rx buffer

recBuffLen Rx buffer length

E.g.

unsigned char rxBuf[100];

uart_RecBuffInit(rxBuf,100);

2) Proprietary configuration for UART Normal mode

In Normal (Non-DMA) mode, user needs to invoke “uart_Init()” function to

initialize UART, and invoke “uart_notDmaModeInit()” function to configure UART.

The function prototype of “uart_notDmaModeInit()” is shown as below:

void uart_notDmaModeInit(unsigned char rx_level,

unsigned char tx_level,

unsigned char rx_irq_en,

unsigned char tx_irq_en)

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 273 Ver1.3.0

Parameter Description

rx_level Set the number of received data to generate UART Rx IRQ,

i.e. UART Rx interrupt will be generated after “rx_level” data

are received (if Rx interrupt is enabled).

Maximum value is 8.

tx_level Set the number of transmitted data to generate UART Tx IRQ,

i.e. UART Tx interrupt will be generated after “tx_level” data

are transmitted (if Tx interrupt is enabled).

Maximum value is 8.

rx_irq_en UART Rx interrupt enable (1)/disable (0).

tx_irq_en UART Tx interrupt enable (1)/disable (0).

Note: To implement UART data transmission, it’s recommended to adopt inquiry of “Tx

done flag” used in current UART driver, rather than interrupt method. If user does

need to adopt interrupt method, please contact Telink for support.

E.g.

uart_notDmaModeInit(1,0,1,0);

 SDK also supplies some macro functions in “uart.h” for user to implement UART

configurations (only supply UART macro functions of DMA mode). Current supported

macro sunctions are shown as below:

#define CLK32M_UART9600 //sys_clk = 32MHz,Baudrate = 9600

#define CLK32M_UART115200//sys_clk=32MHz,Baudrate =

115200

#define CLK16M_UART115200//sys_clk=16MHz,Baudrate =

115200

#define CLK16M_UART9600 //sys_clk = 16MHz,Baudrate = 9600

11.5.3 UART Data Rx/Tx in DMA mode

UART adopts interrupt method to implement data reception.

Note: As introduced above, UART configurations of DMA mode only enable DMA

interrupt related to UART. To enable CPU to detect UART interrupt, global interrupt

must be enabled by invoking “irq_enable()” function.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 274 Ver1.3.0

11.5.3.1 UART data Rx in DMA mode

In DMA mode, UART data reception does not need intervention of CPU, while

DMA module will automatically store the received UART data into the Rx buffer

speicified during UART initialization.

When data reception is finished, a Rx interrupt will be generated to inform MCU

the finish of data reception. Then user can read data from Rx buffer. The

“uart_IRQSourceGet()” function can be invoked to get IRQ source. The function

prototype is shown as below:

enum UARTIRQSOURCE uart_IRQSourceGet(void)

This function will return an enum-type value which specifies interrupt type. Its

definition is shown as below:

enum UARTIRQSOURCE

{

 UARTNONEIRQ = 0,

 UARTRXIRQ = BIT(0),

 UARTTXIRQ = BIT(1),

};

After UART interrupt is generated, user does not need to clear IRQ flag, i.e. it will

be automcatically cleared by hardware.

11.5.3.2 UART data Tx in DMA mode

User can invoke “uart_Send ()” function to send data. The function prototype is

shown as below:

unsigned char uart_Send(unsigned char* addr)

Parameter Description

addr Pointing to user data buffer

Return value 0: DMA busy; 1: Tx success

E.g.

unsigned char txBuf[] = {0x02,0x00,0x00,0x00,0xAA,0xBB};

uart_Send(txBuf);

Notes:

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 275 Ver1.3.0

1) For UART data Tx in DMA mode, the Tx buffer stores 4 bytes (lower byte first) to

indicate the length of data to be transmitted, which are followed by actual data.

Following shows the format to send data:

0 1 2 3 4 5 6 …

dataLen 0x00 0x00 0x00 data0 data1 data2 …

2) In DMA mode, one UART transmission can send up to 507-byte (512-5) data,

therefore, long data with length exceeding 507 bytes should be disassembled into

several transmissions.

11.5.4 UART Data Rx/Tx in Non-DMA mode

UART adopts interrupt method to implement data reception.

Note: As introduced above, UART configurations of Non-DMA mode only enable

interrupt related to UART. To enable CPU to detect UART interrupt, global interrupt

must be enabled by invoking “irq_enable()” function.

11.5.4.1 UART data Rx in Non-DMA mode

In Non-DMA mode, UART data reception is implemented in interrupt. When serial

port receives data, a Rx interrupt will be generated. User can get Rx IRQ by invoking

“GET_UART_NOT_DMA_IRQ()” function which is given in the form of macro definition

(Return value: 1 - data are received; 0 - no data is received). Then the received data

can be obtained by invoking “uart_notDmaModeRevData()” function, the prototype

of which is shown as below:

unsigned char uart_notDmaModeRevData(void)

Parameter Description

Return value
Return one-byte received data. Multiple-byte data can be

obtained via multiple invoking.

Note: The generation of Rx interrupt depends on the setting of “rx_level” in

“uart_notDmaModeInit ()”. E.g. If rx_level = 1, UART Rx interrupt will be generated

after one byte data is received; if rx_level = 2, UART Rx interrupt will be generated

after two-byte data is received……

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 276 Ver1.3.0

11.5.4.2 UART data Tx in Non-DMA mode

User can send data by invoking "uart_notDmaModeSendByte()”, the prototypeof

which is shown as below:

unsigned char uart_notDmaModeSendByte(unsigned char

uartData)

Parameter Description

uartData Data to be sent

Return value Not used

11.5.5 UART baudrate calculation tool

1) Open software tool “TScript”, the interface of which is shown as below.

Figure11-1 Tscript initial interface

2) Click “UART_Baudrate_calculate” icon at the top-left corner, the window at the

lower left corner will show “UART_BaudRate_cal.lua”, as shown below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 277 Ver1.3.0

Figure11-2 UART_BaudRate_cal.lua

3) Dobule click “UART_BaudRate_cal.lua”, the right log window will show “please

entry the baudrate”, as shown below.

Figure11-3 Input baudrate

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 278 Ver1.3.0

4) Input the wanted baudrate in the text box, and then click “Enter”. The log window

will show “please entry system clock”, as shown below.

Figure11-4 Input system clock

5) Input system clock, and then click “Enter”. The log window will show values of

“clk_div” and “bwpc” corresponding to the specified baudrate, as shown below.

Figure11-5 Get “clk_div” and “bwpc” result

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 279 Ver1.3.0

11.6 ADC

11.6.1 ADC Clock

Working clock of ADC module is derived from FHS (High speed clock) via

frequency division. The maximum working frequency of Telink ADC is 4MHz (please

refer to IC Datasheet for configuration guide). To use ADC, ADC clock must be enabled.

Since ADC clock has already been configured in ADC driver, user can directly use the

configuration.

11.6.2 ADC configuration

Telink ADC supports seven resolution options, two working modes (single-end

mode and differential mode), 12 single-end input channels and multip groups of

differential input channels, 2 or 3 reference voltage options (8266: 1.3V, 3.3V; 8267:

3.3V, 1.428V, 1.224V), as well as detection of battery voltage and temperature (based

on internal temperature sensor). User can invoke “adc_Init()” function to initialize ADC.

11.6.2.1 8261/8267/8269 ADC initializaiton

The prototype of 8261/8267/8269 ADC initialization function is shown as below:

void adc_Init(enum ADCCLOCK adc_clk,

enum ADCINPUTCH chn,

enum ADCINPUTMODE mode,

enum ADCRFV ref_vol,

enum ADCRESOLUTION resolution,

enum ADCST sample_cycle)

Parameter Description

adc_clk
Set ADC clock. It’s an enum-type value, and can only be configured

as ADC_CLK_4M.

chn Set ADC channel. It’s an enum-type value.

mode Set ADC working mode. It’s an enum-type value.

ref_vol Set ADC reference voltage. It’s an enum-type value.

resolution Set ADC resolution. It’s an enum-type value.

sample_cycle Set ADC sampling time. It’s an enum-type value.

