e
At

Telink Matter Developer's Guide

Telink

//////\\\\\\\

(TLSR9518)

Ver 0.2.9
2022/10/28

Keyword

TLSR9518, Matter, Zephyr, Thread, BLE

Brief

This guidance provide full information about Telink Matter project setup and usage

i Telink
Telink Matter Developer’s Guide

Acknowledgements

Published by
Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,
Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor
All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without
further notice to this document or any products herein. This document may contain technical inaccuracies
or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or
incompleteness contained herein.

Copyright © 2021 Telink Semiconductor (Shanghai) Co., Ltd.

Information

For further information on the technology, product and business term, please contact Telink Semiconductor
Company www.telink-semi.com

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

Revision History

0.1.0 Preliminary release

0.2.0 Add section about docker image

» 0.2.1 Remove temporary step for Matter project setup
0.2.2 Added Light-Switch-App

0.2.3 Fix markdown lint warnings

0.2.4 Update Raspberry Piimage

+ 0.2.5 Update docker image

+ 0.2.6 Update minimum Ubuntu version to 20.04 LTS

+ 0.2.7 Update repos url and added Form Thread network via CLI
+ 0.2.8 Added OTA section

» 0.2.9 Added factory data section

(TLSR9518) 2 Ver 0.2.9

http://www.telink-semi.com/
telinkcnsales@telink-semi.com
telinkcnsupport@telink-semi.com

v Telink

Telink Matter Developer’s Guide

Contents
Acknowledgements 2
Legal Disclaimer o o e 2
Information L L e e 2
Revision History 2
T OVErVIeW ot et e 5
2 Required Equipment L L L L L L e e e e e e e e e e e e 6
3 Environmentsetup L L L L L e e e e e e e e e e e e e e e e e 7
3.1 DOCKEer iMmage . . . o o e e e e e e e 7
3.2 Manual environment setup L e 7
3.2.1 Zephyrprojectsetup 7
3.2.2 Matter project setup L 10
3.2.3 Telink tools setup o L 1
4 Matterfirmware L L e 12
4.1 Memory footprint 12
4.2 Device configuration L e 12
4.3 Buildand flash 12
4.4 Logging e e e e 13
4.5 Ul L 13
451 BUttoNs L e e 13
452 LEDS . . o e 14
5 BorderRouter L e e e e e e e e e e e e e e e e e e 15
5.1 Radio Co-Processor (RCP) i e e e e e 15
5.1.1 Buildand flash 15
5.2 Raspberry Pi 16
5.21 Setup . . o o e e 16
5211 Writeimage o o e e 16
5.2.1.2 Setup border router software Lo 21
5.2.1.3 Setup from prebuildimage e 22
5.3 USaQEe . . . o e e 23
5.3.1 Form Thread network via GUI 23
5.3.2 Form Thread network via CLI e 25
5.3.3 Getactivedataset e 25
6 chip-tool L e 27
6.1 BuUIld . . . e 27
6.2 USBQE e 27
6.2.1 COMMISSIONING« o o e e e e e e 27
6.2.1.1 BLE-Thread commissioning 27
6.2.2 Lightbulb control e 28
6.2.3 Binding clusterand endpoints L 30
6.2.3.1 Unicast binding to a remote endpoint using the CHIP Tool 30
6.2.3.2 Group multicast binding to the group of remote endpoints using the CHIP Tool 31
6.2.4 Testing the communication e 32
7 OTA withLinux OTAProvider« « o i i et e e e e e e e e e e e e e 33

(TLSR9518) 3 Ver 0.2.9

v Telink
Telink Matter Developer’s Guide
8 chip-device-ctrl.py L L e 34
8.1 BUIld e e 34
8.2 US8QEe e 34
8.2.1 RUN . . o o e 34
8.2.2 COmMMISSIONING . . . o o o e e e e e e e e 34
8.2.3 Lightbulb control 35
9 Configuring factory data for the Telink examples 35
9.1 OVEIVIEW . . . o e e e 36
9.1.1 Factory data componenttable 36
9.1.2 Factory data format e 39
9.2 Enabling factory data support 40
9.3 Generating factory data e 40
9.3.1 Creating factory data JSON file with the first script 40
9.3.2 \Verifying using the JSON Schematool 43
9.3.2.1 Option 1: Using the php-json-schematool 43
9.3.2.2 Option 2: Using a website validator 43
9.3.2.3 Option 3: Using the Telink Python script 44
9.3.3 Preparing factory data partitiononadevice L. 44
9.3.4 Creating a factory data partition with the second script 44
9.4 Building an example with factorydata 45
9.4.1 Providing factory data parameters as a build argumentlist 46
9.5 Programming factory data L e 46
9.6 Using own factory data implementation L L 47

(TLSR9518) 4 Ver 0.2.9

vl Telink _ _
Telink Matter Developer’s Guide

1 Overview

This document provides full guidance of Telink matter solution which includes such topics as environment
setup, Matter device firmware building and flashing, Border Router setup including RCP building and flashing,
building and usage of chip-tool etc.

Radio

WiFi Access Pn.int

i‘i

Ethernet

(w

Telink B91 Dev
Board

FTHREAD

Matter
Device

UART

@

| Raspberry Pi3

cient. =~~~ 0 0mEmm === Telink B91 Dev
Composed Border Router Board

Figure 1.1: Solution Structure

(TLSR9518) 5 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

2 Required Equipment

+ TLSR9518ADK80D 3as Matter device.

+ TLSR9518ADK80D as RCP.

- RaspberryPi3 or higher, as part of border router.

« SD card for RPi3. At least 8 GB.

« Host PC with Debian based distro (like Ubuntu v20.04 LTS and later) which will be used as a build
machine and as host for Matter device.

» Telink JTAG programmer to program Matter device and RCP.

« Wi-Fi Router that act as Wi-Fi Access Point.

(TLSR9518) 6 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

3 Environment setup

3.1 Docker image
To avoid routine with Zephyr environment setup in section 3.2.1 and 3.2.3, user can just pull and run existing
docker image that contains ready to use environment.

1. Pull docker image:

sudo docker pull connectedhomeip/chip-build-telink

2. Run docker container:

Please go through Step 1-3 in 3.2.2 Matter project setup to clone Matter repository into a clean folder
before running docker container, because it needs to configure Matter project root directory.

If you want to set up Zephyr project manually Iater, you can also back up this folder for now since the
environment configuration of Matter project in Docker container may be different from that in local
machine.

Use the following line to run Docker container:

sudo docker run -it --rm -v $S{MATTER_BASE}:/root/chip -v /dev/bus/usb:/dev/bus/usb --
< device-cgroup-rule "c 189:* rmw" connectedhomeip/chip-build-telink
S{MATTER_BASE} is absolute path to Matter project root directory, e.g.

/home/${YOUR_USERNAME}/connectedhomeip

S{YOUR_USERNAME} is your username folder, and connectedhomeip is the Matter project folder
name.

The command used here will map Matter project root directory to /root/chip in Docker container, so
you will get generated bin file even if you exit container.

After docker container starts, please enter current Matter root directory by the following command.

cd /root/chip

Continue to perform Step 4 in 3.2.2 Matter project setup to do bootstrap.

Then, follow instruction in Chapter 4. Matter Firmware to build firmware.

3.2 Manual environment setup
3.2.1 Zephyr project setup

Please execute APT update and upgrade before the following steps.

sudo apt update
sudo apt upgrade

(TLSR9518) 7 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

1. Install dependencies:

wget https://apt.kitware.com/kitware-archive.sh

sudo bash kitware-archive.sh

sudo apt install --no-install-recommends git cmake ninja-build gperf \

ccache dfu-util device-tree-compiler \

python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
make gcc gcc-multilib g++-multilib libsdl2-dev

Zephyr requires minimum version for main dependencies for now, such as CMake (3.20.0), Python3
(3.6), Devicetree compiler (1.4.6).

cmake --version
python3 --version
dtc --version

Please verify versions installed on your system before next steps; Otherwise please switch APT mirror
to stable and latest one, or update these dependencies manually.

2. Install west:

pip3 install --user -U west
echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

Make sure ~/.local/bin is on $PATH environment variable:

3. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject

west update

west zephyr-export

It usually costs extra time to get the Zephyr source code using west init ~/zephyrproject and west
update within Chinese mainland. Moreover, some project may fail to update from foreign servers.
Please find alternative methods to download the latest source code.

4. Install additional Python dependencies for Zephyr:

pip3 install --user -r ~/zephyrproject/zephyr/scripts/requirements.txt

5. Setup toolchain:

Download Zephyr toolchain (about 1.2 GB) into local directory to allow you to flash most boards. It
may take extra time within Chinese mainland.

