Application Note: Telink Position Solution Introduction

AN-19052700-E6

Ver 1.7.0

2020/7/1

Brief:

This document is the brief introduction for Telink Position Solution.

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

Telink Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Telink Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or lifesustaining applications. Customers using or selling Telink Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Telink Semiconductor for any damages arising or resulting from such use or sale.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (<u>www.telink-semi.com</u>).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

Revision History

Version	Major Changes	Date	Author
1.0.0	Initial release	2019/5	HHL,YY,JF,TJB
1.1.0	Updated Section 3	2019/8	HHL,YY,JF,TJB
1.2.0	1. Updated Section 4.3.1	2019/9	YY,JF
	2. Updated Section 4.3.3	, -	
1.3.0	1. Updated wording	2019/10	HHL, YY
	2.Updataed Section 4		
1.4.0	1. Update Section 3	2020/4	HHL
1.5.0	1. Updated RSSI	2020/4	YY,BY
	2. Updated ANT switch sequence	,	
1.6.0	1. update reference design 3	2020/5	HHL
1.7.0	1. update for 8278 chips	2020/7	HHL

Table of contents

1	AO	A/AOD	5
	1.1	Angle of Arrival (AOA) Method	5
	1.2	Angle of Departure (AOD) Method	7
2	Рас	ket Format	8
	2.1	Constant Tone Extension	8
	2.2	Antenna Switch	9
	2.3	IQ Sampling	9
	2.4	RSSI	10
3	Cab	ble Test	10
	3.1	Antenna switching integrity	10
	3.2	IQ Samples Dynamic Range	10
	3.2	IQ Samples Coherency	11
4	Hard	dware	12
5	Firm	nware and API	16
	5.1 AI	PI and Raw Data	16
	5.2 D	emo	16
	5.2	.1 Demo Parameter	16
	5.2	.2 User Guide	18
	5.3 Te	elink Solution Release	20
	5.3	.1 How to use	20
	5.3	.2 Continue Mode	21
	5.3	.3 Save Mode	22
	5.3	.4 Packet format	22
6	Field	d Test Result	26
	6.1 Fi	eld Test Result of Reference Board 1	26
	6.2 Fi	eld Test Result of Reference Board 2	27
	6.3 Fi	eld Test Result of Reference Board 3	30
7	Sche	ematic for Reference Board	33

Table of figures

Figure 1-1 Angle of Arrival Method	6
Figure 1-2 Angle of Departure Method	7
Figure 2-1 Packet Format	8
Figure 2-2 Constant Tone Extension Structure	9
Figure 3-1 dynamic range result	11
Figure 3-2 phase of different antennas	12
Figure 4-1 Reference Board Design 1	13
Figure 4-2 Illustration of Angle for Reference Board Design 1	13
Figure 4-3 Reference Board Design 2	14
Figure 4-4 Illustration of Angle for Reference Board Design 2	14
Figure 4-5 Reference Board Design 3	15
Figure 5-1 Change BDT to usb log mode	19
Figure 5-2 Enter Log Windows Interface	19
Figure 5-3 Enter Log Windows Interface	19
Figure 5-4 AOA/AOD Tool Interface 1	20
Figure 5-5 AOA/AOD Tool Interface 2	20
Figure 5-6 Tscript Interface	21
Figure 5-7 Continue Mode	21
Figure 5-8 AoA Receiver Slot Chart	22
Figure 5-9 Testing Data	22
Figure 5-10 Receive packet format	23
Figure 5-11 Example packet of triangle board	23
Figure 5-12 Example packet of pologon board	24
Figure 5-13 Example packet of polygon board	24
Figure 5-14 Example packet of polygon board	25
Figure 6-1 Test Environment for Reference Board 1	26
Figure 6-2 5 meters Indoor Test Result	26
Figure 6-3 Mean of Absolute Value of Error Versus Real Angle	27
Figure 6-4 Test Environment for Reference Board 2	28
Figure 6-5 Estimation of alpha vs. real alpha	29
Figure 6-6 Estimation of theta vs. real alpha	29
Figure 6-7 Test Environment for Reference Board 3	30
Figure 6-8 Estimation of alpha vs. real alpha	31
Figure 6-9 Estimation of theta vs. real alpha	31
Figure 6-10 Estimation of alpha vs. real alpha	32
Figure 6-11 Estimation of theta vs. real alpha	32

1 AOA/AOD

Telink Position Solution supports AOD/AOD features defined in Core 5.1. Client device is hereinafter referred to as "the LE radio that we want to get direction information". Server device is hereinafter referred to as "the LE radio that set as the basepoint of the direction information". Client device can get its direction information for a server device though AOA/AOD method. Using direction information from several server devices and profile-level information giving their locations, a client radio can calculate its own position.

Telink position Solution can provide estimated angle by its embedded MCU, provide 3 reference designs of antenna array, including PCB antenna.

1.1 Angle of Arrival (AOA) Method

Client device can make its angle of arrival (AoA) information available to server device by transmitting direction finding enabled packets using a single antenna.

Server device, consisting of an RF switch and antenna array, switches antennae while receiving those packets and captures IQ samples. The IQ samples can be used to calculate the phase difference in the radio signal received using different elements of the antenna array, which in turn can be used to estimate angle.

