
Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection

SDK Development Handbook

AN-21112300-E2

Ver1.0.1

2022.04.21

Keyword
BLE 5.0

Brief
This document is Telink B85 BLE Single Connection SDK development guide, suitable for B85m series chips.

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Published by
Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,
Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor
All Rights Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without
further notice to this document or any products herein. This document may contain technical inaccuracies
or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or
incompleteness contained herein.

Copyright © 2022 Telink Semiconductor (Shanghai) Co., Ltd.

Information

For further information on the technology, product and business term, please contact Telink Semiconductor
Company www.telink-semi.com

For sales or technical support, please send email to the address of:

telinksales@telink-semi.com

telinksupport@telink-semi.com

AN-21112300-E2 2 Ver1.0.1

http://www.telink-semi.com/
telinksales@telink-semi.com
telinksupport@telink-semi.com

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Revision History

Version Change Description

V1.0.0 Initial release

V1.0.1 Corrected the SRAM size of 8273 in section 1.2; Corrected the OTA mark offset and the
modification action when receiving OTA_END in section 7.1.2

AN-21112300-E2 3 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Contents

Revision History 3
1 SDK Overview . 16

1.1 Software architecture . 16
1.1.1 main.c . 17
1.1.2 app_config.h . 18
1.1.3 application file . 18
1.1.4 BLE stack entry . 18

1.2 Applicable IC . 19
1.3 Software Bootloader . 19
1.4 Demo codes . 22

1.4.1 BLE Slave Demo . 23
1.4.2 BLE master demo . 24
1.4.3 Feature Demo and driver demo . 24

2 MCU Basic Modules . 26
2.1 MCU Address Space . 26

2.1.1 MCU Address Space Allocation . 26
2.1.2 SRAM Space Allocation . 27

2.1.2.1 SRAM and Firmware Space . 27
2.1.2.2 list file analysis demo . 33

2.1.3 MCU Address Space Access . 36
2.1.3.1 Peripheral Space R/W Operation . 36
2.1.3.2 Flash operation . 36

2.1.4 SDK Flash space allocation . 37
2.2 Clock Module . 37

2.2.1 System clock & System Timer . 37
2.2.2 System Timer Usage . 39

2.3 GPIO Module . 40
2.3.1 GPIO definition . 40
2.3.2 GPIO state control . 41
2.3.3 GPIO initialization . 43
2.3.4 GPIO digital states fail in deepsleep retention mode . 45
2.3.5 Configure SWS pull-ups to prevent crashes . 45

2.4 System interrupt . 46
3 BLE Module . 48

3.1 BLE SDK Software Architecture . 48
3.1.1 Standard BLE SDK Architecture . 48
3.1.2 Telink BLE SDK Architecture . 49

3.1.2.1 Telink BLE controller . 49
3.1.2.2 Telink BLE Slave . 50
3.1.2.3 Telink BLE master . 52

3.2 BLE Controller . 53
3.2.1 BLE Controller Introduction . 53
3.2.2 Link Layer State Machine . 53

AN-21112300-E2 4 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.3 Link Layer State Machine Combined Application . 56
3.2.3.1 Link Layer State Machine Initialization . 56
3.2.3.2 Idle + Advertising . 57
3.2.3.3 Idle + Scanning . 57
3.2.3.4 Idle + Advertising + ConnSlaveRole . 59
3.2.3.5 Idle + Scanning + Initiating + ConnMasterRole 61

3.2.4 Link Layer Timing Sequence . 62
3.2.4.1 Timing Sequence in Idle State . 63
3.2.4.2 Timing Sequence in Advertising State . 63
3.2.4.3 Timing Sequence in Scanning State . 64
3.2.4.4 Timing Sequence in Initiating State . 64
3.2.4.5 Timing Sequence in Conn State Slave Role . 65
3.2.4.6 Timing Sequence in Conn State Master Role . 66
3.2.4.7 Timing Protect for Conn State Slave role . 67

3.2.5 Link Layer State Machine Extension . 68
3.2.5.1 Scanning in Advertising state . 69
3.2.5.2 Scanning in ConnSlaveRole . 69
3.2.5.3 Advertising in ConnSlaveRole . 70
3.2.5.4 Advertising and Scanning in ConnSlaveRole . 71

3.2.6 Link Layer TX fifo & RX fifo . 72
3.2.7 Controller Event . 75

3.2.7.1 Controller HCI Event . 76
3.2.7.2 HCI event . 78
3.2.7.3 HCI LE event . 79
3.2.7.4 Telink Defined Event . 81

3.2.8 Data Length Extension . 90
3.2.9 Controller API . 92

3.2.9.1 Controller API Introduction . 92
3.2.9.2 API Return Type ble_sts_t . 92
3.2.9.3 BLE MAC address initialization . 92
3.2.9.4 Link Layer state machine initialization . 93
3.2.9.5 bls_ll_setAdvData . 93
3.2.9.6 bls_ll_setScanRspData . 94
3.2.9.7 bls_ll_setAdvParam . 95
3.2.9.8 bls_ll_setAdvEnable . 99
3.2.9.9 bls_ll_setAdvDuration . 99
3.2.9.10 blc_ll_setAdvCustomedChannel . 100
3.2.9.11 rf_set_power_level_index . 100
3.2.9.12 blc_ll_setScanParameter . 101
3.2.9.13 blc_ll_setScanEnable . 102
3.2.9.14 blc_ll_createConnection . 103
3.2.9.15 blc_ll_setCreateConnectionTimeout . 105
3.2.9.16 blm_ll_updateConnection . 105
3.2.9.17 bls_ll_terminateConnection . 106
3.2.9.18 blm_ll_disconnect . 106
3.2.9.19 Get Connection Parameters . 107
3.2.9.20 blc_ll_getCurrentState . 107

AN-21112300-E2 5 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.9.21 blc_ll_getLatestAvgRSSI . 108
3.2.9.22 Whitelist & Resolvinglist . 108
3.2.9.23 blc_att_setServerDataPendingTime_upon_ClientCmd 109

3.2.10 Coded PHY/2M PHY . 110
3.2.10.1 Coded PHY/2M PHY Introduction . 110
3.2.10.2 Coded PHY/2M PHY Demo Introduction . 110
3.2.10.3 Coded PHY/2M PHY API Introduction . 110

3.2.11 Channel Selection Algorithm #2 . 111
3.2.12 Extended Advertising . 112

3.2.12.1 Extended Advertising Introdcution . 112
3.2.12.2 Extended Advertising Demo Setup . 112
3.2.12.3 Extended Advertising Related API . 113

3.3 BLE Host . 117
3.3.1 BLE Host Introduction . 117
3.3.2 L2CAP . 117

3.3.2.1 Register L2CAP Data Processing Function . 118
3.3.2.2 Update connection parameters . 119

3.3.3 ATT & GATT . 123
3.3.3.1 GATT basic unit “Attribute” . 123
3.3.3.2 Attribute and ATT Table . 125
3.3.3.3 Attribute PDU and GATT API . 132
3.3.3.4 GATT Service Security . 144
3.3.3.5 B85m master GATT . 146

3.3.4 SMP . 148
3.3.4.1 SMP Security Level . 148
3.3.4.2 SMP Parameter Configuration . 149
3.3.4.3 Security Request Configuration . 155
3.3.4.4 SMP Bonding info . 158
3.3.4.5 master SMP . 161
3.3.4.6 SMP Failure Management . 167

3.3.5 GAP . 167
3.3.5.1 GAP initialization . 167
3.3.5.2 GAP Event . 168

4 Low Power Management . 175
4.1 Low Power Driver . 175

4.1.1 Low Power Mode . 175
4.1.2 Low Power Wake-up Source . 177
4.1.3 Sleep and Wake-up from Low Power Mode . 179
4.1.4 Low Power Wake-up Procedure . 181
4.1.5 API pm_is_MCU_deepRetentionWakeup . 184

4.2 BLE Low Power Management . 184
4.2.1 BLE PM Initialization . 184
4.2.2 BLE PM for Link Layer . 184
4.2.3 BLE PM Variables . 186
4.2.4 API bls_pm_setSuspendMask . 187
4.2.5 API bls_pm_setWakeupSource . 188
4.2.6 API blc_pm_setDeepsleepRetentionType . 189

AN-21112300-E2 6 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

4.2.7 PM software processing flow . 190
4.2.7.1 blt_sdk_main_loop . 190
4.2.7.2 blt_brx_sleep . 191

4.2.8 Analysis of deepsleep retention . 193
4.2.8.1 API blc_pm_setDeepsleepRetentionThreshold 193
4.2.8.2 blc_pm_setDeepsleepRetentionEarlyWakeupTiming 197
4.2.8.3 Optimization and measurement of T_init . 197

4.2.9 Connection Latency . 202
4.2.9.1 Sleep timing with non-zero connection latency 202
4.2.9.2 latency_use calculation . 203

4.2.10 API bls_pm_getSystemWakeupTick . 204
4.3 Issues in GPIO Wake-up . 205

4.3.1 Fail to enter sleep mode when wake-up level is valid . 205
4.4 BLE System Low Power Management . 206
4.5 Timer Wake-up by Application Layer . 207

5 Low Battery Detect . 209
5.1 The importance of low battery detect . 209
5.2 The implementation of low battery detect . 209

5.2.1 Notes on low battery detect . 210
5.2.1.1 GPIO input channel recommended . 210
5.2.1.2 Differential mode only . 211
5.2.1.3 Must use Dfifo mode to obtain ADC sampling value 212
5.2.1.4 Need to switch different ADC tasks . 212

5.2.2 Stand-alone use of low battery detect . 212
5.2.2.1 Low battery detect initialization . 212
5.2.2.2 Low battery detect processing . 214
5.2.2.3 Low voltage alarm . 216
5.2.2.4 Low power detect debug mode . 217

5.2.3 Low battery detect and Amic Audio . 217
6 Audio . 219

6.1 Initialization . 219
6.1.1 AMIC and Low Power Detect . 219
6.1.2 AMIC Initialization . 219
6.1.3 DMIC Initialization . 220

6.2 Audio Data Processing . 220
6.2.1 Audio Data Volume and RF Transfer . 220
6.2.2 Audio Data Compression . 222

6.3 Compression and Decompression Algorithm . 224
6.4 Audio data processing flow . 226

6.4.1 TL_AUDIO_RCU_ADPCM_GATT_GOOGLE . 228
6.4.1.1 Initialization . 229
6.4.1.2 Voice data transmission . 230
6.4.1.3 TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB 231

6.4.2 TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB . 233
7 OTA . 236

7.1 Flash Architecture and OTA Procedure . 236
7.1.1 FLASH Storage Architecture . 236

AN-21112300-E2 7 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

7.1.2 OTA Update Procedure . 237
7.1.3 Modify FW Size and Booting Address . 239

7.2 RF Data Processing for OTA Mode . 239
7.2.1 OTA Processing in Attribute Table . 239
7.2.2 OTA Protocol . 240
7.2.3 RF Transfer Processing on Master Side . 247

7.3 OTA Security . 257
7.3.1 OTA Service data security . 257
7.3.2 OTA RF transmission data integrity . 258

7.3.2.1 LinkLayer data transfer mechanism . 258
7.3.2.2 OTA PDU CRC16 check . 258
7.3.2.3 OTA PDU serial number check . 258

7.3.3 Firmware CRC32 check . 259
7.3.4 OTA abnormal power failure protection . 259

8 Flash . 260
8.1 Flash address allocation . 260
8.2 Flash operation . 263
8.3 Flash operation protection . 266

8.3.1 Low voltage detection protection . 266
8.3.2 Flash lock protection . 268

8.3.2.1 Initialize write protection . 268
8.3.2.2 Protection operations in the OTA process . 269

8.4 Internal Flash introduction . 270
8.4.1 Impact of Flash access timing on BLE timing . 270

8.4.1.1 Flash access timing . 270
8.4.1.2 Impact of Flash API on BLE timing . 273

8.4.2 Use of internal Flash API . 275
8.4.2.1 GD Flash . 275
8.4.2.2 Zbit Flash . 276
8.4.2.3 PUYA Flash . 276

9 Key Scan . 279
9.1 Key Matrix . 279
9.2 Keyscan and Keymap . 281

9.2.1 Keyscan . 281
9.2.2 Keymap & kb_event . 282

9.3 Keyscan Flow . 283
9.4 Deepsleep wake_up fast keyscan . 285
9.5 Repeat Key Processing . 286
9.6 Stuck Key Processing . 287

10 LED Management . 290
10.1 LED task related functions . 290
10.2 LED Task Configuration and Management . 290

10.2.1 LED Event Definition . 290
10.2.2 LED Event Priority . 291

11 Software Timer . 293
11.1 Timer Initialization . 293
11.2 Timer Inquiry Processing . 293

AN-21112300-E2 8 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

11.3 Add Timer Task . 295
11.4 Delete Timer Task . 296
11.5 Demo . 297

12 IR . 299
12.1 PWM Driver . 299

12.1.1 PWM ID and Pin . 299
12.1.2 PWM Clock . 300
12.1.3 PWM Cycle and Duty . 301
12.1.4 PWM Revert . 302
12.1.5 PWM Start and Stop . 302
12.1.6 PWM Mode . 302
12.1.7 PWM Pulse Number . 303
12.1.8 PWM Interrupt . 303
12.1.9 PWM phase . 305
12.1.10IR DMA FIFO mode . 305

12.1.10.1 Configuration for DMA FIFO . 305
12.1.10.2 Set DMA FIFO Buffer . 306
12.1.10.3 Start and Stop for IR DMA FIFO Mode . 306

12.2 IR Demo . 307
12.2.1 PWM mode selection . 307
12.2.2 Demo IR Protocol . 307
12.2.3 IR Timing Design . 308
12.2.4 IR Initialization . 311

12.2.4.1 rc_ir_init . 311
12.2.4.2 IR Hardware Configuration . 311
12.2.4.3 IR Variable Initialization . 311

12.2.5 FifoTask Configuration . 312
12.2.5.1 FifoTask_data . 312
12.2.5.2 FifoTask_idle . 313
12.2.5.3 FifoTask_repeat . 313
12.2.5.4 FifoTask_repeat*n and FifoTask_idle_repeat*n 314

12.2.6 Check IR Busy Status in APP Layer . 314
12.3 IR Learn . 315

12.3.1 IR Learn introduction . 315
12.3.2 IR Learn hardware principle . 315
12.3.3 IR Learn software principle . 316

12.3.3.1 IR_Learn initialization . 317
12.3.3.2 IR_Learn interrupt handling . 318
12.3.3.3 IR_Learn result processing function . 318
12.3.3.4 IR_Learn macro definition . 318
12.3.3.5 IR_Learn start function . 319
12.3.3.6 IR_Learn state query . 319
12.3.3.7 IR_Learn_Send initialization . 319
12.3.3.8 IR_Learn result copy function . 320
12.3.3.9 IR_Learn send function . 320

12.3.4 IR Learn algorithm details . 320
12.3.5 IR Learn learning parameter adjustment . 322

AN-21112300-E2 9 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.3.6 IR Learn common issues . 324
12.4 Demo description . 325

13 Feature Demo Introduction . 326
13.1 Broadcast Power Consumption Test . 326

13.1.1 Connectable Broadcast Power Consumption Test . 327
13.1.2 Un-connectable Broadcast Power Consumption Test . 327

13.2 SMP Test . 328
13.2.1 LE_Security_Mode_1_Level_1 . 328
13.2.2 LE_Security_Mode_1_Level_2 . 328

13.2.2.1 SMP_TEST_LEGACY_PARING_JUST_WORKS . 328
13.2.2.2 SMP_TEST_SC_PAIRING_JUST_WORKS . 329

13.2.3 LE_Security_Mode_1_Level_3 . 330
13.2.3.1 SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI . 330
13.2.3.2 SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI . 332

13.2.4 LE_Security_Mode_1_Level_4 . 333
13.2.4.1 SMP_TEST_SC_NUMERIC_COMPARISON . 334
13.2.4.2 SMP_TEST_SC_PASSKEY_ENTRY_SDMI . 335

13.3 GATT Security Test . 337
13.4 DLE Test . 339
13.5 Soft Timer Test . 340
13.6 WhiteList Test . 341
13.7 1M Extended Advertising Test . 342
13.8 2M/Coded PHY Used on Extended Advertising Test . 342
13.9 2M/Coded PHY used on Legacy advertising and Connection Test 344
13.10CSA #2 Test . 345
13.11EMI Test . 346

13.11.1 Protocol . 346
13.11.2 Demo introduction . 346

14 Other Modules . 347
14.1 24MHz Crystal External Capacitor . 347
14.2 32KHz Clock Source Selection . 348
14.3 Firmware Digital Signature . 348
14.4 Firmware Integrity Self-check . 350

15 Debug . 351
15.1 Introduction to GPIO simulation UART_TX printing method . 351

16 Q&A . 352
17 Appendix . 356

17.1 crc16 Algorithm . 356

AN-21112300-E2 10 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

List of Figures

1.1 “SDK File Structure” . 16
1.2 “Bootloader and boot.link path for different IC” . 20
1.3 “software bootloader setting” . 21
1.4 “BLE SDK demo code” . 23
2.1 “MCU Address Space Allocation” . 26
2.2 “SRAM space allocation for each IC at 16k and 32k retention” 27
2.3 “SRAM space allocation & Firmware space allocation” . 28
2.4 “list file section analysis” . 33
2.5 “list file section address” . 34
2.6 “System clock & System Timer” . 37
2.7 “IRQ delay” . 47
3.1 “BLE SDK software architecture” . 48
3.2 “HCI Data Transfer between Host and Controller” . 49
3.3 “Telink HCI architecture” . 50
3.4 “Telink BLE Slave architecture” . 51
3.5 “Telink BLE master architecture” . 52
3.6 “Link Layer State Machine in BLE Spec” . 54
3.7 “Telink Link Layer State Machine” . 55
3.8 “Idle + Advertising” . 57
3.9 “Idle + Scanning” . 58
3.10 “BLE Slave LL State” . 59
3.11 “BLE Master LL State” . 61
3.12 “Timing Sequence in Advertising State” . 63
3.13 “Timing Sequence in Scanning State” . 64
3.14 “Timing Sequence in Initiating State” . 64
3.15 “Timing Sequence in Conn State Slave Role” . 65
3.16 “Timing Sequence in Conn Master Role” . 66
3.17 “Timing of Scanning in Advertising state” . 68
3.18 “Timing of Scanning in Advertising state” . 69
3.19 “Timing of Scanning in ConnSlaveRole” . 70
3.20 “Timing of Advertising in ConnSlaveRole” . 71
3.21 “Timing of Advertising and Scanning in ConnSlaveRole” . 71
3.22 “RX overflow case 1” . 73
3.23 “RX overflow case 2” . 74
3.24 “BLE SDK Event Architecture” . 76
3.25 “HCI Event” . 77
3.26 “Disconnection Complete Event” . 78
3.27 “Read Remote Version Information Complete Event” . 78
3.28 “LE Connection Complete Event” . 79
3.29 “LE Advertising Report Event” . 80
3.30 “LE Connection Update Complete Event” . 80
3.31 “Connect Request PDU” . 85
3.32 “LL_CONNECTION_UPDATE REQ Format in BLE Stack” . 89
3.33 “Adv Packet Format in BLE Stack” . 93

AN-21112300-E2 11 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.34 “Advertising Event in BLE Stack” . 95
3.35 “Four Adv Events in BLE Stack” . 96
3.36 “Error in compiling a demo” . 113
3.37 “Extended Advertising Initialize Memory Allocation” . 114
3.38 “BLE L2CAP Structure and ATT Packet Assembly Model” . 117
3.39 “Connection Para Update Req Format in BLE Stack” . 119
3.40 “BLE Sniffer Packet Sample Conn Para Update Request and Response” 119
3.41 “Conn Para Update RSP Format in BLE Stack” . 121
3.42 “Demo code of b85m master kma dongle” . 122
3.43 “Demo code of b85m master kma dongle” . 123
3.44 “BLE Sniffer Packet Sample ll Conn Update Req” . 123
3.45 “GATT Service Containing Attributes” . 124
3.46 “BLE Sniffer Packet Sample when Master Reads hidInformation” 128
3.47 “Write Request in BLE Stack” . 129
3.48 “Write Command in BLE Stack” . 130
3.49 “Execute Write Request in BLE Stack” . 130
3.50 “Service Attribute Layout” . 132
3.51 “Read by Group Type Request Read by Group Type Response” 133
3.52 “Find by Type Value Request Find by Type Value Response” 134
3.53 “Read by Type Value Request Find by Type Value Response” 135
3.54 “Find Information Request Find Information Response” . 136
3.55 “Read Request Read Response” . 136
3.56 “Read Blob Request Read Blob Response” . 137
3.57 “Exchange MTU Request Exchange MTU Response” . 137
3.58 “Write Request Write Response” . 139
3.59 “Example for Write Long Characteristic Values” . 140
3.60 “Handle Value Notification in BLE Spec” . 140
3.61 “Handle Value Indication in BLE Spec” . 142
3.62 “Handle Value Confirmation in BLE Spec” . 143
3.63 “Mapping Diagram for Service Request and Response” . 144
3.64 “ATT Permission Definition” . 145
3.65 “Local Device Pairing Status” . 148
3.66 “Packet Example for Pairing Disable” . 149
3.67 “Usage Rule for MITM OOB Flag in Legacy Pairing Mode” . 152
3.68 “Mapping Relationship for KEY Generation Method and IO Capability” 152
3.69 “Packet Example for Pairing Peer Trigger” . 157
3.70 “Packet Example for Pairing Conn Trigger” . 157
3.71 “master initiates Pairing_Req” . 169
4.1 “B85 MCU HW Wakeup Source” . 178
4.2 “Sleep Mode Wakeup Work Flow” . 182
4.3 “Sleep Timing for Advertising State and Conn State Slave Role” 185
4.4 “Suspend Deep sleep Retention Timing Power” . 195
4.5 “T_init Timing” . 198
4.6 “Sleep Timing for Valid Conn_latency” . 203
4.7 “Low Power Code” . 206
4.8 “EarlyWake_upatapp_wakup_tick” . 208
6.1 “Audio Data Sample” . 221

AN-21112300-E2 12 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

6.2 “MIC Service in Attribute Table” . 222
6.3 “Data Compression Processing” . 224
6.4 “Data Corresponding to Compression Algorithm” . 225
6.5 “Corresponding library files” . 227
6.6 “SBC mode setting method” . 228
6.7 “Google Service UUID setting” . 229
6.8 “Google Voice initialization flow” . 229
6.9 “Packet Interaction Information” . 229
6.10 “Audio Data Transmission” . 230
6.11 “Search_KEY packet” . 230
6.12 “Search packet” . 230
6.13 “MIC_Open packet” . 231
6.14 “Start packet” . 231
6.15 “134-byte Audio frame” . 231
6.16 “Audio data interaction in ADPCM_HID_DONGLE_TO_STB mode” 232
6.17 “Start_request packet” . 232
6.18 “Ack packet” . 232
6.19 “Audio voice data” . 233
6.20 “End request packet” . 233
6.21 “Ack packet” . 233
6.22 “Audio data interaction in SBC_HID_DONGLE_TO_STB mode” 234
6.23 “Start_request packet” . 234
6.24 “Ack packet” . 234
6.25 “Audio voice data of sbc decode” . 234
6.26 “End request packet” . 235
6.27 “Ack packet” . 235
7.1 “Flash Storage Structure” . 236
7.2 “OTA packet in L2CAP PDU” . 245
7.3 “PDU length 32” . 247
7.4 “PDU length 48” . 247
7.5 “PDU length 80” . 247
7.6 “OTA Legacy protocol process” . 248
7.7 “OTA Extend protocol process” . 249
7.8 “OTA Version Compare Process” . 250
7.9 “Master Obtains OTA Attribute Handle via Read by Type Request” 251
7.10 “Firmware Sample Starting Part” . 252
7.11 “Firmware Sample Ending Part” . 252
7.12 “OTA Start Sent From Master” . 253
7.13 “Master OTA Data1” . 254
7.14 “Master OTA Data2” . 254
7.15 “Slave Sends OTA Succuss Result to Master” . 256
8.1 “512K/1M FLASH address allocation” . 261
8.2 “Write Protection by Flash Type” . 269
8.3 “Flash Operation Basic Timing” . 270
8.4 “Flash Timing Conflicts Caused by Interrupts” . 271
8.5 “Proper inerrupt handling and flash operation” . 272
8.6 “Flash Operation on Link Layer Risk” . 273

AN-21112300-E2 13 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

8.7 “Sonos Process Flash Action Before and After The Reception Window” 277
8.8 “Flash write action delay due to more data” . 278
9.1 “Row Column Key Matrix” . 279
9.2 “Repeat Key Application Example” . 287
12.1 “PWM cycle & duty” . 301
12.2 “PWM interrupt” . 304
12.3 “Demo IR Protocol” . 308
12.4 “IR Timing 1” . 308
12.5 “IR Timing 2” . 309
12.6 “IR Learn hardware circuit” . 315
12.7 “IR_IN waveform of NEC protocol” . 316
12.8 “IR_IN waveform of NEC carrier” . 316
12.9 “Carrier and non-carrier” . 317
12.10 “A frame of IR code” . 321
12.11 “Carrier and no carrier in IR Learn” . 321
12.12 “IR learn algorithm” . 322
12.13 “IR learn error” . 324
13.1 “Feature Test Demo” . 326
13.2 “Legacy Just Work Process” . 329
13.3 “SC Just Work Process” . 330
13.4 “Legacy Just Work SDMI Process” . 332
13.5 “Legacy Just Work SIMD Process” . 333
13.6 “Numeric Comparison Paring” . 335
13.7 “SC SDMI Paring Processing” . 337
13.8 “Gatt Security” . 339
13.9 “DLE Test Process” . 340
13.10 “Whitelist Test Process” . 341
13.11 “PHY change flowchart” . 344
14.1 “24M Crystal Schematic” . 347
16.1 “Error in compiling a SDK project” . 352
16.2 “Enter a new name for a project” . 352
16.3 “Create new configuration for a project” . 353
16.4 “New project in the project list” . 353
16.5 “Exclude Test_Demo from build” . 354
16.6 “Exclude source project from build” . 354
16.7 “Modify compiler symbol” . 355
16.8 “Add user config for new code” . 355

AN-21112300-E2 14 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

List of Tables

1.1 IC and memory supported by BLE B85m SDK . 19
1.2 Boot file selection for BLE B85m SDK . 22
1.3 Demo overview of BLE slave . 23
3.13 Input parameter combination of blc_smp_configSecurityRequestSending 156
4.1 Sleep mode description . 175
7.1 Firmware size and boot address . 239
7.2 OTA protocol . 240
7.3 PDU of OTA’s CMD . 241
7.4 Opcode of CMD . 241
7.5 End command of OTA . 242
7.6 Packet structure of OTA_START_EXT . 242
7.7 Packet structure of OTA_FW_VERSION . 242
7.8 Response structure of OTA_FW_VERSION . 243
7.9 OTA result return command structure . 243
7.10 OTA return results . 243
7.11 OTA data . 245
7.12 OTA PDU format . 245
7.13 Mapping of Adr_Index to firmware address when n=1 . 246
7.14 Mapping of Adr_Index to firmware address when n=2 . 246
7.15 Mapping of Adr_Index to firmware address when n=15 . 246
12.1 PWM pin allocation . 299

AN-21112300-E2 15 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

1 SDK Overview

This BLE SDK supplies demo code for BLE slave/master single connection development, based on which
user can develop his own application program.

1.1 Software architecture

Software architecture for this BLE SDK includes application (APP) layer and BLE protocol stack.

Figure below shows the file structure after the SDK project is imported in IDE, which mainly contains 8 top-
layer folders below: “algorithm”, “application”, “boot”, “common”, “drivers”, “proj_lib”, “stack” and “ven-
dor”.

Figure 1.1: “SDK File Structure”

• Algorithm：This folder contains functions related to encryption algorithms.

• Application：This folder contains general application program, e.g. print, keyboard, audio, and etc.

• boot：This folder contains software bootloader for chip, i.e., assembly code after MCU power on or
deepsleep wakeup, so as to establish environment for C program running.

• common：This folder contains generic handling functions across platforms, e.g. SRAM handling func-
tion, string handling function, and etc.

• drivers：This folder contains hardware configuration and peripheral drivers closely related to MCU,
e.g. clock, flash, i2c, usb, gpio, uart.

• proj_lib: This folder contains library files necessary for SDK running, e.g. BLE stack, RF driver, PM
driver. Since this folder is supplied in the form of library files (e.g. liblt_825x.a), the source files are not
open to users.