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.13.2/zephyr-
< sdk-0.13.2-1inux-x86_64-setup.run

chmod +x zephyr-sdk-0.13.2-1inux-x86_64-setup.run
./zephyr-sdk-0.13.2-1inux-x86_64-setup.run -- -d ~/.local/zephyr-sdk-0.13.2

Download Zephyr SDK and install it in recommended path as below.

(TLSR9518) 8 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

SHOME /zephyr-sdk[-x.y.z]

SHOME/ . local/zephyr-sdk[-x.y.z]
SHOME/ . local/opt/zephyr-sdk[-x.y.z]
SHOME/bin/zephyr-sdk[-x.y.z]
[opt/zephyr-sdk[-x.y.z]
Jusr/zephyr-sdk[-x.y.z]
Jusr/local/zephyr-sdk[-x.y.z]

Where [-x.y.z] is optional text, and can be any text, for example, -0.13.2. You cannot move the SDK
directory after you have installed it.
6. Build Hello World Sample

Please verify the official Zephyr project configure is correct using the Hello World sample before con-
tinue to set up custom project.

cd ~/zephyrproject/zephyr
west build -p auto -b tlsr9518adk80d samples/hello_world
Build the hello_world example with west build command from the root of the Zephyr repository. You
can find firmware called zephyr.bin under build/zephyr directory.
7. Add environment Zephyr script to ~/.bashrc.

Here is the difference between prior added and added:

+ source ~/zephyrproject/zephyr/zephyr-env.sh

You can add the above line using editor such as vi/vim or execute the following command in bash.

echo "source ~/zephyrproject/zephyr/zephyr-env.sh" >> ~/.bashrc

Execute the following line to active updated shell environment immediately.

source ~/.bashrc

8. TEMPORARY STEP. Add custom Zephyr remote repository:
Download custom repo to local as telink_matter branch and update this branch.

cd ~/zephyrproject/zephyr

git remote add custom https://github.com/telink-semi/zephyr
git fetch custom telink_matter

git checkout telink_matter

cd ..

west update

This update may cost extra time within Chinese mainland.

More info you could find here: https://docs.zephyrproject.org/latest/getting_started/index.html

(TLSR9518) 9 Ver 0.2.9

https://docs.zephyrproject.org/latest/getting_started/index.html

i Telink
Telink Matter Developer’s Guide

3.2.2 Matter project setup

1. Setup dependencies:

sudo apt-get install git gcc g++ python pkg-config libssl-dev libdbus-1-dev \
1ibglib2.0-dev libavahi-client-dev ninja-build python3-venv python3-dev \
python3-pip unzip libgirepositoryl.0-dev libcairo2-dev

2. Clone Matter project:

Clone Matter project to your local directory, e.g., /home/S{YOUR_USERNAME}/workspace/matter.

git clone https://github.com/project-chip/connectedhomeip

This clone may cost extra time within Chinese mainland.
3. Update submodules:

Enter the repo root directory and Update submodule:

cd ./connectedhomeip

git submodule update --init --recursive

This update may cost extra time within Chinese mainland.

Optional: The official repository connectedhomeip on GitHub has been updated frequently, so
there may be compatibility issues between Matter firmware and chip-tool built on the latest
commit.

If Matter devices encounter the issues in commissioning using chip-tool, please consider switching to
this commit. Redo step 3~4 as well as rebuild firmware and chip-tool to resolve it.

4. Do bootstrap:

Download and install packages into local for Matter. It usually takes long time when we run it the first
time.

source scripts/bootstrap.sh

This step will generate an invisible folder called .environment under the Matter root directory con-
nectedhomeip. It may cost extra time or encounter failure within Chinese mainland.

INFO: In case of any troubles with Matter build environment you may try:
1. Remove the environment (in root directory of Matter project):

rm -rf .environment

2. Redo bootstrap once again:

source scripts/bootstrap.sh

More info you could find here: https://github.com/project-chip/connectedhomeip/blob/master/docs/quid
es/BUILDING.md

(TLSR9518) 10 Ver 0.2.9

https://github.com/project-chip/connectedhomeip/blob/master/docs/guides/BUILDING.md
https://github.com/project-chip/connectedhomeip/blob/master/docs/guides/BUILDING.md

i Telink
Telink Matter Developer’s Guide

3.2.3 Telink tools setup

1. Download toolchain:

Download and unzip Telink toolchain into your local directory, e.g. ~, to allow you flash Zephyr into
Telink board.

wget http://wiki.telink-semi.cn/tools_and_sdk/Tools/IDE/telink_riscv_linux_toolchain.zip
unzip telink_riscv_linux_toolchain.zip

You may spend several minutes on the download because this zipped file is around hundreds MB. The
download may cost extra time outside Chinese mainland.

2. Setup dependencies:

sudo dpkg --add-architecture 1386
sudo apt-get update
sudo apt-get install -y 1libc6:1386 libncurses5:1386 libstdc++6:1386

3. Run ICEman.sh script to change udev rules:

The following step 3 and 4 are set for flashing firmware to developement boards on Ubuntu platform.
If you would like to flash firmware on Windows platform, please igonre the following setup.

sudo sh ${TELINK_TOOLCHAIN_BASE_DIR}/ice/ICEman.sh

S{TELINK_TOOLCHAIN_BASE_DIR} is Telink SDK root directory, e.g. ~/telink_riscv_linux_toolchain.

If you meet issues related to path or permissions, or disconnection from your ubuntu host at current
shell, you can enter the above directory and then try to execute this script:

cd ${TELINK_TOOLCHAIN_BASE_DIR}/ice
source ICEman.sh
4. In ~/.bashrc add SPI_burn and ICEman to PATH.
Here is the difference between prior added and added:

+ export PATH=${TELINK_TOOLCHAIN_BASE_DIR}/flash/bin:"$PATH"
+ export PATH=${TELINK_TOOLCHAIN_BASE_DIR}/ice:"$PATH"

(TLSR9518) 1" Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

4 Matter firmware

4.1 Memory footprint

Memory Region Used Size Total Size % Used

RAM ILM 62632 B 128 K 47.78%
RAM DLM 74968 B 128 K 57.20%
FLASH 752888 B ™ 71.80%

4.2 Device configuration

Device-to-device communication without border router available in case if one or several devices configured
as FTD (Full Thread Device) for example Light Bulb.

Note: By default all devices configured as MTD (Minimal Thread Device).
Application configuration file location (relative path):

examples/app/telink/prj.conf

MTD (Minimal Thread Device) configuration example:

OpenThread configs
CONFIG_OPENTHREAD_MTD=y
CONFIG_OPENTHREAD_FTD=n

FTD (Full Thread Device) configuration example:

OpenThread configs
CONFIG_OPENTHREAD_MTD=n
CONFIG_OPENTHREAD_FTD=y

4.3 Build and flash

In Matter root folder or /root/chip/ if using Docker image:
1. Activate Matter environment

source scripts/activate.sh

2. Go to directory with example:

(TLSR9518) 12 Ver 0.2.9

v Telink

Telink Matter Developer’s Guide

cd examples/S${app}/telink

${app}: lighting-app or light-switch-app

3. Remove previous build if exists:

rm -rf build/

4. Build the example:

west build

You can find target built file called zephyr.bin under build/zephyr directory.

5. Flash the example (for ubuntu platform):

west flash --erase

44 logging

To get output from device, connect UART to following pins:

45 Ul

451 Buttons

Name Pin

RX PB3 (pin 15 of J34)
X PB2 (pin 18 of J34)

GND GND (pin 23 of J50)

The following buttons are available on TLSR9518ADK80D board:

Name Function Description
Button 1 Factory reset Perform factory reset to forget currently commissioned Thread
network and back to decommissioned state
Button 2 Lighting control Manually triggers the lighting state (only for lightning-app)
LightSwitch Triggers the light switch state (only for light-switch-app)
control
Button 3 Thread start Commission thread with static credentials and enables the Thread on

device

(TLSR9518)

13 Ver 0.2.9

1 Telink
Telink Matter Developer’s Guide

Name Function Description
Button 4 Start BLE Initiate BLE stack and start BLE advertisement
(optional)

Note: The lighting-app and light-switch-app will turn on BLE advertising automatically when powered
on. Just need to be careful when you have flashed more than one board at the same time.