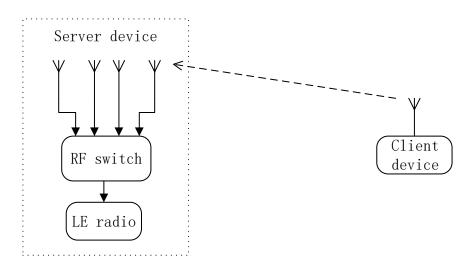
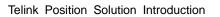



Figure 1-1 Angle of Arrival Method

1.2 Angle of Departure (AOD) Method

Client device, consisting of an RF switch and antenna array, can make its angle of departure (AoD) detectable by transmitting direction finding enabled packets, switching antennae during transmission.

Server device receives those packets and captures IQ samples. The IQ samples can be used to calculate the phase difference in the radio signal received using different elements of the antenna array, which in turn can be used to estimate angle.

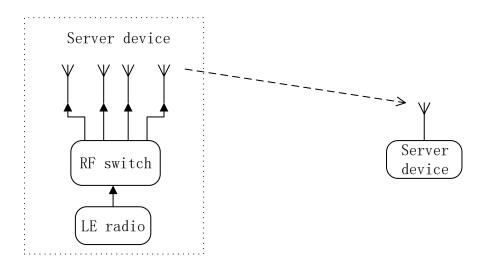


Figure 1-2 Angle of Departure Method

2 Packet Format

LSB			MSB
Preamble (1 or 2 octets)	Access-Address (4 octets)	CRC (3 octets)	Constant Tone Extension (16 to 160 µs)

Telink Position Solution supports packet format specified for AOA and AOD feature: consisting of Preamble, Access-Address, PDU, CRC (Cyclic Redundancy Check) and Constant Tone Extension. Header in PDU contains controlling information of AOA AOD.

2.1 Constant Tone Extension

Constant Tone Extension is specified for AOA AOD feature. The Constant Tone Extension has a variable length; it is at least 16 μ s and not greater than 160 μ s.

The first 4 μ s of the Constant Tone Extension are termed as the guard period and the next 8 μ s are termed as the reference period. After the reference period, the constant Tone Extension consists of a sequence of alternating switch slots and sample slots, each either 1 μ s or 2 μ s long as specified by the Host. The structure of the Constant Tone Extension is shown in Figure 2-2 Constant Tone Extension Structure.

AOA transmitter									
	Continues t	ransmission							
AOA receiver: 1us switch slot and s	ample slots								
Guard period	Reference period	Switch			Sample	 Switch		Switch	Sample
(4 µs)	(8 µs)	slot	slot 1	slot	slot 2	 slot	slot 73	slot	slot 74
AOA receiver: 2us switch slot and s	sample slots								
Guard period	Reference period	Survita	h slot	Sampl	a alat 1	Smith	ch slot	Samp	le slot
(4 µs)	(8 µs)	Swite	in slot	Sampi	e siot i	 Switt	ai siot	3	7
Guard period (4 µs) AOD receiver: 1us switch slot and Guard period	Reference period (8 µs) sample slots Reference period	Switch slot	Sample slot 1	Switch slot	Sample slot 2	 Switch	slot 73	Switch slot	Sampl slot 74
(4 µs)	(8 µs)		Sample slot 1		Sample slot 2		Sample slot 73		Sampl slot 74
AOD transmitter: 2us switch slot an Guard period						, T		Com	la alct
(4 µs)	(8 µs)	Swite	ch slot	Sampl	e slot 1	 Swite	ch slot		le slot 7
	(ο μω)	I			I	 1			-
AOD receiver: 2us switch slot and	sample slots								
Guard period (4 µs)	sample slots Reference period (8 us)			Sampl	e slot 1				le slot

Figure 2-2 Constant Tone Extension Structure

2.2 Antenna Switch

The device switches between the antennae either while receiving the AoA Constant Tone Extension or while transmitting the AoD Constant Tone Extension. The switching takes place during time periods called switch slots. The first 4 μ s of the Constant Tone Extension are termed as the guard period and the next 8 μ s are termed as the reference period. The receiving Link Layer captures IQ samples during the reference period and during time periods are called sample slots.

The first antenna in the pattern will be used during the reference period. The second antenna in the pattern will be used during the first sample slot, the third antenna during the second sample slot, and so on. The same antenna ID may appear more than once in the pattern. The antenna in use will only be changed during the guard period and switch slots.

2.3 IQ Sampling

When receiving a packet that contains an AoD Constant Tone Extension, the

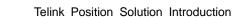
receiver does not need to switch antennae. When receiving a packet that contains an AoA Constant Tone Extension, the receiver performs antenna switching at the rate and follows the switching pattern configured by the Host. In both cases, the receiver takes an IQ sample each microsecond during the reference period and an IQ sample each sample slot (thus there will be 8 reference IQ samples, 1 to 37 IQ samples with 2 μ s slots, and 2 to 74 IQ samples with 1 μ s slots, meaning 9 to 82 samples in total). The Controller reports the IQ samples to the Host. The receiver samples the entire Constant Tone Extension, irrespective of length, unless it will conflict with other activities.

2.4 RSSI

The receiver measure the RSSI of received packets on the antenna used for receiving the body of the packet (in both cases excluding any Constant Tone Extension).

3 Cable Test

We tested chip 8278 according to spec "RF-PHY.TS.5.1.1". 8278 passes all AOA/AOD test cases. Here are some details about these test cases.


3.1 Antenna switching integrity

Chip 8278 implements 3 GPIO ports to control PA switch. The switch pattern is configurable by software. 8278 supports up to 8 antennas, 16 non-cycle switches.

3.2 IQ Samples Dynamic Range

In order to implement high order algorithm such as MUSIC, the IQ samples shall show different amplitude corresponding to the received signal strength. The test case in Spec. is transmit -52,-49,-57 and -62dBm signal to Antenna 1, 2, 3 and 4. The Spec. requires MEAN ANT4 < MEAN ANT3 < MEAN ANT 1 < MEAN ANT 2. 'MEAN ANT n' is IQ samples amplitude mean value of antenna n.