E.g.

adc_Init(ADC_CLK_4M, B6, SINGLEEND, RV_AVDD, RES14, S_3);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 280 Ver1.3.0

Enum type definition for ADC clock:

enum ADCCLOCK {

 ADC_CLK_4M = 4,

 ADC_CLK_5M = 5,

};

Enum type definition for ADC input channel:

enum ADCINPUTCH{

 NOINPUT,

 C0,

 C1,

 C6,

 C7,

 B0,

 B1,

 B2,

 B3,

 B4,

 B5,

 B6,

 B7,

 PGAVOM,

 PGAVOP,

 TEMSENSORN,

 TEMSENSORP,

 AVSS,

 OTVDD,//1/3 voltage division detection

};

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 281 Ver1.3.0

Enum type definition for ADC working mode:

enum ADCINPUTMODE{

 SINGLEEND,

 INVERTB_1,

 INVERTB_3,

 PGAVOPM,

};

Enum type definition for ADC reference voltage:

enum ADCRFV{

 RV_1P428,

 RV_AVDD,

 RV_1P224,

};

Enum type definition for ADC resolution:

enum ADCRESOLUTION{

 RES7,

 RES9,

 RES10,

 RES11,

 RES12,

 RES13,

 RES14,

};

Enum type definition for ADC sampling time:

enum ADCST{

 S_3,

 S_6,

 S_9,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 282 Ver1.3.0

 S_12,

 S_18,

 S_24,

 S_48,

 S_144,

};

11.6.2.2 8266 ADC initializaiton

The prototype of 8266 ADC initialization function is shown as below:

void adc_Init(ADC_CLK_t adc_clock,

ADC_INPUTCHN_t chn,

ADC_INPUTMODE_t mode,

ADC_REFVOL_t ref_vol,

ADC_RESOLUTION_t resolution,

ADC_SAMPCYC_t sample_cycle)

Parameter Description

adc_clock
Set ADC clock. It’s an enum-type value, and can only be configured

as ADC_CLK_4M

chn Set ADC channel. It’s an enum-type value.

mode Set ADC working mode. It’s an enum-type value.

ref_vol Set ADC reference voltage. It’s an enum-type value.

resolution Set ADC resolution. It’s an enum-type value.

sample_cycle Set ADC sampling time. It’s an enum-type value.

E.g.

adc_Init(ADC_CLK_4M, ADC_CHN_D2,SINGLEEND,ADC_REF_VOL_AVDD,

ADC_SAMPLING_RES_14BIT, ADC_SAMPLING_CYCLE_6);

Enum type definition for ADC clock:

typedef enum{

 ADC_CLK_4M = 4,

 ADC_CLK_5M = 5,

} ADC_CLK_t;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 283 Ver1.3.0

Enum type definition for ADC input channel:

typedef enum{

 ADC_CHN_D0 = 0x01,

 ADC_CHN_D1 = 0x02,

 ADC_CHN_D2 = 0x03,

 ADC_CHN_D3 = 0x04,

 ADC_CHN_D4 = 0x05,

 ADC_CHN_D5 = 0x06,

 ADC_CHN_C2 = 0x07,

 ADC_CHN_C3 = 0x08,

 ADC_CHN_C4 = 0x09,

 ADC_CHN_C5 = 0x0a,

 ADC_CHN_C6 = 0x0b,

 ADC_CHN_C7 = 0x0c,

 ADC_CHN_PGA_R = 0x0d,

 ADC_CHN_PGA_L = 0x0e,

 ADC_CHN_TEMP_POS = 0x0f,

 ADC_CHN_TEMP_NEG = 0x10,

 ADC_CHN_VBUS = 0x11,

 ADC_CHN_GND = 0x12,

} ADC_INPUTCHN_t;

Enum type definition for ADC working mode:

typedef enum{

 SINGLEEND,

 INVERTD_5,

 INVERTC_3,

 CHN_PGA_L,

} ADC_INPUTMODE_t;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 284 Ver1.3.0

Enum type definition for ADC reference voltage:

typedef enum{

 ADC_REF_VOL_1V3 =0x00, //!< ADC Reference:1.3v

 ADC_REF_VOL_AVDD = 0x01, //!< ADC Reference:AVDD

} ADC_REFVOL_t;

Enum type definition for ADC resolution:

typedef enum{

ADC_SAMPLING_RES_7BIT =0,

ADC_SAMPLING_RES_9BIT =1,

ADC_SAMPLING_RES_10BIT = 2,

ADC_SAMPLING_RES_11BIT = 3,

ADC_SAMPLING_RES_12BIT = 4,

ADC_SAMPLING_RES_13BIT = 5,

ADC_SAMPLING_RES_14BIT = 7,

} ADC_RESOLUTION_t;

Enum type definition for ADC sampling time:

typedef enum{

 ADC_SAMPLING_CYCLE_3 = 0,

 ADC_SAMPLING_CYCLE_6 = 1,

 ADC_SAMPLING_CYCLE_9 = 2,

 ADC_SAMPLING_CYCLE_12 =3,

 ADC_SAMPLING_CYCLE_18 =4,

 ADC_SAMPLING_CYCLE_24 =5,

 ADC_SAMPLING_CYCLE_48 =6,

 ADC_SAMPLING_CYCLE_144 = 7,

} ADC_SAMPCYC_t;

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 285 Ver1.3.0

11.6.3 Obtain ADC convertion value

ADC driver supplies the function of obtaining ADC convertion value for user to

invoke. The prototype is shown as below:

unsigned short adc_SampleValueGet(void)

Parameter Description

Return value ADC conversion value

Actual voltage value should be calculated according to ADC conversion value

obtained via “adc_SampleValueGet” function.

11.6.3.1.1 Calculate actual voltage value for 8261/8267/8269

In theory, the relationship between ADC conversion value and voltage value is

linear, shown as the dotted red line in the figure below. However, there will be an

offset for 8261/8267/8269 actually, shown as the solid black line in the figure below.

At zero voltage, conversion value has a 128 or so offset relative to “0”; at full voltage,

conversion value also has a 128 or so offset relative to “2^resolution -1”.

Figure11-6 ADC conversion curve

Telink supplies a calculation method to eliminate this offset.

Vol= Vref * (adc_value - 128) / (2resolution - 256);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 286 Ver1.3.0

Parameter Description

Vol Actual voltage value

Vref ADC reference voltage

adc_value ADC conversion value

resolution ADC resolution

Note: Actually the offset value at zero voltage and full voltage is a slightly changed

range, therefore, 128 is only a typical average value obtained from test of multiple ICs.

Generally test voltage of actual application is not close to zero voltage and full voltage,

the typical value can be used directly without problem; however, when test voltage is

close to zero voltage, if 128 is directly used, it may cause data overflow. Actual

application should not measure zero voltage (the actual error is large due to resolution

problem).

11.6.3.1.2 Calculate actual value for 8266

Following shows the calculation method of actual voltage for 8266.

Vol = Vref * (adc_value) / (2resolution);

The parameters are the same as 8261/8267/8269.

Note: 8266 ADC supports two reference voltage options: AVDD (voltage of IC AVDD

pin) or internal 1.3V (1.3V is used in firmaware instead of 1.428V given in Datasheet).

11.7 Low battery voltage detect

“Low battery check” function uses ADC function to check whether current voltage

is lower than the preset normal threshold.

For applications with lithium battery or coin-cell battery, “Low battery check”

function should be added. If 826x works in low level below normal threshold, chip

working may become unstablized, which will bring unexpected risk, such as Flash

write/erase error. If product upgrades its firmware via OTA at low voltage, the OTA

process may fail, new firmware cannot be executed, which will cause product failure.

Once APP layer detects low level, the whole MCU must be cut off to stop all

operations.

javascript:void(0);
javascript:void(0);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 287 Ver1.3.0

11.7.1 “Low battery check” implementation

11.7.1.1 “Low battery check” for 8266

PD0

PD1

PC7

ADC channel

……

ADC

Figure11-7 8266 ADC channel

“Low battery check” for 8266 can only be implemented via ADC channel. Hardware

chart for 8266 ADC channel is shown as above. “adc_Init” is used to initialize ADC

configuration.

2R

RBattery

chn1

chn2

chn n

ADC channel

……

ADC

8266 MCU

DCDC

Figure11-8 Hardware chart for 8266 low battery check

Since the voltage to be checked is battery voltage, it cannot be used as reference

voltage source, i.e. reference voltage can only be set as 1.3V voltage. In this case,

measurable voltage cannot exceed 1.3V. To meet VCC test range, an external voltage

division network should be used in hardware circuit. As shown in the figure above, 1/3

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 288 Ver1.3.0

voltage division network is used to extend measurable voltage to 3.9V. User can

measure voltage larger than 3.9V by using voltage division network such as 1/4, 1/5

and etc. An ADC channel should be selected to input the voltage after 1/3 voltage

division of VCC.