452 LEDs

Red LED indicates current state of Thread network. It is able to be in following states:

State Description

Blinks with short pulses Device is not commissioned to Thread, Thread is disabled

Blinks with frequent Device is commissioned, Thread enabled. Device trying to JOIN thread
pulses network

Blinks with wide pulses Device commissioned and joined to thread network as CHILD

Blue LED shows current state of lightbulb (only for lightning-app)

(TLSR9518) 14 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

5 Border Router

Open Thread border router is composed device which contains two main parts:

» Raspberry Pi contains all necessary services and firmware to act as a Border Router
» Radio Co-Processor is responsible for Thread communication

5.1 Radio Co-Processor (RCP)
5.1.1 Build and flash

As RCP, you may use additional TLSR9518ADK80D board.
1. Go to zephyr project openthread rcp sample directory under zephyr root path.

cd ~/zephyrproject/zephyr/samples/net/openthread/coprocessor

Or through SZEPHYR_BASE if you jump from section 3.1 and implement Docker image.

cd SZEPHYR_BASE/samples/net/openthread/coprocessor

2. Add CONFIG_OPENTHREAD_THREAD_VERSION_1_2=y in prj.conf.

echo "CONFIG_OPENTHREAD_THREAD_VERSION_1_2=y" >> prj.conf

3. Build firmware:
west build -b tlsr9518adk80d -- -DCONF_FILE="prj.conf overlay-rcp.conf"
You can find target built file called zephyr.bin under build/zephyr directory to flash into the board as
RCP.

If there’s a warning says “west: command not found”, please active Matter Environment before build-
ing.

source S{MATTER_BASE}/scripts/activate.sh

S{MATTER_BASE]} is absolute path to Matter project root directory, e.g.

/home /${YOUR_USERNAME}/connectedhomeip

S{YOUR_USERNAME} is your username folder, and connectedhomeip is the Matter project folder
name.

Or the following path if you jump here using Docker.

/root/chip

Note: The bin file generated outside the above path in Docker container will not exist after you exit

the container. Please copy it to somewhere under this Matter project root path if you want to keep it.

4. Flash firmware (for ubuntu platform)

(TLSR9518) 15 Ver 0.2.9

vl Telink . .
Telink Matter Developer’s Guide

west flash

5.2 Raspberry Pi
52.1 Setup

52.1.1 Write image

1. Download Imager
2. Insert your SD card into PC
3. Open Imager and press "CHOOSE OS” button

Raspberry Pi Imager v1.6.2 - O 0

Raspberry Pi

Operating System Storage

CHOOSE 08 CHOOSE STORAGE

Figure 5.1: Imager step 3 - Choose OS

4. Choose “"Raspberry Pi OS (other)” > “Raspberry Pi OS Lite (32-bit)”

(TLSR9518) 16 Ver 0.2.9

https://www.raspberrypi.com/software/

vl Telink . ,
3 Telink Matter Developer’s Guide

Raspberry Pi Imager v1.6.2 - o0

Operating System X

(Back
Go back to main menu

Raspberry Pi OS Lite (32-bit)
A port of Debian Bullseye with no desktop environment
Released: 2022-01-28

Online - 0.5 GB download

Raspberry Pi OS Full (32-bit)
A port of Debian Bullseye with desktop environment and recommended a

Released: 2022-01-28

Online - 3.2 GB download

Raspberry Pi OS (64-bit)
A port of Debian Bullseye with the Raspberry Pi Desktop (Compatible with

PR v

Figure 5.2: Imager step 4

5. Press "CHOOSE STORAGE” button and choose your SD card

(TLSR9518) 17 Ver 0.2.9

vl Telink . ,
Telink Matter Developer’s Guide

Raspberry Pi Imager v1.6.2 - o0

Raspberry Pi

Operating System Storage

RASPBERRY PI OS LITE (32-BIT) CHOOSE STORA...

Figure 5.3: Imager step 5 - Storage button

(TLSR9518) 18 Ver 0.2.9

vl Telink . ,
3 Telink Matter Developer’s Guide

Raspberry Pi Imager v1.6.2 - o0

,4'. Mass Storage_Device (boot, rootfs) - 63.9 GB

Figure 5.4: Imager step 5 - Choose SD card

6. Press Write

(TLSR9518) 19 Ver 0.2.9

vl Telink . .
Telink Matter Developer’s Guide

Raspberry Pi Imager v1.6.2 - o0

Raspberry Pi

Operating System Storage

RASPBERRY P| OS LITE (32-BIT) MASS STORAGE_... WRITE

Figure 5.5: Imager step 6 - Write

7. Confirm that you want to continue writhing.

WARNING: All data from SD card will be erased.

Warning X

All existing data on 'Mass Storage_Device (boot, rootfs)' will be
erased.
Are you sure you want to continue?

(K

Figure 5.6: Imager step 7 - Confirmation message

8. Wait for write completion. If everything is ok, you will see following message.

(TLSR9518) 20 Ver 0.2.9

1 Telink
Telink Matter Developer’s Guide

Write Successful X

Raspberry Pi OS Lite (32-bit) has been written to Mass
Storage_Device (boot, rootfs)

You can now remove the SD card from the reader

CONTINUE

Figure 5.7: Imager step 8 - Write complete

5.2.1.2 Setup border router software

WARNING: Before you continue, make sure your configured hardware platform is connected to the
internet using Ethernet. The bootstrap script disables the platform’s Wi-Fi interface and the setup
script requires internet connectivity to download and install several packages.

1. Attach keyboard and monitor to Raspberry Pi. Power on Border router. All further steps should be
performed directly on PRi.

2. Clone OpenThread Border Router:

git clone https://github.com/openthread/ot-br-posix

3. Do bootstrap:

cd ot-br-posix
./script/bootstrap

4. Setup:

INFRA_IF_NAME=ethO ./script/setup

5. Attach RCP according to connection map:

RCP Raspberry
TX(PB2 pin 18 of J34) RXD1(GPIO15 pin 10)
RX(PB3 pin 15 of J34) TXD1(GPIO14 pin 8)

GND (e.g., pin 23 of J50 or pin 3 of J56) GND (e.g., pin 6 or 9)

6. Modify /etc/default/otbr-agent file by replacing default string with following difference:

(TLSR9518) 21 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

- OTBR_AGENT_OPTS="-I wpan@ -B eth® spinel+hdlc+uart:///dev/ttyACMO trel://etho"
+ OTBR_AGENT_OPTS="-I wpan0® -B eth® spinel+hdlc+uart:///dev/ttySO?uart-baudrate=57600
< trel://etho"

7. Enable UART (ttySO) on the RPi via raspi-config:

sudo raspi-config

Interface Options Serial Port No (Shell) Yes (Serial)
8. Config ttySO source clock.

sudo nano /boot/config.txt

do change in file and here is the difference:

enable_uart=1
+ core_freq=250

9. Switch on SSH:

sudo raspi-config

Interface Options SSH Yes (Enable)

10. Reboot the RPi

sudo reboot

More info you can find here: https://openthread.io/quides/border-router/build

5.2.1.3 Setup from prebuild image

1. Insert SD card into PC.
2. Unzip raspberry_260522.img.zip archive.
3. Use dd command to copy image to SD card:

sudo dd if=<path_to_image> of=<path_to_sd_card_device> status=progress

Example:
sudo dd if=~/Telink/Doc/ZigBee/Matter/LightfairMaterialsPack/raspberry_260522.img of=/dev/
< sda status=progress

4. Wait till copy process finishing.

5. Insert SD into Raspberry Pi.

6. Connect RCP.

7. Plug Raspberry Pi to power source.

8. Wait for a few minutes till it loads... Done.

(TLSR9518) 22 Ver 0.2.9

https://openthread.io/guides/border-router/build

vl Telink . ,
3 Telink Matter Developer’s Guide

5.3 Usage
5.3.1 Form Thread network via GUI

1. Open your Internet browser.
2. In address line type IP address of your Border Router.
3. If everything is ok, you shall see Border Router Home page.

4. Go to the “Form” page:

OT Border Router Home

OPENTHREAD

released by Nest

What is OpenThread?

..an open-source implementation of the Thread networking protocol.Nest has released OpenThread to make the technology used in Nest products more broadly
available to developers to accelerate the development of products for the connected home.

..0S and platform agnostic, with a narrow platform abstraction layer and a small memory footprint, making it highly portable:

...a Thread Certified Component implementing all features defined in the Thread 1.1.1 specification. This specification defines an IPv6-based reliable, secure and

low-power wireless d d protocol for home

What is OpenThread Border Router?

In the context of a Thread Network, a Border Router is a device that provides connectivity of nodes in the Thread Network to other devices in external networks such
as the wider Internet, local home and building IP networks, or virtual private networks (Figure 1).