Chip 8278 outputs IQ samples with 8 bit precision. Figure 3-1 shows the mean and STD. value of IQ sample from different ports sample by sample, normalized by the

reference signal. The resolution of amplitude is less than 1dB.

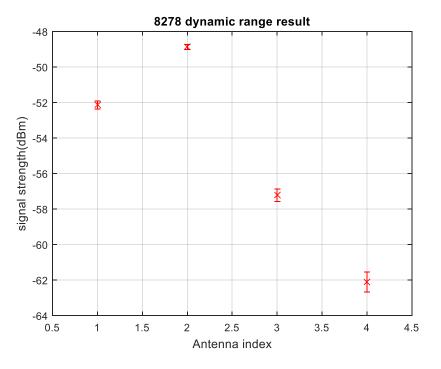


Figure 3-1 dynamic range result

3.2 IQ Samples Coherency

In order to calculate phase difference of signal from different antennas to derive angle, the phase of same antenna at different time shall be coherent, and the phase difference from different antennas at different time shall be coherent. See section 5.2 of Core 5.1 for requirement details.

Use power split to transmit signal to 4 ports of chip 8278, all packet attached with 160us CW, calibrated cable difference and power split difference, calibrated initial phase difference with reference signal. The spec requires phase variation (v-MRP) shall less than 0.52 for same antenna, and phase variation (MRPD) shall less than 1.125 between different antennas. The STD. value of phase from different ports across packets collected by 8278 are below 0.025 rad. Figure 3-2 is the phase of IQ samples from 4 ports.

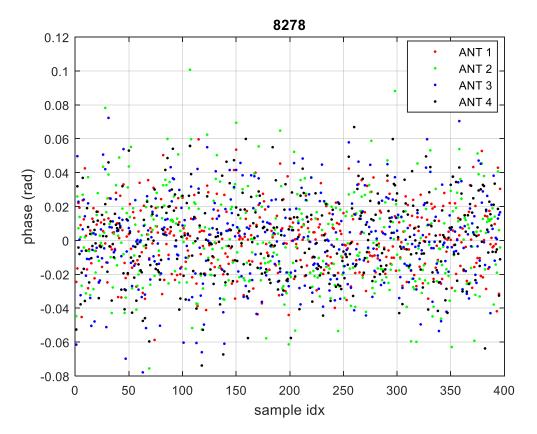


Figure 3-2 phase of different antennas

4 Hardware

There are 3 selections of reference design, reference design 1 for board on the wall and reference design 2 for board on the ceiling, reference design 3 uses PCB antennas as replacement of external antennas in reference design 2. The reference board design 1 is shown in Figure 4- 1. The Figure 4-2 shows the illustration of angle. The X axis points to 0 degree while the Y axis points to 90 degree. The reference board 2 design is show in Figure 4-3 and the illustration of angle see Figure 4-4. Set RF8-RF1 as x axis pointing to 0 degree while taking RF5-RF4 as y axis pointing to 90 degree. The reference board 3 design is show in Figure 4-5 and the illustration of angle is the same as reference board 2.

12

Figure 4-1 Reference Board Design 1

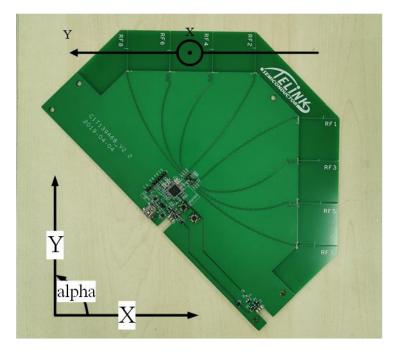


Figure 4-2 Illustration of Angle for Reference Board Design 1

Figure 4-3 Reference Board Design 2

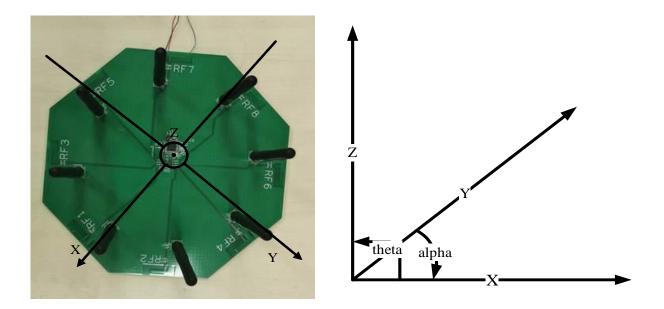


Figure 4-4 Illustration of Angle for Reference Board Design 2

Figure 4-5 Reference Board Design 3

5 Firmware and API

For ease of use, we can provide calculated API and raw data. User can choose to call API to get input angle directly (calculated by our inner arithmetic) or get raw data to do other arithmetic. We also provide a Demo to help user realize AOA or AOD test.

5.1 API and Raw Data

aoa.c and aoa.h in driver include all necessary parts for aoa signal, thus user can add these two files to the project. Both angle-calculated API and raw data is provided in aoa.c.

User can call function get_input_angle (unsigned char *ptr_packet) or get_input_angle_for_polygon(unsigned char *ptr_packet) to get input angle as below:

Then user can get a char parameter of angle and rx_packet in it should be received as buffer.