If DCDC is used to convert battery voltage and supply power for MCU, the voltage

to be measured should be the voltage before DCDC conversion, as shown in the figure

above.

11.7.1.2 “Low battery check” for 8261/8267/8269

For 8261/8267/8269, ADC hardware module embeds a 1/3 voltage division

network, which can be used for low battery check as well as ADC function extension.

This internal voltage division network has two voltage sources: PB7, VCC (actual

voltage at AVCC pin).

ADC input channel is selectable as GPIO pin with ADC function or the voltage

obtained from 1/3 voltage division network.

Note: PB7 can be used as GPIO pin with ADC function and directly set as ADC input, or

use PB7 as voltage source of 1/3 voltage division network and use the voltage from

1/3 voltage division network as ADC intput.

PC0

PC1

……

PB6

PB7

VCC

2R

R

ADC channel

ADC

Figure11-9 8261/8267/8269 ADC channel

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 289 Ver1.3.0

Since 8261/8267/8269 adds hardware 1/3 voltage division network for ADC input

channel, SDK supplies battery voltage check API function “adc_BatteryCheckInit” to

replace “adc_Init”, which adds the configuration to ADC channel of 1/3 voltage division

network based on “adc_Init”. The protorype is shown as below:

void adc_BatteryCheckInit(enum ADCCLOCK adc_clk,

unsigned char div_en,

enum ONETHIRD_INPUTCHN oneThirdChn,

enum ADCINPUTCH notOneThirdChn,

enum ADCINPUTMODE mode,

enum ADCRFV ref_vol,

enum ADCRESOLUTION resolution,

enum ADCST sample_cycle)

Parameter Description

adc_clk
Set ADC clock. It’s an enum-type value, which can be

configured as ADC_CLK_4M or ADC_CLK_5M.

div_en
Set whether to select internal 1/3 voltage division network

channel. 1: use; 0: not use.

oneThirdChn

If div_en = 1, this parameter is used to set voltage source for

internal voltage division network as Battery_Chn_VCC or

Battery_Chn_B7.

notOneThirdChn

If div_en = 0, internal voltage division network is not used, this

parameter is used to set ADC input channel.

“adc_BatteryCheckInit” acts the same as “adc_Init”.

mode Set ADC working mode. It’s an enum-type value.

ref_vol Set ADC reference voltage. It’s an enum-type value.

Resolution Set ADC resolution. It’s an enum-type value.

sample_cycle Set ADC sampling time. It’s an enum-type value.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 290 Ver1.3.0

The common function “adc_BatteryCheckInit” can be used for battery voltage

detection in two cases:

1) Directly use internal 1/3 voltage division network as ADC input channel.

2) Use GPIO pin with ADC function as ADC input channel, and use external 1/3

voltage division network. In this case, user needs to implement external 1/3

voltage division network.

In “adc_BatteryCheckInit” function, the effect of “oneThirdChn” and

“notOneThirdChn” depends on “div_en”.

 If div_en = 1, internal 1/3 voltage division network is used as ADC input channel

to detect battery voltage. In this case, “notOneThirdChn” is invalid, while

“oneThirdChn” is valid, which serves to set Battery channel (VCC) as voltage

source for the network.

 If div_en = 0, GPIO pin with ADC function is used as ADC input channel, and

external 1/3 voltage division network is needed to implement battery voltage

detection. In this case, “oneThirdChn” is invalid, while “notOneThirdChn” is valid,

which serves to set ADC input channel.

According to ADC hardware circuit feature for 8261/8267/8269, implementation

methods of low battery check are shown as below:

1. Adopt the method of 8266, i.e. use external voltage division network, use GPIO

pin with ADC function (PC0,PC1…PB6,PB7) as ADC input channel. DCDC is optional.

If DCDC is used, ADC should measure the voltage before DCDC conversion.

This method can use either “adc_Init” or “adc_BatteryCheckInit” for initialization.

Suppose external 1/3 external voltage division network is used, GPIO PC0 is used

as ADC input channel, initialization should be:

 adc_Init(ADC_CLK_4M, C0, SINGLEEND, RV_1P428, RES14, S_3);

 or

 adc_BatteryCheckInit(ADC_CLK_4M, 0, 0, C0,

SINGLEEND, RV_1P428, RES14, S_3);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 291 Ver1.3.0

2. Use 1/3 internal voltage division network as ADC input channel, and select VCC as

voltage source of the network. Since VCC is actual voltage of IC AVCC pin,

hardware DCDC should not be used.

Battery

8261/8266/8267 MCU

PC0

PC1

……

PB6

PB7

VCC

2R

R

ADC channel

ADC

Figure11-10 1/3 internal voltage division network, VCC channel

Only “adc_BatteryCheckInit” can be used for initialization.

adc_BatteryCheckInit(ADC_CLK_4M,1,Battery_Chn_VCC, 0,

 SINGLEEND, RV_1P428, RES14, S_3);

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 292 Ver1.3.0

3. Use 1/3 internal voltage division network as ADC input channel, and select PB7 as

voltage source of the network. DCDC is optional. If DCDC is used, ADC should

measure the voltage before DCDC conversion (i.e. PB7 should be connected

before DCDC conversion).

Battery

8261/8266/8267 MCU

PC0

PC1

……

PB6

PB7

VCC

2R

R

ADC channel

ADC

DCDC

Figure11-11 1/3 internal voltage division network, PB7 channel

Only “adc_BatteryCheckInit” can be used for initialization.

 adc_BatteryCheckInit(ADC_CLK_4M, 1, Battery_Chn_B7, 0,

 SINGLEEND, RV_1P428, RES14, S_3);

11.7.2 Demo for “Low battery check”

The project “826x remote”/”826x module” supplies demo for “Low battery

check”. User can use this method or optimize as needed to implement his low battery

check solution.

Take 826x remote demo as an example.

Enable the macro of low battery check in app_config.h.

#define BATT_CHECK_ENABLE 1 //enable or disable battery

Implement low battery check initialization according to current MCU type:

 8266 remote uses external 1/3 voltage division network, connects the voltage

after 1/3 voltage division to PC4 pin (ADC input), and uses “adc_init” for

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 293 Ver1.3.0

initialization.

 8267 remote does not use DCDC, uses internal 1/3 voltage division network as

ADC input, uses VCC as the voltage source of the network, and uses

“adc_BatteryCheckInit” for initialization.

#if((MCU_CORE_TYPE == MCU_CORE_8261)||(MCU_CORE_TYPE == MCU_CORE_8267)

|| (MCU_CORE_TYPE == MCU_CORE_8269))

adc_BatteryCheckInit(ADC_CLK_4M, 1, Battery_Chn_VCC, 0,

SINGLEEND, RV_1P428, RES14, S_3);

#elif(MCU_CORE_TYPE == MCU_CORE_8266)

adc_Init(ADC_CLK_4M, ADC_CHN_C4, SINGLEEND, ADC_REF_VOL_1V3,

ADC_SAMPLING_RES_14BIT, ADC_SAMPLING_CYCLE_6);

#endif

During battery check in mainloop, once battery voltage is lower than the

threshold (2.0V), MCU will be cut off, and invoke “cpu_sleep_wakeup” to directly

enter deepsleep. GPIO PAD wakeup is enabled.

Demo code is shown as below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 294 Ver1.3.0

Code contains average and filter processing in software, which ensures the

accuracy of measured voltage. User can directly use the method in the SDK, or use

other better software algorithm.

11.8 IIC

11.8.1 IIC Pin

Telink MCU embeds an IIC module. SDA and SCK line of the IIC module can be

mapped to multiple groups (8261/8267/8269: 3 groups; 8266: 1 group) of GPIOs, as

shown in the table below.

IIC pin mapping table

IC type IIC No. SDA SCL

8261/8267/8269

1 PA3 PA4

2 PB6 PB7

3 PC0 PC1

8266 1 PE7 PF1

Since GPIOs of Telink MCU support multiplexed functions, to use IIC function, it’s

needed to configure corresponding GPIO pins by invoking “i2c_pin_init ()” function.

The function prototype is shown as below:

void i2c_pin_init(I2C_GPIO_GroupTypeDef i2c_pin_group)

Parameter Descripton

i2c_pin_group GPIO pin group to be configured. It’s an enum-type value.