Wi-Fi or Ethernet Thread

Border Router Network

Figure 5.8: Form step 4 - Go to form page

5. Input desirable Thread credentials. You may leave it default as well.

6. Press the “Form” button.

(TLSR9518) 23 Ver 0.2.9

vl Telink
Telink Matter Developer’s Guide

Form Thread Networks

Network Name * Network Extended PAN 1D+
OpenThreadDemo 1111111122222222
14/16
PANID* Passphrase/Commissioner Credential *
0x1234 J0TNme
Network Key * Chennel *
00112233445566778899aabbccddeeff 15 S
On-Mesh Prefix*
1d11:22::

Default Route

FORM

Figure 5.9: Form step 6 - Start form new network

7. Confirm that you want to Form the Thread Network by pressing the "OKAY” button.

Are you sure you want to Form the Thread Network?

CANCEL

Figure 5.10: Form step 7 - Confirmation

8. Wait till “Form operation successful” message.

(TLSR9518) 24 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

Information

FORM operation is successful

OKAY

Figure 5.11: Form step 8 - Success

5.3.2 Form Thread network via CLI

1. Connect to OpenThread Border Router via SSH (default password: raspberry):

ssh pi@${OTBR_IP_ADDRESS}

2. Set Thread network operational dataset:

sudo ot-ctl dataset set active

0e080000000000010000000300000f35060004001fffe0020811111111222222220708
fd7302€133ca932d051000112233445566778899aabbccddeeff030e4f70656e546872
65616444656d6f010212340410445f2b5ca6f2a93a55ce570a70efeecb0c0402a0fff8

3. Init Thread network operational dataset:

sudo ot-ctl dataset init active

4. Commit Thread network operational dataset:

sudo ot-ctl dataset commit active

5. Bring interfaces up:

sudo ifconfig wpan@ up

6. Start Thread network:

sudo ot-ctl thread start

5.3.3 Get active dataset

1. Connect to OpenThread Border Router via SSH (default password: raspberry):

ssh pi@${OTBR_IP_ADDRESS}

(TLSR9518) 25 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

2. Get Thread network operational dataset:

sudo ot-ctl dataset active -x

3. As output, you will get dataset which looks like that:

0e080000000000010000000300000135060004001fffe0020811111111222222220708
fd7302e133ca932d051000112233445566778899aabbccddeeff030e4f70656e546872
65616444656d6010212340410445f2b5ca6f2a93a55ce570a70efeecb0c0402a0fff8

4. Store it for further commissioning steps

WARNING: Thread border router creates new active dataset on each Form operation.

(TLSR9518) 26 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

6 chip-tool

6.1 Build

WARNING: It is really important to build chip tool on same commit as Matter firmware to avoid com-
patibility issues.

1. Activate environment under Matter project root directory:

source scripts/activate.sh

2. Go to the example folder:

cd examples/chip-tool

3. Remove previous build if necessary:

rm -rf out/

4. Build:
gn gen out
ninja -C out
5. chip-tool binary located here:

${MATTER_CHIP_TOOL_EXAMPLE_FOLDER}/out/chip-tool

More info you could find here: https://github.com/project-chip/connectedhomeip/blob/master/examples/
chip-tool/README.md

6.2 Usage
6.2.1 Commissioning
6.2.1.1 BLE-Thread commissioning
1. Commission device with the latest active dataset (See Get active dataset paragraph on Border router

section):

./chip-tool pairing ble-thread ${NODE_ID} hex:S${DATASET} ${PIN_CODE} S${DISCRIMINATOR}

NODE_ID could be any non-zero value which in not used before. It is handler that will be used to perform
other chip-tool operations that refer to specific Matter device.

DATASETs will be re-generated by Thread border router after new Thread networks was formed. They and
slight different in the middle of the hex string so DO NOT use the dataset in following command directly.
Please go back to the Get active dataset and replace DATASET with the current dataset if you forget it.

Example:

(TLSR9518) 27 Ver 0.2.9

https://github.com/project-chip/connectedhomeip/blob/master/examples/chip-tool/README.md
https://github.com/project-chip/connectedhomeip/blob/master/examples/chip-tool/README.md

i Telink
Telink Matter Developer’s Guide

$./chip-tool pairing ble-thread 1234
hex:0e080000000000010000000300000f35060004001fffe002081111111122222222070
8fd61f77bd3df233e051000112233445566778899aabbccddeeff030e4f70656e54687265
616444656d6f010212340410445f2b5ca6f2a93a55ce570a70efeecb0c0402a0fff8
20202021 3840

Commission could take some time. If commissioning is successful, you should have the following message:

Device commissioning completed with success

6.2.2 Lightbulb control

1. Switch on the light:

./chip-tool onoff on ${NODE_ID} 1

Argument Description

onoff Cluster name
on Command to the cluster
S{NODE_ID} Unique node ID of device. Shall be greater than O

1 ID of endpoint

2. Switch off the light:

./chip-tool onoff off ${NODE_ID} 1

Argument Description

onoff Cluster name
off Command to the cluster
S{NODE_ID} Unique node ID of device. Shall be greater than O

1 ID of endpoint

3. Read the light state:

./chip-tool onoff read on-off ${NODE_ID} 1

(TLSR9518) 28 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

Argument Description

onoff Cluster name
read Command to the cluster
S{NODE_ID} Unique node ID of device. Shall be greater than O

1 ID of endpoint

4. Change brightness of light:

./chip-tool levelcontrol move-to-level 32 0@ @ 0 ${NODE_ID} 1

Argument Description

levelcontrol Cluster name

move-to-level Command to the cluster

32 Brightness value
0 Transition time
0 Option mask

0 Option override

S{NODE_ID} Unique node ID of device. Shall be greater than O

1 ID of endpoint

5. Read brightness level:

./chip-tool levelcontrol read current-level ${NODE_ID} 1

Argument Description

levelcontrol Cluster name
read Command to the cluster
current-level Attribute to read
S{NODE_ID} Unique node ID of device. Shall be greater than O

1 ID of endpoint

(TLSR9518) 29 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

6.2.3 Binding cluster and endpoints

Binding links clusters and endpoints on both devices, which enables them to communicate with each other.

To perform binding, you need a controller that can write the binding table to the light switch device and
write proper ACL to the endpoint light bulb on the Lighting Example application. For example, you can use
the CHIP Tool as the controller. The ACL should contain information about all clusters that can be called by
the light switch application. See the section about interacting with ZCL clusters in the CHIP Tool's user guide
for more information about ACLs.

You can perform the binding process to a single remote endpoint (unicast binding) or to a group of remote
endpoints (group multicast).

Note: To use a light switch without brightness dimmer, apply only the first binding command with
cluster no. 6.

6.2.3.1 Unicast binding to a remote endpoint using the CHIP Tool

In this scenario, commands are provided for a light switch device with the nodeId = <light-switch-node-
id> and a light bulb device with nodeId = <lighting-node-1id>, both commissioned to the same Matter
network.

To perform the unicast binding process, complete the following steps:

1. Add an ACL to the development kit that is programmed with the Lighting Application Example by
running the following command:

./chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2,

~ "subjects": [112233], "targets": null}, {"fabricIndex": 1, "privilege": 3, "authMode":
< 2, "subjects": [<light-switch-node-id>], "targets": [{"cluster": 6, "endpoint": 1,

o "deviceType": null}, {"cluster": 8, "endpoint": 1, "deviceType": null}]}]' <lighting-
< node-id> 0

In this command:

* [...] is JSON format message for attr-value so <light-switch-node-id> must be a real number
when the command is executed.

 <lighting-node-id> can be a shell variable as ${NODE_ID} used for commissioning before.

« {"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": [112233], "targets":
null} is an ACL for the communication with the CHIP Tool.

o {"fabricIndex": 1, "privilege": 5, "authMode": 2, "subjects": [<light- switch- node-
id>], "targets": [{"cluster": 6, "endpoint": 1, "deviceType": null}, {"cluster": 8,
"endpoint": 1, "deviceType": null}]}is an ACL for binding (cluster no. 6 is the On/Off cluster,
and the cluster no. 8 is the Level Control cluster).

This command adds permissions on the lighting application device that allows it to receive commands
from the light switch device.

2. Add a binding table to the Light Switch binding cluster:

(TLSR9518) 30 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

./chip-tool binding write binding '[{"fabricIndex": 1, "node": <lighting-node-1id>,
< "endpoint": 1, "cluster": 6}, {"fabricIndex": 1, "node": <lighting-node-1id>,
< "endpoint": 1, "cluster": 8}]' <light-switch-node-id> 1

In this command:

« [...] is JSON format message for attr-value so <lighting-node-id> must be real numbers when
the command is executed.

 <light-switch-node-id> can be a shell variable such as ${SWITCH_NODE_ID} used by chip-tool
to do commissioning with Lighting Switch App.

« {"fabricIndex": 1, "node": <lighting- node-id>, "endpoint": 1, "cluster": 6} is a binding
for the On/Off cluster.