User can call function get_raw_data (unsigned char *data_table, unsigned char *ptr_packet, unsigned int number) as below to get raw data:

unsigned char raw_data[90]; get_raw_data(&raw_data[0],&rx_packet[0],90);

Then raw data is copied to raw_data[0],raw_data[1], raw_data[2] ... raw_data[89], which stand real part of IQ0, image part of IQ0, real part of IQ1 ...image part of IQ44. User need an unsigned char table which has at least 90 parameters because there are 45 sample data and each data includes real part and image part.

5.2 Demo

Demo of AOA transmitter and receiver is provided for reference. Download demo program to referenced hardware to realize transmitter continually sending data while receiver outputting angle through USB.

5.2.1 Demo Parameter

Variable parameters in drivers/8258/aoa.h:

#define RF_REAL_FREQ	2450	<pre>//set TX/RX frequency.here is 2450MHz</pre>
It defines transmit frequ	Jency.	

```
AN-19052700-E6
```


Variable parameters in app.c:

/***********************IO pin def	ine*******************************/
#define LED2	GPIO_PA3
#define LED3	GPIO_PA4
#define LED4	GPIO_PB0
#define LED5	GPIO_PB1
#define SW2	GPIO_PC1
#define SW3	GPIO_PC0
#define V1	GPIO_PC6
#define V2	GPIO_PC5
#define V3	GPIO_PC7

It defines some GPIO as multiplex function to switch antenna and to debug.

/**************	hoose TX o	r RX******************************/
#define TX	1	
#define RX	2	
#define RF_TRX_MO	DE	RX

It defines board as transmitter or receiver.

/****************Choose AOA	\ or AOD*********************/
#define RF_AOA_MODE	1
#define RF_AOD_MODE	2

#define AOA_OR_AOD_MODE RF_AOD_MODE

It defines board as AOA or AOD.

/**************Choose board and	d Ant************************	
[Brief Description]:		
RF_triangle_1357: Using triangle boa	rd with ant 1.3.5.7, API output xy angle.	*
RF_triangle_2468: Using triangle boa	rd with ant 2.4.6.8, API output xy angle.	*
RF_eight_all_open:Using polygon boa	ard with all 8 ants, API output xy angle.	*
*****	******************/	
#define RF_triangle_1357	1	
#define RF_triangle_2468	2	
#define RF_eight_all_open	3	
#define RX_RF_ARRAY	RF_eight_all_open	

It defines board antenna.

RF frequency should be verified in aoa.h,by changing RF_REAL_FREQ ,but not here.

/*********TX Power*************************/ #define RF_POWER RF_POWER_P10p46dBm

It defines TX power , RF_POWER_P10p46dBm here is 10dbm.

/********Connect access code************/ #define ACCESS_CODE 0xfcaab2c1

It defines ACCESS_CODE.

```
/******TX interval,16000000 equal 1 second******/
#define TX_INTERVAL 400000
```

It defines transmition frequency. 16000000 means send packet per second.

5.2.2 User Guide

Software:

Telink IDE 1.3

Telink Burning and Debugging Tool (BDT)

Progress:

- a. Change RF_TRX_MODE in app.c to TX, then use Telink IDE 1.3 build project to generate .\8258_AOA_Demo\ 8258_AOA_Demo.bin.
- b. Connect single antenna board by usb or SW, download TX program.
- c. Change RF_TRX_MODE in app.c to RX, then rebuild project to generate a new .\8258_AOA_Demo\ 8258_AOA_Demo.bin.
- d. Connect multi-antenna board by usb or SW, download RX program.
- e. Use usb connect multi-antenna RX board to supply power and communicate, then change BDT to usb log mode by View -> usb log as shown in Figure 4-0-1.

Telink	Position	Solution	Introduction
10 III IK	1 0311011	Oblution	Introduction

<u>ж</u> т	elink	Burning and De	bugging T	ool (BDT)	-		-	-		1				
File	Viev	w Tool Help												
Ø	IΞ	variable list 🕨	Setting	🕐 Erase	L Download	• <u>A</u> ctivate	▶ R <u>u</u> n	II <u>P</u> ause	✤ <u>S</u> tep	Q PC 🦽 S	ingle step 🔻	ে <u>R</u> eset	💮 ma <u>n</u> ual mode 🔻	🚽 <u>C</u> lear
b0		uart log usb log	b0	10		c sws	602	06		Stall	602	88		Start
		interp .lst	Download				110	Tdebug				Ξι	og windows	
		time stamp												*

Figure 5-1 Change BDT to usb log mode

f. Open Log windows. Then user can see input angle once receive AOA packets. Make sure print it out if use print function in program, or program will come out unknown mistake.

💥 Telink Burnin	ng and De	bugging To	ol (BDT)					
File View Tool	l Help							
I <u>□</u> I <u>8</u> 258 • = I	USB 🝷	③ Setting (🖲 Erase 🔒	Download + Activate	Run II Pause	Single st	ep 🔹 🥂 🤁 na	anual mode 🔹 📕 <u>C</u> lear
b0 1	0	b0	10	2 SWS	602 06	Stall	602 88	► Start
	Ŧ	Download			號급 Tdebug		E Log win	dows
angle = 14 angle = 14 angle = 14 angle = 13 angle = 13 angle = 13 angle = 14 angle = 15 angle = 15 angle = 15 angle = 15 angle = 14								^

Figure 5-2 Enter Log Windows Interface

g. If user want to use UART to print, there are some definition need to be changed in drivers/8258/ printf.h. Change DEBUG_BUS as DEBUG_IO, set PRINT_BAUD_RATE and DEBUG_INFO_TX_PIN, then GPIO will emulate UART and print out message with bandrate up to 1000000.

```
#define DEBUG IO
                      1
#define DEBUG USB
                      2
                      DEBUG IO
#define DEBUG BUS
#if (DEBUG BUS==DEBUG USB)
* @brief This function serves to printf string by USB.
* @param[in] *format - format string need to print
* @param[in] ... - variable number of data
* @return
            none.
*/
void usb_printf(const char *format, ...);
#define printf usb printf
#elif (DEBUG BUS==DEBUG IO)
#define PRINT BAUD RATE
                                         1000000 //1M baud rate,
#define DEBUG INFO TX PIN
                                         GPIO PB4
```


5.3 Telink Solution Release

Telink AOA/AOD solution is provided besides Demo. It is used to show AOA/AOD result and collect raw date with referred hardware. The solution includes bin file and debug tool - Tscript. The interface is as follows.