E.g.

i2c_pin_init(I2C_GPIO_GROUP_C0C1);

Enum type definition for “I2C_GPIO_GroupTypeDef” is shown as below:

typedef enum {

#if ((MCU_CORE_TYPE == MCU_CORE_8261)||(MCU_CORE_TYPE == MCU_CORE_8267)

||(MCU_CORE_TYPE == MCU_CORE_8269))

 I2C_GPIO_GROUP_A3A4,

 I2C_GPIO_GROUP_B6B7,

 I2C_GPIO_GROUP_C0C1,

#elif (MCU_CORE_TYPE == MCU_CORE_8266)

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 295 Ver1.3.0

 I2C_GPIO_GROUP_E7F1,

#endif

}I2C_GPIO_GroupTypeDef;

11.8.2 IIC configuration

IIC module of Telink MCU supports Master mode and Slave mode.

11.8.2.1 IIC Master initialization

Considering different user requirements, driver supplies two functions to

initialize IIC Master, including “i2c_master_init_div ()” and “i2c_master_init_khz ()”.

Protorype of “i2c_master_init_div ()” is shown as below:

void i2c_master_init_div(unsigned char slave_id,

unsigned char div_clock)

Parameter Descripton

slave_id Set address of Slave device to be accessed.

div_clock Set IIC frequency: fiic = fsys_clk/(4 * div_clk)

E.g.

//When sys_clk=16MHz, fiic=200KHz

i2c_master_init_div(0xA0, 0x14);

Protorype of “i2c_master_init_khz ()” is shown as below:

void i2c_master_init_khz(unsigned char slave_id,

unsigned int i2c_speed)

Parameter Descripton

slave_id Set address of Slave device to be accessed.

i2c_speed Directly set IIC frequency.

E.g.

//When sys_clk=16MHz, fiic=200KHz

i2c_master_init_khz(0xA0, 200);

Note: Maximum working frequency for Telink IIC module should be fmax_iic= fsys/10. It’s

not recommended to use this maximum frequency.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 296 Ver1.3.0

11.8.2.2 IIC Slave initialization

When Telink IIC module is used as Slave, two working modes are supported: DMA

mode, Mapping mode. Please refer to IC Datasheet for the detailed introduction.

SDK supplies Slave initialization function to initialize II2 Slave, the prototype of

which is shown as below:

void i2c_slave_init(unsigned char device_id,

enum I2C_SLAVE_MODE i2c_mode,

unsigned char* pbuf)

Parameter Description

device_id Set device address

i2c_mode Set Slave Mode. It’s an enum-type value.

pbuf
Pointing to Slave device buffer. This parameter is only valid in Slave

Mapping mode, and it should be set as “NULL” in Slave DMA mode.

E.g.

i2c_slave_init(0xA0, I2C_SLAVE_DMA,NULL);

Enum type definition for “I2C_SLAVE_MODE” is shown as below:

enum I2C_SLAVE_MODE{

 I2C_SLAVE_DMA = 0,

 I2C_SLAVE_MAP,

};

When Telink MCU is used as Slave, IIC Master can use Telink MCU or others.

 If Slave works in DMA mode, IIC Master will access register and SRAM space of

Slave, so it’s needed to specify the target address in register or SRAM.

 If Slave works in Mapping mode, IIC Master will directly access the space pointed

by “pbuf” in “i2c_slave_init ()”, so it’s not needed to specify storage address

information.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 297 Ver1.3.0

11.8.3 IIC data transfer

When Telink MCU works in IIC Master mode, it can access Slave device with IIC

interface from Telink or other manufacturers.

When Telink MCU works in IIC Slave mode, SPI Master can access the register and

SRAM space of Slave in DMA mode or access memory space (buffer) specified by user

in Mapping mode.

11.8.3.1 IIC Master write transfer

When Telink MCU works in IIC Master mode, it can access Slave address of 8-bit

or 16-bit length. SDK supplies IIC write function, the prototype of which is shown as

below:

void i2c_write_dma(unsigned short addr,

unsigned char addr_len,

unsigned char* pbuf,

int len)

Parameter Description

addr Set Slave address to be accessed.

addr_len
Set Slave address length.

1: 8bit addr; 2: 16bit addr

pbuf Pointing to buffer which stores data to be written.

len Length of data to be written.

E.g.

unsigned char dataBuf[] = {0x00,0x11,0x22,0x33,0x44};

i2c_write_dma(0x0000,2,dataBuf,sizeof(dataBuf));

When Telink MCU works in IIC Slave Mapping mode, user needs to invoke

“i2c_write_mapping ()” in IIC Master to write data into Slave, and it’s not needed to

specify memory address. The function prototype is shown as below.

void i2c_write_mapping(unsigned char* pbuf, int len)

Parameter Description

pbuf Pointing to buffer which stores data to be written.

len Date length

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 298 Ver1.3.0

E.g.

 unsigned char writeBuf[]={0x00,0x01,0x02,0x03};

 i2c_write_mapping(writeBuf, sizeof(writeBuf));

11.8.3.2 IIC Master read transfer

User can invoke “i2c_read_dma ()” to read data of Slave device. The function

prototype is shown as below.

void i2c_read_dma(unsigned short addr,

unsigned char addr_len,

unsigned char* pbuf,

int len)

Parameter Description

addr Set Slave address to be accessed.

addr_len
Set Slave address length

1: 8bit addr; 2: 16bit addr

pbuf Pointing to buffer which stores the read data.

len Length of data to be read.

E.g.

unsigned char dataBuf[] = {0x00,0x11,0x22,0x33,0x44};

i2c_read_dma(0x00ff,2,dataBuf,sizeof(dataBuf));

When Telink MCU works in IIC Slave Mapping mode, user needs to invoke

“i2c_read_mapping ()” in IIC Master to read data from Slave, and it’s not needed to

specify memory address. The function prototype is shown as below.

void i2c_read_mapping(unsigned char* pbuf, int len)

Parameter Description

pbuf Pointing to data read buffer

len Data length

E.g.

 unsigned char readBuf[]={0x00,0x01,0x02,0x03};

 i2c_read_mapping(readBuf, sizeof(readBuf));

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 299 Ver1.3.0

11.8.3.3 IIC Slave data transfer

When IIC works in Slave mode and it’s correctly initialized, data transmission and

reception are completely processed by hardware. If Telink MCU works in Slave

Mapping mode, when IIC Master needs to access this Slave, it can directly read/write

data without specifying memory address.

11.8.4 IIC interrupt

When Telink MCU works in IIC Slave mode, if IIC Master writes data into Slave or

reads data from Slave, Slave will check start and stop signal of IIC Master, and then

generate interrupt (if enabled). IIC interrupt can be enabled by invoking “I2C_IRQ_EN()”

macro function. Note that global interrupt should aslo be enabled by invoking

“irq_enable()”.

After IIC interrupt is enabled, user can invoke “I2C_SlaveIrqGet ()” in interrupt

handler to obtain IRQ flag bit. The function prototype is shown as below:

I2C_I2CIrqSrcTypeDef I2C_SlaveIrqGet(void)

Parameter Description

Return value Return IRQ flag. It’s an enum value.

Enum type definition for “I2C_I2CIrqSrcTypeDef” is shown as below:

typedef enum {

 I2C_IRQ_NONE = 0,

 I2C_IRQ_HOST_WRITE_ONLY,

 I2C_IRQ_HOST_READ_ONLY,

}I2C_I2CIrqSrcTypeDef;

11.9 SPI

11.9.1 SPI Pin

Telink MCU embeds a SPI module. This SPI module supports Master/Slave mode,

and its MISO, MOSI, CS and CK can be mapped to different GPIOs (8266: 1 group of

GPIOs; 8261/8267/8269: two groups of GPIOs), as shown below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 300 Ver1.3.0

SPI GPIO mapping table

IC type SPI No. GPIO Pins SPI Ctrl Lines

8261/8267/8269

1

PA2 DO

PA3 DI

PA4 CK

PA5 CS

2

PB4 CS

PB5 DO

PB6 DI

PB7 CK

8266 1

PE6 CS

PE7 DI

PF0 DO

PF1 CK

Since GPIOs of Telink MCU support multiplexed functions, to use SPI function, it’s

needed to configure corresponding GPIO pins by invoking SPI pin initialization function.

For 8266, the prototype of SPI pin initialization function is shown as below:

void spi_master_pin_init (unsigned int cs_pin)

Parameter Description

cs_pin Set SPI chip select pin

E.g.

 spi_master_pin_init(GPIO_PC0);

For 8261/9267/8269, the prototype of SPI pin initialization function is shown as

below:

void spi_master_pin_init(enum spi_pin_t data_clk_pin,

unsigned int cs_pin)

Parameter Description

data_clk_pin Set SPI data and clock pins. It’s an enum value.

cs_pin Set SPI chip select pin.