« {"fabricIndex": 1, "node": <lighting- node-id>, "endpoint": 1, "cluster": 8} is a binding
for the Level Control cluster.

6.2.3.2 Group multicast binding to the group of remote endpoints using the CHIP Tool
The group multicast binding lets you control more than one lighting device at a time using a single light
switch.

The group multicast binding targets all development kits that are programmed with the Lighting Application
Example and added to the same multicast group. After the binding is established, the light switch device
can send multicast requests, and all the devices in the bound groups can run the received command.

In this scenario, commands are provided for a light switch device with the nodeId = <light-switch-node-1id>
and light bulb devices with nodeId = <lighting-node-id>, all commissioned to the same Matter network.

To perform the multicast binding process, complete the following steps:
1. Add the light switch device to the multicast group by running the following command:
./chip-tool tests TestGroupDemoConfig --nodeld <light-switch-node-id>
« <light-switch-node-id> can be a shell variable such as ${SWITCH_NODE_ID} used by chip-tool
to do commissioning with Lighting Switch App.

2. Add all light bulbs to the same multicast group by applying command below for each of the light bulbs,
using the appropriate <lighting-node-1id> (the user-defined ID of the node being commissioned except
<light-switch-node-id> due to use this <light-switch-node-1id> for light-switch) for each of them:

./chip-tool tests TestGroupDemoConfig --nodeld <lighting-node-1id>

 <lighting-node-id> can be shell variables as ${NODE_ID}s used for commissioning before.
3. Add Binding commands for group multicast:
./chip-tool binding write binding '[{"fabricIndex": 1, "group": 257}]"' <light-switch-node-

< 1d> 1

+ <light-switch-node-id> can be a shell variable such as ${SWITCH_NODE_ID} used for commis-
sioning before.

(TLSR9518) 31 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

6.24 Testing the communication

To test the communication between the light switch device and the bound devices, use light switch but-
tons.

(TLSR9518) 32 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

7 OTA with Linux OTA Provider

OTA feature enabled by default only for ota-requestor-app example. To enable OTA feature for another
Telink example:

+ set CONFIG_CHIP_OTA_REQUESTOR=y in corresponding “prj.conf” configuration file.
After build application with enabled OTA feature, use next binary files:

« zephyr.bin - main binary to flash PCB (Use 2MB PCB).
+ zephyr-ota.bin - binary for OTA Provider

All binaries has the same SW version. To test OTA “zephyr-ota.bin” should have higher SW version than base
SW. Set CONFIG_CHIP_DEVICE_SOFTWARE_VERSION=2 in corresponding “prj.conf” configuration file.

Usage of OTA:
1. Build the Linux OTA Provider
./scripts/examples/gn_build_example.sh examples/ota-provider-app/linux out/ota-provider-app
< chip_config_network_layer_ble=false
2. Run the Linux OTA Provider with OTA image.

./chip-ota-provider-app -f zephyr-ota.bin

here:
+ zephyr-ota.bin is the firmware needs to be updated to
Please keep this terminal window till the end of test, for chip-tool use separate terminal window.
3. Open another terminal and provision the Linux OTA Provider using chip-tool

./chip-tool pairing onnetwork ${OTA_PROVIDER_NODE_ID} 20202021

here:

+ S{OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider. It is similar to NODE_ID for
lighting-app. You need to set it to any non-zero value which in not used before, .

4. Configure the ACL of the ota-provider-app to allow access

./chip-tool accesscontrol write acl '[{"fabricIndex": 1, "privilege": 5, "authMode": 2,
< "subjects": [112233], "targets": null}, {"fabricIndex": 1, "privilege": 3, "authMode":
~ 2, "subjects": null, "targets": null}]' ${OTA_PROVIDER_NODE_ID} 0
here:
- S{OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
5. Use the chip-tool to announce the ota-provider-app to start the OTA process
./chip-tool otasoftwareupdaterequestor announce-ota-provider ${OTA_PROVIDER_NODE_ID} 0 0 0

< ${DEVICE_NODE_ID} 0

here:

(TLSR9518) 33 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

+ S{OTA_PROVIDER_NODE_ID} is the node id of Linux OTA Provider
« S{DEVICE_NODE_ID} is the node id of paired device

Once the transfer is complete, OTA requestor sends ApplyUpdateRequest command to OTA provider for
applying the image. Device will restart on successful application of OTA image.

8 chip-device-ctrl.py

8.1 Build

1. Activate environment under Matter project root directory:

source scripts/activate.sh

2. Build:

scripts/build_python.sh -m platform

8.2 Usage
8.2.1 Run

1. Activate python environment:

source out/python_env/bin/activate

2. Launch:

sudo out/python_env/bin/chip-device-ctrl

8.2.2 Commissioning

1. Set active dataset (Note: They are different once a new Thread network is generated. Please ensure
to replace the dataset in the following command with the Iatest one. See Get active dataset paragraph
on Border router section):

chip-device-ctrl > set-pairing-thread-credential 0e08000000000001000000
0300001335060004001fffe002084fe76e9a8b5edaf50708fded46f999f0698e20510d47
f5027a414ffeebaefa92285cc84fa030f4f70656e5468726561642d653439630102e49c
0410b92f8c7fbb4f9f3e08492ee3915fbd2f0c0402a0fff8

2. connect via BLE:

chip-device-ctrl > connect -ble 3840 20202021 ${NODE_ID}

3. Wait till commissioning completion. If everything is ok you shall see following message.

(TLSR9518) 34 Ver 0.2.9

./5_BorderRouter.md#get-active-dataset

i Telink
Telink Matter Developer’s Guide

Commissioning complete

8.2.3 Lightbulb control

1. Toggle light:

chip-device-ctrl > zcl OnOff Toggle ${NODE_ID} 1 0

9 Configuring factory data for the Telink examples

Factory data is a set of device parameters written to the non-volatile memory during the manufacturing
process. This guide describes the process of creating and programming factory data using Matter and the
Telink platform from Telink Semiconductor.

The factory data parameter set includes different types of information, for example about device certifi-
cates, cryptographic keys, device identifiers, and hardware. All those parameters are vendor-specific and
must be inserted into a device’s persistent storage during the manufacturing process. The factory data
parameters are read at the boot time of a device. Then, they can be used in the Matter stack and user
application (for example during commissioning).

All of the factory data parameters are protected against modifications by the software, and the firmware
data parameter set must be kept unchanged during the lifetime of the device. When implementing your
firmware, you must make sure that the factory data parameters are not re-written or overwritten during
the Device Firmware Update (DFU) or factory resets, except in some vendor-defined cases.

For the Telink platform, the factory data is stored by default in a separate partition of the internal flash
memory.

» Overview

+ Factory data components

« Factory data format

« Enabling factory data support

» Generating factory data

» Creating factory data JSON file with the first script
« Verifying using the JSON Schema tool

- Option 1: Using the php-json-schema tool
- Option 2: Using a website validator
- Option 3: Using the Telink Python script

+ Creating a factory data partition with the second script
 Building an example with factory data

+ Providing factory data parameters as a build argument list
» Programming factory data

» Using own factory data implementation

(TLSR9518) 35 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

9.1 Overview

You can implement the factory data set described in the factory data component table in various ways,
as long as the final HEX/BIN file contains all mandatory components defined in the table. In this guide,
the generating factory data and the building an example with factory data sections describe one of the
implementations of the factory data set created by the Telink platform’s maintainers. At the end of the
process, you get a HEX file that contains the factory data partition in the CBOR format.

The factory data accessor is a component that reads and decodes factory data parameters from the device’s
persistent storage and creates an interface to provide all of them to the Matter stack and to the user
application.

The default implementation of the factory data accessor assumes that the factory data stored in the device’s
flash memory is provided in the CBOR format. However, it is possible to generate the factory data set without
using the Telink scripts and implement another parser and a factory data accessor. This is possible if the
newly provided implementation is consistent with the Factory Data Provider. For more information about
preparing a factory data accessor, see the section about using own factory data implementation.

Note: Encryption and security of the factory data partition is not provided yet for this feature.

9.1.1 Factory data companent table

The following table lists the parameters of a factory data set:

Key name Full name Length Format ConformanceDescription
version factory data 2B uint16 mandatory A version of the current factory data
version set. It cannot be changed by a user

and it must be coherent with current
version of the Factory Data Provider
on device side.

sn serial number <1, ASCII mandatory A serial number parameter defines
32> B string an unique number of manufactured
device. The maximum length of the
serial number is 32 characters.

vendor_1id vendor ID 2B uint16 mandatory A CSA-assigned ID for the
organization responsible for
producing the device.

product_id product ID 2B uint16 mandatory A unique ID assigned by the device
vendor to identify the product. It
defaults to a CSA-assigned ID that
designates a non-production or test
product.