AN-21112300-E2 16 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• stack：This folder contains header files for BLE stack. Source files supplied in the form of library files
are not open to users.

• vendor：This folder contains user application-layer code.

1.1.1 main.c

The “main.c” file includes main function entry, system initialization functions and endless loop “while(1)”.
It’s not recommended to make any modification to this file.

_attribute_ram_code_ int main (void) //must run in ramcode

{

DBG_CHN0_LOW; //debug

blc_pm_select_internal_32k_crystal();

#if(MCU_CORE_TYPE == MCU_CORE_825x)

cpu_wakeup_init();

#elif(MCU_CORE_TYPE == MCU_CORE_827x)

cpu_wakeup_init(LDO_MODE,EXTERNAL_XTAL_24M);

#endif

int deepRetWakeUp = pm_is_MCU_deepRetentionWakeup(); //MCU deep retention wakeUp

rf_drv_init(RF_MODE_BLE_1M);

gpio_init(!deepRetWakeUp); //analog resistance will keep available in deepSleep mode, so

no need initialize again↪

clock_init(SYS_CLK_TYPE);

if(!deepRetWakeUp){//read flash size

blc_readFlashSize_autoConfigCustomFlashSector();

}

blc_app_loadCustomizedParameters(); //load customized freq_offset cap value

if(deepRetWakeUp){

user_init_deepRetn ();

}

else{

user_init_normal ();

}

irq_enable();

while (1) {

#if (MODULE_WATCHDOG_ENABLE)

AN-21112300-E2 17 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

wd_clear(); //clear watch dog

#endif

main_loop ();

}

}

1.1.2 app_config.h

The user configuration file “app_config.h” serves to configure parameters of the whole system, including
parameters related to BLE, GPIO, PM (low-power management), and etc. Parameter details of each module
will be illustrated in following sections.

1.1.3 application file

• “app.c”: User file for BLE protocol stack initialization, data processing and low power management.

• “app_att.c” of BLE slave project: configuration files for services and profiles. Based on Telink Attribute
structure, as well as Attributes such as GATT, standard HID, proprietary OTA and MIC, user can add his
own services and profiles as needed.

• UI task files: IR (Infrared Radiation), battery detect, and other user tasks.

1.1.4 BLE stack entry

There are two entry functions in BLE stack code of Telink BLE SDK.

(1) BLE related interrupt handling entry “irq_blt_sdk_handler” in “irq_handler” function of the main.c file.

_attribute_ram_code_ void rf_irq_handler (void)

{

……
irq_blt_sdk_handler ();

……
}

(2) BLE logic and data handling entry “irq_blt_sdk_handler” in “main_loop” of the application file.

void main_loop (void)

{

///////////////////// BLE entry ////////////////////////////

blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////////

……
////////////////////// PM process ////////////////////

……
}

AN-21112300-E2 18 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

1.2 Applicable IC

The following IC models are applicable, they belong to B85m series with the same core, among which
8251/8253/8258, 8271/8273/8278 hardware modules are basically the same, only slightly different in SRAM
size and flash. The details are shown in the table below.

Table 1.1: IC and memory supported by BLE B85m SDK

IC Flash size SRAM size

8251 512 kB 32 kB

8253 512 kB 48 kB

8258 512 kB/1 MB 64 kB

8271 512 kB 32 kB

8273 512 kB 64 kB

8278 1 MB 64 kB

Because the difference between the above 6 ICs is mainly the SRAM size, the other parts are the same, and
the SDK file structure is completely shared except for the differences between the SDK/boot/boot script
(i.e. software bootloader file) and the boot.link file.

1.3 Software Bootloader

The software bootloader file is stored in the SDK/boot/ directory, as shown below:

AN-21112300-E2 19 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 1.2: “Bootloader and boot.link path for different IC”

Each IC corresponds to two software bootloader files, which enable 16k deep retention and 32k deep re-
tention respectively (for the introduction of deep retention, please refer to the chapter of “Low Power Man-
agement”). Since the 8273 and 8278 have the same boot file and link file, the 8278 configuration is used
uniformly.

Take cstartup_8258_RET_16K.S as an example, the first sentence #ifdef MCU_STARTUP_8258_RET_16K
illustrates that the bootloader will take effect only when MCU_STARTUP_8258_RET_16K is defined by user.

Users can choose different software bootloader according to the actual IC used and whether to use the deep
retention (16K or 32K) function.

The default configuration of the project in B85 BLE SDK is 8258 with Sram size 64K , deepsleep reten-
tion 16K sram, i.e. the corresponding software bootloader and link files are cstartup_8258_RET_16K.S and
boot_16k_retn_8251_8253_8258.link respectively. Users need to manually modify their configuration ac-
cording to the type of chip they use and the evaluation of Retention size (for detailed analysis, please refer
to the subsection “Sram Space”).

Take 8258_ble_remote as an example to illustrate how to change the software bootloader of 8258 to deep-

AN-21112300-E2 20 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

sleep retention 32K sram.

Step 1 Define -DMCU_STARTUP_8258_RET_32K in the 8258_ble_remote project settings as shown in the
following figure.

Figure 1.3: “software bootloader setting”

Note:

• According to the previous introduction, the hardware of 8251, 8253 and 8258 in B85m series is the
same, and the hardware of 8271 and 8278 is the same, but the Sram size is different, so users need to
modify the boot.link file in the root directory of SDK after choosing different software bootloader files
(according to the correspondence in the following table, replace the contents of the link file in the SDK
root directory according to the following table), the software bootloader and boot.link of different ICs
are shown in the following table.

AN-21112300-E2 21 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Table 1.2: Boot file selection for BLE B85m SDK

IC 16kB retention 32kB retention

8251 boot_16k_retn_8251_8253_8258.link
cstartup_8251_RET_16K.S

boot_32k_retn_8251.link
cstartup_8251_RET_32K.S

8253 boot_16k_retn_8251_8253_8258.link
cstartup_8253_RET_16K.S

boot_32k_retn_8253_8258.link
cstartup_8253_RET_32K.S

8258 boot_16k_retn_8251_8253_8258.link
cstartup_8258_RET_16K.S

boot_32k_retn_8253_8258.link
cstartup_8258_RET_32K.S

8271 boot_16k_retn_8271_8278.link
cstartup_8271_RET_16K.S

boot_32k_retn_8271.link
cstartup_8271_RET_32K.S

8273 boot_16k_retn_8271_8278.link
cstartup_8278_RET_32K.S

boot_32k_retn_8278.link
cstartup_8278_RET_32K.S

8278 boot_16k_retn_8271_8278.link
cstartup_8278_RET_32K.S

boot_32k_retn_8278.link
cstartup_8278_RET_32K.S

Step 2 According to the above example and the mapping table, the software bootloader file is
cstartup_8258_RET_32K.S. You need to use the SDK/ boot/ boot_32k_retn_8253_8258.link file to re-
place the boot.link in the root directory of the SDK.

The following API is called after blc_ll_initPowerManagement_module() in API use_init() to set the Retention
area of the hardware: blc_pm_setDeepsleepRetentionType(DEEPSLEEP_MODE_RET_ SRAM_LOW32K).

1.4 Demo codes

Telink BLE SDK provides users with multiple BLE demos.

Users can observe intuitive effects by running the software and hardware demo. Users can also modify the
demo code to complete their own application development. Demo codes path is shown as below.

AN-21112300-E2 22 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 1.4: “BLE SDK demo code”

1.4.1 BLE Slave Demo

BLE slave demos and their differences are shown in the table below.

Table 1.3: Demo overview of BLE slave

Demo Stack Application MCU Function

B85m hci BLE controller No BLE controller，only
Advertising and one Slave
connection

B85m
module

BLE controller +
host

Application is on the host MCU BLE transmissive module

B85m ble
remote

BLE controller +
host

Remote application Host MCU

B85m ble
sample

BLE controller +
host

The simplest slave demo for
broadcast and connection

Host MCU

B85m
feature

BLE controller +
host

Collection of various features Host MCU

B85m hci is a BLE slave controller that provides USB/UART based HCI, and communicates with other MCU
host to form a complete BLE slave system.

B85m module is only used as a BLE transmissive module to communicate with the host MCU through UART
interface, and the general application code is written in the other host MCU.

B85m module realizes the function of controlling the related state change through the transmissive mod-

AN-21112300-E2 23 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ule.

Note:

• Due to the complexity of the function implementation, the B85m module must be replaced with a 32k
retention-related configuration and compiled for use.

B85m remote is a remote control demo based on the full slave role, including low voltage detection, key scan,
NEC format IR transmitting, OTA over-the-air upgrade, application layer power management, Bluetooth
control, voice transmission, IR learning and other functions. Users can learn what the structure of a basic
use case is based on this project, and how most of the functions are implemented in the application layer.

Note:

• As voice, IR and IR learning consume more ram resources, when opening these functions, B85m remote
must be replaced with 32k retention related configuration and compiled for use.

B85m ble sample is a simplified version of B85m_ble_remote and can be paired and connected with standard
IOS/android devices.

1.4.2 BLE master demo

B85m master kma dongle is a demo of BLE master single connection, which can connect and communicate
with B85m ble sample/B85m ble remote/B85m module.

The corresponding library of B85m ble remote/B85m ble sample provides a standard BLE stack (master and
slave share a library), including BLE controller + BLE host, users only need to add their own application code
in the app layer and do not have to deal with the BLE host stuff, and completely rely on the controller and
host APIs.

The new SDK’s library combines the slave and master libraries into one, and the B85m master kma don-
gle compiled code will only call the standard BLE controller function part of the library, the library does
not provide the standard host function of master. The B85m Host master kma dongle demo code gives
the reference BLE Host implementation methods on the app layer, including ATT, the simple SDP (service
discovery protocol) and the most common SMP (security management protocol).

The most complicated function of BLE master is service discovery of slave server and identification of all
services, which is usually realized in android/linux system. Telink B85m IC cannot provide complete service
discovery due to the limitation of flash size and sram size. However, the SDK provides all ATT interfaces
needed for service discovery. Users can refer to B85m master kma dongle’s service discovery process for
B85m ble remote to achieve their own specific service traversal.

1.4.3 Feature Demo and driver demo

B85m_feature_test gives demo code for some common BLE-related features, users can refer to these demos
to complete their own functional implementation, see code for details. The BLE section of the document
will introduce all the features.

The macro “FEATURE_TEST_MODE” is optionally defined in feature_config.h in the B85m_feature_test
project to switch to different feature demos.

AN-21112300-E2 24 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

B85m driver test gives a sample code for the basic drivers for users to refer and implement their own driver
functions. The driver section of this document will introduce each driver in detail.

The macro “DRIVER_TEST_MODE” is optionally defined in app_config.h in the B85m driver test project to
switch to the demo of different driver test.

AN-21112300-E2 25 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

2 MCU Basic Modules

2.1 MCU Address Space

2.1.1 MCU Address Space Allocation

A typical 64K SRAM is used as an example to introduce MCU address space allocation. It is shown in the
figure below.

The Telink B85m MCU has a maximum addressable space of 16M bytes.

• The 8M space from 0 to 0x7FFFFF is the program space, i.e. the maximum program capacity is 8M
bytes.

• 0x800000 to 0xFFFFFF is the external device space: 0x800000~0x80FFFF is the register space;
0x840000~0x84FFFF is the 64K SRAM space.

Figure 2.1: “MCU Address Space Allocation”

When the B85m MCU is physically addressed, address line BIT (23) is used to distinguish between program
space/peripheral space.

AN-21112300-E2 26 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• When this address is 0, access the program space.
• When this address is 1, access the peripheral space.

When the addressing space is peripheral space (BIT(23) is 1), address line BIT(18) is used to distinguish
between Register and SRAM.

• When this address is 0, access the register.
• When this address is 1, access the SRAM.

2.1.2 SRAM Space Allocation

The space allocation of B85m SRAM is closely related to the deepsleep retention function in the low-power
management section, so please master the knowledge about deepsleep retention first.

If you do not use the deepsleep retention function, and only use the suspend and normal deepsleep func-
tions, the B85m SRAM space allocation is the same as Telink’s previous generation BLE IC 826x series. Users
who have used 826x BLE SDK can refer to the introduction of SRAM space allocation in “826x BLE SDK hand-
book” and then compare it with B85m SRAM space allocation to be introduced in this section to deepen their
understanding of this part.

2.1.2.1 SRAM and Firmware Space

The allocation of SRAM space in the MCU address space is further explained.

The 32kB SRAM address space range is 0x840000 ~ 0x848000, the 48kB SRAM address space range is
0x840000 ~ 0x84C000, and the 64kB SRAM address space range is 0x840000 ~ 0x850000.

The following figure shows the SRAM space allocation for the 8258, 8253 and 8251 in 16k retention and
32k retention modes. Note that when the IC is 8251 and deepsleep retention 32K SRAM mode is used, the
segments of the SRAM space allocation are dynamically adjusted, which can be found in the corresponding
software bootloader and link files.

Figure 2.2: “SRAM space allocation for each IC at 16k and 32k retention”

AN-21112300-E2 27 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The following is a detailed description of each part of the SRAM area, using the IC 8258 with a SRAM size
of 64K and the default deepsleep retention 16K SRAM mode in the SDK as an example. If the SRAM size is
other values or deepsleep retention 32k SRAM mode, the user can analogize.

The 64k SRAM corresponds to the SRAM and Firmware space allocation as shown below.

Figure 2.3: “SRAM space allocation & Firmware space allocation”

The files related to SRAM space allocation in SDK are boot.link (as we can see from the section “Introduction
to software bootloader”, the content of boot.link here is the same as boot_16k_retn_8251_8253_8258.link)
and cstartup_8258_RET_16K.S. (If we use deepsleep retention 32K SRAM, the bootloader corresponds to
cstartup_8258_RET_32K.S and the link file corresponds to boot_32k_retn_8253_8258.link.)

The firmware in flash includes vector, ramcode, retention_data, text, Rodata and Data initial value.

SRAM includes vector, ramcode, retention_data, Cache, data, bss, stack and unused SRAM area.

The vector/ramcode/ retention_data in SRAM is a copy of vector/ramcode/ retention_data in flash.

AN-21112300-E2 28 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(1) vectors and ram_code

The “vectors” segment is the program corresponding to the assembly file cstartup_8258_RET_16K.S, which
is the software bootloader.

The “ramcode” segment is the code in the Flash Firmware that needs to be resident in memory, corre-
sponding to all functions in the SDK with the keyword “attribute_ram_code”, such as flash erase_sector
function.

_attribute_ram_code_ void flash_erase_sector(u32 addr);

There are two reasons for functions to be resident in memory.

One is that some functions must be resident in memory because they involve timing multiplexing with the
four pins of the Flash MSPI, and if they are put into flash there will be timing conflicts that will cause crashes,
such as all functions related to flash operations.

The second is that the function in the ram is executed every time it is called without re-reading from flash,
which can save time. So for some functions with execution time requirements can be put into the resident
memory to improve execution efficiency. SDK will be BLE timing-related functions often to be executed
resident in memory, greatly reducing the execution time, and finally achieve power saving.

If you need to make a function resident in memory, you can follow flash_erase_sector above and add the
keyword “attribute_ram_code” to your function, then you can see the function in the ramcode segment in
the list file after compilation.

Both the vector and ramcode in Firmware need to be moved to ram when the MCU is powered up. After
compilation, the size of these two parts are added together as ramcode_size. The ramcode_size is a variable
value that the compiler can recognize, and its calculation is implemented in boot.link, as shown below. The
compiled result ramcode_size is equal to the size of all codes of vector and ramcode.

. = 0x0;

.vectors :

{

*(.vectors)

(.vectors.)

}

.ram_code :

{

*(.ram_code)

(.ram_code.)

}

PROVIDE(_ramcode_size_ = .);//Calculate actual ramcode size(vector + ramcode)

(2) retention_data

B85m’s deepsleep retention mode supports the first 16K/32K of SRAM to keep the data on SRAM without
losing power after the MCU enters retention.

The global variables in the program, if compiled directly, will be allocated in the “data” or “bss” segments,
the contents of which are not in the first 16K of the retention area and will be lost after entering deepsleep
retention.

AN-21112300-E2 29 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

If you want some specific variables to be saved without powering down during deepsleep (deepsleep re-
tention mode), you can simply assign them to the “retention_data” segment by adding the keyword “_at-
tribute_data_retention_” to the variable definition. Here are some examples.

_attribute_data_retention_ int AA;

_attribute_data_retention_ unsigned int BB = 0x05;

_attribute_data_retention_ int CC[4];

_attribute_data_retention_ unsigned int DD[4] = {0,1,2,3};

Referring to the “data/bss” section to be introduced below, we can see that the initial value of the global
variable in the data section needs to be stored on the flash in advance; the initial value of the variable in
the bss section is 0, so there is no need to prepare it in advance, and the bootloader can set it to 0 directly
on the sram when running.

However, the global variables in the “retention_data” segment are unconditionally prepared with their initial
values stored in the flash’s retention_data area, regardless of whether the initial value is 0 or not. After
power on (or normal deepsleep wake-up), they will be copied to the retention_data area of sram as a
whole.

The “retention_data” segment follows the “ram_code” segment, i.e. “vector + ramcode + retention_data”
which are arranged in order in front of the flash, and their total size is “retention_size”. After the MCU is
powered on (deepsleep wake_up), “vector+ramcode+ retention_data” is copied to the front of the sram as
a whole, and thereafter, as long as the program is not in deepsleep (only suspend/deepsleep retention), the
content of this whole block remains on the sram, and the MCU does not need to read it from the flash.

The configuration related to the retention_data segment in the boot.link file is as follows.

. = (0x840000 + (_rstored_));

.retention_data :

AT (_rstored_)

{

. = (((. + 3) / 4)*4);

PROVIDE(_retention_data_start_ = .);

*(.retention_data)

(.retention_data.)

PROVIDE(_retention_data_end_ = .);

}

The meaning of the above configuration is: when compiling, we see that the variable with the keyword
“retention_data” is distributed in the flash firmware with the starting address “_rstored_”, and the corre-
sponding address in Sram is 0x840000 + (_rstored_). The value of “_rstored_” is the end of the “ram_code”
section.

When using deepsleep retention 16K Sram mode, “retention_size” cannot exceed 16K, if it exceeds the 16K
limit, user can choose to switch to deepsleep retention 32K Sram mode. If the user selects a configuration
that uses deepsleep retention 16K Sram mode, but the defined “retention_size” exceeds the 16K limit, the
compilation will result in the error as shown in the figure below.

The user can correct the error in one of the following ways.

AN-21112300-E2 30 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

a. Reduce the data of the defined “attribute_data_retention”.

b. Choose to switch to deepsleep retention 32K Sram, refer to subsection 1.3 for detailed configuration.

When “retention_size” does not exceed 16K (assume 12K), there is a 4K “wasteful flash area” on the flash.
In the corresponding firmware binary file we can see that the 12K ~ 16K contents are all invalid “0”, and
after copying to Sram, there will be 4K “wasteful sram area” (invalid SRAM area) on Sram as well.

If the user does not want to waste too much flash/sram, appropriate ram_code and retention_data can
be added, and switch the functions /variables that were not in ram_code/retention_data before by adding
the corresponding keywords to ram_code /retention_data. The functions placed in ram_code can save
running time to reduce power consumption, and the variables placed in retention_data can save initialization
time to reduce power consumption (please refer to the introduction of low-power management section for
details).

(3) Cache

The Cache is the MCU’s instruction cache and must be configured as a section of Sram to function properly.
The Cache size is fixed and consists of 256 bytes of tag and 2048 bytes of instructions cache, totaling 0x900
= 2.25K.

The code of resident in memory can be read and executed directly from SRAM, but the code in firmware
that can be resident in SRAM is only partial, and most of the rest is still in flash. According to the principle
of program locality, a part of flash code can be stored in Cache, and if the current code to be executed is
in Cache, it can be directly read from Cache and executed; if it is not in Cache, the code can be read from
flash and moved to Cache, and then read from Cache and executed.

The “text” segment of the Firmware is not placed in the SRAM. This part of the code conforms to the principle
of program locality and needs to be loaded into the Cache to be executed.

The Cache size is fixed at 2.25K, its starting address in Sram is configurable, here it is configured to the back
of Sram 16K retention area, i.e. starting address is 0x844000 and ending address is 0x844900.

(4) data / bss

The “data” segment is a global variable in Sram that the program is initialized, i.e., global variables with
non-zero initial value. The “bss” segment is the global variable in Sram that the program is not initialized,
i.e., the global variable with initial value 0. These two parts are linked together, and the data segment is
immediately followed by the bss segment, so they are presented here as a whole.

The “data” + “bss” segment follows the Cache and starts at the end of the Cache at 0x844900. The following
code from boot.link defines the address of the start of the data segment on Sram.

. = 0x844900;

.data :

The “data” segment is a global variable that is initialized and its initial value needs to be stored in flash
in advance, i.e. the “data initial value” in the Firmware shown in the figure of SRAM space allocation and
Firmware space allocation.

(5) data_no_init

AN-21112300-E2 31 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

We added this segment to save the ram in the retention section. The feature of this segment is that it is in
the ram, but not in the retention segment, and the initial value of the variables in this segment is random.
This segment is used by the SDK for optimization purposes and is not recommended for users. If you really
want to use this segment in your application, you need to make sure that the variable must be assigned a
value before it is used, and that it cannot go through deep retention/deep/reboot/restart etc. between the
assignment and use.

(6) stack / unused area

For the default 64K Sram, the “stack” starts from the highest address 0x850000 (0x84C000 for 48K Sram
and 0x848000 for 32K Sram), and its direction is from bottom to top. The stack pointer SP decreases when
the data is put on the stack and increases when the data is popped out of the stack.

By default, the SDK library uses a stack size of no more than 256 bytes, but since the stack size depends
on the address of the deepest position of the stack, the final stack usage is related to the user’s upper-level
program design. If the user uses a troublesome recursive function call, or uses a relatively large local array
variable in the function, or other situations that may cause the stack to be deeper, the final stack size will
increase.

When the user uses more sram, he needs to know exactly how much stack his program uses. This cannot
be analyzed by the list file, but only by letting the application run and making sure it runs all the codes in the
program that may use deeper stack, then reset the MCU and read the sram space to determine the amount
of stack used.

The “unused area” is the space left between the end of the bss segment and the deepest address of the
stack. Only when this space exists, it means that stack is not in conflict with bss and there is no problem
with Sram usage. If the deepest part of the stack overlaps with the bss segment, then there is not enough
Sram.

Through the list file, we can find out the address of the end of the bss segment, which also determines
the maximum space left for stack, and the user needs to analyze whether this space is enough, and in
combination with the deepest address of stack mentioned above, we can know whether the use of Sram is
exceeded. The analysis method will be given in the following demo.

(7) text

The “text” segment is a collection of all non-ram_code functions in the Flash Firmware. If “_at-
tribute_ram_code_” is added to the function in the program, it will be compiled into the ram_code
segment, while all other functions without this keyword will be compiled into the “text” segment. In
general, the “text” segment is the largest space in the firmware, much larger than the size of Sram, so it
is necessary to load the code to be executed into the Cache first through the cache function of the Cache
before it can be executed.

(8) rodata /data init value

Except for vector, ram_code and text, the remaining data in Flash Firmware are “rodata” segment and “data
initial value”.

The “rodata” segment is the readable and unwritable data defined in the program, and is a variable defined
by the keyword “const”. For example, the ATT table in Slave.

AN-21112300-E2 32 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

static const attribute_t my_Attributes[] = ……

The user can see in the corresponding list file that “my_Attributes” is in the rodata segment.

The “data” segment introduced earlier is a global variable that has been initialized in the program, for
example, the global variable is defined as follows.

int testValue = 0x1234;

Then the compiler will store the initial value 0x1234 in the “data initial value”, and when running the boot-
loader, it will copy the initial value to the memory address corresponding to the testValue.

2.1.2.2 list file analysis demo

Here we take the simplest demo 825x ble sample of BLE slave as an example and analyze it with “Sram
space allocation & Firmware space allocation”.

The bin file and list file of 825x ble sample can be found in the directory “SDK”->“Demo”->“list file analyze”.

In the following analysis, there will be several screenshots, all from boot.link, cstartup_8258_RET_16K.S,
825x ble sample.bin and 825x ble sample.list, please find the file to find the corresponding location of the
screenshots by yourself.

The distribution of each section in the list file is shown in the following figure (note the Algn byte align-
ment):

Figure 2.4: “list file section analysis”

According to the section analysis, below lists the information you need to know, detailed introduction will
be introduced later.

AN-21112300-E2 33 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(1) vectors: start from Flash 0, Size is 0x170, the end address is calculated as 0x170；
(2) ram_code: start from Flash 0x170, Size is 0x23f0, the end address is calculated as 0x2560；
(3) retention_data: start from Flash 0x2560, Size is 0xce8, the end address is calculated as 0x3248；
(4) text: start from Flash 0x4000, Size is 0x614c, the end address is calculated as 0xa14c；
(5) rodata: start from Flash 0xa14c, Size is 0x8ec, the end address is calculated as 0xaa38；
(6) data: start from Sram 0x844900, Size is 0x2c, the end address is calculated as 0x84492c；
(7) bss: start from Sram 0x844930, Size is 0x259, the end address is calculated as 0x844b89。

Combined with the previous introduction, the remaining Sram space is 0x850000 -0x844b89= 0xb477 =
46199 byte, minus the 256 byte needed for stack, leaving 45943 byte.

Figure 2.5: “list file section address”

The above figure shows the starting address of some of the sections in the list file after the search for
“section”, combined with this figure and the above “list file section statistics”, the analysis is as follows.

(1) vector:

AN-21112300-E2 34 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The “vectors” segment starts at 0, ends at 0x170 (last data address is 0x16e~0x16f), and size is 0x170.
After power-on move to Sram, the address on Sram is 0x840000 ~ 0x840170.

(2) ram_code:

The “ram_code” segment starts at 0x170 and ends at 0x2560 (the last data address is 0x255c~0x255f).
After the power-on move to Sram, the address on Sram is 0x840170 ~ 0x842560.

(3) retention_data:

The starting address of “retention_data” in flash “_rstored_” is 0x2560, which is also the end of
“ram_code”

The starting address of “retention_data” in Sram is 0x842560 and the ending address is 0x843248 (the last
data address is 0x843244 ~ 0x843247).

The total size value of “vector+ram_code+retention_data” “retention_size” is 0x3248, so the first 16K of
the flash firmware is only 0x3248 byte of valid data. The space from 0x3248 to 0x4000 is about 3.43K
which belongs to “wasteful flash area”(invalid flash area) (user can open 825x_ble_sample.bin to see that
this space is full of invalid zeros). The space from 0x843248 to 0x844000 about 3.43K belongs to “wasteful
sram area” (invalid SRAM area).

(4) Cache:

The Cache address range in Sram is 0x844000~0x844900. The information about Cache will not be re-
flected in the list file.

(5) text:

The “text” segment in the flash firmware starts at 0x4000, ends at 0xa14c (the last data address is
0xa148~0xa14b), and the Size is 0xa14c- 0x4000 = 0x614c, and the data in the previous Section statistics
are consistent.

(6) rodata:

The starting address of the “rodata” segment is the end address of text 0xa14c, and the end address is
0xaa38 (the last data address is 0xaa34~0xaa37).

(7) data:

The starting address of the “data” segment on the Sram is the end address of the Cache 0x844900, and
the size given in the Section statistics section of the list file is 0x2c.

The end address of the “data” section on the Sram is 0x84492c (the last data address is 0x844928~0x84492b).

(8) bss:

The starting address of the “bss” segment on the Sram is the end address of the “data” segment 0x844930
(16-byte alignment), and the size given in the Section statistics section of the list file is 0x259.

The end address of the “bss” section on Sram is 0x844b89 (the last data address is 0x844b84~0x844b88).

The remaining Sram space is 0x850000 - 0x844b89 = 0xb477 = 46199 byte, minus the 256 byte needed
for stack, leaving 45943 byte.

AN-21112300-E2 35 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

2.1.3 MCU Address Space Access

Access to the 0x000000 - 0xFFFFFF address space in the program is divided into the following two situa-
tions.

2.1.3.1 Peripheral Space R/W Operation

Read and write operations in the peripheral space (register and sram) are implemented directly with pointer
access.

u8 x = *(volatile u8*)0x800066; //read value of register 0x66

(volatile u8)0x800066 = 0x26; //assign value to register 0x66

u32 y = *(volatile u32*)0x840000; //read value of sram 0x40000-0x40003

(volatile u32)0x840000 = 0x12345678; //assign value to sram 0x40000-0x40003

The program uses the functions write_reg8, write_reg16, write_reg32, read_reg8, read_reg16, read_reg32
to read and write to the peripheral space, which are essentially pointer operations. For more information,
please refer to drivers/8258/bsp.h.