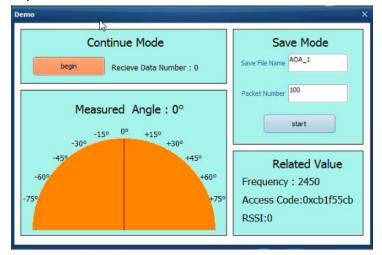


Figure 5-4 AOA/AOD Tool Interface 1

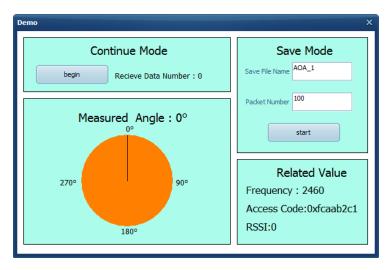


Figure 5-5 AOA/AOD Tool Interface 2

5.3.1 How to use

Step1: download specified bin file to the chip. Then connect board to computer with USB or SWS to power on and communicate. Connect polygon board to the computer through SWS especially when testing AOA with polygon board since there is no USB on the board.

Step2: open Tscript.exe, double click RF_AutoTest_Kite\AoA.lua as follows. Then interface is shown as the below Figure 4-0-2. Choose AoA_Sniffer_draw_by _sws_V1.4.lua or AoA_Sniffer_draw_by_usb_V1.4.lua according to the different connection mode between computer and board.

I script tools 3.2xiaodong.zong@telink-semi.com	- /
Config Dbg_Bus	
Script() Debug()	S 🕈 🤊 🕲
 ➡ T: ➡ bin ➡ function_test ➡ register ➡ RF_AutoTest_Kite 	20%
State list	
AoA_Sniffer_draw_by_sws_V1.4.lua AoA_Sniffer_draw_by_usb_V1.4.lua cmd_interface.lua	
	do
2019/9/19 15:22:35 Mode:Debug	

Figure 5-6 Tscript Interface

Step3: choose continue mode or save mode to start, these two modes will be introduced in Section 5.3.2 Continue Mode and 5.3.3 Save Mode.

5.3.2 Continue Mode

Continue mode is designed to show calculation angle result of inner API. The receive board will continually receive data and calculate angle once receiving AOA/AOD data. After average angle data of fixed window, the result will show in interface and the pointer in table will point to corresponding position. In addition, received packet number and Frequency/Access Code/RSSI will show in interface as follows.

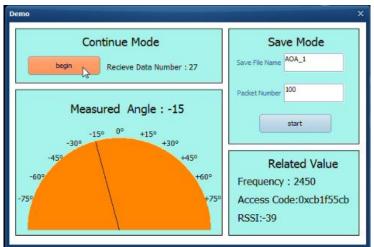


Figure 5-7 Continue Mode

5.3.3 Save Mode

Save mode is designed to collect AOA/AOD raw data. Click start button after inputting Save File Name and Packet Number. Then user can get Save_File_Name.txt that includes decimal sampled IQ value and Save_File_Name_backup.txt that includes hexadecimal source receive data. Users can use other algorithms to process these data or do other experiment.

Save_File_Name.txt will include decimal sampled IQ value of n packets, which n is the packet number set by user. Each packet contains 45 groups including 90 numbers corresponding to 45 sample point messages. Every group contains two numbers, the first number indicates the real part and the second number represents the virtual part of sample point. Figure 4-7 below indicates the slot chart of AoA receiver. In reference period, Chip will sample message every 1us, obtaining totally 8 groups of number. After that, Chip will sample message in each sample slot, totally 37 groups of number. So each packet includes 37 + 8 = 45 groups for total of 90 numbers.

Guard period	Reference period	Switch	Sample	Switch	Sample	Switch	Sample
(4 µs)	(8 µs)	slot	slot 1	slot	slot 2	 slot	slot 37

Figure 5-8 AoA Receiver Slot Chart

For example, Figure 4-8 indicates one packet of AOA testing containing totally 90 numbers mentioned before. The first line lists 16 numbers sampled in reference period and the sample results are:

-97 – 18i , 2 – 86i , 88 – 14i , 2 + 88i , -90 + 23i , -34 – 97i , 79 – 26i , 41 + 90i User can also get other 37 sample slot data by this way.

```
-97 -18 2 -86 88 -14 2 88 -90 23 -34 -97 79 -26 41 90
64 63 74 78 95 47 94 27 92 -1 94 1 72 -38 83 -62
106 -119 47 -69 -6 -91 9 -102 -24 -74 -37 -68 -100 -127 -66 -58
-89 -38 -103 -12 -98 22 -74 17 -75 39 -46 75 -49 87 -17 68
19 100 20 82 42 81 116 87 70 38 75 27 95 -6 89 -1
88 -31 79 -64 93 -114 32 -89 32 -83
RSSI :-80
Input angle :1
```

Figure 5-9 Testing Data

File is located in .\kite_RF_AoA\project\RF_AutoTest_Kite\AutoTest_Report. The default transmission frequency is 2460 and antenna switch sequence is RF2-> RF4-> RF6-> RF8 for triangle board, RF2 as the primary antenna during reference period, and RF1-> RF2-> RF3-> RF4-> RF5-> RF6-> RF7-> RF8for polygon board, RF1 as the primary antenna during reference period.