(TLSR9518) 36 Ver 0.2.9

../../src/platform/telink/FactoryDataProvider.h

v Telink

Telink Matter Developer’s Guide

Key name

Full name

Length

Format

ConformanceDescription

vendor_name

product_name

date

hw_ver

hw_ver_str

rd_uid

vendor name

product
name

manufacturing
date

hardware
version

hardware
version string

rotating
device ID
unique 1D

<1,
32> B

<1,

32>B

<8,
10> B

2B

<1

’

64> B

<16,
32>B

ASCII
string

ASCII
string

ISO

8601

uint16

uint16

byte
string

mandatory

mandatory

mandatory

mandatory

mandatory

mandatory

A human-readable vendor name that
provides a simple string containing
identification of device’s vendor for
the application and Matter stack
purposes.

A human-readable product name
that provides a simple string
containing identification of the
product for the application and the
Matter stack purposes.

A manufacturing date specifies the
date that the device was
manufactured. The date format used
is ISO 8601, for example YYYY-MM-DD.

A hardware version number that
specifies the version number of the
hardware of the device. The value
meaning and the versioning scheme
is defined by the vendor.

A hardware version string parameter
that specifies the version of the
hardware of the device as a more
user-friendly value than that
presented by the hardware version
integer value. The value meaning
and the versioning scheme is defined
by the vendor.

The unique ID for rotating device ID,
which consists of a
randomly-generated 128-bit (or
longer) octet string. This parameter
should be protected against reading
or writing over-the-air after initial
introduction into the device, and stay
fixed during the lifetime of the
device.

(TLSR9518)

37

Ver 0.2.9

v Telink

Telink Matter Developer’s Guide

Key name

Full name

Length

Format ConformanceDescription

dac_cert

dac_key

pai_cert

spake2_1it

spake2_salt

(DAC) Device
Attestation
Certificate

DAC private
key

Product
Attestation
Intermediate

SPAKE2+
iteration
counter

SPAKE2+ salt

spake2_verifier SPAKE2+

discriminator

verifier

Discriminator

<1,
602>
B

68 B

<1

’

602>

4B

<32,
64> B

978B

2B

byte
string

byte
string

byte
string

uint32

byte
string

byte
string

uint16

mandatory

mandatory

mandatory

mandatory

mandatory

mandatory

mandatory

The Device Attestation Certificate
(DAC) and the corresponding private
key are unique to each Matter
device. The DAC is used for the
Device Attestation process and to
perform commissioning into a fabric.
The DAC is a DER-encoded X.
509v3-compliant certificate, as
defined in RFC 5280.

The private key associated with the
Device Attestation Certificate (DAC).
This key should be encrypted and
maximum security should be
guaranteed while generating and
providing it to factory data.

An intermediate certificate is an X.
5009 certificate, which has been
signed by the root certificate. The
last intermediate certificate in a
chain is used to sign the leaf (the
Matter device) certificate. The PAl is
a DER-encoded X.509v3-compliant
certificate as defined in RFC 5280.

A SPAKE2+ iteration counter is the
amount of PBKDF2 (a key derivation
function) interactions in a
cryptographic process used during
SPAKE2+ Verifier generation.

The SPAKE2+ salt is 8 random piece
of data, at least 32 byte long. It is
used as an additional input to a
one-way function that performs the
cryptographic operations. A new salt
should be randomly generated for
each password.

The SPAKE2+ verifier generated
using SPAKE2+ salt, iteration
counter, and passcode.

A 12-bit value matching the field of
the same name in the setup code.
The discriminator is used during the
discovery process.

(TLSR9518)

38

Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

Key name Full name Length Format ConformanceDescription
passcode SPAKE 4B uint32 optional A pairing passcode is a8 27-bit
passcode unsigned integer which serves as a

proof of possession during the
commissioning. Its value must be
restricted to the values from
0x0000001 to Ox5F5EQFE (00000001 to
99999998 in decimal), excluding the
following invalid passcode values:
00000000, 11111111, 22222222,
33333333, 44444444, 55555555,
66666666, 77777777, 88888888,
99999999, 12345678, 87654321.

user User data variable JSON max 1024 The user data is provided in the
string B JSON format. This parameter is

optional and depends on user’s or
manufacturer’s purpose (or both). It
is provided as a string from
persistent storage and should be
parsed in the user application. This
data is not used by the Matter stack.

9.1.2 Factory data format

The factory data set must be saved into a HEX/BIN file that can be written to the flash memory of the Matter
device.

In the Telink example, the factory data set is represented in the CBOR format and is stored in 3 HEX/BIN
file. The file is then programmed to a device. The JSON format is used as an intermediate, human-readable
representation of the data. The format is requlated by the JSON Schema file.

All parameters of the factory data set are either mandatory or optional:

« Mandatory parameters must always be provided, as they are required for example to perform com-
missioning to the Matter network.

« Optional parameters can be used for development and testing purposes. For example, the user data
parameter consists of all data that is needed by a specific manufacturer and that is not included in the
mandatory parameters.

In the factory data set, the following formats are used:

+ uint16 and uint32 - These are the numeric formats representing, respectively, two-bytes length un-
signed integer and four-bytes length unsigned integer. This value is stored in a HEX file in the big-
endian order.

« Byte string - This parameter represents the sequence of integers between 0 and 255(inclusive), without
any encoding. Because the JSON format does not allow to use of byte strings, the hex: prefix is added
to a parameter, and its representation is converted to a HEX string. For example, an ASCII string abba

(TLSR9518) 39 Ver 0.2.9

https://github.com/project-chip/connectedhomeip/blob/master/scripts/tools/telink/telink_factory_data.schema

i Telink
Telink Matter Developer’s Guide

is represented as hex:61626261 in the JSON file and then stored in the HEX file as 0x61626261. The HEX
string length in the JSON file is two times greater than the byte string plus the size of the prefix.
« ASCII string is a string representation in ASCIl encoding without null-terminating.
+ I1SO 8601 format is a date format that represents a date provided in the YYYY-MM-DD or YYYYMMDD format.
« All certificates stored in factory data are provided in the X.509 format.

9.2 Enabling factory data support

By default, the factory data support is disabled in all Telink examples and the Telink device uses predefined
parameters from the Matter core, which you should not change. To start using factory data stored in the
flash memory and the Factory Data Provider from the Telink platform, build an example with the following
option:

west build -- -DCONFIG_CHIP_FACTORY_DATA=y

9.3 Generating factory data

This section describes generating factory data using the following Telink Python scripts:

« The first script creates a JSON file that contains a user-friendly representation of the factory data.
« The second script uses the JSON file to create a factory data partition and save it to a HEX/BIN file.

After these operations, you will program a HEX/BIN file containing factory data partition into the device's
flash memory.

You can use the second script without invoking the first one by providing a JSON file written in another way.
To make sure that the JSON file is correct and the device is able to read out parameters, verify the file using
the JSON schema.

9.3.1 Creating factory data JSON file with the first script

A Matter device needs a proper factory data partition stored in the flash memory to read out all
required parameters during startup. To simplify the factory data generation, you can use the gen-
erate_telink_chip_factory_data.py Python script to provide all required parameters and generate a
human-readable JSON file.

To use this script, complete the following steps:

1. Navigate to the connectedhomeip root directory.
2. Run the script with -h option to see all possible options:

python scripts/tools/telink/generate_telink_chip_factory_data.py -h

3. Prepare a list of arguments:

a. Fill up all mandatory arguments:

(TLSR9518) 40 Ver 0.2.9

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.itu.int/rec/T-REC-X.509-201910-I/en
../../scripts/tools/telink/generate_telink_chip_factory_data.py
../../scripts/tools/telink/generate_telink_chip_factory_data.py

i Telink
Telink Matter Developer’s Guide

--sn --vendor_id, --product_id, --vendor_name, --product_name, --date, --hw_ver, --
< hw_ver_str, --spake2_it, --spake2_salt, --discriminator

b. Add output file path:

-0 <output_dir>

c. Generate SPAKE?2 verifier using one of the following methods:
* Automatic:

--passcode <pass_code> --spake2p_path <path to spake2p executable>

Note: To generate new SPAKE2+ verifier you need spake2p executable. See the note at the end
of this section to learn how to get it.

* Manual:
- -spake2_verifier <verifiers
d. Add paths to .der files that contain PAl and DAC certificates and the DAC private key (replace the
respective variables with the file names) using one of the following methods:

* Automatic:

--chip_cert_path <path to chip-cert executable>

Note: To generate new certificates, you need the chip-cert executable. See the note at the end
of this section to learn how to get it.