Note the operation similar to write_reg8(0x40000)/ read_reg16(0x40000) in the program, which is defined
as shown below, from which the 0x800000 offset is automatically added (address line BIT(23) is 1), so the
MCU can ensure that it is accessing the Register/Sram space and not going to flash space.

#define REG_BASE_ADDR 0x800000

#define write_reg8(addr,v) U8_SET((addr + REG_BASE_ADDR),v)

#define write_reg16(addr,v) U16_SET((addr + REG_BASE_ADDR),v)

#define write_reg32(addr,v) U32_SET((addr + REG_BASE_ADDR),v)

#define read_reg8(addr) U8_GET((addr + REG_BASE_ADDR))

#define read_reg16(addr) U16_GET((addr + REG_BASE_ADDR))

#define read_reg32(addr) U32_GET((addr + REG_BASE_ADDR))

Note here a memory alignment problem: If you use a pointer to 2 bytes/4 bytes to read or write peripheral
space, make sure the address is 2 bytes/4 bytes aligned, if not aligned, data read/write errors will occur.
The following two are errors.

u16 x = *(volatile u16*)0x840001; //0x840001 is not 2-byte aligned

(volatile u32)0x840005 = 0x12345678; //0x840005 is not 4-byte aligned

Modify to the correct read/write operation.

u16 x = *(volatile u16*)0x840000; //0x840000 is 2-byte aligned

(volatile u32)0x840004 = 0x12345678; //0x840004 is 4-byte aligned

2.1.3.2 Flash operation

This section is detailed in Chapter 8, Flash.

AN-21112300-E2 36 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

2.1.4 SDK Flash space allocation

This section is detailed in Chapter 8, Flash.

2.2 Clock Module

2.2.1 System clock & System Timer

The system clock is the clock used by the MCU to execute the program.

The system timer is a read-only timer that provides a time reference for timing control of the BLE and is
also available to the user.

On Telink’s previous generation ICs (826x series), the System Timer clock is from the system clock, while
on the B85m series ICs, the System Timer and system clock are independently separated. As shown in
the figure below, the System Timer is 16MHz obtained from the external 24MHz Crystal Oscillator by 3/2
division.

Figure 2.6: “System clock & System Timer”

As you can see, the system clock can be multiplied to 48M by the external 24M crystal oscillator through the
“doubler” circuit and then divided to get 16M, 24M, 32M, 48M, etc. This type of clock is called crystal clock
(such as 16M crystal system clock, 24M crystal system clock). It can also be processed by the IC internal
24M RC Oscillator to get 24M RC clock, 32M RC clock, 48M RC clock and so on. This category is called RC
clock (BLE SDK does not support RC clock).

In the BLE SDK we recommend to use crystal clock.

To configure the system clock, call the following API during initialization and select the clock corresponding
to the clock in the enumeration variable SYS_CLK_TYPEDEF definition.

AN-21112300-E2 37 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void clock_init(SYS_CLK_TYPEDEF SYS_CLK)

Since the System Timer of B85m series chip is different from the system clock, users need to know whether
the clock of each hardware module on MCU is from system clock or System Timer. Let’s take the case where
the system clock is 24M crystal to illustrate, at this time the system clock is 24M and the System Timer is
16M.

In the file app_config.h, the system clock and the corresponding s, ms and us are defined as follows.

#define CLOCK_SYS_CLOCK_HZ 24000000

enum{

CLOCK_SYS_CLOCK_1S = CLOCK_SYS_CLOCK_HZ,

CLOCK_SYS_CLOCK_1MS = (CLOCK_SYS_CLOCK_1S / 1000),

CLOCK_SYS_CLOCK_1US = (CLOCK_SYS_CLOCK_1S / 1000000),

};

All hardware modules whose clock source is system clock can only use the above CLOCK_SYS_CLOCK_HZ,
CLOCK_SYS_CLOCK_1S, etc. when setting the clock of the module; in other words, if the user sees that
the clock setting in the module uses the above definitions, it means that the clock source of the module is
system clock.

If the PWM driver PWM period and duty cycle are set as follows, it means that the PWM clock source is
system clock.

pwm_set_cycle_and_duty(PWM0_ID, (u16) (1000 * CLOCK_SYS_CLOCK_1US), (u16) (500 *

CLOCK_SYS_CLOCK_1US));↪

The System Timer is a fixed 16M, so for this timer, the SDK code uses the following values for s, ms and
us.

//system timer clock source is constant 16M, never change

enum{

CLOCK_16M_SYS_TIMER_CLK_1S = 16000000,

CLOCK_16M_SYS_TIMER_CLK_1MS = 16000,

CLOCK_16M_SYS_TIMER_CLK_1US = 16,

};

The following APIs in SDK are some operations related to System Timer, so when it comes to these API
operations, they all use the above similar to “CLOCK_16M_SYS_TIMER_CLK_xxx” to represent the time.

void sleep_us (unsigned long microsec);

unsigned int clock_time(void);

int clock_time_exceed(unsigned int ref, unsigned int span_us);

#define ClockTime clock_time

#define WaitUs sleep_us

#define WaitMs(t) sleep_us((t)*1000)

AN-21112300-E2 38 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Since the System Timer is the reference for BLE timing, all BLE time-related parameters and variables in
the SDK are expressed as “CLOCK_16M_SYS_TIMER_CLK_xxx” when it comes to the time.

2.2.2 System Timer Usage

After the initialization of sys_init in the main function is completed, the System Timer starts to work, and
the user can read the value of the System Timer counter (referred to as System Timer tick).

The System Timer tick is incremented by one every clock cycle, and its length is 32bit, that is, every 1/16
us plus 1, the minimum value is 0x00000000, and the maximum value is 0xffffffff. When the System
Timer starts, the tick value is 0, and the time required to reach the maximum value of 0xffffffff is: (1/16)
us * (2ˆ32) approximately equal to 268 seconds, and the System Timer tick makes one cycle every 268
seconds.

The system tick will not stop when the MCU is running the program.

The reading of System Timer tick can be obtained through the clock_time() function:

u32 current_tick = clock_time();

The entire BLE timing of the BLE SDK is designed based on the System Timer tick. This System Timer tick
is also used extensively in the program to complete various timing and timeout judgments. It is strongly
recommended that users use this System Timer tick to implement some simple timing and timeout judg-
ments.

For example, to implement a simple software timing. The realization of the software timer is based on the
query mechanism. Because it is implemented through query, it cannot guarantee real-time performance
and readiness. It is generally used for applications that are not particularly demanding on error. Implemen-
tation:

(1) Start timer: set a u32 variable, read and record the current System Timer tick.

u32 start_tick = clock_time(); // clock_time() returns System Timer tick value

(2) Constantly inquire whether the difference between the current System Timer tick and start_tick ex-
ceeds the time value required for timing in the program. If it exceeds, consider that the timer is trig-
gered, perform corresponding operations, and clear the timer or start a new round of timing according
to actual needs.

Assuming that the time to be timed is 100 ms, the way to query whether the time is reached is:

if((u32) (clock_time() - start_tick) > 100 * CLOCK_16M_SYS_TIMER_CLK_1MS)

Since the difference is converted to the u32 type, the limit of the system clock tick from 0xffffffff to 0 is
solved.

In fact, in order to solve the problem of conversion to u32 caused by different system clocks, the SDK
provides a unified calling function. Regardless of the system clock, the following functions can be used to
query and judge:

AN-21112300-E2 39 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

if(clock_time_exceed(start_tick, 100 * 1000)) //unit of the second parameter is us

Please be noted: since the 16MHz clock takes 268 seconds for one cycle, this query function is only applicable
to the timing within 268 seconds. If it exceeds 268 seconds, you need to add a counter to accumulate in
the software (not introduced here).

Application example: after 2 seconds when A condition is triggered (only once), the program performs B()
operation.

u32 a_trig_tick;

int a_trig_flg = 0;

while(1)

{

if(A){

a_trig_tick = clock_time();

a_trig_flg = 1;

}

if(a_trig_flg && clock_time_exceed(a_trig_tick,2 *1000 * 1000)){

a_trig_flg = 0;

B();

}

}

2.3 GPIO Module

The description of GPIO module please refer to drivers/ 8258/ gpio_8258.h, gpio_default_8258.h,
gpio_8258.c to understand, all code is provided in source code form.

The code involves the operation of registers, please refer to the document “gpio_lookuptable” to understand
it.

2.3.1 GPIO definition

B85m series chips have 5 groups of GPIOs, totally 36 GPIOs：GPIO_PA0 ~ GPIO_PA7、GPIO_PB0 ~ GPIO_PB7、
GPIO_PC0 ~ GPIO_PC7、GPIO_PD0 ~ GPIO_PD7、GPIO_PE0 ~ GPIO_PE3

Note:

• There are 36 GPIOs in the core part of the IC, however some GPIOs may not be pinned out in the
different packages of each IC, therefore please refer to the actual GPIO pins in the package of the IC
when using GPIOs.

When you need to use GPIO in your program, you must define it as written above, see drivers/8258/
gpio_8258.h for details.

Note:

The 7 GPIOs are special and need attention.

AN-21112300-E2 40 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

1) 4 GPIOs of MSPI, these 4 GPIOs are the main SPI bus in MCU system bus for read/write flash operation,
power on default for spi state, user can never operate them, program can not use them. These 4 GPIOs are
PE0, PE1, PE2 and PE3.

2) SWS (Single Wire Slave), used for debug and burning firmware, power on default for SWS state, it is
generally not used in the program. The SWS pin in b85m chip is PA7.

3) DM and DP, power on default GPIO state. DM and DP need to be used when USB function is needed;
when USB is not needed, it can be used as GPIO. The DM and DP pin of B85m are PA5 and PA6.

2.3.2 GPIO state control

Only the most basic GPIO states that users need to know are listed here.

1) func (function configuration: special function/general GPIO), if you need to use the input and output
function, you need to configure it as general GPIO.

void gpio_set_func(GPIO_PinTypeDef pin, GPIO_FuncTypeDef func);

The pin is defined for GPIO, the same as below. For func you can choose AS_GPIO or other special func-
tions.

2) ie (input enable)

void gpio_set_input_en(GPIO_PinTypeDef pin, unsigned int value);

value: 1 and 0 means enable and disable respectively.

3) datai (data input): When the input enable is on, this value is the current level of this GPIO pin, which is
used to read the external voltage.

unsigned int gpio_read(GPIO_PinTypeDef pin);

Reading a low voltage returns a value of 0; reading a high voltage returns a non-zero value. Be very careful
here, when reading high, the return value is not necessarily 1, it is a non-0 value.

So in the program, you can not use code similar if(gpio_read(GPIO_PA0) == 1), the recommended use
method is to do the inverse processing for the read value, after the inverse only 1 and 0 two cases:

if(!gpio_read(GPIO_PA0)) //determine high or low level

4) oe (output enable)

void gpio_set_output_en(GPIO_PinTypeDef pin, unsigned int value);

value: 1 and 0 means enable and disable respectively.

5) dataO (data output): When the output enable is on, the value is 1 to output high, 0 to output low.

AN-21112300-E2 41 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void gpio_write(GPIO_PinTypeDef pin, unsigned int value)

6) For the internal analog pull-up and pull-down resistor configuration, there are 3 analog resistors: 1Mohm
pull-up, 10Kohm pull-up and 100Kohm pull-down, and 4 configurable states: 1Mohm pull-up, 10Kohm
pull-up, 100Kohm pull-down and float state.

void gpio_setup_up_down_resistor(GPIO_PinTypeDef gpio, GPIO_PullTypeDef up_down);

The four configurations of up_down：

typedef enum {

PM_PIN_UP_DOWN_FLOAT = 0,

PM_PIN_PULLUP_1M = 1,

PM_PIN_PULLDOWN_100K = 2,

PM_PIN_PULLUP_10K = 3,

}GPIO_PullTypeDef;

In the deepsleep and deepsleep retention states, the GPIO input and output states are all disabled, but the
analog pull-up and pull-down resistors are still valid.

Note:

The following sequence is required when making GPIO function change configurations.

（A）The beginning function is GPIO, then you need to configure the required function MUX first, and then
disable the GPIO function.

（B）The beginning function is IO, you need to change to GPIO output, first set the corresponding IO output
value and OEN, and then finally enable GPIO function.

（C）The beginning function is IO, you need to change to GPIO input and IO pullup, first set output to 1, OEN
to 1 (corresponding to PA and PD), second set pullup to 1 (corresponding to PB and PC), and finally enable
GPIO function.

（D）Set pullup to 1 (corresponding to PB and PC) and IO not pull up, first set output to 0, OEN to 1 (cor-
responding to PA and PD), then set pullup to 0 (corresponding to PB and PC), and finally enable GPIO
function.

GPIO configuration application examples：
1) Configure GPIO_PA4 as output state and output high level.

gpio_set_func(GPIO_PA4, AS_GPIO) ; // PA4 is GPIO by default, you can leave it

gpio_set_input_en(GPIO_PA4, 0);

gpio_set_output_en(GPIO_PA4, 1);

gpio_write(GPIO_PA4,1)

2) Configure GPIO_PC6 as input state to determine whether it reads low and needs to turn on pull-up to
prevent the effect of float level.

AN-21112300-E2 42 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

gpio_set_func(GPIO_PC6, AS_GPIO) ; // PC6 is GPIO by default, you can leave it

gpio_setup_up_down_resistor(GPIO_PC6, PM_PIN_PULLUP_10K);

gpio_set_input_en(GPIO_PC6, 1)

gpio_set_output_en(GPIO_PC6, 0);

if(!gpio_read(GPIO_PC6)){ //whether low level

......

}

3) Configure PA5 and PA6 pins for USB function.

gpio_set_func(GPIO_PA5, AS_USB) ;

gpio_set_func(GPIO_PA6, AS_USB) ;

gpio_set_input_en(GPIO_PA5, 1);

gpio_set_input_en(GPIO_PA6, 1);

2.3.3 GPIO initialization

Calling the gpio_init function in main.c will initialize the state of all 32 GPIOs except for the 4 GPIOs of the
MSPI.

This function initializes each IO to its default state when no GPIO parameters are configured in the user’s
app_config.h. The default states of the 32 GPIOs are:

1) func

Except SWS, all other states are general GPIOs.

2) ie

Except the default ie for SWS is 1, the default ie for all other general GPIOs is 0.

3) oe

All is 0.

4) dataO

All is 0.

5) Internal pull up/down resistors

All is float.

For more details, please refer to drivers/8258/ gpio_8258.h, drivers/8258/ gpio_default_8258.h and drivers/
8278/ gpio_8278.h, drivers/8278/ gpio_default_8278.h.

If there is a state configured in app_config.h to one or more GPIOs, then gpio_init no longer uses the default
state, but the state configured by the user in app_config.h. The reason for this is that the default state of
gpio is represented using macros that are written (using PA0’s ie as an example) as follows:

#ifndef PA0_INPUT_ENABLE

#define PA0_INPUT_ENABLE 1

#endif

AN-21112300-E2 43 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

When these macros can be defined in advance in app_config, these macros no longer use such default
values as above.

The method to configure the GPIO state in app_config.h is (using PA0 as an example):

1) Configure func:

#define PA0_FUNC AS_GPIO

2) Configure ie：

#define PA0_INPUT_ENABLE 1

3) Configure oe:

#define PA0_OUTPUT_ENABLE 0

4) Configure dataO：

#define PA0_DATA_OUT 0

5) Configure internal pull up/down resistors：

#define PULL_WAKEUP_SRC_PA0 PM_PIN_UP_DOWN_FLOAT

Summary of GPIO initialization:

1) The initial state of GPIO can be defined in app_config.h in advance and can be set in gpio_init.

2) It can be set in user_init function by GPIO state control function (gpio_set_input_en, etc.).

3) You can also use a mix of the above two ways: define some in app_config.h in advance, implement them
in gpio_init, and set some others in user_init.

Note:

• If a state of the same GPIO is set to a different value in app_config.h and user_init, the setting in
user_init will prevail according to the order of program execution.

The gpio_init function is implemented as follows. The value of anaRes_init_en determines whether the
analog pull-up and pull-down resistors are set.

void gpio_init(int anaRes_init_en)

{

// gpio digital status setting

if(anaRes_init_en){

gpio_analog_resistance_init();

}

}

AN-21112300-E2 44 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Referring to the introduction of low-power management in the later chapters of the document, we can see
that the registers controlling the GPIO analog pull-up and pull-down resistors can be maintained without
power loss during deepsleep retention, so the state of the GPIO analog pull-up and pull-down resistors can
be maintained in deepsleep retention mode.

In order to ensure that the state of the GPIO analog pull-up and pull-down resistors is not changed after the
deepsleep retention wakeup, it is necessary to determine whether the current deepsleep retention wake_up
before gpio_init, and set the value of anaRes_init_en according to this state, as shown in the following
code.

int deepRetWakeUp = pm_is_MCU_deepRetentionWakeup();

gpio_init(!deepRetWakeUp);

2.3.4 GPIO digital states fail in deepsleep retention mode

In the GPIO state control described above, all the states (func, ie, oe, dataO, etc.) are controlled by the
digital register, except for the analog pull-down resistor which is controlled by the analog register.

Referring to the introduction of low-power management later in the document, it is clear that all digital
register states are lost during deepsleep retention.

On Telink’s previous generation 826x series ICs, GPIO output can be used to control some peripheral devices
during suspend. But on B85m if suspend is switched to deepsleep retention mode, GPIO output state is
disabled and cannot accurately control peripheral devices during sleep. At this point, you can use GPIO
to simulate the state of pull-up and pull-down resistors instead: pull-up 10K instead of GPIO output high,
pull-down 100K instead of GPIO output low.

Note:

• Do not use pull-up 1M for GPIO state control during deepsleep retention (the pull-up voltage may be
lower than the supply voltage VCC). In addition, do not use the pull-up 10K of PC0~PC7 in the pull-up
10K control (there will be a short time jitter in the deepsleep retention wake_up, generating glitches),
pull-up 10K for other GPIO is OK.

2.3.5 Configure SWS pull-ups to prevent crashes

All of Telink’s MCUs use SWS (single wire slave) to debug and burn in programs. On the final application
code, the state of the pin SWS is:

1) function set to SWS, not GPIO.

2) ie =1, only when input enable, it can receive various commands sent by EVK, which is used to operate
MCU.

3) Other configurations: oe, dataO are 0.

After setting to the above state, it can receive operation commands from EVK at any time, but it also
brings a risk: when the power supply of the whole system is very jittered (such as when sending IR, the
instantaneous current may rush to nearly 100mA), as SWS is in float state, it may read a wrong data and
mistake it for a command from EVK, and this wrong command may cause the program stuck.

AN-21112300-E2 45 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The solution to the above problem is to modify the float state of the SWS to input pull-up. This is solved by
an analog pull-up 1M resistor.

B85m’s SWS and GPIO_PA7 are multiplexed, just enable the 1M pull-up of PA7 in drivers/ 8258/
gpio_default_8258.h.

#ifndef PULL_WAKEUP_SRC_PA7

#define PULL_WAKEUP_SRC_PA7 PM_PIN_PULLUP_1M //sws pullup

#endif

2.4 System interrupt

This document applies to hardware interrupts of ICs with the following two characteristics.

（1）All interrupts have the same priority, and the MCU does not have the ability to nest interrupts;

（2）All interrupts share the same interrupt hardware entry, which will eventually trigger the software
irq_handler function, in which the function reads the status bits of the relevant interrupt to determine
whether the corresponding interrupt is triggered.

The feature 1 above determines that the MCU responds to interrupts on a first-come, first-served basis.
When the first interrupt is not processed, a new interrupt is generated and cannot be responded to imme-
diately and enters the waiting queue until the previous interrupts are processed. Therefore, when there are
2 or more interrupts, all interrupts cannot be responded in real time. The response delay of a particular
interrupt depends on whether the MCU is processing other interrupts when this interrupt is triggered and
how long it takes to process the other interrupts. As shown in the figure below, since IRQ1 is processing
when IRQ2 is triggered, it must wait until IRQ1 is finished processing before responding. The worst case of
IRQ 2 delay time is the maximum time of IRQ1 process.

AN-21112300-E2 46 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 2.7: “IRQ delay”

In the BLE SDK, two system interrupts, system timer and RF, are used. If the user does not add new
interrupts, there is no need to consider the timing of the two system interrupts; if the customer needs to
add other interrupts (e.g. UART, PWM, etc.), the details to be considered are as follows.

(1) For the two system interrupts system timer and RF in the SDK, the maximum possible execution time
is 200us. This means that the customer added interrupts may not be able to respond in real time, and
the theoretical maximum possible delay time is 200us.

(2) The two system interrupts system timer and RF are for processing BLE tasks, due to the BLE timing
is more strict, can not be delayed too long. Therefore, the processing time of the interrupts added by
the customer should not be too long, and it is recommended to be within 50us. If the time is too long,
there may be BLE timing synchronization errors, resulting in low efficiency of sending and receiving
packets, high power consumption, BLE disconnection and other problems.

AN-21112300-E2 47 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3 BLE Module

3.1 BLE SDK Software Architecture

3.1.1 Standard BLE SDK Architecture

Figure below shows standard BLE SDK software architecture compliant with BLE spec.

Figure 3.1: “BLE SDK software architecture”

As shown above, BLE protocol stack includes Host and Controller.

• As BLE bottom-layer protocol, the “Controller” contains Physical Layer (PHY) and Link Layer (LL). Host
Controller Interface (HCI) is the sole communication interface for all data transfer between Controller
and Host.

• As BLE upper-layer protocol, the “Host” contains protocols including Logic Link Control and Adaption
Protocol (L2CAP), Attribute Protocol (ATT), Security Manager Protocol (SMP), as well as Profiles includ-
ing Generic Access Profile (GAP) and Generic Attribute Profile (GATT).

AN-21112300-E2 48 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• The “Application” (APP) layer contains user application codes and Profiles corresponding to various
Services. User controls and accesses Host via “GAP”, while Host transfers data with Controller via
“HCI”, as shown below.

Figure 3.2: “HCI Data Transfer between Host and Controller”

(1) BLE Host will use HCI cmd to operate and set Controller. Controller API corresponding to each HCI cmd
will be introduced in this chapter.

(2) Controller will report various HCI events to Host via HCI.

(3) Host will send target data to Controller via HCI, while Controller will directly load data to Physical Layer
for transfer.

(4) When Controller receives RF data in Physical Layer, it will first check whether the data belong to Link
Layer or Host, and then process correspondingly: If the data belong to LL, the data will be processed
directly; if the data belong to Host, the data will be sent to Host via HCI.

3.1.2 Telink BLE SDK Architecture

3.1.2.1 Telink BLE controller

Telink BLE SDK supports standard BLE controllers, including HCI, PHY (Physical Layer) and LL (Link layer).

Telink BLE SDK includes five standard states of Link Layer (standby, advertising, scanning, initiating, con-
nection), and both Slave role and Master role are supported in the conneciton state. In B85m BLE Single
Connection SDK, Slave role and Master role are only single connection, that is, Link Layer can only maintain
one connection, not multiple Slave/Master or Slave and Master at the same time.

AN-21112300-E2 49 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The B85m hci in the SDK is a BLE slave controller, which needs to coordinate with another MCU running BLE
Host to form a standard BLE Slave system, the architecture diagram is as follows.

Figure 3.3: “Telink HCI architecture”

Link Layer connection status supports both Slave and Master of single connection, then B85m hci can actu-
ally be used as BLE master controller. However, actually for a BLE host running on more complex systems
(such as Linux/Android), a single connection master controller can only connect to one device, which is
almost meaningless, so the SDK does not put the initialization of the master role in the B85m hci.

3.1.2.2 Telink BLE Slave

Telink BLE SDK in BLE host fully supports stack of Slave; for the Master, it can not fully support, because
SDP (service discovery) is too complex.

When user only needs to use standard BLE Slave, and Telink BLE SDK runs Host (Slave part) + standard Con-
troller, the actual stack architecture will be simplified based on the standard architecture, so as to minimize
system resource consumption of the whole SDK (including SRAM, running time, power consumption, and
etc.). Following shows Telink BLE Slave architecture. In the SDK, B85m ble sample, B85m remote and B85m
module are based on this architecture.

AN-21112300-E2 50 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.4: “Telink BLE Slave architecture”

In figure above, solid arrows indicate data transfer controllable via user APIs, while hollow arrows indicate
data transfer within the protocol stack not involved in user.

Controller can still communicate with Host (L2CAP layer) via HCI; however, the HCI is no longer the sole
interface, and the APP layer can directly exchange data with Link Layer of the Controller. Power Management
(PM) Module is embedded in the Link Layer, and the application layer can invoke related PM interfaces to
set power management.

Considering efficiency, data transfer between the APP layer and the Host is not controlled via GAP; the ATT,
SMP and L2CAP can directly communicate with the APP layer via corresponding interface. However, the
event of the Host should be communicated with the APP layer via the GAP layer.

Generic Attribute Profile (GATT) is implemented in the Host layer based on Attribute Protocol. Various
Profiles and Services can be defined in the APP layer based on GATT. Basic Profiles including HIDS, BAS,
AUDIO and OTA are provided in demo code of this BLE SDK.

Following sections explain each layer of the BLE stack according to the structure above, as well as user APIs
for each layer.

Physical Layer is totally controlled by Link Layer, since it does not involve the application layer, it will not be
covered in this document.

Though HCI still implements part of data transfer between Host and Controller, it is basically implemented
by the protocol stack of Host and Controller with little involvement of the APP layer. User only needs to
register HCI data callback handling function in the L2CAP layer.

AN-21112300-E2 51 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.1.2.3 Telink BLE master

The implementation of Telink BLE master is different from that of Slave. The SDK provides standard controller
packed inside the library, but the app layer implements host and user’s own application, as shown in the
figure below.

Figure 3.5: “Telink BLE master architecture”

In the B85m master kma dongle project of the SDK, the demo code is implemented based on this architec-
ture, the host layer code is almost all implemented in the app layer. The SDK provides a variety of standard
interfaces for users to complete these functions.

The App layer implements the standard l2cap, att and other processing, in the SMP part it only provides
the most basic just work way. The B85m master kma dongle default SMP is disable, the user needs to
open this macro to enbale SMP. Due to the complexity of SMP implementation, the specific code implemen-
tation is still packed in the library, the app layer only needs to call the relevant interface, user searching

AN-21112300-E2 52 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

BLE_HOST_SMP_ENABLE can find all the code processing.

#define BLE_HOST_SMP_ENABLE 0

//1 for standard security management,

// 0 for telink referenced paring&bonding(no security)

The SDP is the most complex part, Telink BLE master does not provide a standard SDP, only a simple ref-
erence is given to the B85m remote service discovery. The b85m master kma dongle default this simple
reference SDP is on.

#define BLE_HOST_SIMPLE_SDP_ENABLE 1 //simple service discovery

The SDK provides standard interfaces for all service discovery related ATT operations, users can
refer to B85m remote’s service discovery to implement their own service discovery, or disable
BLE_HOST_SIMPLE_SDP_ ENABLE and use the agreed service ATT handle with the slave to achieve
data access.

Telink BLE master does not support Power Management because the scannning and connection master role
of Link Layer does not do suspend processing.

3.2 BLE Controller

3.2.1 BLE Controller Introduction

BLE Controller contains Physical Layer, Link Layer, HCI and Power Management.

Telink BLE SDK fully packs Physical Layer in the library (corresponding to c file of rf.h in driver file), and user
does not need to learn about it. Power Management will be introduced in detail in section 4 Low Power
Management (PM).

This section will focus on Link Layer, and also introduce HCI related interfaces to operate Link Layer and
obtain data of Link Layer.

3.2.2 Link Layer State Machine

Figure below shows Link Layer state machine in BLE spec. Please refer to “Core_v5.0” (Vol 6/Part B/1.1
“LINK LAYER STATES”) for more information.

AN-21112300-E2 53 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.6: “Link Layer State Machine in BLE Spec”

Telink BLE SDK Link Layer state machine is shown as below.

AN-21112300-E2 54 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.7: “Telink Link Layer State Machine”

Telink BLE SDK Link Layer state machine is consistent with BLE spec, and it contains five basic states:
Idle (Standby), Scanning, Advertising, Initiating, and Connection. Connection state contains Slave Role and
Master Role.