E.g.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 301 Ver1.3.0

 spi_master_pin_init(SPI_PIN_GROUPA,GPIO_PC0);

Enum type definition for “spi_pin_t” is shown as below:

enum spi_pin_t{

 SPI_PIN_GROUPA,

 SPI_PIN_GROUPB,

};

Note: If Telink MCU is used as SPI Master, its chip select pin can select CS pin of SPI

module, or set other GPIO as SPI CS pin. User only needs to specifiy “cs_pin” in SPI pin

initialization function above. If Telink MCU is used as SPI Slave, its chip select pin can

only select CS pin of SPI module. Therefore, driver assembles Slave pin initialization in

“slave_init ()” (see section 11.9.2), and does not supply independent Slave pin

initialization function.

11.9.2 SPI configuration

Telink SPI module supports Master and Slave mode.

Four standard working modes are supported (see IC Datasheet).

11.9.2.1 SPI Master initialization

When Telink MCU works as SPI Master, user needs to invoke “spi_master_init ()”

function to configure SPI module. The function prototype is shown as below.

 void spi_master_init(unsigned char div_clk,

enum spi_mode_t spi_mode)

Parameter Description

div_clk Set SPI working clock frequency: fspi = fsys/ (2 *(div_clk + 1))

spi_mode Set SPI working mode. It’s an enum value.

E.g.

 spi_master_init(0x0f, SPI_MODE0);

spi_mode_t definition is shown as below:

enum spi_mode_t{

 SPI_MODE0 = 0,

 SPI_MODE1 = 2,

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 302 Ver1.3.0

 SPI_MODE2 = 1,

 SPI_MODE3 = 3,

};

Note: fspi< fsys/ 5;

11.9.2.2 SPI Slave initialization

When Telink MCU works as SPI Slave, user needs to invoke “spi_slave_init()”

function to configure SPI module.

For 8266, the function prototype is shown as below.

void spi_slave_init(enum spi_mode_t spi_mode)

Parameter Description

spi_mode Set SPI working mode. It’s an enum value.

E.g.

 spi_slave_init(SPI_MODE0);

For 8261/9267/8269, the function prototype is shown as below.

 void spi_slave_init(enum spi_pin_t spi_grp,

enum spi_mode_t spi_mode)

Parameter Description

spi_grp SPI GPIO pins. It’s an enum value.

spi_mode SPI mode. It’s an enum value.

例：

 spi_slave_init(SPI_PIN_GROUPA,SPI_MODE0);

Enum type definition for “spi_pin_t” definition:

enum spi_pin_t{

 SPI_PIN_GROUPA,

 SPI_PIN_GROUPB,

};

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 303 Ver1.3.0

Enum type definition for “spi_mode_t”:

enum spi_mode_t{

 SPI_MODE0 = 0,

 SPI_MODE1 = 2,

 SPI_MODE2 = 1,

 SPI_MODE3 = 3,

};

11.9.3 SPI Data transfer

When Telink MCU is used as SPI Master, it can access Slave device with SPI

interface from Telink or other manufacturers.

When Telink MCU is used as SPI Slave, SPI Master can access the register and

SRAM space of Slave.

11.9.3.1 SPI Master write transfer

When SPI works in Master mode, after initialization is finished, “spi_write ()”

function can be invoked to write data. The function prototype is shown as below.

void spi_write(unsigned char* addr_cmd,

unsigned char addr_cmd_len,

unsigned char* pbuf,

int buf_len,

unsigned int cs_pin)

Parameter Description

addr_cmd
Pointing to Register address to be written or buffer of write

command

addr_cmd_len Length of address and command

pbuf Pointing to buffer which stores data to be written

buf_len Length of data to be written

cs_pin Chip select pin

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 304 Ver1.3.0

E.g.

#define SLAVE_REG_ADD_H 0x80

#define SLAVE_REG_ADD_L 0x00

#define SPI_WRITE_CMD 0x00//telink SPI write cmd=0x00

unsigned char slaveRegAddr_WriteCMD[]= {SLAVE_REG_ADD_H,

SLAVE_REG_ADD_L,

SPI_WRITE_CMD};

unsigned char spi_write_buff[]= {0x00,0x11,0x22};

spi_write(slaveRegAddr_WriteCMD, 3,

spi_write_buff, sizeof (spi_write_buff),

GPIO_PC0

);

11.9.3.2 SPI Master read transfer

User can invoke “spi_read()” function to read data. The function prototype is

shown as below.

 void spi_read(unsigned char* addr_cmd,

unsigned char addr_cmd_len,

unsigned char* pbuf,

int buf_len,

unsigned int cs_pin)

Parameter Description

addr_cmd Pointing to Register address to be read or buffer of read

command

addr_cmd_len Length of address and command

pbuf Pointing to buffer which stores the read data

buf_len Length of data to be read

cs_pin Chip select pin

E.g.

#define SLAVE_REG_ADD_H 0x80

#define SLAVE_REG_ADD_L 0x00

#define SPI_READ_CMD 0x80//telink SPI read cmd=0x80

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 305 Ver1.3.0

unsigned char slaveRegAddr_ReadCMD[]= {SLAVE_REG_ADD_H,

SLAVE_REG_ADD_L,

SPI_READ_CMD};

unsigned char spi_read_buff[10];

spi_read(slaveRegAddr_ReadCMD, 3,

spi_read_buff, sizeof (spi_read_buff),

GPIO_PC0

);

11.9.3.3 SPI Slave data transfer

When SPI works in Slave mode and it’s correctly initialized, data transmission and

reception are completely processed by hardware.

11.9.4 SPI interrupt

When Telink MCU works in SPI Slave mode, if SPI Master writes data into Slave or

reads data from Slave, Slave will generate interrupt (if enabled). SPI interrupt can be

enabled by invoking “SPI_IRQ_EN()” macro function. Note that global interrupt should

aslo be enabled by invoking “irq_enable()”.

After SPI interrupt is enabled, user can invoke “SPI_IRQ_GET()” macro function in

interrupt handler to obtain IRQ flag bit. The IRQ flag can be cleared by invoking

“SPI_IRQ_CLK()” macro function.

11.10 EMI

11.10.1 EMI Test

This section will take 8267 as an example to illustrate EMI test. 8261/8269 share

the same hardware registers as 8267, and they actually invoke EMI test interface

function of 8267; 8266 also invokes the same interface function.

During EMI Test, it’s needed to invoke interafces related to rfdrv, e.g. rf_drv_init(),

rf_drv_1m(), rf_drv_2m(), and etc. All of these interfaces are assembled in library. API

declaration is viewable in “rf_drv_826x.h”.

EMI Test supports four test mode: Carrire mode (send carrier only), CD mode

(send Carrirer with data), RX mode, TX mode. TX mode supports three sub-modes with

different packet types.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 306 Ver1.3.0

Struct test_list_sate_list[] = {

 {0x01,EmiCarrierOnly},

 {0x02,EmiCarrierData},

 {0x03,EmiRx},

 {0x04,EmiTxPrbs9},

 {0x05,EmiTx55},

 {0x06,EmiTxff},

};

11.10.1.1 Emi initialization setting

1) Before EMI test, first it’s needed to invoke “rf_drv_init()” function to initialize RF.

void rf_drv_init (int xtal_type);

“xtal_type” serves to select external crystal, XTAL_12M/ XTAL_16M.

2) After RF configuration, it’s needed to invoke “Rf_Emi_Init()” function to record

some data before test.

int Rf_EmiInit(void);

3) If it’s needed to enable usbprint function, the configurations below should be

implemented.

WriteAnalogReg (0x88, 0x0f);

 WriteAnalogReg (0x05, 0x60);

 write_reg8(0x80013c,0x10);

4) Set EMI initial status:

 write_reg8(RUN_STATUE_ADDR,run); //run,0

 write_reg8(TEST_COMMAND_ADDR,cmd_now); //cmd,1

 write_reg8(POWER_ADDR,power_level); //power,0

 write_reg8(CHANNEL_ADDR,chn); //chn,2

 write_reg8(RF_MODE_ADDR,mode); //mode,1

 write_reg8(TX_PACKET_MODE_ADDR,tx_mode); //tx_mode,0

5) Invoke “PhyTest_PRBS9()” function to implement data initialization setting in Tx

buffer.

void PhyTest_PRBS9 (unsigned char *p, int n);

“PhyTest_PRBS9()” will write prbs9 data into buffer with initial address “p” and

length “n”.

6) Before EMI test, finally it’s needed to invoke “irq_disable()” function to disable all

interrupts.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 307 Ver1.3.0

11.10.1.2 Power level and Channel

During EMI test, user can configure “rf power level” and “rf channel”, which will

determine energy and channel for packet transmission.