* Manual:
--dac_cert <path to DAC certificate>.der --dac_key <path to DAC key>.der --pai_cert <path
< to PAI certificate>.der

e. (optional) Add the new unique ID for rotating device ID using one of the following options:

» Provide an existing ID:

--rd_uid <rotating device ID unique ID>

» Generate a new ID and provide it ():

--generate_rd_uid
--rd_uid <rotating device ID unique ID>

You can find a newly generated unique ID in the console output.

f. (optional) Add the JSON schema to verify the JSON file (replace the respective variable with the
file path):

(TLSR9518) 41 Ver 0.2.9

1 Telink
Telink Matter Developer’s Guide

--schema <path to JSON Schema file>

g. (optional) Add a request to include a pairing passcode in the JSON file:

--include_passcode

h. (optional) Add the request to overwrite existing the JSON file:

--overwrite

4. Run the script using the prepared list of arguments:

python generate_telink_chip_factory_data.py <arguments>

For example, a final invocation of the Python script can look similar to the following one:

$ python scripts/tools/telink/generate_telink_chip_factory_data.py \

--sn "11223344556677889900" \

--vendor_1id 65521 \

--product_1id 32774 \

--vendor_name "Telink Semiconductor" \

--product_name "not-specified" \

--date "2022-02-02" \

--hw_ver 1\

--hw_ver_str "prerelase" \

--dac_cert "credentials/development/attestation/Matter-Development-DAC-8006-Cert.der" \
--dac_key "credentials/development/attestation/Matter-Development-DAC-8006-Key.der" \
--pai_cert "credentials/development/attestation/Matter-Development-PAI-noPID-Cert.der" \
--spake2_it 1000 \

--spake2_salt "U1BBSOUyUCBLZXkgU2FsdA==" \

--discriminator OxFOO \

--generate_rd_uid \

--passcode 20202021 \

--spake2p_path "src/tools/spake2p/out/spake2p" \

--out "build.json" \

--schema "scripts/tools/telink/telink_factory_data.schema"

As the result of the above example, a unique ID for the rotating device ID is created, SPAKE2+ verifier is
generated using the spake2p executable, and the JSON file is verified using the prepared JSON Schema.

If the script finishes successfully, go to the location you provided with the -0 argument. Use the JSON file
you find there when generating the factory data partition.

Note: Generating the SPAKE2+ verifier is optional and requires providing a path to the spake2p exe-
cutable. To get it, complete the following steps:

1. Navigate to the connectedhomeip root directory.
2. In a terminal, run the command: cd src/tools/spake2p && gn gen out && ninja -C out spake2p
to build the executable.

(TLSR9518) 42 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

3. Add the connectedhomeip/ src/ tools/ spake2p/ out/ spake2p path as an argument of --
spake2p_path for the Python script.

Note: Generating new certificates is optional if default vendor and product IDs are used and requires
providing a path to the chip-cert executable. To get it, complete the following steps:

1. Navigate to the connectedhomeip root directory.

2. Inaterminal, run the command: cd src/tools/chip-cert && gn gen out && ninja -C out chip-
cert to build the executable.

3. Add the connectedhomeip/src/ tools/chip- cert/out/chip-cert path as an argument of --
chip_cert_path for the Python script.

Note: By default, overwriting the existing JSON file is disabled. This means that you cannot create a
new JSON file with the same name in the exact location as an existing file. To allow overwriting, add
the --overwrite option to the argument list of the Python script.

9.3.2 Verifying using the JSON Schema tool

The JSON file that contains factory data can be verified using the JSON Schema file. You can use one of
three options to validate the structure and contents of the JSON data.

9.3.2.1 Option 1: Using the php-json-schema tool

To check the JSON file using a JSON Schema verification tool manually on a Linux machine, complete the
following steps:

1. Install the php-json-schema package:

sudo apt install php-json-schema

2. Run the following command, with and replaced with the paths to the JSON file and the Schema file,
respectively:

validate-json <path_to_JSON_file> <path_to_schema_file>

The tool returns empty output in case of success.

9.3.2.2 Option 2: Using a website validator

You can also use external websites instead of the php-json-schema tool to verify a factory data JSON file.
For example, go to the JSON Schema Validator website, copy-paste the content of the JSON Schema file to
the first window and a JSON file to the second one. A message under the window indicates the validation
status.

(TLSR9518) 43 Ver 0.2.9

https://github.com/project-chip/connectedhomeip/blob/master/scripts/tools/telink/telink_factory_data.schema
https://www.jsonschemavalidator.net/
https://github.com/project-chip/connectedhomeip/blob/master/scripts/tools/telink/telink_factory_data.schema

i Telink
Telink Matter Developer’s Guide

9.3.2.3 Option 3: Using the Telink Python script

You can have the JSON file checked automatically by the Python script during the file generation. For this
to happen, provide the path to the JSON schema file as an additional argument, which should replace the
variable in the following command:

python generate_telink_chip_factory_data.py --schema <path_to_schema>

Note: To learn more about the JSON schema, visit this unofficial JSON Schema tool usage website.

9.3.3 Preparing factory data partition on a device

The factory data partition is an area in the device’s persistent storage where a factory data set is stored.
This area is configured in DTS file zephyr/boards/riscv/t1lsr9518adk80d/t1lsr9518adk80d.dts, within which
all partitions are declared.

To prepare an example that supports factory data, add a partition called factory- data to the
tlsr9518adk80d.dts file. The partition size should be a multiple of one flash page (for B91 SoCs, a
single page size equals 4 kB).

See the following code snippet for an example of a factory data partition in the t1lsr9518adk80d.dts file. The
snippet is based on the t1sr9518adk80d.dts file from telink-semi’s custom branch telink_factory_data:

scratch_partition: partition@f0000 {

label = "image-scratch";
reg = <0xfoe00 0x4000>;
s

factory_partition: partition@f4000 {

label = "factory-data";

reg = <0xf4000 0x1000>;

3

storage_partition: partition@f5000 {

label = "storage";

reg = <0xf5000 0xa000>;

/* region <OxffOOO 0x1000> is reserved for Telink B91 SDK's data */
};

In this example, a factory-data partition has been placed between the partition (image-scratch) and the
storage. Its size has been set to one flash page (4 kB).

9.34 Creating a factory data partition with the second script

To store the factory data set in the device’s persistent storage, convert the data from the JSON file to its
binary representation in the CBOR format. To do this, use the telink_generate_partition.py to generate the
factory data partition:

(TLSR9518) 44 Ver 0.2.9

https://json-schema.org/understanding-json-schema/
https://github.com/telink-semi/zephyr/blob/telink_factory_data/boards/riscv/tlsr9518adk80d/tlsr9518adk80d.dts
../../scripts/tools/telink/telink_generate_partition.py

i Telink
Telink Matter Developer’s Guide

1. Navigate to the connectedhomeip root directory
2. Run the following command pattern:

python scripts/tools/telink/telink_generate_partition.py -1 <path_to_JSON_file> -o
< <path_to_output> --offset <partition_address_in_memory> --size <partition_size>

In this command:

+ is a path to the JSON file containing appropriate factory data.

+ is a path to an output file without any prefix. For example, providing /build/output as an argument
will result in creating /build/output.hex and /build/output.bin.

+ is an address in the device’s persistent storage area where a partition data set is to be stored.

 is a size of partition in the device’s persistent storage area. New data is checked according to this
value of the JSON data to see if it fits the size.

To see the optional arguments for the script, use the following command:

python scripts/tools/telink/telink_generate_partition.py -h

Example of the command for the Telink DK:

python scripts/tools/telink/telink_generate_partition.py -i build/zephyr/factory_data.json -o
< build/zephyr/factory_data --offset 0xf4000 --size 0x1000

As a result, factory_data.hex and factory_data.bin files are created in the /build/zephyr/ directory. The
first file contains the memory offset. For this reason, it can be programmed directly to the device using a
programmer.

94 Building an example with factory data

You can manually generate the factory data set using the instructions described in the Generating factory
data section. Another way is to use the Telink platform build system that creates factory data content
automatically using Kconfig options and includes the content in the final firmware binary.

To enable generating the factory data set automatically, go to the example’s directory and build the example
with the following option:

west build -- -DCONFIG_CHIP_FACTORY DATA=y -DCONFIG_CHIP_FACTORY_DATA_BUILD=y

Alternatively, you can also add CONFIG_CHIP_FACTORY_DATA_BUILD=y Kconfig setting to the example’s
prj.conf file.

Each factory data parameter has a default value. These are described in the Kconfig file. Setting a new
value for the factory data parameter can be done either by providing it as a build argument list or by using
interactive Kconfig interfaces.