From the introduction of library earlier in the document, the current Slave Role and Master Role are both
designed based on single connection, and the Slave Role is single connection by default; the Master Role
is currently provided with single connection, but since it will provide a multi connection in the future, it is
named Master role single conection here to distinguish it from the future Mater Role multi connection.

In this document, Slave Role will be marked as “Conn state Slave role” or “ConnSlaveRole/Connection Slave
Role”, or “ConnSlaveRole” in brief; while Master Role will be marked as “Conn state Master role” or “Conn-
MasterRole/Connection Master Role”, or “ConnMasterRole” in brief.

The “Power Management” in figure above is not a state of LL, but a functional module which indicates the

AN-21112300-E2 55 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

SDK only implements low power processing for Advertising and Connection Slave Role. If Idle state needs
low power, user can invoke related APIs in the APP layer. For the other states, the SDK does not contain low
power management, and user cannot implement low power in the APP layer.

Based on the five states above, corresponding state machine names are defined in the “stack/ble/ll/ll.h”.
“ConnSlaveRole” and “ConnMasterRole” correspond to state name “BLS_LINK_STATE_CONN”.

#define BLS_LINK_STATE_IDLE 0

#define BLS_LINK_STATE_ADV BIT(0)

#define BLS_LINK_STATE_SCAN BIT(1)

#define BLS_LINK_STATE_INIT BIT(2)

#define BLS_LINK_STATE_CONN BIT(3)

Switch of Link Layer state machine is automatically implemented in BLE stack bottom layer. Therefore, user
cannot modify state in APP layer, but can obtain current state by invoking the API below. The return value
will be one of the five states.

u8 blc_ll_getCurrentState(void);

3.2.3 Link Layer State Machine Combined Application

3.2.3.1 Link Layer State Machine Initialization

Telink BLE SDK Link Layer fully supports all states; however, it’s flexible in design. Each state can be assem-
bled as a module; be default there’s only the basic Idle module, and user needs to add modules and establish
state machine combination for his application. For example, for BLE Slave application, user needs to add
Advertising module and ConnSlaveRole, while the remaining Scanning/Initiating modules are not included
so as to save code size and ram_code. The code of unused states won’t be compiled.

The MCU initialization is mandatory and the API is as follows.

void blc_ll_initBasicMCU (void);

The API below serves to add the basic Idle module. This API is also necessary for all BLE applications.

void blc_ll_initStandby_module (u8 *public_adr);

The initialization APIs of the corresponding modules for several other states (Scanning, Alerting, Initiating,
Slave Role, Master Role Single Connection) are as follows.

void blc_ll_initAdvertising_module(u8 *public_adr);

void blc_ll_initScanning_module(u8 *public_adr);

void blc_ll_initInitiating_module(void);

void blc_ll_initConnection_module(void);

void blc_ll_initSlaveRole_module(void);

void blc_ll_initMasterRoleSingleConn_module(void);

AN-21112300-E2 56 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The real parameter public_adr in the above API is a pointer to the BLE public mac address.

The following API is used to initialize the module shared by master and slave.

void blc_ll_initConnection_module(void);

User can use the above APIs to combine the Link Layer state machine. The following are some common
combinations and corresponding application scenarios, but they are not limited to the following combina-
tions.

3.2.3.2 Idle + Advertising

Figure 3.8: “Idle + Advertising”

As shown above, only Idle and Advertising module are initialized, and it applies to applications which use
basic advertising function to advertise product information in single direction, e.g. beacon.

Following is module initialization code of Link Layer state machine.

u8 mac_public[6] = {……};

blc_ll_initBasicMCU();

blc_ll_initStandby_module(mac_public);

blc_ll_initAdvertising_module(mac_public);

State switch of Idle and Advertising is implemented via the “bls_ll_setAdvEnable”.

3.2.3.3 Idle + Scanning

As shown in the figure below, only the Idle and Scanning modules are initialized, and the most basic Scanning
function is used to achieve the scanning and discovery of beacons and other product broadcast informa-
tion.

The Link Layer state machine module initialization code is:

AN-21112300-E2 57 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

u8 mac_public[6] = {……};

blc_ll_initBasicMCU();

blc_ll_initStandby_module(tbl_mac);

blc_ll_initScanning_module(tbl_mac);

The switching of Idle and Scanning states is implemented by “blc_ll_setScanEnable”.

Figure 3.9: “Idle + Scanning”

AN-21112300-E2 58 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.3.4 Idle + Advertising + ConnSlaveRole

Figure 3.10: “BLE Slave LL State”

The figure above shows the Link Layer state machine combination for a basic BLE slave application. The
b85m hci/b85m ble sample/b85m remote/b85m module in the SDK are all based on this state machine
combination.

The Link Layer state machine module is initialized with the following code.

u8 mac_public[6] = {……};

blc_ll_initBasicMCU();

blc_ll_initStandby_module(mac_public);

blc_ll_initAdvertising_module(mac_public);

AN-21112300-E2 59 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

blc_ll_initConnection_module();

blc_ll_initSlaveRole_module();

State switch in this combination is shown as below:

(1) After power on, the MCU enters Idle state. In Idle state, when adv is enabled, Link Layer switches to
Advertising state; when adv is disabled, it will return to Idle state.

The API “bls_ll_setAdvEnable” serves to enable/disable Adv.

After power on, Link Layer is in Idle state by default. Typically it’s needed to enable Adv in the
“user_init” so as to enter Advertising state.

(2) When Link Layer is in Idle state, Physical Layer won’t take any RF operation including packet transmis-
sion and reception.

(3) When Link Layer is in Advertising state, advertising packets are transmitted in adv channels. Master
will send conneciton request if it receives adv packet. After Link Layer receives this connection request,
it will respond, establish connection and enter ConnSlaveRole.

(4) When Link Layer is in ConnSlaveRole, it will return to Idle State or Advertising state in any of the
following cases:

• Master sends “terminate” command to Slave and requests disconnection. Slave will exit ConnSlaveRole
after it receives this command.

• By sending “terminate” command to Master, Slave actively terminates the connection and exits
ConnSlaveRole.

• If Slave fails to receive any packet due to Slave RF Rx abnormity or Master Tx abnormity until BLE
connection supervision timeout is triggered, Slave will exit ConnSlaveRole.

When ConnSlaveRole of Link layer exits this state, it switches to a different state depending on whether
Adv is enabled or not: if Adv is enabled, Link Layer goes back to Advertising state; if Adv is Disable, Link
Layer goes back to Idle state. Whether Adv is Enable or Disable depends on the value set by the user when
bls_ll_setAdvEnable was last called by the application layer.

AN-21112300-E2 60 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.3.5 Idle + Scanning + Initiating + ConnMasterRole

Figure 3.11: “BLE Master LL State”

The above figure shows the Link Layer state machine combination for a basic BLE master application, the
B85m master kma dongle in the SDK is based on this state machine combination. The Link Layer state
machine module initialization code is.

u8 mac_public [6] = {……};

blc_ll_initBasicMCU();

blc_ll_initStandby_module(mac_public);

blc_ll_initScanning_module(mac_public);

AN-21112300-E2 61 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

blc_ll_initInitiating_module();

blc_ll_initConnection_module();

blc_ll_initMasterRoleSingleConn_module();

The state change under this state machine combination is described as follows.

1) After the MCU is powered on, it enters the Idle state; Scan is enabled in the Idle state, and the Link Layer
is switched to the Scanning state; when Scan is disabled in the Scanning state, it returns to the Idle state.

The Scan Enable and Disable are controlled by API blc_ll_setScanEnable.

After power on, the Link layer is in Idle state by default. It is generally necessary to set Scan Enable inside
user_init to enter Scanning state.

When Link Layer is in Scanning state, it will report the adv packet scanned to BLE host through event
“HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

2) In Idle state and Scanning state, Link Layer can trigger API blc_ll_createConnection to enter Initiating
state.

The blc_ll_createConnection specifies the mac address of one or more BLE devices that need to be con-
nected. After the Link Layer enters the Initiating state, it continuously scans the specified BLE device, sends
a connection request and enters the ConnMasterRole after receiving a correct adv packet that can be con-
nected. If the initiating state does not scan the specified BLE device within a certain period of time and
cannot initiate a connection, it will trigger a create connection timeout and revert to Idle State or Scanning
state.

Note:

• Initiating state can enter from Idle state and Scanning state (B85m master kma dongle enters directly
from Scanning state), create connection timeout and then return to the Idle State or Scanning state
before create connection.

3) When the Link Layer is in ConnMasterRole, it returns to Idle State in one of three ways：

a) The slave sends a terminate command to the master to disconnect. The master receives the terminate
command and exits ConnMasterRole.

b) The master sends a terminate command to the slave, actively disconnects, and exits ConnMasterRole.
c) The master’s RF packet receiving exception or the slave’s packet sending exception causes the master

to receive no packet for a long time, triggering the BLE’s connection supervision timeout and exiting
the ConnMasterRole.

If the Link layer’s ConnMasterRole exits this state, it can only return to the Idle state. if it needs to continue
scanning, it must use the API blc_ll_setScanEnable to set the Link Layer to enter the Scanning state again.

3.2.4 Link Layer Timing Sequence

In this section, Link Layer timing sequence in various states will be illustrated combining with irq_handler
and main_loop of this BLE SDK.

AN-21112300-E2 62 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

_attribute_ram_code_ void irq_handler(void)

{

……
irq_blt_sdk_handler ();

……
}

void main_loop (void)

{

///////////////////// BLE entry ////////////////////////////

blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////////

……
}

The “blt_sdk_main_loop” function at BLE entry serves to process data and events related to BLE protocol
stack. UI entry is for user application code.

3.2.4.1 Timing Sequence in Idle State

When Link Layer is in Idle state, no task is processed in Link Layer and Physical Layer; the “blt_sdk_main_loop”
function doesn’t act and won’t generate any interrupt, i.e. the whole timing sequence of main_loop is
occupied by UI entry.

3.2.4.2 Timing Sequence in Advertising State

Figure 3.12: “Timing Sequence in Advertising State”

As shown in figure above, an Adv event is triggered by Link Layer during each adv interval. A typical Adv
event with three active adv channels will send an advertising packet in channel 37, 38 and 39, respectively.
After an adv packet is sent, Slave enters Rx state, and waits for response from Master:

• If Slave receives a scan request from Master, it will send a scan response to Master.

AN-21112300-E2 63 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• If Slave receives a connect request from Master, it will establish BLE connection with Master and enter
Connection state Slave Role.

Code of UI entry in main_loop is executed during UI task/suspend part in figure above. This duration can be
used for UI task only, or MCU can enter sleep (suspend or deep sleep retention) for the redundant time to
reduce power consumption.

In Advertising state, the “blt_sdk_main_loop” function does not need to process many tasks, and only
some callback events related to Adv will be triggered, including BLT_EV_FLAG_ADV_DURATION_TIMEOUT、
BLT_EV_FLAG_SCAN_RSP, BLT_EV_FLAG_CONNECT, etc.

3.2.4.3 Timing Sequence in Scanning State

Figure 3.13: “Timing Sequence in Scanning State”

Scan interval is configured by the API “blc_ll_setScanParameter”. During a whole Scan interval, packet
reception is implemented in one channel, and Scan window is not designed in the SDK. Therefore, the SDK
won’t process the setting of Scan window in the “blc_ll_setScanParameter”.

After the end of each Scan interval, it will switch to the next receiving channel, and enters next Scan interval.
Channel switch action is triggered by interrupt, and it’s executed in irq which takes very short time.

In Scanning interval, PHY Layer of Scan state is always in RX state, and it depends on MCU hardware to
implement packet reception. Therefore, all timing in software are for UI task.

After correct BLE packet is received in Scan interval, the data are first buffered in software RX fifo (corre-
sponding to “my_fifo_t blt_rxfifo” in code), and the “blt_sdk_main_loop” function will check whether there
are data in software RX fifo. If correct adv data are discovered, the data will be reported to BLE Host via
the event “HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

3.2.4.4 Timing Sequence in Initiating State

Figure 3.14: “Timing Sequence in Initiating State”

Timing sequence of Initiating state is similar to that of Scanning state, except that Scan interval is configured
by the API “blc_ll_createConnection”. During a whole Scan interval, packet reception is implemented in one

AN-21112300-E2 64 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

channel, and Scan window is not designed in the SDK. Therefore, the SDK won’t process the setting of Scan
window in the “blc_ll_createConnection”.

After the end of each Scan interval, it will switch to the next listening channel, and start a new Scan interval.
Channel switch action is triggered by interrupt, and it’s executed in irq which takes very short time.

In Scanning state, BLE Controller will report the received adv packet to BLE Host; however, in Ini-
tiating state, adv won’t be reported to BLE Host, and it only scans for the device specified by the
“blc_ll_createConnection”. If the specific device is scanned, it will send connection_request and establish
connection, then Link Layer enters ConnMasterRole.

3.2.4.5 Timing Sequence in Conn State Slave Role

Figure 3.15: “Timing Sequence in Conn State Slave Role”

As shown in the above figure, each conn interval starts with a brx event, i.e. transfer process of BLE RF
packets by Link Layer: PHY enters Rx state, and an ack packet will be sent to respond to each received data
packet from Master. If there is more data, then continue to receive master packets and reply, this process
is called brx event for short.

In this BLE SDK, each brx process consists of three phases according to the assignment of hardware and
software.

(1) brx start phase

When Master is about to send packet, an interrupt is triggered by system tick irq to enter brx start phase.
During this interrupt, MCU sets BLE state machine of PHY to enter brx state, hardware in bottom layer
prepares for packet transfer, and then MCU exits from the interrupt irq.

(2) brx working phase

After brx start phase ends and MCU exits from irq, hardware in bottom layer enters Rx state first and waits for
packet from Master. During the brx working phase, all packet reception and transmission are implemented
automatically without involvement of software.

(3) brx post phase

After packet transfer is finished, the brx working phase is completed. System tick irq triggeres an interrupt
to switch to the brx post phase. During this phase, protocol stack will process BLE data and timing sequence
according to packet transfer in the brx working phase.

AN-21112300-E2 65 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

During the three phases, brx start and brx post are implemented in interrupt, while brx working phase does
not need the involvement of software, and UI task can be executed normally (Note that during brx working
phase, UI task can be executed in the time slots except RX, TX, and System Timer interrupt handler). During
the brx working phase, MCU can’t enter sleep (suspend or deep sleep retention) since hardware needs to
transfer packets.

Within each conn interval, the duration except for brx event can be used for UI task only, or MCU can enter
sleep (suspend or deep sleep retention) for the redundant time to reduce power consumption.

In the ConnSlaveRole, the “blt_sdk_main_loop” needs to process the data received during the brx process.
During the brx working phase, the data packet received from Master will be copied out during RX interrupt
irq handler; these data won’t be processed immediately, but buffered in software RX fifo (corresponding
to my_fifo_t blt_rxfifo in code). The “blt_sdk_main_loop” function will check whether there are data in
software RX fifo, and process the detected data packet correspondingly:

The processing of packets by blt_sdk_main_loop includes:

(1) Decryption of data packet

(2) Parsing of data packet

If the parsed data belongs to the control command sent by Master to Link Layer, this command will be
executed immediately; if it’s the data sent by Master to Host layer, the data will be transferred to L2CAP
layer via HCI interface.

3.2.4.6 Timing Sequence in Conn State Master Role

Figure 3.16: “Timing Sequence in Conn Master Role”

The ConnMasterRole timing sequence is shown above. At the beginning of each conn interval, the Link
Layer performs a BLE RF packet sending and receiving process: first the PHY enters the packet sending
state, sends a packet to the slave and then waits for the other party’s ack packet, if there is more data, it
continues to send packets to the slave, this process is referred to as btx event.

In this BLE SDK, each brx process consists of three phases according to the assignment of hardware and
software.

1) btx start phase

When the time for master to send packets is approaching, it will be triggered by system tick irq to enter the
btx start phase, in which the MCU sets the BLE state machine of the PHY to enter the btx state, and the
bottom layer hardware prepares to send and receive packets, and then exits the interrupt irq.

AN-21112300-E2 66 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

2) btx working phase

After btx start, the MCU exits irq and the bottom layer hardware enters the transmitting state and does all
the work of sending and receiving packets automatically, without any software involvement, this process is
called the btx working phase.

3) btx post phase

After the packet is sent and received, btx working is finished and the system tick irq triggers the btx post
phase. This phase is mainly for the protocol stack to process some data and timing of the BLE according to
the btx working phase.

The btx start and btx post in the above three phases are both interrupted, while the btx working phase
requires no software involvement and the UI task can be executed normally at this point.

At ConnMasterRole, blt_sdk_main_loop needs to process the data received by the btx process. The btx
working process actually copies the slave packets received by the hardware during the RX receive interrupt
irq processing, this data is not immediately processed in real time, but cached in the software RX fifo. The
blt_sdk_main_loop function will check if there is data in the software RX fifo and process it as soon as it is
available.

The processing of packets by blt_sdk_main_loop includes：
1) Decryption of data packet

2) Parsing of data packet

If the parsed data is found to belong to a control command sent by the slave to the Link Layer, the command
will be executed immediately. If it is data sent by the master to the Host Layer, the data will be dropped to
the L2CAP layer for processing through the HCI interface.

3.2.4.7 Timing Protect for Conn State Slave role

ConnSlaveRole, each interval requires a send/receive packet event, which is the Brx Event above. In the
B85m SDK, the Brx Event is triggered entirely by interrupts, so the MCU main system interrupt needs to be
turned on all the time. If the user is in the Conn state for a long time and has to turn off the main system
interrupt (e.g. to erase the Flash), the Brx Event will be stopped and the BLE timing will soon be messed up
and eventually the connection will be disconnected.

In this situation, the SDK provides a protection mechanism that allows the user to disable the Brx Event
without breaking the BLE timing, and the user needs to strictly follow this mechanism. The relevant API is
as follows.

int bls_ll_requestConnBrxEventDisable(void);

void bls_ll_disableConnBrxEvent(void);

void bls_ll_restoreConnBrxEvent(void);

Call bls_ll_requestConnBrxEventDisable to request that the Brx Event be switched off.

1) If the return value of this API is 0, it means that the user’s application is not currently accepted, i.e. the
Brx Event cannot be stopped at this time. During the Brx working phase at Conn state, the application
cannot be accepted and the return value is 0. It must wait until the end of a full Brx Event to accept the
application for the remaining UI task/suspend time.

AN-21112300-E2 67 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

2) This API returns a non-zero value to indicate that the request can be accepted and the value returned is
the time in ms allowed to stop the Brx Event. There are three cases for this event value：

a) If the current Link Layer is Alerting state or Idle state, the return value is 0xffff, that is, there is no Brx
Event, and the user is allowed to turn off the system interrupt for any length of time.

b) If the current Conn state receives an update map or update connection parameter from the master
and has not yet reached the update time point, the return time is the update time point minus the
current time. In other words, the time to stop the Brx Event cannot exceed the update time, otherwise
all the packets will not be received and the connection will be disconnected.

c) If the current state is Conn state and there is no update request from master, the return value is half
of the current connection supervision timeout value. For example, if the current timeout is 1s, the
return value is 500ms.

The user calls the above API to request to disable the Brx Event, and if the return value corresponds
to enough time (ms) for the task to run itself, the task can be performed. Before the task is exe-
cuted, API bls_ll_disableConnBrxEvent is called to disable the Brx Event. After the task is finished, API
bls_ll_restoreConnBrxEvent is called to re-enable the Brx Event and repair the BLE timing.

The reference usage is as follows. Where the specific time is judged by the actual time of tested task.

Figure 3.17: “Timing of Scanning in Advertising state”

3.2.5 Link Layer State Machine Extension

The above BLE Link Layer state machine and working timings introduce the most basic states, which can
satisfy the basic applications such as BLE slave/master. However, in view of the special applications that

AN-21112300-E2 68 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

users may have (e.g. advertising during the Conn state Slave role), the Telink BLE SDK adds some special
extensions to the Link Layer state machine, which are described in detail below.

3.2.5.1 Scanning in Advertising state

When Link Layer is in Advertising state, the Scanning feature can be added.

The API to add Scanning feature：

ble_sts_t blc_ll_addScanningInAdvState(void);

The API to remove Scanning feature：

ble_sts_t blc_ll_removeScanningFromAdvState(void);

For the above two API, the return value of ble_sts_t type are both BLE_SUCCESS.

Combining the timing sequence of the Advertising state and Scanning state, the timing sequence is as
follows when the Scanning feature is added to the Advertising state.

Figure 3.18: “Timing of Scanning in Advertising state”

The current Link Layer is still in the Advertising state (BLS_LINK_STATE_ADV) and the remaining time in
each Adv interval, excluding the Adv event, is used for Scanning.

At each Set Scan, it is determined whether the current time exceeds a Scan interval (set by blc_ll_setScanParameter)
since the last Set Scan, and if so, the Scan channel is switched (channel 37/38/39).

For the usage of Scanning in Advertising state, please refer to the TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE
in the B85m_feature_test.

3.2.5.2 Scanning in ConnSlaveRole

When the Link Layer is in ConnSlaveRole, the Scanning feature can be added.

The API to add Scanning feature：

ble_sts_t blc_ll_addScanningInConnSlaveRole(void);

The API to remove Scanning feature：

AN-21112300-E2 69 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t blc_ll_removeScanningFromConnSLaveRole(void);

For the above two API, the return value of ble_sts_t type are both BLE_SUCCESS.

Combining the timing sequence of Scanning state and ConnSlaveRole, when the Scanning feature is added
to ConnSlaveRole, the timing sequence is as follows.

Figure 3.19: “Timing of Scanning in ConnSlaveRole”

The current Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN) and the remaining time in each
Conn interval, excluding the brx event, is used for Scanning.

At each Set Scan, it is determined whether the current time exceeds a Scan interval (set by blc_ll_setScanParameter)
since the last Set Scan, and if so, the Scan channel is switched (channel 37/38/39).

For the usage of Scanning in ConnSlaveRole, please refer to the TEST_SCANNING_IN_ADV_AND_CONN_
SLAVE_ROLE in B85m_feature_test.

3.2.5.3 Advertising in ConnSlaveRole

When the Link Layer is in ConnSlaveRole, the Advertising feature can be added.

The API to add Advertising feature：

ble_sts_t blc_ll_addAdvertisingInConnSlaveRole(void);

The API to remove Advertising feature：

ble_sts_t blc_ll_removeAdvertisingFromConnSLaveRole(void);

For the above two API, the return value of ble_sts_t type are both BLE_SUCCESS.

Combining the timing sequence of Advertising and ConnSlaveRole, when the Advertising feature is added
to ConnSlaveRole, the timing sequence is as follows.

AN-21112300-E2 70 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.20: “Timing of Advertising in ConnSlaveRole”

The current Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN) and executes an adv event imme-
diately after the brx event in each Conn interval, and then leaves the rest of the time for the UI task or goes
into sleep (suspend/ deepsleep retention) to save power.

For the usage of Advertising in ConnSlaveRole, please refer to the TEST_ADVERTISING_IN_CONN_SLAVE_ROLE
in B85m_feature_test.

3.2.5.4 Advertising and Scanning in ConnSlaveRole

Combined with the use of Scanning in ConnSlaveRole and Advertising in ConnSlaveRole above, it is possible
to add both Scanning and Advertising to ConnSlaveRole. The timing sequence is as follows.

Figure 3.21: “Timing of Advertising and Scanning in ConnSlaveRole”

The current Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN) and an adv event is executed
immediately after the brx event in each Conn interval, and then the rest of the time is used for Scanning.

At each Set Scan, it is determined whether the current time exceeds a Scan interval (set by blc_ll_setScanParameter)
since the last Set Scan, and if so, the Scan channel is switched (channel 37/38/39).

For the usage of Advertising and Scanning in ConnSlaveRole, please refer to the TEST_ADVERTISING_ SCAN-
NING_IN_CONN_SLAVE_ROLE in B85m_feature_test.

AN-21112300-E2 71 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.6 Link Layer TX fifo & RX fifo

All data from the application layer and the BLE Host eventually needs to be sent through the Link Layer of
the Controller to complete the RF data. A BLE TX fifo is designed in the Link Layer, which can be used to
cache the incoming data and to send the data after the brx/btx has started.

All data received from the peer device during Link Layer brx/btx is first stored in a BLE RX fifo before being
uploaded to the BLE Host or application layer for processing.

The BLE TX fifo and BLE RX fifo for the Slave role and Master role are handled in the same way. Both the
BLE TX fifo and BLE RX fifo are defined at the application layer.

MYFIFO_INIT(blt_rxfifo, 64, 8);

MYFIFO_INIT(blt_txfifo, 40, 16);

The RX fifo size is 64 by default and the TX fifo size is 40 by default, and these two sizes are not allowed to
be modified unless a data length extension is required.

Both TX fifo number and RX fifo number must be set to the power of 2, i.e. 2, 4, 8, 16, etc. Users can modify
them slightly to suit their needs.

RX fifo number is 8 by default, which is a reasonable value and can ensure that the bottom layer of the Link
Layer can buffer up to 8 packets. If the setting is too large, it will take up too much SRAM. If the setting is
too small, there may be a risk of data overwriting: in the brx event, the Link Layer is likely to word under
more data (MD) mode on an interval, and continue to receive multiple packets, if you set 4, it is likely that
there will be five or six packets in an interval (such as OTA, playing master voice data, etc.), and the upper
layer’s response to these data is too long to process due to the long decryption time, then it is possible some
data is overflowed.

Here is an example of RX overflow, we have the following assumptions:

a) The number of RX fifo is 8;

b) Before brx_event(n) is turned on, the read and write pointers of RX fifo are 0 and 2 respectively;

c) In the brx_event(n) and brx_event(n+1) stages, the main_loop has task blockage, and the RX fifo is
not taken in time;

d) Both brx_event stages are multi-packet situations.

From the description in the “Conn state Slave role timing” section above, we know that the BLE data packets
received in the brx_working stage will only be copied to the RX fifo (RX fifo write pointer++), and the RX fifo
data is actually taken out for processing. In the main_loop stage (RX fifo read pointer++), we can see that
the sixth data will cover the read pointer 0 area. It should be noted here that the UI task time slot in the brx
working stage is the time except for interrupt processing such as RX, TX, and system timer.

AN-21112300-E2 72 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.22: “RX overflow case 1”

Relative to the extreme case above with long task blockade duration due to one connection interval, the case
below is more likely to occur: During one brx_event, since Master writes multiple packets (e.g. 7/8 packets)
into Slave, Slave fails to process the received data in time. As shown below, the rptr (read pointer) is
increased by two, but the wptr (write pointer) is also increased by eight, which thus causes data overflow.

AN-21112300-E2 73 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.23: “RX overflow case 2”

Once there is a data loss problem caused by overflow, for the encryption system, there will be a MIC failure
disconnection problem. (For old SDK, as brx event Rx IRQ will fill data to Rx fifo but not do data overflow
check, if main_loop is too slow to process RX fifo it will lead to overflow problem, so when using old SDK,
user need to pay more attention to this risk, avoid master to send too much data on one connection interval,
pay attention to user UI that the task processing time is as short as possible to avoid blocking problems.)

Rx overflow checks have now been added to the SDK. Check whether the current RX fifo write pointer and
read pointer difference is greater than the number of Rx fifo in brx/btx event Rx IRQ. Once the Rx fifo is
found to be full, the RF will not ACK the other party. BLE protocol Data retransmission will be ensured.
In addition, the SDK also provides the Rx overflow callback function to notify users. This callback will be
introduced in the chapter “Telink defined event” later in the document.

Similarly, if there may be more than 8 valid packets in an interval, the default 8 is not enough.

The TX fifo number is 16 by default, which is able to handle the larger data volume of the voice remote
control function. Users can modify it to 8 if they do not use such a large fifo.

If set too large (e.g. 32) it will take up too much sram.

In the TX fifo, the SDK bottom layer stack needs to use 2, and the rest is used exclusively by the application
layer; for a TX fifo of 16, the application layer can only use 14; for 8, the application layer can only use 6.

When sending data from the application layer (e.g. calling blc_gatt_pushHandleValueNotify), the user should
first check how many TX fifo’s are currently available in the Link Layer.

The following API is used to determine how many TX fifo’s are currently occupied, not how many are left.

AN-21112300-E2 74 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

u8 blc_ll_getTxFifoNumber (void);

For example, if the TX fifo number defaults to 16, there are 14 users available, so the value returned by
the API is available as long as it is less than 14: a return of 13 means there is 1 available, and a return of 0
means there are 14 available.

When using TX fifo, if the customer first looks at how many are left before deciding whether to push the
data directly, a fifo should be left in place to prevent various boundary issues from occurring.