Power level ：Select Tx power, enum data type

RF_POWER_8dBm ：0, 7dBm Tx power (actual value)

 RF_POWER_4dBm ：1, 5dBm Tx power (actual value)

 RF_POWER_0dBm ：2, -0.6dBm Tx power (actual value)

 RF_POWER_m4dBm ：3, -4.3dBm Tx power (actual value)

 RF_POWER_m10dBm ：4, -9.5dBm Tx power (actual value)

 RF_POWER_m14dBm ：5, -13.6dBm Tx power (actual value)

 RF_POWER_m20dBm ：6, -18.8dBm Tx power (actual value)

 RF_POWER_m24dBm：8, -23.3dBm Tx power (actual value)

 RF_POWER_m28dBm ：9, -27.5dBm Tx power (actual value)

 RF_POWER_m30dBm ：10, -30dBm Tx power

 RF_POWER_m37dBm ：11, -37dBm Tx power

 RF_POWER_OFF ：16, disable PA

Note: Power level will be configured as actual Tx power value. For example, if

power level is set as “RF_POWER_8dBm”, actual Tx power should be 7dBm rather than

8dBm.

Power setting can be implemented by invoking the function below.

void rf_set_power_level_index (int level);

“level”: Power level.

RF Channel: Set frequency as (2400+chn) MHz. (0≤chn≤100)

For example, to set channel as 2405MHz, “chn” should be set as 5. The function

below can be invoked.

void SetRxMode (signed char chn, unsigned short set);

“chn”: RF channel.

“set”: set as 0.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 308 Ver1.3.0

11.10.1.3 Emi Carrier Only

For Carrier mode, user only needs to directly invoke “EmiCarrierOnly()”.

void EmiCarrierOnly(int power_level, signed char rf_chn);

“power_level”: Power level. (See section 11.10.1.2).

“rf_chn”: RF channel. (See section 11.10.1.2).

In Carrier mode, “EmiCarrierOnly()” will invoke “Rf_EmiCarrierRecovery()”

function to restore some registers of EMI to default setting.

int Rf_EmiCarrierRecovery(void);

11.10.1.4 Emi Carrier Data

In CD mode, data in carrier are updated via “Rf_EmiDataUpdate()” function to

ensure the data are random numbers. User only needs to invoke “EmiCarrierData()”

function to enter CD mode.

void EmiCarrierData(int power_level,signed char rf_chn);

“power_level”: Power level. (See section 11.10.1.2).

“rf_chn”: RF channel. (See section 11.10.1.2).

In CD mode, “EmiCarrierData()” will invoke “Rf_EmiCarrierDataTest()” function to

implement the setting of CD mode (e.g. power level, chn, and etc), and invoke

“Rf_EmiDataUpdate()” functioin to update data in carrier.

void Rf_EmiCarrierDataTest(int power_level,signed char rf_chn)；

void Rf_EmiDataUpdate(void)；

11.10.1.5 Emi TX

TX mode supports three sub-modes with different packet types, including “PRBS9

packet payload”, “00001111 packet payload” and “10101010 packet payload”. User

can directly invoke “EmiTXff()”/“EmiTx55()”/“EmiTxPrbs9()” to enter corresponding TX

sub mode.

void EmiTxPrbs9(int power_level, signed char rf_chn);

void EmiTx55(int power_level, signed char rf_chn);

void EmiTxff(int power_level, signed char rf_chn);

“power_level”: Power level. (See section 11.10.1.2).

“rf_chn”: RF channel. (See section 11.10.1.2).

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 309 Ver1.3.0

“EmiTXff()”/“EmiTx55()”/“EmiTxPrbs9()” will invoke “Rf_EmiTxInit()” function to

implement EMI TX initialization setting, and invoke “Rf_EmiSingleTx()” function to start

packet transmission.

void Rf_EmiTxInit(int power_level, signed char rf_chn);

void Rf_EmiSingleTx(unsigned char *addr, int power_level);

“addr”: Starting adderss of Tx buffer.

11.10.1.6 EMI RX

Rx mode adopts inquiry method to receive data. In Rx mode, “EmiRx()” function

is used to implement initialization setting of status register and flag bit. Flag bit can be

used to check whether there are new data received, and “EmiRxProc()” function serves

to process the received data. User only needs to directly invoke “EmiRx()” and

“EmiRxProc()” to enter Rx mode.

void EmiRx(intpower_level, signed char rf_chn);

void EmiRxProc(void);

“power_level”: Power level. (See section 11.10.1.2).

“rf_chn”: RF channel. (See section 11.10.1.2).

“EmiRx()” will invoke “Rf_EmiRxTest()” function to set starting address of Rx

buffer, size, chn and etc.

void Rf_EmiRxTest (unsigned char *addr,

signed char rf_chn,

int buffer_size,

unsigned char pingpong_en)

“addr”: Pointer of Rx buffer in RAM (Generally it’s starting addres of an array).

“buffer_size”: buffer length (integral multiple of 16, mainly used for pingpong

buffer).

“rf_chn”: set Tx RF channel.

“pingpong_en”: Enable (1)/Disable (0) pingpong buffer.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 310 Ver1.3.0

11.10.1.7 Set configuration parameters

Run：

0 Default 1 Start test

Cmd：

1 Carrier 2 CD 3 RX

4 TX(PRBS9) 5 TX(0x55) 6 TX(0x0f)

For Power and channel, please refer to section 11.10.1.2.

Mode:

0 Ble_2M 1 Ble_1M

The default setting of these parameter are (mode=1; power=0; channel=2;

cmd=1), i.e. send carrier in ble_1M mode with 2402MHz frequency and 7dBm Tx

power.

Parameters can be configured via flash or RAM address correspondingly. To

modify customized parameters in flash, it’s needed to erase this area before writing

new value. If RAM address method is used, the configured parameter will restore to

its default value after power down.

Note: Flash adderss is modifiable. Please refer to Flash space allocation.

Take 3f000 sector as an example to illustrate how to set configuration parameters

via flash.

#define EMI_TEST_TX_MODE 0x3f005

#define EMI_TEST_RUN 0x3f006

#define EMI_TEST_CMD 0x3f007

#define EMI_TEST_POWER_LEVEL 0x3f008

#define EMI_TEST_CHANNEL 0x3f009

#define EMI_TEST_MODE 0x3f00a

Test status can be modified via flash address space 0x3f007~0x3f00a. User can

write parameter into corresponding flash address, and power cycle DUT to get the

wanted status.

Test status can also be modified via RAM address 0x8007~0x800a. User can write

parameter into corresponding RAM address, and write RAM "0x8006” with "1” to get

the wanted status.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 311 Ver1.3.0

Ram_address Flash_address Function

0x8004 Rssi

0x8005 0x3f005

Set number of Tx packets as 1000 or unlimited for

cmd(4/5/6).

1: send 1000 packets and then stop

0: continuously send packets

0x8006 Run

0x8007 0x3f007 Cmd

0x8008 0x3f008 Power

0x8009 0x3f009 Channel

0x800a 0x3f00a Mode

0x800c-0x800f
RX_packet_num (In RX mode, the address space

stores the number of received packets, 4 bytes).

 0x1E000/0x77000 0x81_Cap_value(0xbf<cap< 0xe0）

 0x1E040/0x77040 Tp0 (1M: 0x13<Tp0<0x27; 2M: 0x36<Tp0<0x4a)

 0x1E080/0x77041 Tp1 (1M: 0x0f<Tp0<0x23; 2M: 0x2f<Tp1<0x43)

11.10.2 EMI Test Tool

“EMI Test Tool” can be used to implement EMI test. The tool interface is shown

as below.

Figure11-12 EMI test tool

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 312 Ver1.3.0

Step 1: User can select hardware connection method as needed. When “Swire” is

selected, if system clock is 16MHz or below, it’s needed to implement “SWB SPEED”

(click “SWB SP”) on Wtcdb tool to ensure normal communication.

Figure11-13 Select data bus

Figure11-14 Swire synchronization operation

Step 2: Set “chn”, i.e. input frequency (e.g. 2402) in the corresponding box and

click “Set_Channel”. The log window will show “Swire OK” to indicate normal

communication, as shown below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 313 Ver1.3.0

Figure11-15 Set channel

Step 3: Select power level and BLE mode via the corresponding drop-down box,

and click “Set_Power”/”Set_RF_Mode”.