(TLSR9518) 45 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

94.1 Providing factory data parameters as a build argument list

This way for providing factory data can be used with third-party build script, as it uses only one command.
All parameters can be edited manually by providing them as an additional option for the west command:

west build -- -DCONFIG_CHIP_FACTORY_DATA=y --DCONFIG_CHIP_FACTORY_DATA_BUILD=y --
< DCONFIG_CHIP_DEVICE_DISCRIMINATOR=0xF11

Alternatively, you can add the relevant Kconfig option lines to the example’s prj.conf file.

9.5 Programming factory data

The HEX/BIN file containing factory data can be programmed into the device’s flash memory using BDT Tool
and the Telink burning key.

Another way to program the factory data to a device is to use the Telink platform build system de-
scribed in Building an example with factory data, and build an example with the additional option -
DCONFIG_CHIP_FACTORY_DATA_MERGE_WITH_FIRMWARE=y:

$ west build -- \

-DCONFIG_CHIP_FACTORY_DATA=y \
-DCONFIG_CHIP_FACTORY_DATA_BUILD=y \
-DCONFIG_CHIP_FACTORY_DATA_MERGE_WITH_FIRMWARE=y

You can also build an example with auto-generation of new CD, DAC and PAIl certificates. The
newly generated certificates will be added to factory data set automatically. To generate new
certificates disable using default certificates by building an example with the additional option -
DCHIP_FACTORY_DATA_USE_DEFAULT_CERTS=n:

$ west build -- \

-DCONFIG_CHIP_FACTORY_DATA=y \
-DCONFIG_CHIP_FACTORY_DATA BUILD=y \
-DCONFIG_CHIP_FACTORY_DATA_MERGE_WITH_FIRMWARE=y \
-DCONFIG_CHIP_FACTORY_DATA_USE_DEFAULT_CERTS=n

Note: To generate new certificates using the Telink platform build system, you need the chip-cert
executable in your system variable PATH. To learn how to get chip-cert, go to the note at the end of
Creating a factory data partition with the second script section, and then add the newly built executable
to the system variable PATH. The Cmake build system will find this executable automatically.

After that, use the following command from the example’s directory to write firmware and newly generated
factory data at the same time:

west flash

(TLSR9518) 46 Ver 0.2.9

i Telink
Telink Matter Developer’s Guide

9.6 Using own factory data implementation

The factory data generation process described above is only an example valid for the Telink platform. You
can well create a HEX file containing all Factory data component table in any format and then implement a
parser to read out all parameters and pass them to a provider. Each manufacturer can implement a factory
data set on its own by implementing a parser and a factory data accessor inside the Matter stack. Use the
Telink Provider and FactoryDataParser as examples.

You can read the factory data set from the device’s flash memory in different ways, depending on the
purpose and the format. In the Telink example, the factory data is stored in the CBOR format. The device
uses the Factory Data Parser to read out raw data, decode it, and store it in the FactoryData structure. The
Factor Data Provider implementation uses this parser to get all needed factory data parameters and provide
them to the Matter core.

In the Telink example, the FactoryDataProvider is a template class that inherits from DeviceAttestationCredentialsProvi
CommissionableDataProvider, and DeviceInstanceInfoProvider classes. Your custom implementation must

also inherit from these classes and implement their functions to get all factory data parameters from

the device’s flash memory. These classes are virtual and need to be overridden by the derived class. To

override the inherited classes, complete the following steps:

1. Override the following methods:

// ===== Members functions that implement the DeviceAttestationCredentialsProvider
CHIP_ERROR GetCertificationDeclaration(MutableByteSpan & outBuffer) override;
CHIP_ERROR GetFirmwareInformation(MutableByteSpan & out_firmware_info_buffer) override;
CHIP_ERROR GetDeviceAttestationCert(MutableByteSpan & outBuffer) override;

CHIP_ERROR GetProductAttestationIntermediateCert(MutableByteSpan & outBuffer) override;
CHIP_ERROR SignWithDeviceAttestationKey(const ByteSpan & messageToSign, MutableByteSpan
< & outSignBuffer) override;

// ===== Members functions that implement the CommissionableDataProvider
CHIP_ERROR GetSetupDiscriminator(uint16_t & setupDiscriminator) override;
CHIP_ERROR SetSetupDiscriminator(uint16_t setupDiscriminator) override;

CHIP_ERROR GetSpake2pIterationCount(uint32_t & iterationCount) override;
CHIP_ERROR GetSpake2pSalt(MutableByteSpan & saltBuf) override;

CHIP_ERROR GetSpake2pVerifier(MutableByteSpan & verifierBuf, size_t & verifierLen)
< override;

CHIP_ERROR GetSetupPasscode(uint32_t & setupPasscode) override;

CHIP_ERROR SetSetupPasscode(uint32_t setupPasscode) override;

// ===== Members functions that implement the DeviceInstanceInfoProvider
CHIP_ERROR GetVendorName(char * buf, size_t bufSize) override;

CHIP_ERROR GetVendorId(uintl6_t & vendorId) override;

CHIP_ERROR GetProductName(char * buf, size_t bufSize) override;

CHIP_ERROR GetProductId(uint16_t & productId) override;

CHIP_ERROR GetSerialNumber(char * buf, size_t bufSize) override;

CHIP_ERROR GetManufacturingDate(uint16_t & year, uint8_t & month, uint8_t & day)
< override;

CHIP_ERROR GetHardwareVersion(uint16_t & hardwareVersion) override;

(TLSR9518) 47 Ver 0.2.9

../../src/platform/telink/FactoryDataProvider.h
../../src/platform/telink/FactoryDataParser.h
../../src/platform/telink/FactoryDataParser.h
../../src/platform/telink/FactoryDataProvider.c

i Telink
Telink Matter Developer’s Guide

CHIP_ERROR GetHardwareVersionString(char * buf, size_t bufSize) override;
CHIP_ERROR GetRotatingDeviceIdUniqueId(MutableByteSpan & uniqueIdSpan) override;
2. Move the newly created parser and provider files to your project directory.

3. Add the files to the CMakeList.txt file.

4. Disable building both the default and the Telink implementations of factory data providers to start

using your own implementation of factory data parser and provider. This can be done in one of the
following ways:

» Add CONFIG_CHIP_FACTORY_DATA_CUSTOM_BACKEND=y Kconfig setting to prj.conf file.
+ Build an example with following option:

west build -- -DCONFIG_CHIP_FACTORY_DATA_CUSTOM_BACKEND=y

(TLSR9518) 48 Ver 0.2.9

	Acknowledgements
	Legal Disclaimer
	Information

	Revision History
	1 Overview
	2 Required Equipment
	3 Environment setup
	3.1 Docker image
	3.2 Manual environment setup
	3.2.1 Zephyr project setup
	3.2.2 Matter project setup
	3.2.3 Telink tools setup

	4 Matter firmware
	4.1 Memory footprint
	4.2 Device configuration
	4.3 Build and flash
	4.4 Logging
	4.5 UI
	4.5.1 Buttons
	4.5.2 LEDs

	5 Border Router
	5.1 Radio Co-Processor (RCP)
	5.1.1 Build and flash

	5.2 Raspberry Pi
	5.2.1 Setup
	5.2.1.1 Write image
	5.2.1.2 Setup border router software
	5.2.1.3 Setup from prebuild image

	5.3 Usage
	5.3.1 Form Thread network via GUI
	5.3.2 Form Thread network via CLI
	5.3.3 Get active dataset

	6 chip-tool
	6.1 Build
	6.2 Usage
	6.2.1 Commissioning
	6.2.1.1 BLE-Thread commissioning

	6.2.2 Lightbulb control
	6.2.3 Binding cluster and endpoints
	6.2.3.1 Unicast binding to a remote endpoint using the CHIP Tool
	6.2.3.2 Group multicast binding to the group of remote endpoints using the CHIP Tool

	6.2.4 Testing the communication

	7 OTA with Linux OTA Provider
	8 chip-device-ctrl.py
	8.1 Build
	8.2 Usage
	8.2.1 Run
	8.2.2 Commissioning
	8.2.3 Lightbulb control

	9 Configuring factory data for the Telink examples
	9.1 Overview
	9.1.1 Factory data component table
	9.1.2 Factory data format

	9.2 Enabling factory data support
	9.3 Generating factory data
	9.3.1 Creating factory data JSON file with the first script
	9.3.2 Verifying using the JSON Schema tool
	9.3.2.1 Option 1: Using the php-json-schema tool
	9.3.2.2 Option 2: Using a website validator
	9.3.2.3 Option 3: Using the Telink Python script

	9.3.3 Preparing factory data partition on a device
	9.3.4 Creating a factory data partition with the second script

	9.4 Building an example with factory data
	9.4.1 Providing factory data parameters as a build argument list

	9.5 Programming factory data
	9.6 Using own factory data implementation