In the voice processing of the B85m remote, as each voice data is known to be split into 5 packets, 5 TX
fifo’s are required and no more than 9 occupied fifo’s can be used. In order to avoid exceptions caused
by some boundary conditions when the TX fifo is used (e.g. just in time for the BLE stack to reply to the
master’s command and insert a data into the TX fifo), the final code is written as follows: the voice data is
only pushed to the TX fifo when there are no more than 8 occupied TX fifo’s.

if (blc_ll_getTxFifoNumber() < 9)

{

……
}

As discussed above, the SDK provides the following API for limiting the amount of more data received on an
interval (if the customer wants to limit the data even if the RX fifo is sufficient), in addition to the automatic
data overflow handling mechanism.

void blc_ll_init_max_md_nums(u8 num);

In which, the maximum number of more data set by parameter num should not to exceed the RX fifo
number.

Note:

• Note that the ability to qualify more data on a connection event is only enabled if the API is called at
the application level (parameter num is greater than 0).

3.2.7 Controller Event

Considering user may need to record and process some key actions of BLE stack bottom layer in the APP
layer, Telink BLE SDK provides three types of event: Standard HCI event defined by BLE Controller; Telink
defined event; event-notification type GAP event (Host event) defined by BLE Host for stack flow interaction
(see section GAP event).

As shown in the BLE SDK event architecture below: HCI event and Telink defined event are Controller event,
while GAP event is BLE Host event.

AN-21112300-E2 75 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.24: “BLE SDK Event Architecture”

3.2.7.1 Controller HCI Event

HCI event is designed according to BLE Spec; Telink defined event only applies to BLE Slave (b85m remote/
b85m module etc).

• BLE Master only supports HCI event.

• BLE Slave supports both HCI event and Telink defined event.

For BLE Slave, basically the two sets of event are independent of each other, except for the connect and
disconnect event of Link Layer.

User can select one set or use both as needed. In Telink BLE SDK, b85m hci/b85m master kma dongle
module use Telink defined event.

As shown in the “Host + Controller” architecture below, Controller HCI event indicates all events of Controller
are reported to Host via HCI.

AN-21112300-E2 76 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.25: “HCI Event”

For definition of Controller HCI event, please refer to “Core_v5.0” (Vol 2/Part E/7.7 “Events”). “LE Meta
Event” in 7.7.65 indicates HCI LE (low energy) Event, while the others are commom HCI events. As defined
in Spec, Telink BLE SDK also divides Controller HCI event into two types: HCI Event and HCI LE event. Since
Telink BLE SDK focuses on BLE, it supports most HCI LE events and only a few basic HCI events.

For the definition of macros and interfaces related to Controller HCI event, please refer to head files under
“stack/ble/hci”.

To receive Controller HCI event in Host or APP layer, user should register callback function of Controller HCI
event, and then enable mask of corresponding event.

Following are callback function prototype and register interface of Controller HCI event:

typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);

void blc_hci_registerControllerEventHandler(hci_event_handler_t handler);

In the callback function prototype, “u32 h” is a mark which will be frequently used in bottom-layer stack,
and user only needs to know the following:

#define HCI_FLAG_EVENT_TLK_MODULE (1<<24)

#define HCI_FLAG_EVENT_BT_STD (1<<25)

The “HCI_FLAG_EVENT_TLK_MODULE” will be introduced in “Telink defined event”, while “HCI_FLAG_EVENT
_BT_STD” indicates current event is Controller HCI event.

AN-21112300-E2 77 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

In the callback function prototype, “para” and “n” indicate data and data length of event. The data is
consistent with the definition in BLE spec. User can refer to the following usage in the b85m_master kma
dongle and the specific implementation of the controller_event_callback function.

blc_hci_registerControllerEventHandler(controller_event_callback);

3.2.7.2 HCI event

Telink BLE SDK supports a few HCI events. Following lists some events for user.

#define HCI_EVT_DISCONNECTION_COMPLETE 0x05

#define HCI_EVT_ENCRYPTION_CHANGE 0x08

#define HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE 0x0C

#define HCI_EVT_ENCRYPTION_KEY_REFRESH 0x30

#define HCI_EVT_LE_META 0x3E

a) HCI_EVT_DISCONNECTION_COMPLETE

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.5 “Disconnection Complete Event”). Total data length of this
event is 7, and 1-byte “param len” is 4, as shown below. Please refer to BLE spec for data definition.

Figure 3.26: “Disconnection Complete Event”

b) HCI_EVT_ENCRYPTION_CHANGE and HCI_EVT_ENCRYPTION_KEY_REFRESH

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.8 & 7.7.39). The two events are related to Controller encryption,
and the processing is assembled in library.

c) HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.12). When Host uses the “HCI_CMD_READ_REMOTE_VER_INFO”
command to exchange version information between Controller and BLE peer device, and version of peer
device is received, this event will be reported to Host. Total data length of this event is 11, and 1-byte
“param len” is 8, as shown below. Please refer to BLE spec for data definition.

Figure 3.27: “Read Remote Version Information Complete Event”

d) HCI_EVT_LE_META

AN-21112300-E2 78 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

It indicates current event is HCI LE event, and event type can be judged according to sub event code. Except
for HCI_EVT_LE_META, other HCI events should use the API below to enable corresponding event mask.

ble_sts_t blc_hci_setEventMask_cmd(u32 evtMask);

Definition of event mask:：

#define HCI_EVT_MASK_DISCONNECTION_COMPLETE 0x0000000010

#define HCI_EVT_MASK_ENCRYPTION_CHANGE 0x0000000080

#define HCI_EVT_MASK_READ_REMOTE_VERSION_INFORMATION_COMPLETE 0x0000000800

If the user does not set the HCI event mask via this API, the SDK will only turn on the mask corresponding
to HCI_CMD_DISCONNECTION_COMPLETE by default, i.e. to ensure that the Controller disconnect event is
reported.

3.2.7.3 HCI LE event

When event code in HCI event is “HCI_EVT_LE_META” to indicate HCI LE event, common sub-event code
are shown as below:

#define HCI_SUB_EVT_LE_CONNECTION_COMPLETE 0x01

#define HCI_SUB_EVT_LE_ADVERTISING_REPORT 0x02

#define HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE 0x03

#define HCI_SUB_EVT_LE_CONNECTION_ESTABLISH 0x20

a) HCI_SUB_EVT_LE_CONNECTION_COMPLETE

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.65.1 “LE Connection Complete Event”). When connection is
established between Controller Link Layer and peer device, this event will be reported. Total data length of
this event is 22, and 1-byte “param len” is 19, as shown below. Please refer to BLE spec for data definition.

Figure 3.28: “LE Connection Complete Event”

b) HCI_SUB_EVT_LE_ADVERTISING_REPORT

AN-21112300-E2 79 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.65.2 “LE Advertising Report Event”). When Link Layer of Con-
troller scans right adv packet, it will be reported to Host via the “HCI_SUB_EVT_LE_ADVERTISING_REPORT”.
Data length of this event is not fixed and it depends on payload of adv packet, as shown below. Please refer
to BLE spec for data definition.

Figure 3.29: “LE Advertising Report Event”

Note: In Telink BLE SDK, each “LE Advertising Report Event” only reports an adv packet, i.e. “i” in figure
above is 1.

c) HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.65.3 “LE Connection Update Complete Event”). When “con-
nection update” in Controller takes effect, the “HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE” will
be reported to Host. Total data length of this event is 13, and 1-byte “param len” is 10, as shown below.
Please refer to BLE spec for data definition.

Figure 3.30: “LE Connection Update Complete Event”

d) HCI_SUB_EVT_LE_CONNECTION_ESTABLISH

The “HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” is a supplement to the “HCI_SUB_EVT_LE_CONNECTION
_COMPLETE”, so all the parameters except for subevent is the same. This event is used by the b85m_master
kma dongle in the SDK. It is the only non-BLE spec standard event, is privately defined by Telink and is only
used in the b85m_master kma dongle.

Following illustrates the reason for Telink to define this event.

When BLE Controller in Initiating state scans adv packet from specific device to be connected, it will send
connection request packet to peer device; no matter whether this connection request is received, it will be

AN-21112300-E2 80 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

considered as “Connection complete”, “LE Connection Complete Event” will be reported to Host, and Link
Layer immediately enters Master role. Since this packet does not support ack/retry mechanism, Slave may
miss the connection request, thus it cannot enter Slave role, and won’t enter brx mode to transfer packets.
In this case, Master Controller will process according to the mechanism below: After it enters Master role, it
will check whether there’s any packet received from Slave during the beginning 6 ~ 10 conn intervals (CRC
check is negligible).

• If no packet is received, it’s considered that Slave does not receive connection request; suppose “LE
Connection Complete Event” has already been reported, it must report a “Disconnection Complete
Event” quickly, and indicate disconnect reason is “0x3E (HCI_ERR_CONN_FAILED_TO_ESTABLISH)”.

• If there’s packet received from Slave, it can confirm that Connection is established, thus Master can
continue rest of the flow.

According to the description above, the processing method of BLE Host should be: After it receives “LE Con-
nection Complete Event” of Controller, it cannot confirm that connection has already been established, but
instead, starts a timer based on conn interval (timing value should be configured as 10 intervals or above
to cover the longest time). After the timer is started, it will check whether there is “Disconnection Com-
plete Event” with disconnect reason of 0x3E; if there is no such event, it will be considered as “Connection
Established”.

Considering this processing of BLE Host is very complex and error prone, the SDK defines the
“HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” in the bottom layer. When Host receives this event, it
indicates that Controller has confirmed connection is OK on Slave side and can continue rest of the flow.

“HCI LE event” needs the API below to enable mask.

ble_sts_t blc_hci_le_setEventMask_cmd(u32 evtMask);

Following lists some evtMask definitions. User can view the other events in the “hci_const.h”.

#define HCI_LE_EVT_MASK_CONNECTION_COMPLETE 0x00000001

#define HCI_LE_EVT_MASK_ADVERTISING_REPORT 0x00000002

#define HCI_LE_EVT_MASK_CONNECTION_UPDATE_COMPLETE 0x00000004

#define HCI_LE_EVT_MASK_CONNECTION_ESTABLISH 0x80000000

If HCI LE event mask is not set via this API, mask of all HCI LE events in the SDK are disabled by default.

3.2.7.4 Telink Defined Event

Besides standard Controller HCI event, the SDK also provides Telink defined event. Up to 20 Telink defined
events are supported, which are defined by using macros in the “stack/ble/ll/ll.h”.

Current SDK version supports the following callback events. The “BLT_EV_FLAG_CONNECT / BLT_EV_FLAG_
TERMINATE” has the same function as the “HCI_SUB_EVT_LE_CONNECTION_COMPLETE” / “HCI_EVT_ DIS-
CONNECTION_COMPLETE” in HCI event, but data definition of these events are different.

AN-21112300-E2 81 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define BLT_EV_FLAG_ADV 0

#define BLT_EV_FLAG_ADV_DURATION_TIMEOUT 1

#define BLT_EV_FLAG_SCAN_RSP 2

#define BLT_EV_FLAG_CONNECT 3

#define BLT_EV_FLAG_TERMINATE 4

#define BLT_EV_FLAG_LL_REJECT_IND 5

#define BLT_EV_FLAG_RX_DATA_ABANDOM 6

#define BLT_EV_FLAG_PHY_UPDATE 7

#define BLT_EV_FLAG_DATA_LENGTH_EXCHANGE 8

#define BLT_EV_FLAG_GPIO_EARLY_WAKEUP 9

#define BLT_EV_FLAG_CHN_MAP_REQ 10

#define BLT_EV_FLAG_CONN_PARA_REQ 11

#define BLT_EV_FLAG_CHN_MAP_UPDATE 12

#define BLT_EV_FLAG_CONN_PARA_UPDATE 13

#define BLT_EV_FLAG_SUSPEND_ENTER 14

#define BLT_EV_FLAG_SUSPEND_EXIT 15

Telink defined event is only triggered in BLE slave applications. There are two ways to implement callback
of Telink defined event in BLE slave application.

(1) The first method, which is called “independent registration”, is to independently register callback func-
tion for each event.

Prototype of callback function is shown as below:

typedef void (*blt_event_callback_t)(u8 e, u8 *p, int n);

Where “e”: event number. “p”: It’s the pointer to the data transmitted from the bottom layer when callback
function is executed, and it varies with the callback function. “n”: length of valid data pointed by pointer.

API to register callback function:

void bls_app_registerEventCallback (u8 e, blt_event_callback_t p);

Whether each event will respond depends on whether corresponding callback function is registered in APP
layer.

(2) The second method, which is called “shared event entry”, is that all event callback functions share the
same entry. Whether each event will respond depends on whether its event mask is enabled. This
method uses the same API as HCI event to register event callback:

typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);

void blc_hci_registerControllerEventHandler(hci_event_handler_t handler);

Although registered callback function of HCI event is shared, they are different in implementation. In HCI
event callback function:

AN-21112300-E2 82 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

h = HCI_FLAG_EVENT_BT_STD | hci_event_code;

While in Telink defined event “shared event entry”:

h = HCI_FLAG_EVENT_TLK_MODULE | e;

Where “e” is event number of Telink defined event.

Telink defined event “shared event entry” is similar to mask of HCI event; the API below serves to set the
mask to determine whether each event will be responded.

ble_sts_t bls_hci_mod_setEventMask_cmd(u32 evtMask);

Relationship between evtMask and event number is：

evtMask = BIT(e);

The two methods for Telink defined event are exclusive to each other. The first method is recommended and
is adopted by most demo code of the SDK; only “b85m_ module” uses the “shared event entry” method.

For the use of Telink defined event, please refer to the demo code of project “b85m_module” for 2 “shared
event entry”.

The following takes the connect and terminate event callbacks as examples to describe the code implemen-
tation methods of these two methods.

(1) The first method: “independent registration”

void task_connect (u8 e, u8 *p, int n)

{

// add connect callback code here

}

void task_terminate (u8 e, u8 *p, int n)

{

// add terminate callback code here

}

bls_app_registerEventCallback (BLT_EV_FLAG_CONNECT, &task_connect);

bls_app_registerEventCallback (BLT_EV_FLAG_TERMINATE, &task_terminate);

(2) The second method: “shared event entry”

int event_handler(u32 h, u8 *para, int n)

{

if((h&HCI_FLAG_EVENT_TLK_MODULE)!= 0) //module event

{

AN-21112300-E2 83 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

switch(event)

{

case BLT_EV_FLAG_CONNECT:

{

// add connect callback code here

}

break;

case BLT_EV_FLAG_TERMINATE:

{

// add terminate callback code here

}

break;

default:

break;

}

}

}

blc_hci_registerControllerEventHandler(event_handler);

bls_hci_mod_setEventMask_cmd(BIT(BLT_EV_FLAG_CONNECT) | BIT(BLT_EV_FLAG_TERMINATE));

Following will introduce details about all events, event trigger condition and parameters of corresponding
callback function for Controller.

(1) BLT_EV_FLAG_ADV

This event is not used in current SDK.

(2) BLT_EV_FLAG_ADV_DURATION_TIMEOUT

Event trigger condition: If the API “bls_ll_setAdvDuration” is invoked to set advertising duration, a timer will
be started in BLE stack bottom layer. When the timer reaches the specified duration, advertising is stopped,
and this event is triggered. In the callback function of this event, user can modify adv event type, re-enable
advertising, re-configure advertising duration, and etc.

Pointer “p”: null pointer.

Data length “n”: 0.

Note: This event won’t be triggered in “advertising in ConnSlaveRole” which is an extended state of Link
Layer.

(3) BLT_EV_FLAG_SCAN_RSP

Event trigger condition: When Slave is in advertising state, this event will be triggered if Slave responds
with scan response to the scan request from Master.

Pointer “p”: null pointer.

Data length “n”: 0.

(4) BLT_EV_FLAG_CONNECT

AN-21112300-E2 84 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Event trigger condition: When Link Layer is in advertising state, this event will be triggered if it responds to
connect reqeust from Master and enters Conn state Slave role.

Data length “n”: 34.

Pointer “p”: p points to one 34-byte RAM area, corresponding to the “connect request PDU” below.

Figure 3.31: “Connect Request PDU”

Please refer to the “rf_packet_connect_t” defined in the “ble_formats.h”. In the structure below, the connect
request PDU is from scanA[6] (corresponding to InitA in figure above) to hop.

typedef struct{

u32 dma_len;

u8 type :4;

u8 rfu1 :1;

u8 chan_sel:1;

u8 txAddr :1;

u8 rxAddr :1;

u8 rf_len;

u8 initA[6];

u8 advA[6];

u8 accessCode[4];

u8 crcinit[3];

u8 winSize;

u16 winOffset;

u16 interval;

u16 latency;

u16 timeout;

u8 chm[5];

u8 hop;

}rf_packet_connect_t;

(5) BLT_EV_FLAG_TERMINATE

AN-21112300-E2 85 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Event trigger condition: This event will be triggered when Link Layer state machine exits from Conn state
Slave role in any of the three specific cases.

Pointer “p”: p points to an u8-type variable “terminate_reason”. This variable indicates the reason for
disconnection of Link Layer.

Data length “n”: 1.

Three cases to exit Conn state Slave role and corresponding reasons are listed as below:

A. If Slave fails to receive packet from Master for a duration due to RF communication problem (e.g. bad
RF or Master is powered off), and “connection supervision timeout” expires, this event will be triggered to
terminate connection and return to None Conn state. The terminate reason is HCI_ERR_CONN_TIMEOUT
(0x08).

B. If Master sends “terminate” command to actively terminate connection, after Slave responds to
the command with an ack, this event will be triggered to terminate connection and return to None
Conn state. The terminate reason is the Error Code in the “LL_TERMINATE_IND” control packet re-
ceived in Slave Link Layer. The Error Code is determined by Master. Common Error Codes include
HCI_ERR_REMOTE_USER_TERM_CONN (0x13), HCI_ERR_CONN_TERM_MIC_FAILURE (0x3D), and etc.

C. If Slave invokes the API “bls_ll_terminateConnection(u8 reason)” to actively terminate connection, this
event will be triggered. The terminate reason is the actual parameter “reason” of this API.

(6) BLT_EV_FLAG_LL_REJECT_IND

Event trigger condition: When Master sends a “LL_ENC_REQ” (encryption request) in the Link Layer and
it’s declared to use the pre-allocated LTK, if Slave fails to find corresponding LTK and responds with a
“LL_REJECT_IND” (or “LL_REJECT_EXT_IND”), this event will be triggered.

Pointer “p”: p points to the response command (LL_REJECT_IND or LL_REJECT_EXT_IND).

Data length “n”: 1.

For more information, please refer to “Core_v5.0” Vol 6/Part B/2.4.2.

(7) BLT_EV_FLAG_RX_DATA_ABANDOM

Event trigger condition: This event will be triggered when BLE RX fifo overflows (see section Link Layer TX
fifo & RX fifo), or the number of More Data received in an interval exceeds the preset threshold (Note: User
needs to invoke the API “blc_ll_init_max_md_nums” with non-zero parameter, so that SDK bottom layer will
check the number of More Data.)

Pointer “p”: null pointer.

Data length “n”: 0.

(8) BLT_EV_FLAG_PHY_UPDATE

Event trigger condition: This event will be triggered after the update succeeds or fails when the slave or
master proactively initiates LL_PHY_REQ; Or when the slave or master passively receives LL_PHY_REQ and
meanwhile PHY is updated successfully, this event will be triggered.

Data length “n”: 1.

Pointer “p”: p points to an u8-type variable indicating the current connection of PHY mode.

AN-21112300-E2 86 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef enum {

BLE_PHY_1M = 0x01,

BLE_PHY_2M = 0x02,

BLE_PHY_CODED = 0x03,

} le_phy_type_t;

(9) BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

Event trigger condition: This event will be triggered when Slave and Master exchange max data length of
Link Layer, i.e. one side sends “ll_length_req”, while the peer responds with “ll_length_rsp”. If Slave ac-
tively sends “ll_length_req”, this event won’t be triggered until “ll_length_rsp” is received. If Master initiates
“ll_length_req”, this event will be triggered immediately after Slave responds with “ll_length_rsp”.

Data length “n”: 12.

Pointer “p”: p points to data of a memory area, corresponding to the beginning six u16-type variables in
the structure below.

typedef struct {

u16 connEffectiveMaxRxOctets;

u16 connEffectiveMaxTxOctets;

u16 connMaxRxOctets;

u16 connMaxTxOctets;

u16 connRemoteMaxRxOctets;

u16 connRemoteMaxTxOctets;

……
}ll_data_extension_t;

The “connEffectiveMaxRxOctets” and “connEffectiveMaxTxOctets” are max RX and TX data length finally
allowed in current connection; “connMaxRxOctets” and “connMaxTxOctets” are max RX and TX data length
of the device; “connRemoteMaxRxOctets” and “connRemoteMaxTxOctets” are max RX and TX data length
of peer device.

connEffectiveMaxRxOctets = min(supportedMaxRxOctets,connRemoteMaxTxOctets);

connEffectiveMaxTxOctets = min(supportedMaxTxOctets, connRemoteMaxRxOctets);

(10) BLT_EV_FLAG_GPIO_EARLY_WAKEUP

Event trigger condition: Slave will calculate wakeup time before it enters sleep (suspend or deepsleep
retention), so that it can wake up when the wakeup time is due (It’s realized via timer in sleep). Since
user tasks won’t be processed until wakeup from sleep, long sleep time may bring problem for real-time
demanding applications. Take keyboard scanning as an example: If user presses keys fast, to avoid key
press loss and process debouncing, it’s recommended to set the scan interval as 10~20ms; longer sleep
time (e.g. 400ms or 1s, which may be reached when latency is enabled) will lead to key press loss. So it’s
needed to judge current sleep time before MCU enters sleep; if it’s too long, the wakeup method of user key
press should be enabled, so that MCU can wake up from sleep (suspend or deepsleep retention) in advance
(i.e. before timer timeout) if any key press is detected. This will be introduced in details in following PM
module section.

AN-21112300-E2 87 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP” will be triggered if MCU is woke up from sleep (suspend
or deepsleep) by GPIO in advance before wakeup timer expires.

Data length “n”: 1.

Pointer “p”: p points to an u8-type variable “wakeup_status”. This variable indicates valid wakeup source
status for current suspend. Following types of wakeup status are defined in the “drivers/8258(8278)/
pm.h”:

enum {

WAKEUP_STATUS_COMPARATOR = BIT(0),

WAKEUP_STATUS_TIMER = BIT(1),

WAKEUP_STATUS_CORE = BIT(2),

WAKEUP_STATUS_PAD = BIT(3),

WAKEUP_STATUS_MDEC = BIT(4),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),

STATUS_ENTER_SUSPEND = BIT(30),

};

For parameter definition above, please refer to “Power Management” section.

(11) BLT_EV_FLAG_CHN_MAP_REQ

Event trigger condition: When Slave is in Conn state, if Master needs to update current connection channel
list, it will send a “LL_CHANNEL_MAP_REQ” command to Slave; this event will be triggered after Slave
receives this request from Master and has not processed the request yet.

Data length “n”: 5.

Pointer “p”: p points to the starting address of the following channel list array.

unsigned char type bltc.conn_chn_map[5], Note: When the callback function is executed, p points to the
old channel map before update.

Five bytes are used in the “conn_chn_map” to indicate current channel list by mapping. Each bit indicates
a channel:

conn_chn_map[0] bit0-bit7 indicate channel0~channel7, respectively.

conn_chn_map[1] bit0-bit7 indicate channel8~channel15, respectively.

conn_chn_map[2] bit0-bit7 indicate channel16~channel23, respectively.

conn_chn_map[3] bit0-bit7 indicate channel24~channel31, respectively.

conn_chn_map[4] bit0-bit4 indicate channel32~channel36, respectively.

(12) BLT_EV_FLAG_CHN_MAP_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if Slave has updated
channel map after it receives the “LL_CHANNEL_MAP_REQ” command from Master.

Pointer “p”: p points to the starting address of the new channel map conn_chn_map[5] after update.

Data length “n”: 5.

(13) BLT_EV_FLAG_CONN_PARA_REQ

AN-21112300-E2 88 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Event trigger condition: When Slave is in connection state (Conn state Slave role), if Master needs to update
current connection parameters, it will send a “LL_CONNECTION_UPDATE_REQ” command to Slave; this
event will be triggered after Slave receives this request from Master and has not processed the request
yet.

Data length “n”: 11.

Pointer “p”: p points to the 11-byte PDU of the LL_CONNECTION_UPDATE_REQ.

Figure 3.32: “LL_CONNECTION_UPDATE REQ Format in BLE Stack”

(14) BLT_EV_FLAG_CONN_PARA_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if Slave has updated
connection parameters after it receives the “LL_CONNECTION_UPDATE_REQ” from Master.

Data length “n”: 6.

Pointer “p”: p points to the new connection parameters after update, as shown below.

p[0] | p[1]<<8: new connection interval in unit of 1.25ms.

p[2] | p[3]<<8: new connection latency.

p[4] | p[5]<<8: new connection timeout in unit of 10ms.

(15) BLT_EV_FLAG_SUSPEND_ENETR

Event trigger condition: When Slave executes the function “blt_sdk_main_loop”, this event will be triggered
before Slave enters suspend.

Pointer “p”: Null pointer.

Data length “n”: 0.

(16) BLT_EV_FLAG_SUSPEND_EXIT

Event trigger condition: When Slave executes the function “blt_sdk_main_loop”, this event will be triggered
after Slave is woke up from suspend.

Pointer “p”: Null pointer.

Data length “n”: 0.

Note：
• This callback is executed after SDK bottom layer executes “cpu_sleep_wakeup” and Slave is woke up,

and this event will be triggered no matter whether the actual wakeup source is gpio or timer. If the
event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP” occurs at the same time, for the sequence to execute
the two events, please refer to pseudo code in “Power Management – PM Working Mechanism”.

AN-21112300-E2 89 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.8 Data Length Extension

BLE Spec core_4.2 and above supports Data Length Extension (DLE).

Link Layer in this BLE SDK supports data length extension to max rf_len of 251 bytes per BLE Spec.

Please refer to “Core_v5.0” (Vol 6/Part B/2.4.2.21 “LL_LENGTH_REQ and LL_LENGTH_RSP”).

Following steps explains how to use data length extension.

Step 1 Configure suitable TX & RX fifo size

To receive and transmit long packet, bigger Tx & Rx fifo size is required and thus ocupies large SRAM space.
So be cautious when setting fifo size to avoid waste of SRAM space.

Tx fifo size should be increasd to transmit long packet. Tx fifo size should be larger than Tx rf_len by 12,
and must be aligned by 4 bytes.

TX rf_len = 56 bytes: MYFIFO_INIT(blt_txfifo, 68, 8);

TX rf_len = 141 bytes: MYFIFO_INIT(blt_txfifo, 156, 8);

TX rf_len = 191 bytes: MYFIFO_INIT(blt_txfifo, 204, 8);

Rx fifo size should be increasd to receive long packet. Rx fifo size should be larger than Rx rf_len by 24, and
must be aligned by 16 bytes.

RX rf_len = 56 bytes: MYFIFO_INIT(blt_rxfifo, 80, 8);

RX rf_len = 141 bytes: MYFIFO_INIT(blt_rxfifo, 176, 8);

RX rf_len = 191 bytes: MYFIFO_INIT(blt_rxfifo, 224, 8);

Step 2 Set proper MTU size

MTU, the maximum transmission unit, is used to set the size of the payload in a single packet of the L2CAP
layer in BLE. THe att.h provides the interface function ble_sts_t blc_att_setRxMtuSize(u16 mtu_size); during
the initialization of the BLE stack, users can directly use this function to pass the parameter to set the MTU.
However, the MTU size effect is negotiated in the MTU exchange process, MTU size effect = min(MTU_A,
MTU_B), MTU_A is the MTU size supported by device A, MTU_B is the MTU size supported by device B; in
addition, only MTU size greater than the DLE length can make full use of the DLE to increase the link layer
data throughput rate.

For the implementation of MTU size exchange, please refer to the detailed description in the “ATT & GATT”
section of this document, or refer to the DLE demo in b85m_feature_test.

#define MTU_SIZE_SETTING 196

blc_att_setRxMtuSize(MTU_SIZE_SETTING);

For MTU greater than 247, the user can register buffer with the following API.

void blc_l2cap_initMtuBuffer(u8 pMTU_rx_buff, u16 mtu_rx_size, u8 pMTU_tx_buff, u16 mtu_tx_size)

Step 3 data length exchange

Before transfer of long packets, please make sure the “data length exchange” flow has already been com-
pleted in BLE connection. Data length exchange is an interactive process in Link Layer by LL_LENGTH_REQ

AN-21112300-E2 90 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

and LL_LENGTH_RSP. Either master or slave can initiate the process by sending LL_LENGTH_REQ, while the
peer responds with LL_LENGTH_RSP. Through this interaction, master and slave obtain the max Tx and Rx
packet size from each other, and adopt the minimum of the two as the max Tx and Rx packet size in current
connection.