Figure11-16 Select RF mode

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 314 Ver1.3.0

Figure11-17 Interface after RF mode setting

Step 4: Click “Carrier”/“CarrierData”/“RXTest”/“PRBS9”/“0x55”/“0x0f” to enter

corresponding test mode.

Figure11-18 Select test mode

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 315 Ver1.3.0

Step 5: In TX mode, user can select to send 1000 packets or unlimited packets.

Figure11-19 Set TX packet number

Figure11-20 TX mode interface

Step 6: In RX mode, number of received packets can be read by clicking

“Read_Rx_Cnt”, while current RSSI can be obtained by clicking “ReadRssi”, as shown

below.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 316 Ver1.3.0

Figure11-21 Read RX packet number and RSSI

11.11 PHY test

To be added.

 Telink TLSR826x BLE SDK Developer Handbook

AN-17092700-E4 317 Ver1.3.0

12 Appendix

Appendix 1: crc16 algorithm

unsigned short crc16 (unsigned char *pD, int len)

{

static unsigned short poly[2]={0, 0xa001};

unsigned short crc = 0xffff;

unsigned char ds;

int i,j;

for(j=len; j>0; j--)

 {

unsigned char ds = *pD++;

for(i=0; i<8; i++)

 {

 crc = (crc >> 1) ^ poly[(crc ^ ds) & 1];

 ds = ds >> 1;

 }

 }

return crc;

}

	1 SDK Overview
	1.1 Software architecture
	1.1.1 main.c
	1.1.2 app_config.h
	1.1.3 application file
	1.1.4 BLE stack entry

	1.2 Applied ICs
	1.3 Driver
	1.4 bootloader
	1.5 library
	1.5.1 Category based on IC
	1.5.2 Category based on function
	1.5.3 Category based on system clock
	1.5.4 Other special libraries

	1.6 Demo
	1.6.1 BLE Slave demo
	1.6.2 BLE master demo
	1.6.3 Feature demo and driver demo

	2 MCU Basic Modules
	2)
	2.1 MCU address space
	2.1.1 MCU address space allocation
	2.1.2 SRAM space ram allocation
	2.1.2.1 SRAM and Firmware spcae
	2.1.2.2 List file analysis demo

	2.1.3 MCU address space access
	2.1.3.1 Peripheral space access
	2.1.3.2 Flash space operation

	2.1.4 SDK FLASH space allocation
	2.1.4.1 Space allocation for 512kB Flash
	2.1.4.2 Space allocation for 128kB Flash

	2.2 Clock module
	2.2.1 System clock configuration
	2.2.2 system tick usage

	2.3 GPIO module
	2.3.1 GPIO definition
	2.3.2 GPIO state control
	2.3.3 GPIO initialization
	2.3.4 Configure SWS pull-up to avoid MCU error

	3 BLE Module
	3)
	3.1 BLE SDK software architecture
	3.1.1 Standard BLE SDK architecture
	3.1.2 Telink BLE SDK architecture
	3.1.2.1 Telink BLE controller
	3.1.2.2 Telink BLE Slave
	3.1.2.3 Telink BLE master

	3.2 BLE controller
	3.2.1 BLE controller introduction
	3.2.2 Link Layer state machine
	3.2.3 Link Layer state machine combined application
	3.2.3.1 Link Layer state machine initialization
	3.2.3.2 Idle + Advtersing
	3.2.3.3 Idle + Scannning
	3.2.3.4 Idle + Advtersing + ConnSlaveRole
	3.2.3.5 Idle + Scannning + Initiating + ConnMasterRole

	3.2.4 Link Layer timing sequence
	3.2.4.1 Timing sequence in Idle state
	3.2.4.2 Timing sequence in Advertising state
	3.2.4.3 Timing sequence in Scanning state
	3.2.4.4 Timing sequence in Initiating state
	3.2.4.5 Timing sequence in Conn state Slave role
	3.2.4.6 Timing sequence in Conn state Master role
	3.2.4.7 Conn state Slave role timing protection

	3.2.5 Link Layer state machine extension
	3.2.5.1 Scanning in Advertising state
	3.2.5.2 Scanning in ConnSlaveRole
	3.2.5.3 Advertising in ConnSlaveRole
	3.2.5.4 Advertising and Scanning in ConnSlaveRole

	3.2.6 Link Layer TX fifo & RX fifo
	3.2.6.1 Slave role fifo
	3.2.6.2 Master role fifo

	3.2.7 Controller HCI Event
	3.2.7.1 HCI event
	3.2.7.2 HCI LE event

	3.2.8 Telink defined event
	3.2.8.1 BLT_EV_FLAG_ADV
	3.2.8.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT
	3.2.8.3 BLT_EV_FLAG_SCAN_RSP
	3.2.8.4 BLT_EV_FLAG_CONNECT
	3.2.8.5 BLT_EV_FLAG_TERMINATE
	3.2.8.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE
	3.2.8.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

	3.1
	3.2
	3.2.1
	3.2.2
	3.2.3
	3.2.4
	3.2.5
	3.2.6
	3.2.7
	3.2.8
	3.2.8.1
	3.2.8.2
	3.2.8.3
	3.2.8.4
	3.2.8.5
	3.2.8.6
	3.2.8.7
	3.2.8.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP
	3.2.8.9 BLT_EV_FLAG_CHN_MAP_REQ
	3.2.8.10 BLT_EV_FLAG_CHN_MAP_UPDATE
	3.2.8.11 BLT_EV_FLAG_CONN_PARA_REQ
	3.2.8.12 BLT_EV_FLAG_CONN_PARA_UPDATE
	3.2.8.13 BLT_EV_FLAG_SUSPEND_ENETR
	3.2.8.14 BLT_EV_FLAG_SUSPEND_EXIT
	3.2.8.15 BLT_EV_FLAG_READ_P256_KEY
	3.2.8.16 BLT_EV_FLAG_GENERATE_DHKEY
	3.2.8.17 BLT_EV_FLAG_LL_REJECT_IND
	3.2.8.18 BLT_EV_FLAG_RX_DATA_ABANDOM
	3.2.8.19 BLT_EV_FLAG_PHY_UPDATE
	3.2.9 Controller API
	3.2.9.1 Controller API brief
	3.2.9.2 API return type ble_sts_t
	3.2.9.3 MAC address initialization
	3.2.9.4 Link Layer state machine initialization
	3.2.9.5 bls_ll_setAdvData
	3.2.9.6 bls_ll_setScanRspData
	3.2.9.7 bls_ll_setAdvParam
	3.2.9.8 bls_ll_setAdvEnable
	3.2.9.9 bls_ll_setAdvDuration
	3.2.9.10 blc_ll_setAdvCustomedChannel
	3.2.9.11 rf_set_power_level_index
	3.2.9.12 blc_ll_setScanParameter
	3.2.9.13 blc_ll_setScanEnable
	3.2.9.14 blc_ll_createConnection
	3.2.9.15 blc_ll_setCreateConnectionTimeout
	3.2.9.16 blm_ll_updateConnection
	3.2.9.17 bls_ll_terminateConnection
	3.2.9.18 blm_ll_disconnect
	3.2.9.19 Get Connection Parameters
	3.2.9.20 blc_ll_getCurrentState
	3.2.9.21 blc_ll_getLatestAvgRSSI
	3.2.9.22 Whitelist & Resolvinglist
	3.2.9.23 blc_ll_set_CustomedAdvScanAccessCode

	3.2.10 2M PHY Supported
	3.2.11 Data Length Extension

	3.3 L2CAP
	3.3.1 Register L2CAP data processing function
	3.3.2 Update connection parameters
	3.3.2.1 Slave requests for connection parameter update
	3.3.2.2 Master responds to connection parameter update request
	3.3.2.3 Master updates connection parameters in Link Layer

	3.4 ATT & GATT
	3.4.1 GATT basic unit “Attribute”
	3.4.2 Attribute and ATT Table
	3.4.2.1 attNum
	3.4.2.2 perm
	3.4.2.3 uuid and uuidLen
	3.4.2.4 pAttrValue and attrLen
	3.4.2.5 Callback function w
	3.4.2.6 Callback function r
	3.4.2.7 Attribute Table layout
	3.4.2.8 ATT table Initialization

	3.4.3 Attribute PDU & GATT API
	3.4.3.1 Read by Group Type Request, Read by Group Type Response
	3.4.3.2 Find by Type Value Request, Find by Type Value Response
	3.4.3.3 Read by Type Request, Read by Type Response
	3.4.3.4 Find information Request, Find information Response
	3.4.3.5 Read Request, Read Response
	3.4.3.6 Read Blob Request, Read Blob Response
	3.4.3.7 Exchange MTU Request, Exchange MTU Response
	3.4.3.8 Write Request, Write Response
	3.4.3.9 Write Command
	3.4.3.10 Handle Value Notification
	3.4.3.11 Handle Value Indication
	3.4.3.12 Handle Value Confirmation