5.3.4 Packet format

This part will introduce packet format and make an example . Packets formate are

AN-19052700-E6

as bellows:

Packet Length (4 bytes) *1	Header 0 (1 byte)	Payload Length (1 byte)	AOA/AOD Specied data (1 byte) *2	Payload (n bytes)	Raw Data (90 bytes or 164 bytes) *3	Packet State Message (8 bytes)
-------------------------------	----------------------	----------------------------	--	-----------------------	---	-----------------------------------

*1 This 4 bytes are not included in length

```
*2 AOA : 0x14
AOD : 0x94
```

*3 Switch slot 1us : 164 bytes Switch slot 2us : 90 bytes

Figure 5-10 Receive packet format

To make an example, here is a AOA packet of 2us switch slot received by triangle board(saved by Tscript). If multiple antenna board is triangle board, it can be analysed in following way according to packet format. In save mode of solution that we mentioned before, receiver will call function to calculate angle and rsquare once receiving a AOA/AOD packet, then put it behind rx_packet. Tscript will read total 130 bytes to get them all.

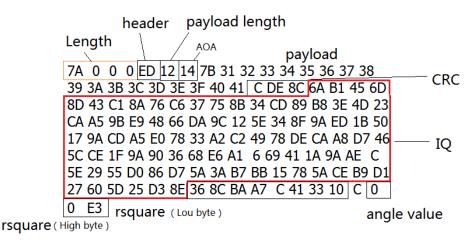
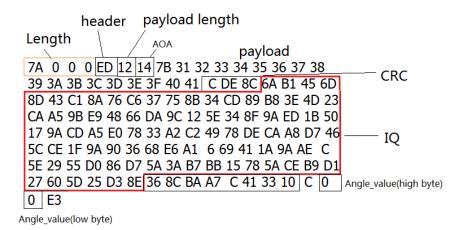


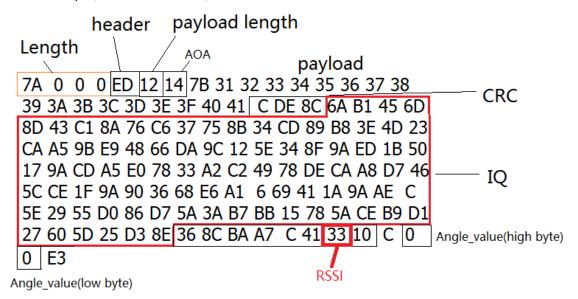
Figure 5-11 Example packet of triangle board


Raw data in rx_packet need to be treated as char variables . So the highest bit is sign bit and lower 7 bits are data bits. They can be transferred to decimal number in standard method. For the example, raw data in example can be converted as Figure 4-12. The antenna switch sequence is RF2-> RF4 -> RF6 -> RF8.

F	F2	R	F4	R	F6	RF8			
Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Part		
6A	B1	45	6D	8D	43	C1	8A		
76	C6	37	75	8B	34	CD	89		
B8	3E	4D	23	CA	A5	9B	E9		
48	66	DA	9C	12	5E				
9A	ED	1B	50	17	9A	CD	A5		
EO	78	33	A2	C2	49	78	DE		
CA	A8	D7	46	5C	CE	1F	9A		
90	36	68	E6	A1	6	69	41		
1A	9A	AE	С	5E	29	55	D0		
86	D7	5A	3A	B7	BB	15	78		
5A	CE	B9	D1	27	60	5D	25		
D3	8E								
F	F2		Conve) F6	R	F8		
Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Part		
106	-79	69	109	-115	67	-63	-118		
118	-58	55	117	-117	52	-51	-119		
-72	62	77	35	-54	-91	-101	-23		
72	102	-38	-100	18	94	52	-113		
-102	-19	27	80	23	-102	-51	-91		
-32	120	51	-94	-62	73	120	-34		
-54	-88	-41	70	92	-50	31	-102		
-112	54	104	-26	-95	6	105	65		
26	-102	-82	12	94	41	85	-48		
-122	-41	90	58	-73	-69	21	120		
90	-50	-71	-47	39	96	93	37		
-45	-114								

Figure 5-12 Example packet of pologon board

To make another example, here is a AOA packet of 2us switch slot received by pylogon board(saved by Tscript), it can be analysed in following way according to packet format. In save mode of solution that we mentioned before, receiver will call function to calculate angle once receiving a AOA/AOD packet, then put it behind rx_packet. Tscript will read total 130 bytes to get them all.

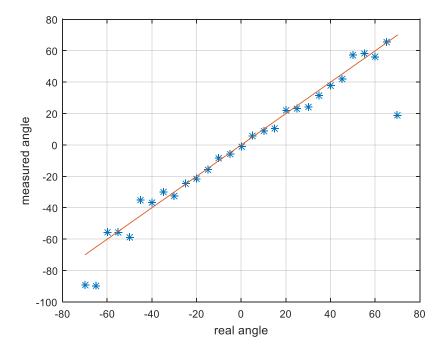

rawdata in examplecan be converted as Figure 4-14. Theantenna switch

sequence is RF1-> RF2-> RF3-> RF4-> RF5-> RF6-> RF7-> RF8.