No matter which side initiates LL_LENGTH_REQ, at the end of data length exchange process, the SDK
will generate “BLT_EV_FLAG_DATA_LENGTH_EXCHANGE” event callback assuming this callback has been
registered. User can refer to “Telink defined event” section to understand the parameters of this event
callback function.

The final max Tx and Rx packet size can be obtained from the “BLT_EV_FLAG_DATA_LENGTH_EXCHANGE”
event callback function.

When 8x5x acts as slave device in actual applications, master may or may not initiate LL_LENGTH_REQ. If
master does not initiate it, slave should initiate LL_LENGTH_REQ by the following API in the SDK:

ble_sts_t blc_ll_exchangeDataLength (u8 opcode, u16 maxTxOct);

In this API, “opcode” is “LL_LENGTH_REQ”, and “maxTxOct” is the max Tx packet size supported by current
device. For example, if max Tx packet size is 200bytes, the setting below applies:

blc_ll_exchangeDataLength(LL_LENGTH_REQ , 200);

Since the slave device does not know whether the master will initiate LL_LENGTH_REQ, we recommend
a method for your reference: register the BLT_EV_FLAG_DATA_LENGTH_EXCHANGE event callback, turn
on a software timer to start timing when the connection is established (e.g. 2S), if this callback has not
been triggered after 2s, it means that master has not initiated LL_LENGTH_REQ, at this time slave calls API
blc_ll_exchangeDataLength to initiate LL_LENGTH_REQ.

Step 4 MTU size exchange

In addition to data length exchange, MTU size exchange flow should also be executed to ensure large
MTU size takes effect, so that the peer can process long packet in BLE L2CAP layer. MTU size should be
equal or larger than max packet size of Tx & Rx. Please refer to “ATT & GATT” section or the demo of the
B85m_feature for the implementation of MTU size exchange.

Step 5 Transmission/Reception of long packet

Please refer to “ATT & GATT” section for illustration of Handle Value Notification, Handle Value Indication,
Write request and Write Command.

Transmission and reception of long packet can start after correct completion of the three steps above.

The APIs corresponding to “Handle Value Notification” and “Handle Value Indication” can be invoked in ATT
layer to transmit long packet. As shown below, fill in the address and length of data to be sent to the
parameters “*p” and “len”, respectively:

ble_sts_t blc_gatt_pushHandleValueNotify(u16 connHandle, u16 attHandle, u8 *p, int len);

ble_sts_t blc_gatt_pushHandleValueIndicate(u16 connHandle, u16 attHandle, u8 *p, int len);

To receive long packet, it’s only needed to use callback function “w” corresponding to “Write Request” and
“Write Command”.In the callback function, reference the data pointed to by the form reference pointer.

AN-21112300-E2 91 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.9 Controller API

3.2.9.1 Controller API Introduction

In standard BLE stack architecture of section 3.1.1, APP layer cannot directly communicate with Link Layer
of Controller, i.e. data of APP layer must be first transferred to Host, and then Host can transfer control
command to Link Layer via HCI. All control commands from Host to LL via HCI follow the definition in BLE spec
“Core_v5.0”, please refer to “Core_v5.0” (Vol 2/Part E/ Host Controller Interface Functional Specification)
for more information.

Telink BLE SDK based on standard BLE architecture can serve as a Controller and work together with Host
system. Therefore, all APIs to operate Link Layer strictly follow the data format of Host commands in the
spec.

Although the architecture in the figure above is used in Telink BLE SDK, during which APP layer can directly
operate Link Layer, it still use the standard APIs of HCI part.

In BLE spec, all HCI commands to operate Controller have corresponding “HCI command complete event”
or “HCI command status event” in response to Host layer. However, in Telink BLE SDK, it is handled case by
case.

1) For b85m_hci class applications, Telink IC only acts as a BLE controller and needs to work with other
MCU’s running BLE hosts, a corresponding HCI command complete event or HCI command status event will
be generated for each HCI command.

2) For b85m_master kma dongle application, both BLE Host and Controller are running on Telink IC, when
Host calls interface to send HCI command to Controller, all of them are received correctly by Controller and
there is no loss, so the Controller no longer replies to the HCI command complete event or HCI command
status event when processing the HCI command.

The Controller API is declared in the header files in the stack/ble/ll and stack/ble/hci directories, where the ll
directory is divided into ll.h, ll_adv.h, ll_scan.h, ll_ext_adv.h, ll_pm.h and ll_ whitelist.h, the user can look for
Link Layer functions, for example, the APIs for functions related to advising should be declared in ll_adv.h.

3.2.9.2 API Return Type ble_sts_t

An enum type “ble_sts_t” defined in the “stack/ble/ble_common.h” is used as return value type for most
APIs in the SDK. When API invoking with right parameter setting is accepted by the protocol stack, it will
return “0” to indicate BLE_SUCCESS; if any non-zero value is returned, it indicates a unique error type. All
possible return values and corresponding error reason will be listed in the subsections below for each API.

The “ble_sts_t” applies to both APIs in Link Layer and some APIs in Host layer.

3.2.9.3 BLE MAC address initialization

In this document, “BLE MAC address” includes both “public address” and “random static address”.

In this BLE SDK, the API below serves to obtain public address and random static address:

AN-21112300-E2 92 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void blc_initMacAddress(int flash_addr, u8 *mac_public, u8 *mac_random_static);

The “flash_addr” is the flash address to store MAC address. As explained earlier, this address in 8x5x 512K
flash is 0x76000. If random static address is not needed, set “mac_random_static” as “NULL”.

After the BLE public MAC address has been successfully obtained, the API for Link Layer initialization is called
and the MAC address is passed into the BLE protocol stack.

blc_ll_initStandby_module(mac_public);

If you use the Advertising state or Scanning state in the Link Layer’s state machine, you also need to pass
in the MAC address.

blc_ll_initAdvertising_module（mac_public）;

blc_ll_initScanning_module（mac_public）;

3.2.9.4 Link Layer state machine initialization

In conjunction with the previous detailed description of the Link Layer state machine, the following APIs are
used to configure the initialisation of the individual modules when building the BLE state machine.

void blc_ll_initBasicMCU (void)

void blc_ll_initStandby_module (u8 *public_adr);

void blc_ll_initAdvertising_module(u8 *public_adr);

void blc_ll_initScanning_module(u8 *public_adr);

void blc_ll_initInitiating_module(void);

void blc_ll_initSlaveRole_module(void);

void blc_ll_initMasterRoleSingleConn_module(void);

3.2.9.5 bls_ll_setAdvData

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.7 “LE Set Advertising Data Command”).

Figure 3.33: “Adv Packet Format in BLE Stack”

As shown above, an Adv packet in BLE stack contains 2-byte header, and Payload (PDU). The maximum
length of Payload is 31 bytes.

AN-21112300-E2 93 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The API below serves to set PDU data of adv packet:

ble_sts_t bls_ll_setAdvData(u8 *data, u8 len);

The “data” pointer points to the starting address of the PDU, while the “len” indicates data length.

The table below lists possible results for the return type “ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_INVALID_HCI_ CMD_PARAMS 0x12 Len exceeds the maximum length 31

This API can be invoked during initialization to set adv data, or invoked in main_loop to modify adv data
when firmware is running.

In the “feature_backup” project of this BLE SDK, Adv PDU definition is shown as below. Please refer to “Data
Type Specifcation” in BLE Spec “CSS v6” (Core Specification Supplement v6.0) for introduction to various
fields.

const u8 tbl_advData[] = {

0x08, 0x09, 'f', 'e', 'a', 't', 'u', 'r', 'e',

0x02, 0x01, 0x05,

0x03, 0x19, 0x80, 0x01,

0x05, 0x02, 0x12, 0x18, 0x0F, 0x18,

};

As shown in the adv data above, the adv device name is set as “feature”.

3.2.9.6 bls_ll_setScanRspData

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.8 “LE Set Scan response Data Command”).

The API below serves to set PDU data of scan response packet.

ble_sts_t bls_ll_setScanRspData(u8 *data, u8 len);

The “data” pointer points to the starting address of the PDU, while the “len” indicates data length.

The table below lists possible results for the return type “ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_INVALID_HCI_ CMD_PARAMS 0x12 Len exceeds the maximum length 31

AN-21112300-E2 94 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The user can call this API to set the Scan response data during initialization, or call this API in the main_loop
at any time while the program is running to modify the Scan response data. The scan response data defined
in the B91 ble remote project in the BLE SDK is as follows, and the scan device name is “Eaglerc”. For the
meaning of each field, please refer to the specific description of Data Type Specifcation in the document
BLE Spec “CSS v6” (Core Specification Supplement v6.0).

const u8 tbl_scanRsp [] = { 0x08, 0x09, 'V', 'R', 'e', 'm', 'o', 't', 'e',};

The device name is set in the advertising data and scan response data above and is not the same. Then
when scanning a Bluetooth device on a mobile phone or IOS system, the device name may be different:

a) Some devices only watch broadcast packets, then the displayed device name is “feature”;

b) After seeing the broadcast, some devices send scan request and read back the scan response, then
the displayed device name may be “VRemote”.

The user can also write the same device name in these two packages, and two different names will not be
displayed when scanned.

In fact, after the device is connected by the master, when the master reads the Attribute Table of the
device, it will obtain the gap device name of the device. After connecting to the device, it may also display
the device name according to the settings there.

3.2.9.7 bls_ll_setAdvParam

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.5 “LE Set Advertising Parameters Command”).

Figure 3.34: “Advertising Event in BLE Stack”

The figure above shows Advertising Event (Adv Event in brief) in BLE stack. It indicates during each
T_advEvent, Slave implements one advertising process, and sends one packet in three advertising chan-
nels (channel 37, 38 and 39) respectively.

The API below serves to set parameters related to Adv Event.

AN-21112300-E2 95 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t bls_ll_setAdvParam(u16 intervalMin, u16 intervalMax, adv_type_t advType,

own_addr_type_t ownAddrType, u8 peerAddrType, u8 *peerAddr, adv_chn_map_t

adv_channelMap, adv_fp_type_t advFilterPolicy);

↪

↪

(1) intervalMin & intervalMax

The two parameters serve to set the range of advertising interval in integer multiples of 0.625ms. The valid
range is from 20ms to 10.24s, and intervalMin should not exceed intervalMax.

As required by BLE spec, it’s not recommended to set adv interval as fixed value; in Telink BLE SDK, the
eventual adv interval is random variable within the range of intervalMin ~ intervalMax. If intervalMin and
intervalMax are set as same value, adv interval will be fixed as the intervalMin.

Adv packet type has limits to the setting of intervalMin and intervalMax. Please refer to “Core 5.0” (Vol 6/
Part B/ 4.4.2.2 “Advertising Events”) for details.

(2) advType

AS per BLE spec, the following four basic advertising event types are supported.

Figure 3.35: “Four Adv Events in BLE Stack”

In the “Allowable response PDUs for advertising event” column, “YES” and “NO” indicate whether correspond-
ing adv event type can respond to “Scan request” and “Connect Request” from other device. For example,
“Connectable Undirected Event” can respond to both “Scan request” and “Connect Request”, while “Non-
connectable Undireted Event” will respond to neither “Scan request” nor “Connect Request”.

For “Connectable Directed Event”, “YES” marked with an asterisk indicates the matched “Connect Request”
received won’t be filtered by whitelist and this event will surely respond to it. Other “YES” not marked with
asterisk indicate corresponding request can be responded depending on the setting of whitelist filter.

The “Connectable Directed Event” supports two sub-types including “Low Duty Cycle Directed Advertising”
and “High Duty Cycle Directed Advertising”. Therefore, five types of adv events are supported in all, as
defined below.

AN-21112300-E2 96 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

/* Advertisement Type */

typedef enum{

ADV_TYPE_CONNECTABLE_UNDIRECTED = 0x00, // ADV_IND

ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY = 0x01, // ADV_INDIRECT_IND (high duty cycle)

ADV_TYPE_SCANNABLE_UNDIRECTED = 0x02 , // ADV_SCAN_IND

ADV_TYPE_NONCONNECTABLE_UNDIRECTED = 0x03 , // ADV_NONCONN_IND

ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY = 0x04, // ADV_INDIRECT_IND (low duty cycle)

}adv_type_t;

By default, the most common adv event type is “ADV_TYPE_CONNECTABLE_UNDIRECTED”.

(3) ownAddrType

There are four optional values for “ownAddrType” to specify adv address type.

/* Own Address Type */

typedef enum{

OWN_ADDRESS_PUBLIC = 0,

OWN_ADDRESS_RANDOM = 1,

OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

First two parameters are explained herein.

The “OWN_ADDRESS_PUBLIC” indicates that public MAC address is used during advertising. Actual address
is the setting from the API “blc_ll_initAdvertising_module(u8 *public_adr)” during MAC address initializa-
tion.

The “OWN_ADDRESS_RANDOM” indicates random static MAC address is used during advertising, and the
address comes from the setting of the API below:

ble_sts_t blc_ll_setRandomAddr(u8 *randomAddr);

(4) peerAddrType & *peerAddr

When advType is set as directed adv type (ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY or
ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY), the “peerAddrType” and “*peerAddr” serve to specify
the type and address of peer device MAC Address.

When advType is set as type other than directed adv, the two parameters are invalid, and they can be set
as “0” and “NULL”.

(5) adv_channelMap

The “adv_channelMap” serves to set advertising channel. It can be selectable from channel 37, 38, 39 or
combination.

AN-21112300-E2 97 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef enum{

BLT_ENABLE_ADV_37 = BIT(0),

BLT_ENABLE_ADV_38 = BIT(1),

BLT_ENABLE_ADV_39 = BIT(2),

BLT_ENABLE_ADV_ALL = (BLT_ENABLE_ADV_37 | BLT_ENABLE_ADV_38 | BLT_ENABLE_ADV_39),

}adv_chn_map_t;

(6) advFilterPolicy

The “advFilterPolicy” serves to set filtering policy for scan request/connect request from other device when
adv packet is transmitted. Address to be filtered needs to be pre-loaded in whitelist.

Filtering type options are shown as below. The “ADV_FP_NONE” can be selected if whitelist filter is not
needed.

typedef enum {

ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY = 0x00,

ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_ANY = 0x01,

ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_WL = 0x02,

ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_WL = 0x03,

ADV_FP_NONE = ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY,

} adv_fp_type_t; //adv_filterPolicy_type_t

The table below lists possible values and reasons for the return value “ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Sucess

HCI_ERR_INVALID_HCI_
CMD_PARAMS

0x12 The intervalMin or intervalMax value does not meet the
requirement of BLE spec.

According to Host command design in HCI part of BLE spec, eight parameters are configured simultaneously
by the “bls_ll_setAdvParam” API. This setting also takes some coupling parameters into consideration. For
example, the “advType” has limits to the setting of intervalMin and intervalMax, and range check depends
on the advType; if advType and advInterval are set in two APIs, the range check is uncontrollable.

However, considering that the user may modify some common parameters frequently and does not want
to call bls_ll_setAdvParam every time to set 8 parameters at the same time, the SDK wraps 4 of the param-
eters that will not be coupled with other parameters separately to facilitate the use of the user. The three
separately wrapped APIs are as follows.

ble_sts_t bls_ll_setAdvInterval(u16 intervalMin, u16 intervalMax);

ble_sts_t bls_ll_setAdvChannelMap(u8 adv_channelMap);

ble_sts_t bls_ll_setAdvFilterPolicy(u8 advFilterPolicy);

These 3 API parameters are the same as in bls_ll_setAdvParam.

AN-21112300-E2 98 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Return value ble_sts_t：
1) bls_ll_setAdvChannelMap and bls_ll_setAdvFilterPolicy will return BLE_SUCCESS unconditionally.

2) bls_ll_setAdvInterval will return BLE_SUCCESS or HCI_ERR_INVALID_HCI_CMD_PARAMS.

3.2.9.8 bls_ll_setAdvEnable

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.9 “LE Set Advertising Enable Command”).

ble_sts_t bls_ll_setAdvEnable(int en);

en”: 1 - Enable Advertising; 0 - Disable Advertising.

a) In Idle state, by enabling Advertising, Link Layer will enter Advertising state.

b) In Advertising state, by disabling Advertising, Link Layer will enter Idle state.

c) In other states, Link Layer state won’t be influenced by enabling or disabling Advertising.

Note：

• Note that at any time this function is called, ble_sts_t unconditionally returns BLE_SUCCESS, which
means that the adv-related parameters will be turned on or off internally, but only if they are in idle
or adv state.

3.2.9.9 bls_ll_setAdvDuration

ble_sts_t bls_ll_setAdvDuration (u32 duration_us, u8 duration_en);

After the “bls_ll_setAdvParam” is invoked to set all adv parameters successfully, and the “bls_ll_setAdvEnable
(1)” is invoked to start advertising, the API “bls_ll_setAdvDuration” can be invoked to set duration of adv
event, so that advertising will be automatically disabled after this duration.

“duration_en”: 1-enable timing function; 0-disable timing function. “duration_us”: The “duration_us” is
valid only when the “duration_en” is set as 1, and it indicates the advertising duration in unit of us.

When this duration expires, “AdvEnable” becomes unvalid, and advertising is stopped. None Conn state will
swtich to Idle State. The Link Layer event “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered.

As specified in BLE spec, for the adv type “ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY”, the dura-
tion time is fixed as 1.28s, i.e. advertising will be stopped after the 1.28s duration. Therefore, for this adv
type, the setting of “bls_ll_setAdvDuration” won’t take effect.

The return value “ble_sts_t” is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_INVALID_HCI_
CMD_PARAMS

0x12 Duration Time can’t be configured for
“ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY”.AN-21112300-E2 99 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

When Adv Duratrion Time expires, advertising is stopped, if user needs to re-configure adv parameters (such
as AdvType, AdvInterval, AdvChannelMap), first the parameters should be set in the callback function of
the event “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, then the “bls_ll_setAdvEnable (1)” should be invoked
to start new advertising.

To trigger the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, a special case should be noted:

Suppose the “duration_us” is set as “2000000” (i.e. 2s).

If Slave stays in advertising state, when adv time reaches the preset 2s timeout, the “BLT_EV_FLAG_ADV_
DURATION_TIMEOUT” will be triggered to execute corresponding callback function.

If Slave is connected with Master when adv time is less than the 2s timeout (suppose adv time is 0.5s),
the timeout timing is not cleared but cached in bottom layer. When Slave stays in connection state for 1.5s
(i.e. the preset 2s timeout moment is reached), since Slave won’t check adv event timeout in connection
state, the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” won’t be triggered.

Note：

• When Slave stays in connection state for certain duration (e.g. 10s), then terminates connection and
returns to adv state, before it sends out the first adv packet, the Stack will regard current time exceeds
the preset 2s timeout and trigger the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”. In this
case, the callback triggering time largely exceeds the preset timeout moment.

3.2.9.10 blc_ll_setAdvCustomedChannel

The API below serves to customize special advertising channel/scanning channel, and it only applies some
special applications such as BLE mesh. It’s not recommended to use this API for other conventional applica-
tion cases.

void blc_ll_setAdvCustomedChannel (u8 chn0, u8 chn1, u8 chn2);

chn0/chn1/chn2: customized channel. Default standard channel is 37/38/39. For example, to set three
advertising channels as 2420MHz, 2430MHz and 2450MHz, the API below should be invoked:

blc_ll_setAdvCustomedChannel (8, 12, 22);

3.2.9.11 rf_set_power_level_index

This BLE SDK supplies the API to set output power for BLE RF packet, as shown below.

void rf_set_power_level_index (rf_power_level_index_e level)

The “level” is selectable from the corresponding enum variable rf_power_level_index_e in the “drivers/
8258(8278)/rf_drv.h”.

The Tx power configured by this API will take effect for both adv packet and conn packet, and it can be
set freely in firmware. The actual Tx power will be determined by the latest setting. Please note that

AN-21112300-E2 100 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

the “rf_set_power_level_index” configures registers related to MCU RF. Once MCU enters sleep (suspend/
deepsleep retention), these registers’ values will be lost, so they should be reconfigured after each wakeup.
For example, SDK demo employs the event callback “BLT_EV_FLAG_SUSPEND_EXIT” to guarantee RF power
is recovered after wakeup from sleep.

_attribute_ram_code_ void user_set_rf_power (u8 e, u8 *p, int n)

{

rf_set_power_level_index (MY_RF_POWER_INDEX);

}

user_set_rf_power(0, 0, 0);

bls_app_registerEventCallback (BLT_EV_FLAG_SUSPEND_EXIT, &user_set_rf_power);

3.2.9.12 blc_ll_setScanParameter

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.10 “LE Set Scan Parameters Command”).

ble_sts_t blc_ll_setScanParameter (u8 scan_type,

u16 scan_interval, u16 scan_window,

own_addr_type_t ownAddrType,

scan_fp_type_t scanFilter_policy);

Parameter analysis:

1) scan_type

You can choose between passive scan and active scan, the difference is that active scan will send scan_req
on top of the adv packet to get more information about the device scan_rsp, and the scan rsp packet will
also be passed to the BLE Host via adv report event; passive scan does not send a scan req.

typedef enum {

SCAN_TYPE_PASSIVE = 0x00,

SCAN_TYPE_ACTIVE,

} scan_type_t;

2) scan_interval/scan window

The scan_interval sets the Scanning state frequency switching time in 0.625ms. The scan_window is not
handled in the Telink BLE SDK at the moment, the actual scan window is set to scan_interval.

3) ownAddrType

When specifying the scan req packet address type, the 4 optional values for ownAddrType are as follows.

typedef enum{

OWN_ADDRESS_PUBLIC = 0,

OWN_ADDRESS_RANDOM = 1,

OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

AN-21112300-E2 101 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

OWN_ADDRESS_PUBLIC means that the public MAC address is used for Scan, the actual address comes
from the settings during the MAC address initialisation API blc_initMacAddress(flash_sector_mac_address,
mac_public, mac_ random_static).

OWN_ADDRESS_RANDOM indicates that a random static MAC address is used for Scan, which is derived
from the value set by the following API.

ble_sts_t blc_ll_setRandomAddr(u8 *randomAddr);

4) scan filter policy

The current supported scan filter policy are as follows:

typedef enum {

SCAN_FP_ALLOW_ADV_ANY =0x00,

SCAN_FP_ALLOW_ADV_WL =0x01,

SCAN_FP_ALLOW_UNDIRECT_ADV =0x02,

SCAN_FP_ALLOW_ADV_WL_DIRECT_ADV_MACTH =0x03,

} scan_fp_type_t;

SCAN_FP_ALLOW_ADV_ANY means that the Link Layer does not filter the adv packets from scan and reports
them directly to the BLE Host.

SCAN_FP_ALLOW_ADV_WL requires that the adv packets scanned must be in the whitelist before they are
reported to the BLE Host.

The return value ble_sts_t is only BLE_SUCCESS, the API does not check the reasonableness of the param-
eters, the user needs to pay attention to the reasonableness of the parameters set.

3.2.9.13 blc_ll_setScanEnable

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.11 “LE Set Scan Enable Command”).

ble_sts_t blc_ll_setScanEnable (scan_en_t scan_enable, dupFilter_en_t filter_duplicate);

The scan_enable parameter type has the following 2 optional values.

typedef enum {

BLC_SCAN_DISABLE = 0x00,

BLC_SCAN_ENABLE = 0x01,

} scan_en_t;

When scan_enable is 1, Enable Scanning; when scan_enable is 0, Disable Scanning.

1) In Idle state, Enable Scanning, Link Layer enters Scanning state.

2) In Scanning state, Disable Scanning, Link layer enters Idle state.

The filter_duplicate parameter type has 2 optional values as follows.

AN-21112300-E2 102 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef enum {

DUP_FILTER_DISABLE = 0x00,

DUP_FILTER_ENABLE = 0x01,

} dupFilter_en_t;

When filter_duplicate is 1, duplicate packet filtering is enabled, and the Controller will only report the adv
report event to the Host once for each different adv packet; when filter_duplicate is 0, duplicate packet
filtering is not enabled, and the adv packet scanned to the Host will will always be reported to the Host.

The return value ble_sts_t is as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

LL_ERR_CURRENT_STATE_NOT_
SUPPORTED_THIS_CMD

See definition
in SDK

Link Layer is in BLS_LINK_STATE_ADV /
BLS_LINK_STATE_CONN state

When scan_type is set to active scan and Enable Scanning, for each device, scan_rsp is only read once
and reported to the Host. Because after each Enable Scanning, the Controller will record the scan_rsp of
different devices and store them in the scan_rsp list to ensure that the device’s scan_req is not read again
later.

If the user needs to report the scan_rsp of the same device multiple times, this can be achieved by setting
Enable Scanning repeatedly via blc_ll_setScanEnable, as the device’s scan_rsp list is cleared to 0 each time
Enable/Disable Scanning is performed.

3.2.9.14 blc_ll_createConnection

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.12 “LE Create Connection Command”).

ble_sts_t blc_ll_createConnection (u16 scan_interval, u16 scan_window, init_fp_type_t

initiator_filter_policy,↪

u8 adr_type, u8 *mac, u8 own_adr_type,

u16 conn_min, u16 conn_max,u16 conn_latency, u16 timeout, u16 ce_min, u16 ce_max)

1) scan_inetrval/scan window

scan_interval sets the Scan frequency switching time in the Initiating state, in 0.625ms.

scan_window is not handled in the Telink BLE SDK at the moment, the actual scan window is set to
scan_interval.

2) initiator_filter_policy

Specify the policy for the currently connected device, either of the following two options.

AN-21112300-E2 103 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef enum {

INITIATE_FP_ADV_SPECIFY = 0x00, //connect ADV specified by host

INITIATE_FP_ADV_WL = 0x01, //connect ADV in whiteList

} init_fp_type_t;

INITIATE_FP_ADV_SPECIFY means that the connected device address is the adr_type/mac that follows.

INITIATE_FP_ADV_WL means that the connection is based on the device inside the whitelist, at which point
adr_type/mac is meaningless.

3) adr_type/ mac

When initiator_filter_policy is INITIATE_FP_ADV_SPECIFY, a device with address type adr_type (BLE_ADDR_PUBLIC
or BLE_ADDR_RANDOM) and address mac[5…0] is connected.

4) own_adr_type

Specifies the type of MAC address used by the Master role that establishes the connection. For ownAddrType,
the four optional values are as follows.

typedef enum{

OWN_ADDRESS_PUBLIC = 0,

OWN_ADDRESS_RANDOM = 1,

OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

OWN_ADDRESS_PUBLIC means that a public MAC address is used when connecting, the actual address is
from the API blc_ll_initStandby_module (u8 *public_adr) set during MAC address initialization.

OWN_ADDRESS_RANDOM indicates that a random static MAC address is used when connecting, which is
derived from the value set by the following API.

ble_sts_t blc_ll_setRandomAddr(u8 *randomAddr);

5) conn_min/ conn_max/ conn_latency/ timeout

These 4 parameters specify the connection parameters for the Master role once the connection is estab-
lished, and these parameters are also sent to the Slave via the connection request, which will also have the
same connection parameters.

conn_min/conn_max specifies the range of conn interval. The Telink BLE SDK for Master role Single Con-
nection uses the value of conn_min directly. The unit is 0.625ms.

conn_latency specifies the connection latency, usually set to 0. timeout specifies the connection supervision
timeout, in 10ms.

6) ce_min/ ce_max

The SDK does not handle ce_min/ ce_max yet.

The return value table is as below.

AN-21112300-E2 104 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_CONN_REJ_
LIMITED_RESOURCES

0x0D Link Layer is in Initiating state, no receiving new
create connection

HCI_ERR_CONTROLLER_BUSY 0x3A Link Layer is in Advertising state or Connection
state

3.2.9.15 blc_ll_setCreateConnectionTimeout

ble_sts_t blc_ll_setCreateConnectionTimeout (u32 timeout_ms);

The return value is BLE_SUCCESS and the timeout_ms unit is ms.

According to the Link Layer state machine, when blc_ll_createConnection triggers the Idle state/Scanning
state to enter the Initiating state, if the connection cannot be established for a long time, it will trigger
Initiate timeout and exit the Initiating state.