	3.4.4 826x master GATT

	3.5 SMP
	3.5.1 SMP parameter configuration
	3.5.1.1 Device bonding
	3.5.1.2 Device OOB data verification

	3.5.2 SMP enable
	3.5.3 SMP event
	3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN
	3.5.3.2 BLT_EV_FLAG_PAIRING_END

	3.5.4 SMP bonding information

	3.6 826x master customized pairing management
	3.6.1 Design of Flash storage method
	3.6.2 Slave Mac table
	3.6.3 API
	3.6.3.1 user_tbl_slave_mac_add
	3.6.3.2 user_tbl_slave_mac_search
	3.6.3.3 user_tbl_slave_mac_delete_by_adr
	3.6.3.4 user_tbl_slave_mac_delete_by_index
	3.6.3.5 user_tbl_slave_mac_delete_all
	3.6.3.6 user_tbl_salve_mac_unpair_proc

	3.6.4 Connection and pairing
	3.6.5 Un-pairing

	4 Power Management (PM)
	4)
	4.1 PM driver
	4.1.1 Low power modes
	4.1.2 Hardware wakeup sources
	4.1.3 Low power mode entry and wakeup

	4.2 BLE low power management
	4.2.1 PM in Idle state
	4.2.2 PM in BLE Adv state & Conn state

	4.3 BLE PM configuration
	4.3.1 PM module initialization
	4.3.2 Set low power mode via “bls_pm_setSuspendMask”
	4.3.3 Set low power wakeup source via “bls_pm_setWakeupSource”
	4.3.4 Working mechanism of low power managment

	4.4 “latency_use” configuration and calculation
	4.5 Other APIs
	4.5.1 bls_pm_getSystemWakeupTick
	4.5.2 bls_pm_enableAdvMcuStall
	4.5.3 cpu_sleep_wakeup2

	4.6 Notes about GPIO wakeup
	4.6.1 Fail to enter suspend/deepsleep when wakeup level is valid

	4.7 BLE system PM reference
	4.8 Timer wakeup of APP layer

	5 Audio Processing
	5)
	5.1 Audio initialization
	5.2 Processing of MIC sampled audio data
	5.2.1 Audio data compression and RF transfer
	5.2.2 Audio data compression processing

	5.3 Compression and decompression algorithm

	6 OTA
	6)
	6.1 8267/8269 Flash architecture and OTA procedure
	6.1.1 8267/8269 FLASH storage architecture
	6.1.2 8267/8269 OTA update procedure
	6.1.3 Modify Flash storage architecture

	6.2 8266 Flash architecture and OTA procedure
	6.2.1 8266 FLASH storage architecture
	6.2.2 8266 OTA upgrade procedure
	6.2.3 cstartup_8266.S, reset, reboot, code transfer
	6.2.3.1 boot_flag detect and process by cstartup_8266.S
	6.2.3.2 Firmware size
	6.2.3.3 Reset and reboot

	6.2.4 Modify Flash storage architecture
	6.2.4.1 Modify firmware size and OTA FW storage address
	6.2.4.2 Modify storage address of OTA boot bin
	6.2.4.3 Modify storage addrss of OTA boot flag

	6.3 8261 Flash architecture and OTA procedure
	6.3.1 8261 FLASH storage architecture
	6.3.2 8261 OTA update procedure
	6.3.3 cstartup_8261.S, reset, reboot , code transfer
	6.3.3.1 boot_flag detect and process by cstartup_8261.S
	6.3.3.2 Firmware size, reset and reboot

	6.3.4 Modify Flash storage architecture
	6.3.4.1 Modify firmware size and OTA FW storage address
	6.3.4.2 Modify storage address of OTA boot bin
	6.3.4.3 Modify storage addrss of OTA boot flag

	6.4 RF data proceesing for OTA mode
	6.4.1 OTA processing in Attribute Table on Slave side
	6.4.2 OTA data packet format
	6.4.3 RF transfer processing on Master side
	6.4.4 RF receive processing on Slave side

	7 Key Scan
	7)
	7.1 Key matrix
	7.2 Keyscan, keymap and keycode
	7.2.1 Keyscan
	7.2.2 Keymap &kb_event

	7.3 Keycode
	7.4 Keyscan flow
	7.4.1 Basic keyscan flow
	7.4.2 Keyscan flow timing optimization

	7.5 Deepsleep wakeup fast keyscan
	7.6 Repeat Key processing
	7.7 Stuck Key processing
	7.8 Power optimization for long key press

	8 LED Management
	8)
	8.1 LED task related invoking functions
	8.2 LED task configuration and management
	8.2.1 Led event definition
	8.2.2 Led event priority

	9 blt software timer
	9)
	9.1 Timer initialization
	9.2 Timer inquiry processing
	9.3 Add timer task
	9.4 Delete timer task
	9.5 Demo

	10 IR
	10)
	10.1 PWM Driver
	10.1.1 PWM id and pin
	10.1.2 PWM clock
	10.1.3 PWM cycle and duty
	10.1.4 PWM revert
	10.1.5 PWM mode
	10.1.6 PWM start and stop
	10.1.7 PWM pulse number
	10.1.8 PWM phase
	10.1.9 PWM interrupt

	10.2 IR implementation method
	10.3 IR Demo details
	10.3.1 NEC IR
	10.3.2 Set carrier
	10.3.3 Set logic1 and logic0 time
	10.3.4 Configure a complete NEC IR
	10.3.5 Add timing sequence signal
	10.3.6 Add data
	10.3.7 NEC IR send
	10.3.8 NEC IR repeat
	10.3.9 Interrupt processing
	10.3.10 APP layer checks IR busy status

	11 Drivers in BLE SDK
	11)
	11.1 External capacitor for 12/16 MHz crystal
	11.2 External 32kHz crystal oscillator
	11.3 PA
	11.4 PWM
	11.5 UART
	11.5.1 UART GPIO
	11.5.2 UART configuration
	11.5.2.1 UART common configuration
	11.5.2.2 UART proprietary configuration

	11.5.3 UART Data Rx/Tx in DMA mode
	11.5.3.1 UART data Rx in DMA mode
	11.5.3.2 UART data Tx in DMA mode

	11.5.4 UART Data Rx/Tx in Non-DMA mode
	11.5.4.1 UART data Rx in Non-DMA mode
	11.5.4.2 UART data Tx in Non-DMA mode

	11.5.5 UART baudrate calculation tool

	11.6 ADC
	11.6.1 ADC Clock
	11.6.2 ADC configuration
	11.6.2.1 8261/8267/8269 ADC initializaiton
	11.6.2.2 8266 ADC initializaiton

	11.6.3 Obtain ADC convertion value
	11.6.3.1.1 Calculate actual voltage value for 8261/8267/8269
	11.6.3.1.2 Calculate actual value for 8266

	11.7 Low battery voltage detect
	11.7.1 “Low battery check” implementation
	11.7.1.1 “Low battery check” for 8266
	11.7.1.2 “Low battery check” for 8261/8267/8269

	11.7.2 Demo for “Low battery check”

	11.8 IIC
	11.8.1 IIC Pin
	11.8.2 IIC configuration
	11.8.2.1 IIC Master initialization
	11.8.2.2 IIC Slave initialization

	11.8.3 IIC data transfer
	11.8.3.1 IIC Master write transfer
	11.8.3.2 IIC Master read transfer
	11.8.3.3 IIC Slave data transfer

	11.8.4 IIC interrupt

	11.9 SPI
	11.9.1 SPI Pin
	11.9.2 SPI configuration
	11.9.2.1 SPI Master initialization
	11.9.2.2 SPI Slave initialization

	11.9.3 SPI Data transfer
	11.9.3.1 SPI Master write transfer
	11.9.3.2 SPI Master read transfer
	11.9.3.3 SPI Slave data transfer

	11.9.4 SPI interrupt

	11.10 EMI
	11.10.1 EMI Test
	11.10.1.1 Emi initialization setting
	11.10.1.2 Power level and Channel
	11.10.1.3 Emi Carrier Only
	11.10.1.4 Emi Carrier Data
	11.10.1.5 Emi TX
	11.10.1.6 EMI RX
	11.10.1.7 Set configuration parameters

	11.10.2 EMI Test Tool

	11.11 PHY test

	12 Appendix