R	F1	R	F2	R	F3	R	F4	B	F5	R	F6	R	F7	R	F 8
Real Part	Imag Part	Real Part	Imag Part	Real Part	Inag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part
6A	B1	45	6D	8D	43	C1	8A	76	C6	37	75	8B	34	CD	89
BB	3E	4D	23	CA	A5	9B	E9	48	66	DA	90	12	5E	34	8F
9A	ED	1B	50	17	9A	CD	A5	EO	78	33	A2	C2	49	78	DE
CA	AB	D7	46	5C	CE	1F	9A	90	36	68	E6	A1	6	69	41
1A	9A	AE	C	5E	29	55	DO	86	D7	5A	3A	B7	BB	15	78
5A	CE	B9	D1	27	60	50	25	D3	8E						
							conver	ted to							
B	IF1	R	F 2	R	F3	R	conver		F5	R	F6	R	F7	R	F8
								В	F5		1	Real Part	F7 Inag Part		F8 Imag Part
							F4	B	F5		1				
Real Part	Inag Part	Real Part	Imag Part	Real Part	Inag Part	Real Part	F4 Imag Part	Real Part	F5 Inag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part
Real Part 106	Imag Part -79	Real Part 69	Imag Part 109	Real Part -115	Inag Part 67	Real Part -63	F4 Imag Part -118	Real Part 118	F5 Inag Part -58	Real Part 55	Imag Part 117	Real Part -117	Imag Part 52	Real Part -51	Imag Part -119
Real Part 106 -72	Inag Part -79 62	Real Part 69 77	Imag Part 109 35	Real Part -115 -54	Imag Part 67 -91	Real Part -63 -101	F4 Imag Part -118 -23	Real Part 118 72	F5 Imag Part -58 102	Real Part 55 -38	Imag Part 117 -100	Real Part -117 18	Imag Part 52 94	Real Part -51 52	Imag Part -119 -113
Real Part 106 -72 -102	Inag Part -79 62 -19	Real Part 69 77 27	Imag Part 109 35 80	Real Part -115 -54 23	Imag Part 67 -91 -102	Real Part -63 -101 -51	F4 Imag Part -118 -23 -91	Real Part 118 72 -32	F5 -58 102 120	Real Part 55 -38 51	Imag Part 117 -100 -94	Real Part -117 18 -62	Imag Part 52 94 73	Real Part -51 52 120	Imag Part -119 -113 -34

Figure 5-14 Example packet of polygon board

The value of RSSI represents the signal strength of the receive data. We can get the RSSI value from the packet. Use the data which get from packet minus110 (D) is RSSI. For example, the date is 0x33, 0x33 minus 110 is -59. So RSSI is -59.


6 Field Test Result

6.1 Field Test Result of Reference Board 1

The indoor test environment is shown in. The multiple antenna side can switch antenna to transmit or receive constant single tone. It is placed 2 meters high from the ground attached to the wall. At the other side, a single antenna BLE modular is placed 5 meters away from the multiple antenna side. It is tested by 5 degrees step. The result is shown in Figure 5-1.

Figure 6-1 Test Environment for Reference Board 1

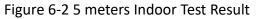


Figure 5-3 is the test result for various scenarios which indicates the mean of

AN-19052700-E6

absolute value of error versus real angle. The height of reference board 1 is 1 or 2 meters and the height of single antenna BLE module is 1 meter. The distance from wall to single antenna dongle is 0.5, 1, 2, 3 or 5 meters respectively following the below test.

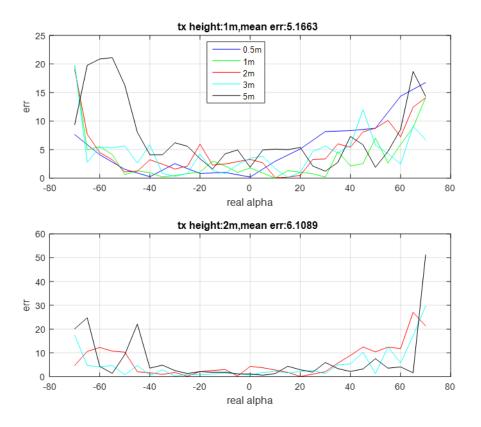


Figure 6-3 Mean of Absolute Value of Error Versus Real Angle

6.2 Field Test Result of Reference Board 2

The indoor test environment is shown in Figure 5-4. The multiple antenna side can switch antenna to transmit or receive constant tone extension. It is hanging on the bracket which is 1.8 meter high. The other side is a single antenna BLE modular, placed on the floor or 0.9 meter high marked as H, 1 or 2 meters far from the bracket marked as D. It is tested by 5 degrees step. The result is shown in Figure 6- and Figure 6-.

Scenario 1: D = 1, H = 0;

Scenario 3: D = 1, H = 0.9;

The angle of alpha and theta (Refer to Figure 3-4) is measured simultaneously.