Each time blc_ll_createConnection is called, the SDK defaults to the current Initiate timeout time of con-
nection supervision timeout *2. If the User does not want to use the SDK default timeout, they can call
blc_ll_createConnection immediately after the blc_ll_setCreateConnectionTimeout immediately after cre-
ateConnection to set the desired Initiate timeout.

3.2.9.16 blm_ll_updateConnection

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.18 “LE Connection Update Command”).

ble_sts_t blm_ll_updateConnection (u16 connHandle,

u16 conn_min, u16 conn_max, u16 conn_latency, u16 timeout,

u16 ce_min, u16 ce_max);

1) connection handle

Specify the connection whose parameters need to be updated.

2) conn_min/ conn_max/ conn_latency/ timeout

Specify the connection parameter to be updated. Master role single connection currently uses conn_min
directly as the new interval.

3) ce_min/ce_max

Not currently processed.

The return value ble_sts_t is only BLE_SUCCESS, the API does not check the reasonableness of the param-
eters, the user needs to pay attention to the reasonableness of the set parameters.

AN-21112300-E2 105 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.9.17 bls_ll_terminateConnection

ble_sts_t bls_ll_terminateConnection (u8 reason);

This API is used for BLE Slave device, and it only applies to Connection state Slave role.

In order to actively terminate connection, this API can be invoked by APP Layer to send a “Terminate” to
Master in Link Layer. “reason” indicates reason for disconnection. Please refer to “Core_v5.0” (Vol 2/Part D/
2 “Error Code Descriptions”).

If connection is not terminated due to system operation abnormity, generally APP layer specifies the “reason”
as:

HCI_ERR_REMOTE_USER_TERM_CONN = 0x13

bls_ll_terminateConnection(HCI_ERR_REMOTE_USER_TERM_CONN);

In bottom-layer stack of Telink BLE SDK, this API is invoked only in one case to actively terminate connec-
tion: When data packets from peer device are decrpted, if an authentication data MIC error is detected,
the “bls_ll_terminateConnection(HCI_ERR_CONN_TERM_MIC_FAILURE)” will be invoked to inform the peer
device of the decryption error, and connection is terminated.

After Slave invokes this API to actively initiate disconnection, the event “BLT_EV_FLAG_TERMINATE” will be
triggered. The terminate reason in the callback function of this event will be consistent with the reason
manually configured in this API.

In Connection state Slave role, generally connection will be terminated successfully by invoking this API; how-
ever, in some special cases, the API may fail to terminate connection, and the error reason will be indicated
by the return value “ble_sts_t”. It’s recommended to check whether the return value is “BLE_SUCCESS”
when this API is invoked by APP layer.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_CONN_NOT_
ESTABLISH

0x3E Link Layer is not in Connection state Slave role

HCI_ERR_CONTROLLER
_BUSY

0x3A Controller busy (mass data are being transferred), this command
cannot be accepted for the moment.

3.2.9.18 blm_ll_disconnect

ble_sts_t blm_ll_disconnect (u16 handle, u8 reason);

This API is used for BLE Master devices and is only available for the Connection Master role.

AN-21112300-E2 106 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

It is the same as the API bls_ll_terminateConnection for the Slave role, but with one additional conn handle
parameter. This is because the Telink BLE SDK is designed to maintain at most a single connection for the
Slave role, while the Master role is designed to have a multi connection, so the connection handle to be
disconnected must be specified.

The API returns the following values.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_UNKNOWN_
CONN_ID

0x02 Handle error, cannot find corresponding connection

HCI_ERR_CONTROLLER
_BUSY

0x3A Controller busy (mass data are being transferred), this command
cannot be accepted for the moment.

3.2.9.19 Get Connection Parameters

The following APIs serves to obtain current connection paramters including Connection Interval, Connection
Latency and Connection Timeout (only apply to Slave role).

u16 bls_ll_getConnectionInterval(void);

u16 bls_ll_getConnectionLatency(void);

u16 bls_ll_getConnectionTimeout(void);

a) If return value is 0, it indicates current Link Layer state is None Conn state without connection param-
eters available.

b) The returned non-zero value indicates the corresponding parameter value.

• Actual conn interval divided by 1.25ms will be returned by the API “bls_ll_getConnectionInterval”. Sup-
pose current conn interval is 10ms, the return value should be 10ms/1.25ms=8.

• Acutal Latency value will be returned by the API “bls_ll_getConnectionLatency”.

• Actual conn timeout divided by 10ms will be returned by the API “bls_ll_getConnectionTimeout”. Sup-
pose current conn timeout is 1000ms, the return value would be 1000ms/10ms=100.

3.2.9.20 blc_ll_getCurrentState

The API below serves to obtain current Link Layer state.

u8 blc_ll_getCurrentState(void);

The user determines the current state at the application level, e.g.

AN-21112300-E2 107 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

if(blc_ll_getCurrentState() == BLS_LINK_STATE_ADV)

if(blc_ll_getCurrentState() == BLS_LINK_STATE_CONN)

3.2.9.21 blc_ll_getLatestAvgRSSI

The API serves to obtain latest average RSSI of connected peer device after Link Layer enters Slave role or
Master role.

u8 blc_ll_getLatestAvgRSSI(void)

The return value is u8-type rssi_raw, and the real RSSI should be: rssi_real = rssi_raw- 110. Suppose the
return value is 50, rssi = -60 db.

3.2.9.22 Whitelist & Resolvinglist

As introduced above, “filter_policy” of Advertising/Scanning/Initiating state involves Whitelist, and actual
operation may depend on devices in Whitelist. Actually Whitelist contains two parts: Whitelist and Resolv-
inglist.

User can check whether address type of peer device is RPA (Resolvable Private Address) via “peer_addr_type”
and “peer_addr”. The API below can be invoked directly.

#define IS_NON_RESOLVABLE_PRIVATE_ADDR(type, addr)

((type)==BLE_ADDR_RANDOM && (addr[5] & 0xC0) == 0x00)

Only non-RPA address can be stored in whitelist. In current SDK, whitelist can store up to four devices.

#define MAX_WHITE_LIST_SIZE 4

Related interface:

ble_sts_t ll_whiteList_reset(void);

The return value of reset whitelist is “BLE_SUCCESS”.

ble_sts_t ll_whiteList_add(u8 type, u8 *addr);

Add a device into whitelist, the return value is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

HCI_ERR_MEM_CAP_EXCEEDED 0x07 Whitelist is already full, add failure
AN-21112300-E2 108 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t ll_whiteList_delete(u8 type, u8 *addr);

Delete a device from whitelist, the return value is “BLE_SUCCESS”.

RPA (Resolvable Private Address) device needs to use Resolvinglist. To save RAM space, “Resolvinglist” can
store up to two devices in current SDK.

#define MAX_WHITE_IRK_LIST_SIZE 2

Corresponding API:

ble_sts_t ll_resolvingList_reset(void);

Reset Resolvinglist, the return value is “BLE_SUCCESS”.

ble_sts_t ll_resolvingList_setAddrResolutionEnable (u8 resolutionEn);

This API serves to enable/disable device address resolving for Resolvinglist. It is used for device address
resolution. If you want to use Resolvinglist to resolve addresses, you must enable it. You can disable it when
you do not need to parse it.

ble_sts_t ll_resolvingList_add(u8 peerIdAddrType, u8 *peerIdAddr,

u8 *peer_irk, u8 *local_irk);

This API serves to add device using RPA address into Resolvinglist, peerIdAddrType/ peerIdAddr and peer-
irk indicate identity address and irk declared by peer device. These information will be stored into flash
during pairing encryption process, and corresponding interfaces to obtain the info are available in SMP part.
“local_irk” is not processed in current SDK, and it can be set as “NULL”.

ble_sts_t ll_resolvingList_delete(u8 peerIdAddrType, u8 *peerIdAddr);

This API serves to delete a RPA device from Resolvinglist.

For usage of address filter based on Whitelist/Resolvinglist, please refer to “TEST_WHITELIST” in feature
test demo of the SDK.

3.2.9.23 blc_att_setServerDataPendingTime_upon_ClientCmd

In the device after the Client has just started connecting to do SDP, at this time the discovered Server needs
to reply according to its own service table in time when it receives the relevant query function, and the TX
buffer is in a very tight state. Therefore if the user goes to send data at this time, it is easy to fail because
the RF tx_buffer is full.

We therefore recommend using a controlled pending time to avoid this problem, where the relevant data
sending action will take place after the SDP is completed and the data is pending until then, via the api
blc_att_setServerDataPendingTime_upon_ClientCmd(u8 num_10ms) to modify the time with a parameter
step of 10ms.

AN-21112300-E2 109 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.2.10 Coded PHY/2M PHY

3.2.10.1 Coded PHY/2M PHY Introduction

Coded PHY and 2M PHY are new features to “Core_5.0”, this expands the BLE application scenario, Coded
PHY includes S2 (500kbps) and S8 (125kbps) in order to support long range application. 2M PHY (2Mbps)
improved the BLE bandwidth. Coded PHY and 2M PHY could be used under both the adversting channel
and data channel when in connected state. Connected state application will be introduced in the following
section, advertising channel application will be introduced in “Extended Advertising).

3.2.10.2 Coded PHY/2M PHY Demo Introduction

In the B85 BLE SDK, in order to save the sram space, Code PHY and 2M PHY is disabled by default. If user
wants to enable this feature, you can enable it manually. You can refer to the BLE SDK demo:

• Slave end reference Demo “b85m_feature_test”

Define macro in vendor/b85m_feature_test/feature_config.h

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY_CONNECTION

• Master end reference Demo “b85m_master_kma_dongle”

Users can also choose to use other manufacturers’ devices, as long as they support Coded PHY/2M PHY,
they can interconnect with Telink’s Slave devices.

If using Telink’s SDK, Coded PHY and 2M PHY are also disabled by default on the Master end and need to be
enabled by the following method.

Add API to the function void user_init(void) in vendor/b85m_master_kma_dongle/app.c (disabled by default
in SDK).

blc_ll_init2MPhyCodedPhy_feature();

3.2.10.3 Coded PHY/2M PHY API Introduction

(1) API

void blc_ll_init2MPhyCodedPhy_feature(void)

is used to enable Code PHY and 2M PHY.

(2) A new event - BLT_EV_FLAG_PHY_UPDATE is introduced to Telink Defined Event in order to support
Coded and 2M PHY, the detail implementation could refer to section “Controller Event”.

(3) API:

AN-21112300-E2 110 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t blc_ll_setPhy (u16 connHandle,le_phy_prefer_mask_t all_phys, le_phy_prefer_type_t

tx_phys, le_phy_prefer_type_t rx_phys, le_ci_prefer_t phy_options);↪

This is a BLE Spec standard interface, please refer to <Core_5.0>, Vol 2/Part7/7.8.49, “LE Set PHY Com-
mand”.

connHandle：slave mode: it should set to BLS_CONN_HANDLE; master mode: it should set to
BLM_CONN_HANDLE.

For other parameters, please refer to Spec’s definition along with SDK’s enumeration definition.

(4) API blc_ll_setDefaultConnCodingIndication()

ble_sts_t blc_ll_setDefaultConnCodingIndication(le_ci_prefer_t prefer_CI);

Non-BLE Spec standard interface, when a Peer Device initiates a PHY_Req request via API blc_ll_setPhy (),
the requested party can set the local device’s preferenced Encode Mode (S2/S8) via this API.

3.2.11 Channel Selection Algorithm #2

Channel Selection Algorithm #2 is a new feature added to Core_5.0, with a better interference avoidance
capability. You can refer to Core_5.0 (Vol 6/Part B/4.5.8.3 “Channel Selection Algorithm #2”) for further
information.

The corresponding demo reference in BLE SDK.

• Slave end refer to Demo “b85m_feature_test”

Define macro in vendor/b85m_feature_test/feature_config.h as below:

#define FEATURE_TEST_MODE TEST_CSA2

a) If using a broadcast defined by the Core_4.2 API, the user can choose to use or not to use the frequency
hopping algorithm #2, which is not used by default in the SDK. If you want to use the frequency hopping
algorithm #2, you need to enable it via the following API.

void blc_ll_initChannelSelectionAlgorithm_2_feature(void)

b) If using <Core_5.0> extended advertising and initiate connect through Extend ADV, user will have to
use above API to choose Algorithm #2 according to the spec <Core_5.0>. Because if the connection
is initiated through Extended Adv, it’ll choose Algorithm#2 by default, and on the othe hand, if only
uses advertising, in order to save sram space, Algorithm #2 is not recommended.

• Master end refer to Demo “b85m_master_kma_dongle”

By default the master end frequency hopping algorithm #2 is also disabled, if needed the same API has to
be enabled manually in the user_init() call.

AN-21112300-E2 111 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void blc_ll_initChannelSelectionAlgorithm_2_feature(void)；

3.2.12 Extended Advertising

3.2.12.1 Extended Advertising Introdcution

Extended Advertising is a new feature to <Core_5.0>

Due to the new feature to Advertising in <Core_5.0>, SDK has new APIs in order to support the legacy Adver-
tising function in <Core_4.2) and the new Advertising function in <Core_5.0>. These APIs will be covered in
later secions, named as <Core_5.0> API.（following secion will use this name as reference）, and <Core_4.2)>
APIs refered in section , like bls_ll_setAdvData()、bls_ll_setScanRspData()、bls_ll_setAdvParam(), will only
support for <Core_4.2>’s Advertising function, but not <Core_5.0> Advertising new function.

Extended Advertising primary feature as following:

(1) Increase the Advertising PDUs – In <Core_4.2>, the Advertising PDU length is ranging from 6 to 37
bytes, and in <Core_5.0>, the extended Advertising PDU is ranging from 0 to 255 bytes (single PDU).
If the Advertising Data length > Adv PDU, it’ll be fragmented into N Advertising PDU and send it out.

(2) It could chose different PHYs（1Mbps，2Mbps，125kbps，500kbps）based on different application.

3.2.12.2 Extended Advertising Demo Setup

Extended Advertising Demo “b85m_feature_test” usage：
Demo1：use to illustrate all the basic advertising functions in <Core_5.0>

a) Define macro in vendor/b85m_feature_test/feature_config.h

#define FEATURE_TEST_MODE TEST_EXTENDED_ADVERTISING

b) Based on the type of Advertising, select the corresponding macro. The demo could also test all the
supported Advertising type in <Core_5.0>, below are all the type that B91 SDK currently supported.

/* Advertising Event Properties type*/

typedef enum{

ADV_EVT_PROP_LEGACY_CONNECTABLE_SCANNABLE_UNDIRECTED = 0x0013,

ADV_EVT_PROP_LEGACY_CONNECTABLE_DIRECTED_LOW_DUTY = 0x0015,

ADV_EVT_PROP_LEGACY_CONNECTABLE_DIRECTED_HIGH_DUTY = 0x001D,

ADV_EVT_PROP_LEGACY_SCANNABLE_UNDIRECTED = 0x0012,

ADV_EVT_PROP_LEGACY_NON_CONNECTABLE_NON_SCANNABLE_UNDIRECTED = 0x0010,

ADV_EVT_PROP_EXTENDED_NON_CONNECTABLE_NON_SCANNABLE_UNDIRECTED = 0x0000,

ADV_EVT_PROP_EXTENDED_CONNECTABLE_UNDIRECTED = 0x0001,

ADV_EVT_PROP_EXTENDED_SCANNABLE_UNDIRECTED = 0x0002,

ADV_EVT_PROP_EXTENDED_NON_CONNECTABLE_NON_SCANNABLE_DIRECTED = 0x0004,

ADV_EVT_PROP_EXTENDED_CONNECTABLE_DIRECTED = 0x0005,

ADV_EVT_PROP_EXTENDED_SCANNABLE_DIRECTED = 0x0006,

AN-21112300-E2 112 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ADV_EVT_PROP_EXTENDED_MASK_ANONYMOUS_ADV = 0x0020,

ADV_EVT_PROP_EXTENDED_MASK_TX_POWER_INCLUDE = 0x0040,

}advEvtProp_type_t;

Demo2：Based on Demo1，enable the Coded PHY/2M PHY option

a) Define macro in vendor/b85m_feature_test/feature_config.h

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY_EXT_ADV

b) Based on the type of required packet and PHY mode, select the corresponding macro to enable the
functions.

Note:

• When compiling a demo, if the error shown below occurs, it may be because the data size of the defined
“attribute_data_retention” attribute exceeds 16K, whereas the SDK default is deepsleep retention 16K
sram.

Figure 3.36: “Error in compiling a demo”

This can be modified in one of the following ways (for a detailed analysis please refer to the section “Sram
and Firmware Space”)

Reduce the data in the defined “attribute_data_retention” attribute.

Choose to switch to deepsleep retention 32K Sram, see the chapter “Software bootloader introduction” for
details on how to configure it.

3.2.12.3 Extended Advertising Related API

Extended Advertising is using module design. Due to the variable length of adv data length/scan response
data where the maximum length will be up to more than 1000 bytes, instead of statically defining the
maximum value in BLE stack that might waste the SRAM space, we leave the definition of SRAM space
to developer, so that it would have the flexibility for user to review their needs to best use of the SRAM
space.

Current SDK only support one Advertising set, but with the design that has flexibility to support multiple adv
set for future as well. So you could see the APIs’ parameters are all designed in the way to support multiple
adv sets for future.

With that design, following are the APIs.

(1) Initialization stage, you would need to call the following APIs to allocate the SRAM.

AN-21112300-E2 113 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

blc_ll_initExtendedAdvertising_module(app_adv_set_param, app_primary_adv_pkt,

APP_ADV_SETS_NUMBER);↪

blc_ll_initExtSecondaryAdvPacketBuffer(app_secondary_adv_pkt, MAX_LENGTH_SECOND_ADV_PKT);

blc_ll_initExtAdvDataBuffer(app_advData, APP_MAX_LENGTH_ADV_DATA);

blc_ll_initExtScanRspDataBuffer(app_scanRspData, APP_MAX_LENGTH_SCAN_RESPONSE_DATA);

According to above API, the memory allocation is shown as below:

Figure 3.37: “Extended Advertising Initialize Memory Allocation”

• APP_MAX_LENGTH_ADV_DATA：Advertising Set length, developer could adjust the macro to define
the size based on the needs in order to save the DeepRetention space.

• APP_MAX_LENGTH_SCAN_RESPONSE_DATA: Scan response data length, developer could adjust the
macro to define the size based on the needs in order to save the DeepRetention space.

• app_primary_adv_pkt：Primary Advertising PDU data length, the size is allocated as 44 bytes, user
layer can’t change it.

• app_secondary_adv_pkt：Secondary Advertising PDU data length, the size is allocated as 264 bytes,
user layer can’t change it.

In the demo of “b85m_feature_test”, (vendor/b85m_feature_test/feature_extend_adv/app.c), users can
use the following macro to allocate the sram based on your requirement in order to best use the sram.

#define APP_ADV_SETS_NUMBER 1

#define APP_MAX_LENGTH_ADV_DATA 1024

#define APP_MAX_LENGTH_SCAN_RESPONSE_DATA 31

(2) API blc_ll_setExtAdvParam:

AN-21112300-E2 114 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t blc_ll_setExtAdvParam(……);

This is a BLE Spec standard interface, used to configure Advertising parameter, please refer to <Core_5.0>
(Vol 2/Part E/7.8.53 “LE Set Extended Advertising Parameters Command”) for further information.

Note：

• The parameter adv_tx_pow does not support the selection of the send power value at the moment,
you need to call the API void rf_set_power_level_index (rf_power_level_index_e level) separately to
configure the send power.

(3) API blc_ll_setExtScanRspData:

ble_sts_t blc_ll_setExtScanRspData(u8 advHandle, data_oper_t operation, data_fragm_t

fragment_prefer, u8 scanRsp_dataLen, u8 *scanRspData);↪

This is a BLE Spec standard interface，used to configure the Scan Response Data，please refer to <Core_5.0>
(Vol 2/Part E/7.8.53 “LE Set Extended Scan Response Command”).

(4) API blc_ll_setExtAdvEnable_n:

ble_sts_t blc_ll_setExtAdvEnable_n(u32 extAdv_en, u8 sets_num, u8 *pData);

This is a BLE Spec standard interface，used to enable/ disable Extended Advertising，please refer to
<Core_5.0> (Vol 2/Part E/7.8.56 “LE Set Extended Advertising Enable Command”), and understand it in the
context of the SDK’s enumeration type definitions and demo usage.

However, currently the SDK only supports 1 Adv Sets, so this API is not supported for the time being and is
only reserved for multipleAdv sets in the future. However, the Telink SDK has written a simplified API based
on this API function to operate on/off 1 Adv Sets for more efficient execution. The simplified API is shown
below, with the same input parameters and return values as the standard API, but is only used to set 1 Adv
Set.

ble_sts_t blc_ll_setExtAdvEnable_1(u32 extAdv_en, u8 sets_num, u8 advHandle, u16 duration,

u8 max_extAdvEvt);↪

(5) API blc_ll_setAdvRandomAddr()

ble_sts_t blc_ll_setAdvRandomAddr(u8 advHandle, u8* rand_addr);

This is a BLE Spec standard interface for setting the device’s Random address, please refer to Core_5.0 (Vol
2/Part E/7.8.4 “LE Set Random Address Command”) for more details and combine it with the enum type
definition on the SDK and demo usage to understand.

(6) API blc_ll_setDefaultExtAdvCodingIndication:

AN-21112300-E2 115 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void blc_ll_setDefaultExtAdvCodingIndication(u8 advHandle, le_ci_prefer_t prefer_CI);

This is a Non-BLE Spec standard interface, when setting advertising parameters with BLE standard API
blc_ll_setExtAdvParam(), if set to Coded PHY (contains S2 and S8) but does not specify which Encode
mode, SDK defaults to S2, to facilitate user selection, this API is defined to select preferenced Encode mode
S2/S8.

The user can pass a reference via prefer_CI for S2/S8 mode selection, as enumerated below.

typedef enum {

CODED_PHY_PREFER_NONE = 0,

CODED_PHY_PREFER_S2 = 1,

CODED_PHY_PREFER_S8 = 2,

} le_ci_prefer_t; //LE coding indication prefer

(7) API blc_ll_setAuxAdvChnIdxByCustomers:

void blc_ll_setAuxAdvChnIdxByCustomers(u8 aux_chn);

This is a Non-BLE Spec standard interface, the user can set the channel value of the Auxiliary Advertising
channel through this function, commonly used for debug, if the user does not call this function to define,
the Auxiliary Advertising channel value will be generated randomly (random number range 0 - 31).

(8) API blc_ll_setMaxAdvDelay_for_AdvEvent:

void blc_ll_setMaxAdvDelay_for_AdvEvent(u8 max_delay_ms);

This is a non BLE Spec standard interface，used to configure the AdvDelay timing based on the Adv Interval,
the input range is from 0, 1, 2, 4, 8 in the unit of ms.

advDelay(unit: us) = Random() % (max_delay_ms*1000);

T_advEvent = advInterval + advDelay

If max_delay_ms = 0, T_advEvent is accurate on the advInterval timing;

If max_delay_ms = 8, T_advEvent is based on the advInterval with a random offset in between 0-8ms.

(9) The following API, reserved for the Multiple Advertising Sets API, is not supported by this version of
the SDK and can be ignored by users for the time being.

ble_sts_t blc_ll_removeAdvSet(u8 advHandle)；
ble_sts_t blc_ll_clearAdvSets(void);

AN-21112300-E2 116 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.3 BLE Host

3.3.1 BLE Host Introduction

BLE Host consists of L2CAP, ATT, SMP, GATT and GAP layer, and user-layer applications are implemented
on the basis of the Host layer.

3.3.2 L2CAP

The L2CAP, Logical Link Control and Adaptation Protocol, connects to the upper APP layer and the lower
Controller layer. By acting as an adaptor between the Host and the Controller, the L2CAP makes data
processing details of the Controller become negligible to the upper-layer application operations.

The L2CAP layer of BLE is a simplified version of classical Bluetooth. In basic mode, it does not implement
segmentation and re-assembly, has no involvement of flow control and re-transmission, and only uses fixed
channels for communication. The figure below shows simple L2CAP structure: Data of the APP layer are
sent in packets to the BLE Controller. The BLE Controller assembles the received data into different CID data
and report them to the Host layer.

Figure 3.38: “BLE L2CAP Structure and ATT Packet Assembly Model”

As specified in BLE Spec, L2CAP is mainly used for data transfer between Controller and Host. Most work
are finished in stack bottom layer with little involvement of user. User only needs to invoke the following

AN-21112300-E2 117 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

APIs to set correspondingly.

3.3.2.1 Register L2CAP Data Processing Function

In the BLE SDK architecture, the Controller’s data is interfaced with the Host via the HCI, and the data from
the HCI to the Host is first processed at the L2CAP layer, using the following API to register this processing
function.

void blc_l2cap_register_handler (void *p);

In BLE Slave applications such as b85m_ble_remote/b85m_module, the functions in the SDK L2CAP layer
that process Controller data are:

int blc_l2cap_packet_receive (u16 connHandle, u8 * p);

This function has been implemented in the protocol stack and it will parse the received data and transmit it
upwards to ATT, SIG or SMP.

Initialization:

blc_l2cap_register_handler (blc_l2cap_packet_receive);

In the b85m_master kma dongle, the application layer contains the BLE Host function with the following
processing functions, the source code of which is provided for user reference.

int app_l2cap_handler (u16 conn_handle, u8 *raw_pkt);

Initialization:

blc_l2cap_register_handler (app_l2cap_handler);

In the b85m hci, only the slave controller is implemented. The blc_hci_sendACLData2Host function transmits
the controller data to the BLE Host device via a hardware interface such as UART/USB.

int blc_hci_sendACLData2Host (u16 handle, u8 *p)

Initialization:

blc_l2cap_register_handler (blc_hci_sendACLData2Host);

AN-21112300-E2 118 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.3.2.2 Update connection parameters

(1) Slave requests for connection parameter update

In BLE stack, Slave can actively apply for a new set of connection parameters by sending a “CONNECTION
PARAMETER UPDATE REQUEST” command to Master in L2CAP layer. The figure below shows the command
format. Please refer to “Core_v5.0” (Vol 3/Part A/ 4.20 “CONNECTION PARAMETER UPDATE REQUEST”).

Figure 3.39: “Connection Para Update Req Format in BLE Stack”

The BLE SDK provides an API for slaves to actively apply to update connection parameters on the L2CAP
layer to send the above CONNECTION PARAMETER UPDATE REQUEST command to the master.

void bls_l2cap_requestConnParamUpdate (u16 min_interval, u16 max_interval, u16 latency, u16

timeout);↪

The four parameters of this API correspond to the parameters in the “data” field of the “CONNECTION
PARAMETER UPDATE REQUEST”. The “min_interval” and “max_interval” are the actual interval time divided
by 1.25ms (e.g. for 7.5ms connection interval, the value should be 6); the “timeout” is actual supervision
timeout divided by 10ms (e.g. for 1s timeout, the value should be 100).

Application example: Slave requests for new connection parameters when connection is established.

void task_connect (u8 e, u8 *p, int n)

{

bls_l2cap_requestConnParamUpdate (6, 6, 99, 400);

bls_l2cap_setMinimalUpdateReqSendingTime_after_connCreate(1000);

}

Figure 3.40: “BLE Sniffer Packet Sample Conn Para Update Request and Response”

AN-21112300-E2 119 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The API:

void bls_l2cap_setMinimalUpdateReqSendingTime_after_connCreate(int time_ms)

serves to make the Slave wait for time_ms miliseconds after connection is established, and then invoke
the API “bls_l2cap_requestConnParamUpdate” to update connection parameters. After conection is estab-
lished, if user only invokes the “bls_l2cap_requestConnParamUpdate”, the Slave will wait for 1s to execute
this request command.

For Slave applications, the SDK provides register callback function interface of obtaining Conn_UpdateRsp
result, so as to inform user whether connection parameter update request from Slave is rejected or accepted
by Master. As shown in the figure above, Master accepts Connection_Param_Update_Req from Slave.

void blc_l2cap_registerConnUpdateRspCb(l2cap_conn_update_rsp_callback_t cb);

Please refer to the use case of Slave initialization:

blc_l2cap_registerConnUpdateRspCb(app_conn_param_update_response)

Following shows the reference for the callback function “app_conn_param_update_response”.

int app_conn_param_update_response(u8 id, u16 result)

{

if(result == CONN_PARAM_UPDATE_ACCEPT){

//the LE master Host has accepted the connection parameters

}

else if(result == CONN_PARAM_UPDATE_REJECT){

//the LE master Host has rejected the connection parameter

}

return 0;

}

(2) Master responds to connection parameter update request

After Master receives the “CONNECTION PARAMETER UPDATE REQUEST” command from Slave, it will re-
spond with a “CONNECTION PARAMETER UPDATE RESPONSE” command. Please refer to “Core_v5.0” (Vol
3/Part A/ 4.20 “CONNECTION PARAMETER UPDATE RESPONSE”).