Figure 6-4 Test Environment for Reference Board 2

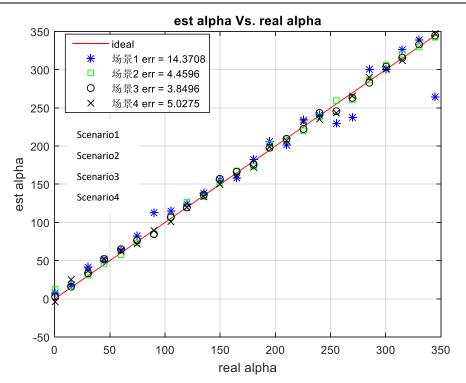


Figure 6-5 Estimation of alpha vs. real alpha

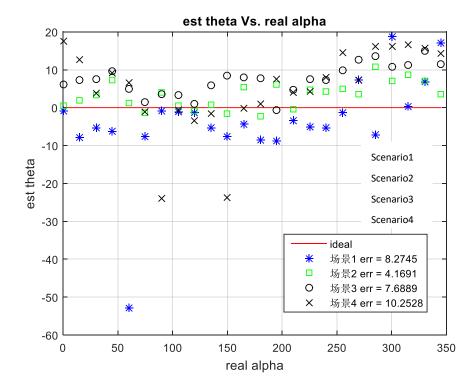


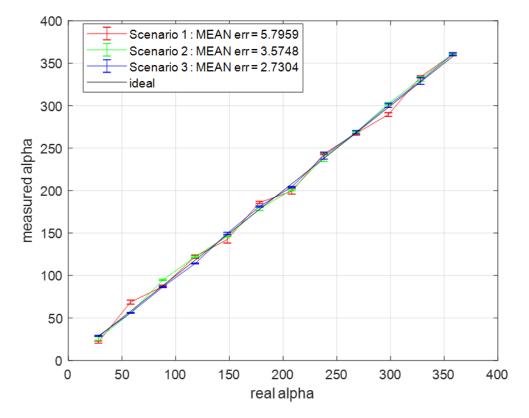
Figure 6-6 Estimation of theta vs. real alpha

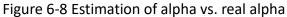
6.3 Field Test Result of Reference Board 3

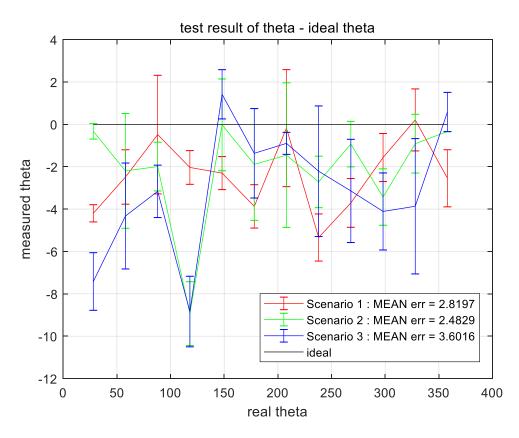
The indoor test environment is shown in Figure 6-7. The multiple antenna side can switch antenna to transmit or receive constant tone extension. It is hanging on the bracket which is 2.5 meter high. The other side is a single antenna BLE modular, placed on the floor or 1.0 meter high marked as H, 1 or 2 meters far from the bracket marked as D. It is tested by 5 degrees step. The result is shown in Figure 6-8 to Figure 6-11.

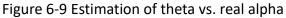
Scenario 1: D = 1, H = 0; Scenario 2: D = 2, H = 0; Scenario 3: D = 3, H = 0; Scenario 4: D = 1, H = 1;

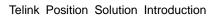
Scenario 5: D = 2, H = 1;

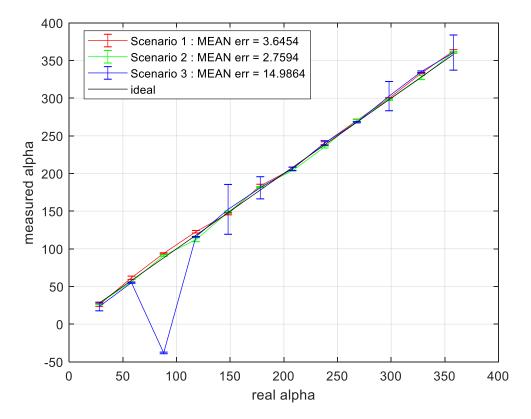

Scenario 6: D = 3, H = 1;

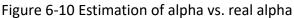

The angle of alpha and theta (Refer to Figure 3-4) is measured simultaneously.



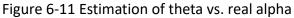

Figure 6-7 Test Environment for Reference Board 3











7 Schematic for Reference Board

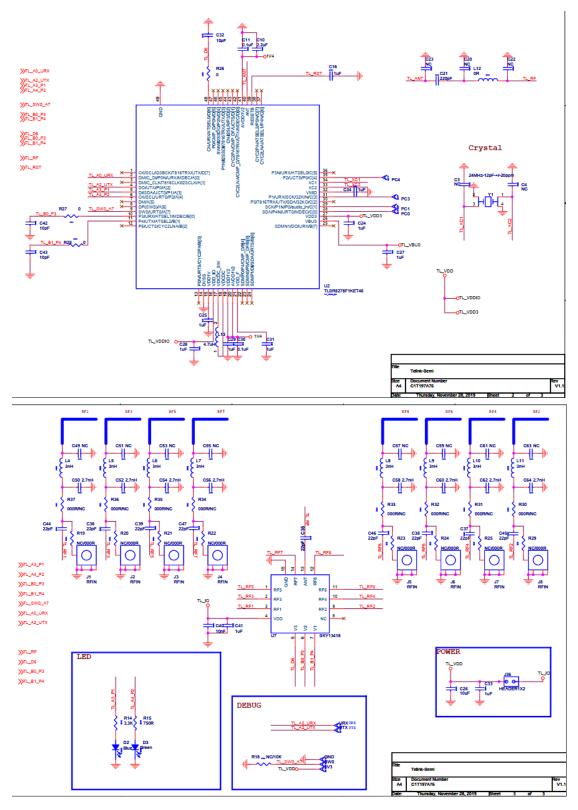


Figure 7-1 Schematic for Reference Board