The figure below shows the command format: if “result” is “0x0000”, it indicates the request command is
accepted; if “result” is “0x0001”, it indicates the request command is rejected.

Whether actual Android/iOS device will accept or reject the connection parameter update request is deter-
mined by corresponding BLE Master. User can refer to Master compatibility test.

AN-21112300-E2 120 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.41: “Conn Para Update RSP Format in BLE Stack”

Telink’s b85m_master kma dongle handles the connection parameter update demo code for slave as fol-
lows.

AN-21112300-E2 121 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.42: “Demo code of b85m master kma dongle”

After “L2CAP_CMD_CONN_UPD_PARA_REQ” is received in “L2CAP_CID_SIG_CHANNEL”, it will read inter-
val_min (used as eventual interval), supervision timeout and long suspend time (interval * (latency +1)), and
check the rationality of these data. If interval < 200ms, long suspend time<20s and supervision timeout
>= 2* long suspend time, this request will be accepted; otherwise this request will be rejected. User can
modify as needed based on this simple demo design.

No matter whether parameter request of Slave is accepted, the API below can be invoked to respond to this
request.

void blc_l2cap_SendConnParamUpdateResponse(u16 connHandle, u8 req_id, conn_para_up_rsp

result);↪

“connHandle” indicates current connection ID. “result” has two options to indicate “accept” and “reject”,
respectively.

typedef enum{

CONN_PARAM_UPDATE_ACCEPT = 0x0000,

CONN_PARAM_UPDATE_REJECT = 0x0001,

}conn_para_up_rsp;

If the b85m_master kma dongle accepts the Slave’s request, it must send an update cmd to the Controller
via API blm_ll_updateConnection within a certain amount of time, using host_update_conn_param_req on
the demo code as a flag and initiates this update after a 50ms delay in the main_loop.

AN-21112300-E2 122 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.43: “Demo code of b85m master kma dongle”

(3) Master updates connection parameters in Link Layer

After Master responds with “conn para update rsp” to accept the “conn para update req” from Slave, Master
will send a “LL_CONNECTION_UPDATE_REQ” command in Link Layer.

Figure 3.44: “BLE Sniffer Packet Sample ll Conn Update Req”

Slave will mark the final parameter as the instant value of Master after it receives the update request. When
the instant value of Slave reaches this value, connection parameters are updated, and the callback of the
event “BLT_EV_FLAG_CONN_PARA_UPDATE” is triggered.

The “instant” indicates connection event count value maintained by Master and Slave, and it ranges from
0x0000 to 0xffff. During a connection, Master and Slave should always have consistent “instant” value.
When Master sends “conn_req” and establishes connection with Slave, Master switches state from scanning
to connection, and clears the “instant” of Master to “0”. When Slave receives the “conn_req”, it switches
state from advertising to connection, and clears the instant of Slave to “0”. Each connection packet of
Master and Slave is a connection event. For the first connection event after the “conn_req”, the instant
value is “1”; for the second connection event, the instant value is 2, and so on.

When Master sends a “LL_CONNECTION_UPDATE_REQ”, the final parameter “instant” indicates during the
connection event marked with “instant”, Master will use the values corresponding to the former connection
parameters of the “LL_CONNECTION_UPDATE_REQ” packet. After the “LL_CONNECTION_UPDATE_REQ” is
received, the new connection parameters will be used during the connection event when the instant of Slave
equals the declared instant of Master, thus Slave and Master can finish switch of connection parameters
synchronously.

3.3.3 ATT & GATT

3.3.3.1 GATT basic unit “Attribute”

GATT defines two roles: Server and Client. In this BLE SDK, Slave is Server, and corresponding Android/iOS
device is Client. Server needs to supply multiple Services for Client to access.

Each Service of GATT consists of multiple Attributes, and each Attribute contains certain information. When
multiple Attributes of different kinds are combined together, they can reflect a basic service.

AN-21112300-E2 123 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.45: “GATT Service Containing Attributes”

The basic contents of Attribute are shown as below:

(1) Attribute Type: UUID

The UUID is used to identify Attribute type, and its total length is 16 bytes. In BLE standard protocol, the
UUID length is defined as two bytes, since Master devices follow the same method to transform 2-byte UUID
into 16 bytes.

When standard 2-byte UUID is directly used, Master should know device types indicated by various UUIDs.
8x5x BLE stack defines some standard UUIDs in “stack/service/hids.h” and “stack/ble /uuid.h”.

Telink proprietary profiles (OTA, MIC, SPEAKER, and etc.) are not supported in standard Bluetooth. The
16-byte proprietary device UUIDs are defined in “stack/ble/uuid.h”.

(2) Attribute Handle

Slave supports multiple Attributes which compose an Attribute Table. In Attribute Table, each Attribute is
identified by an Attribute Handle value. After connection is established, Master will analyze and obtain the
Attribute Table of Slave via “Service Discovery” process, then it can identify Attribute data via the Attribute
Handle during data transfer.

(3) Attribute Value

Attribute Value corresponding to each Attribute is used as request, response, notification and indication
data. In 8x5x BLE stack, Attribute Value is indicated by one pointer and the length of the area pointed by
the pointer.

AN-21112300-E2 124 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.3.3.2 Attribute and ATT Table

To implement GATT Service on Slave, an Attribute Table is defined in this BLE SDK and it consists of multiple
basic Attributes. Attribute definition is shown as below.

typedef struct attribute

{

u16 attNum;

u8 perm;

u8 uuidLen;

u32 attrLen; //4 bytes aligned

u8* uuid;

u8* pAttrValue;

att_readwrite_callback_t w;

att_readwrite_callback_t r;

} attribute_t;

Below is Attribute Table given by the BLE SDK to illustrate the meaning of the above items. See app_att.c
for the Attribute Table code, as shown below:

static const attribute_t my_Attributes[] = {

{ATT_END_H - 1, 0,0,0,0,0}, // total num of attribute

// 0001 - 0007 gap

{7,ATT_PERMISSIONS_READ,2,2,(u8*)(&my_primaryServiceUUID), (u8*)(&my_gapServiceUUID), 0},

{0,ATT_PERMISSIONS_READ,2,sizeof(my_devNameCharVal),(u8*)(&my_characterUUID), (u8*)

(my_devNameCharVal), 0},↪

{0,ATT_PERMISSIONS_READ,2,sizeof(my_devName), (u8*)(&my_devNameUUID), (u8*)(my_devName), 0},

{0,ATT_PERMISSIONS_READ,2,sizeof(my_appearanceCharVal),(u8*)(&my_characterUUID), (u8*)

(my_appearanceCharVal), 0},↪

{0,ATT_PERMISSIONS_READ,2,sizeof (my_appearance), (u8*)(&my_appearanceUIID), (u8*)

(&my_appearance), 0},↪

{0,ATT_PERMISSIONS_READ,2,sizeof(my_periConnParamCharVal),(u8*)(&my_characterUUID), (u8*)

(my_periConnParamCharVal), 0},↪

{0,ATT_PERMISSIONS_READ,2,sizeof (my_periConnParameters),(u8*)(&my_periConnParamUUID),

(u8*)(&my_periConnParameters), 0},↪

// 0008 - 000b gatt

{4,ATT_PERMISSIONS_READ,2,2,(u8*)(&my_primaryServiceUUID), (u8*)(&my_gattServiceUUID), 0},

{0,ATT_PERMISSIONS_READ,2,sizeof(my_serviceChangeCharVal),(u8*)(&my_characterUUID),

(u8*)(my_serviceChangeCharVal), 0},↪

{0,ATT_PERMISSIONS_READ,2,sizeof (serviceChangeVal), (u8*)(&serviceChangeUUID), (u8*)

(&serviceChangeVal), 0},↪

{0,ATT_PERMISSIONS_RDWR,2,sizeof (serviceChangeCCC),(u8*)(&clientCharacterCfgUUID), (u8*)

(serviceChangeCCC), 0},↪

};

Note: The key word “const” is added before Attribute Table definition:

AN-21112300-E2 125 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

const attribute_t my_Attributes[] = { ... };

By adding the “const”, the compiler will store the array data to flash rather than RAM, while all contents of
the Attribute Table defined in flash are read only and not modifiable.

(1) attNum

The “attNum” supports two functions.

The “attNum” can be used to indicate the number of valid Attributes in current Attribute Table, i.e. the
maximum Attribute Handle value. This number is only used in the invalid Attribute item 0 of Attribute Table
array.

{57,0,0,0,0,0}, // ATT_END_H ‒ 1 = 57

“attNum = 57” indicates there are 57 valid Attributes in current Attribute Table.

In BLE, Attribute Handle value starts from 0x0001 with increment step of 1, while the array index starts
from 0. When this virtual Attribute is added to the Attribute Table, each Attribute index equals its Attribute
Handle value. After the Attribute Table is defined, Attribute Handle value of an Attribute can be obtained
by counting its index in current Attribute Table array.

The final index is the number of valid Attributes (i.e. attNum) in current Attribute Table. In current SDK, the
attNum is set as 57; if user adds or deletes any Attribute, the attNum needs to be modified correspond-
ingly.

The “attNum” can also be used to specify Attributes constituting current Service.

The UUID of the first Attribute for each Service must be “GATT_UUID_PRIMARY_SERVICE(0x2800)”; the
first Attribute of a Service sets “attNum” and it indicates following “attNum” Attributes constitute current
Service.

As shown in code above, for the gap service, the Attribute with UUID of “GATT_UUID_PRIMARY_SERVICE”
sets the “attNum” as 7, it indicates the seven Attributes from Attribute Handle 1 to Attribute Handle 7
constitute the gap service.

Except for Attribute item 0 and the first Attribute of each Service, attNum values of all Attributes must be
set as 0.

(2) perm

The “perm” is the simplified form of “permission” and it serves to specify access permission of current
Attribute by Client.

The “perm” of each Attribute should be configured as one or combination of following 10 values.

#define ATT_PERMISSIONS_READ 0x01

#define ATT_PERMISSIONS_WRITE 0x02

#define ATT_PERMISSIONS_AUTHEN_READ 0x61

#define ATT_PERMISSIONS_AUTHEN_WRITE 0x62

#define ATT_PERMISSIONS_SECURE_CONN_READ 0xE1

#define ATT_PERMISSIONS_SECURE_CONN_WRITE 0xE2

AN-21112300-E2 126 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define ATT_PERMISSIONS_AUTHOR_READ 0x11

#define ATT_PERMISSIONS_AUTHOR_WRITE 0x12

#define ATT_PERMISSIONS_ENCRYPT_READ 0x21

#define ATT_PERMISSIONS_ENCRYPT_WRITE 0x22

Note: Current SDK version does not support PERMISSION READ and PERMISSION WRITE yet.

(3) uuid and uuidLen

As introduced above, UUID supports two types: BLE standard 2-byte UUID, and Telink proprietary 16-byte
UUID. The “uuid” and “uuidLen” can be used to describe the two UUID types simultaneously.

The “uuid” is an u8-type pointer, and “uuidLen” specifies current UUID length, i.e. the uuidLen bytes starting
from the pointer are current UUID. Since Attribute Table and all UUIDs are stored in flash, the “uuid” is a
pointer pointing to flash.

a) BLE standard 2-byte UUID：
For example, the Attribute “devNameCharacter” with Attribute Handle of 2, related code is shown as be-
low:

#define GATT_UUID_CHARACTER 0x2803

static const u16 my_characterUUID = GATT_UUID_CHARACTER;

static const u8 my_devNameCharVal[5] = {0x12, 0x03, 0x00, 0x00, 0x2A};

{0,1,2,5,(u8*)(&my_characterUUID), (u8*)(my_devNameCharVal), 0},

“UUID=0x2803” indicates “character” in BLE and the “uuid” points to the address of “my_devNameCharVal”
in flash. The “uuidLen” is 2. When Master reads this Attribute, the UUID would be “0x2803”.

b) Telink proprietary 16-byte UUID：
For example, the Attribute MIC of audio, related code is shown as below:

#define TELINK_MIC_DATA {0x18,0x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,

0x01,0x0}↪

const u8 my_MicUUID[16] = TELINK_MIC_DATA;

static u8 my_MicData = 0x80;

{0,1,16,1,(u8*)(&my_MicUUID), (u8*)(&my_MicData), 0},

The “uuid” points to the address of “my_MicData” in flash, and the “uuidLen” is 16. When Master reads this
Attribute, the UUID would be “0x000102030405060708090a0b0c0d2b18”.

(4) pAttrValue and attrLen

Each Attribute corresponds to an Attribute Value. The “pAttrValue” is an u8-type pointer which points to
starting address of Attribute Value in RAM/Flash, while the “attrLen” specifies the data length. When Master
reads the Attribute Value of certain Attribute from Slave, the “attrLen” bytes of data starting from the area
(RAM/Flash) pointed by the “pAttrValue” will be read by this BLE SDK to Master.

Since UUID is read only, the “uuid” is a pointer pointing to flash; while Attribute Value may involve write
operation into RAM, so the “pAttrValue” may points to RAM or flash.

AN-21112300-E2 127 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

For example, the Attribute hid Information with Attribute Handle of 35, related code is as shown below:

const u8 hidInformation[] =

{

U16_LO(0x0111), U16_HI(0x0111), // bcdHID (USB HID version)，0x11,0x01

0x00, // bCountryCode

0x01 // Flags

};

{0,1,2, sizeof(hidInformation),(u8*)(&hidinformationUUID), (u8*)(hidInformation), 0},

In actual application, the key word “const” can be used to store the read-only 4-byte hid information “0x01
0x00 0x01 0x11” into flash. The “pAttrValue” points to the starting address of hidInformation in flash, while
the “attrLen” is the actual length of hidInformation. When Master reads this Attribute, “0x01000111” will be
returned to Master correspondingly.

Figure below shows a packet example captured by BLE sniffer when Master reads this Attribute. Master
uses the “ATT_Read_Req” command to set the target AttHandle as 0x23 (35), corresponding to the hid
information in Attribute Table of SDK.

Figure 3.46: “BLE Sniffer Packet Sample when Master Reads hidInformation”

For the Attribute “battery value” with Attribute Handle of 40, related code is as shown below:

u8 my_batVal[1] = {99};

{0,1,2,1,(u8*)(&my_batCharUUID), (u8*)(my_batVal), 0},

In actual application, the “my_batVal” indicates current battery level and it will be updated according to ADC
sampling result; then Slave will actively notify or Master will actively read to transfer the “my_batVal” to
Master. The starting address of the “my_batVal” stored in RAM will be pointed by the “pAttrValue”.

(5) Callback function w

The callback function w is write function with prototype as below:

typedef int (*att_readwrite_callback_t)(u16 connHandle, void* p);

User must follow the format above to define callback write function. The callback function w is optional,
i.e. for an Attribute, user can select whether to set the callback write function as needed (null pointer 0
indicates not setting callback write function).

AN-21112300-E2 128 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The trigger condition for callback function w is: When Slave receives any Attribute PDU with Attribute
Opcode as shown below, Slave will check whether the callback function w is set.

a) opcode = 0x12, Write Request.

b) opcode = 0x52, Write Command.

c) opcode = 0x18, Execute Write Request.

After Slave receives a write command above, if the callback function w is not set, Slave will automatically
write the area pointed by the “pAttrValue” with the value sent from Master, and the data length equals the
“l2capLen” in Master packet format minus 3; if the callback function w is set, Slave will execute user-defined
callback function w after it receives the write command, rather than writing data into the area pointed by
the “pAttrValue”. Note: Only one of the two write operations is allowed to take effect.

By setting the callback function w, user can process Write Request, Write Command, and Execute Write
Request in ATT layer of Master. If the callback function w is not set, user needs to evaluate whether the
area pointed by the “pAttrValue” can process the command (e.g. If the “pAttrValue” points to flash, write
operation is not allowed; or if the “attrLen” is not long enough for Master write operation, some data will be
modified unexpectedly.)

Figure 3.47: “Write Request in BLE Stack”

AN-21112300-E2 129 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.48: “Write Command in BLE Stack”

Figure 3.49: “Execute Write Request in BLE Stack”

The void-type pointer “p” of the callback function w points to the value of Master write command. Actually
“p” points to a memory area, the value of which is shown as the following structure.

typedef struct{

u8 type;

u8 rf_len;

u16 l2cap;

u16 chanid;

u8 att;

u8 hl;

u8 hh;

u8 dat[20];

}rf_packet_att_data_t;

“p” points to “type”, valid length of data is l2cap minus 3, and the first valid data is pw->dat[0].

AN-21112300-E2 130 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

int my_WriteCallback (void *p)

{

rf_packet_att_data_t *pw = (rf_packet_att_data_t *)p;

int len = pw->l2cap - 3;

//add your code

//valid data is pw->dat[0] ~ pw->dat[len-1]

return 1;

}

The structure “rf_packet_att_data_t” above is available in the “stack/ble/ble_format.h”.

(6) Callback function r

The callback function r is read function with prototype as below:

typedef int (*att_readwrite_callback_t)(u16 connHandle,void* p);

User must follow the format above to define callback read function. The callback function r is also optional,
i.e. for an Attribute, user can select whether to set the callback read function as needed (null pointer 0
indicates not setting callback read function), connHandle is connecting sentence between master and slave,
type BLS_CONN_HANDLE for slave application, and type BLM_CONN_HANDLE for master application.

The trigger condition for callback function r is: When Slave receives any Attribute PDU with Attribute Opcode
as shown below, Slave will check whether the callback function r is set.

a) opcode = 0x0A, Read Request.

b) opcode = 0x0C, Read Blob Request.

After Slave receives a read command above,

a) If the callback read function is set, Slave will execute this function, and determine whether to respond
with “Read Response/Read Blob Response” according to the return value of this function.

• If the return value is 1, Slave won’t respond with “Read Response/Read Blob Response” to Master.

• If the return value is not 1, Slave will automatically read “attrLen” bytes of data from the area pointed by
the “pAttrValue”, and the data will be responded to Master via “Read Response/Read Blob Response”.

b) If the callback read function is not set, Slave will automatically read “attrLen” bytes of data from the
area pointed by the “pAttrValue”, and the data will be responded to Master via “Read Response/Read
Blob Response”.

Therefore, after a Read Request/Read Blob Request is received from Master, if it’s needed to modify the
content of Read Response/Read Blob Response, user can register corresponding callback function r, modify
contents in RAM pointed by the “pAttrValue” in this callback function, and the return value must be 0.

(7) Attribute Table layout

Figure below shows Service/Attribute layout based on Attribute Table. The “attnum” of the first Attribute
indicates the number of valid Attributes in current ATT Table; the remaining Attributes are assigned to dif-
ferent Services, the first Attribute of each Service is the “declaration”, and the following “attnum” Attributes
constitute current Service. Actually the first item of each Service is a Primary Service.

AN-21112300-E2 131 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define GATT_UUID_PRIMARY_SERVICE 0x2800

const u16 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

Figure 3.50: “Service Attribute Layout”

(8) ATT table Initialization

GATT & ATT initialization only needs to transfer the pointer of Attribute Table in APP layer to protocol stack,
and the API below is supplied:

void bls_att_setAttributeTable (u8 *p);

“p” is the pointer of Attribute Table.

3.3.3.3 Attribute PDU and GATT API

As required by BLE spec, the following Attribute PDU types are supported in current SDK.

AN-21112300-E2 132 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• Requests：Data request sent from Client to Server.

• Responses：Data response sent by Server after it receives request from Client.

• Commands：Command sent from Client to Server.

• Notifications：Data sent from Server to Client.

• Indications：Data sent from Server to Client.

• Confirmations：Confirmation sent from Client after it receives data from Server.

The following is an analysis of all ATT PDUs at the ATT layer in conjunction with the Attribute structure and
Attribute Table structure described previously.

(1) Read by Group Type Request, Read by Group Type Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.4.9 and 3.4.4.10) for details about the “Read by Group Type
Request” and “Read by Group Type Response” commands.

The “Read by Group Type Request” command sent by Master specifies starting and ending attHandle, as well
as attGroupType. After the request is received, Slave will check through current Attribute Table according
to the specified starting and ending attHandle, and find the Attribute Group that matches the specified
attGroupType. Then Slave will respond to Master with Attribute Group information via the “Read by Group
Type Response” command.

Figure 3.51: “Read by Group Type Request Read by Group Type Response”

AN-21112300-E2 133 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

As shown above, Master requests from Slave for Attribute Group information of the “primaryServiceUUID”
with UUID of 0x2800.

#define GATT_UUID_PRIMARY_SERVICE 0x2800

const u16 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

The following groups in Slave Attribute Table meet the requirement according to current demo code.

a) Attribute Group with attHandle from 0x0001 to 0x0007,

Attribute Value is SERVICE_UUID_GENERIC_ACCESS (0x1800).

b) Attribute Group with attHandle from 0x0008 to 0x000a,

Attribute Value is SERVICE_UUID_DEVICE_INFORMATION (0x180A).

c) Attribute Group with attHandle from 0x000B to 0x0025,

Attribute Value is SERVICE_UUID_HUMAN_INTERFACE_DEVICE (0x1812).

d) Attribute Group with attHandle from 0x0026 to 0x0028,

Attribute Value is SERVICE_UUID_BATTERY (0x180F).

e) Attribute Group with attHandle from 0x0029 to 0x0032,

Attribute Value is TELINK_AUDIO_UUID_SERVICE(0x11,0x19,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,
0x05,0x04,0x03,0x02,0x01,0x00).

Slave responds to Master with the attHandle and attValue information of the five Groups above via the
“Read by Group Type Response” command. The final ATT_Error_Response indicates end of response. When
Master receives this packet, it will stop sending “Read by Group Type Request”.

(2) Find by Type Value Request, Find by Type Value Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.3.3 and 3.4.3.4) for details about the “Find by Type Value
Request” and “Find by Type Value Response” commands.

The “Find by Type Value Request” command sent by Master specifies starting and ending attHandle, as
well as AttributeType and Attribute Value. After the request is received, Slave will check through current
Attribute Table according to the specified starting and ending attHandle, and find the Attribute that matches
the specified AttributeType and Attribute Value. Then Slave will respond to Master with the Attribute via
the “Find by Type Value Response” command.

Figure 3.52: “Find by Type Value Request Find by Type Value Response”

(3) Read by Type Request, Read by Type Response

AN-21112300-E2 134 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.4.1 and 3.4.4.2) for details about the “Read by Type Request”
and “Read by Type Response” commands.

The “Read by Type Request” command sent by Master specifies starting and ending attHandle, as well as
AttributeType. After the request is received, Slave will check through current Attribute Table according to
the specified starting and ending attHandle, and find the Attribute that matches the specified AttributeType.
Then Slave will respond to Master with the Attribute via the “Read by Type Response”.

Figure 3.53: “Read by Type Value Request Find by Type Value Response”

As shown above, Master reads the Attribute with attType of 0x2A00, i.e. the Attribute with Attribute Handle
of 00 03 in Slave.

const u8 my_devName [] = {'t', 'S', 'e', 'l', 'f', 'i'};

#define GATT_UUID_DEVICE_NAME 0x2a00

const u16 my_devNameUUID = GATT_UUID_DEVICE_NAME;

{0,1,2, sizeof (my_devName),(u8*)(&my_devNameUUID),(u8*)(my_devName), 0},

In the “Read by Type response”, attData length is 8, the first two bytes are current attHandle “0003”,
followed by 6-byte Attribute Value.

(4) Find information Request, Find information Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.3.1 and 3.4.3.2) for details about the “Find information request”
and “Find information response” commands.

The master sends a “Find information request”, specifying the starting and ending attHandle. After receiving
the command, the slave replies to the master through “Find information response” the UUIDs of all the
starting and ending attHandle corresponding Attributes. As shown in the figure below, the master requires
information of three Attributes with attHandle of 0x0016~0x0018, and Slave responds with corresponding
UUIDs.

AN-21112300-E2 135 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.54: “Find Information Request Find Information Response”

(5) Read Request, Read Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.4.3 and 3.4.4.4) for details about the “Read Request” and “Read
Response” commands.

The “Read Request” command sent by Master specifies certain attHandle. After the request is received,
Slave will respond to Master with the Attribute Value of the specified Attribute via the “Read Response”
command (If the callback function r is set, this function will be executed), as shown below.

Figure 3.55: “Read Request Read Response”

(6) Read Blob Request, Read Blob Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.4.5 and 3.4.4.6) for details about the “Read Blob Request” and
“Read Blob Response” commands.

If some Slave Attribute corresponds to Attribute Value with length exceeding MTU_SIZE (It’s set as 23 in
current SDK), Master needs to read the Attribute Value via the “Read Blob Request” command, so that the
Attribute Value can be sent in packets. This command specifies the attHandle and ValueOffset. After the
request is received, Slave will find corresponding Attribute, and respond to Master with the Attribute Value
via the “Read Blob Response” command according to the specified ValueOffset. (If the callback function r
is set, this function will be executed.)

As shown below, when Master needs the HID report map of Slave (report map length largely exceeds 23),
first Master sends “Read Request”, then Slave responds to Master with part of the report map data via “Read
response”; Master sends “Read Blob Request”, and then Slave responds to Master with data via “Read Blob
Response”.

AN-21112300-E2 136 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.56: “Read Blob Request Read Blob Response”

(7) Exchange MTU Request, Exchange MTU Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.2.1 and 3.4.2.2) for details about the “Exchange MTU Request”
and “Exchange MTU Response” commands.

As shown below, Master and Slave obtain MTU size of each other via the “Exchange MTU Request” and
“Exchange MTU Response” commands.

Figure 3.57: “Exchange MTU Request Exchange MTU Response”

During data access process of Telink BLE Slave GATT layer, if there’s data exceeding a RF packet length,
which involves packet assembly and disassembly in GATT layer, Slave and Master need to exchange RX MTU
size of each other in advance. Transfer of long packet data in GATT layer can be implemented via MTU size
exchange.

a) User can register callback of GAP event and enable the eventMask “GAP_EVT_MASK_ATT_EXCHANGE_MTU”
to obtain EffectiveRxMTU.

EffectiveRxMTU=min(ClientRxMTU, ServerRxMTU)。

The “GAP event” section of this document will introduce GAP event in detail.

b) Processing of long Rx packet data in B85 Slave GATT layer

AN-21112300-E2 137 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

B85 Slave ServerRxMTU is set as 23 by default. Actually maximum ServerRxMTU can reach 250, i.e. 250-
byte packet data on Master can be correctly re-assembled on Slave. When it’s needed to use packet re-
assembly of Master in an application, the API below should be invoked to modify RX size of Slave first.

ble_sts_t blc_att_setRxMtuSize(u16 mtu_size);

The return value is shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

GATT_ERR_INVALID_
PARAMETER

See the definition in the SDK mtu_size exceeds the max value
250.

When Master GATT layer needs to send long packet data to Slave, Master will actively initiate
“ATT_Exchange_MTU_req”, and Slave will respond with “ATT_Exchange_MTU_rsp”. “ServerRxMTU” is
the configured value of the API “blc_att_setRxMtuSize”. If user has registered GAP event and enabled the
eventMask “GAP_EVT_MASK_ATT_EXCHANGE_MTU”, “EffectiveRxMTU” and “ClientRxMTU” of Master can
be obtained in the callback function of GAP event.

c) Processing of long Tx packet data in B85 Slave GATT layer

When B85 Slave needs to send long packet data in GATT layer, it should obtain Client RxMTU of Master first,
and the eventual data length should not exceed ClientRxMTU.

First Slave should invoke the API “blc_att_setRxMtuSize” to set its ServerRxMTU. Suppose it’s set as 158.

blc_att_setRxMtuSize（158）;

Then the API below should be invoked to actively initiate an “ATT_Exchange_MTU_req”.

ble_sts_t blc_att_requestMtuSizeExchange (u16 connHandle, u16 mtu_size);

“connHandle” is ID of Slave conection, i.e. “BLS_CONN_HANDLE”, while “mtu_size” is ServerRxMTU.

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 158);

After the “ATT_Exchange_MTU_req” is received, Master will respond with “ATT_Exchange_MTU_rsp”. After
receiving the response, the SDK will calculate EffectiveRxMTU. If user has registered GAP event and en-
abled the eventMask “GAP_EVT_MASK_ATT_EXCHANGE_MTU”, “EffectiveRxMTU” and “ClientRxMTU” will
be reported to user.

(8) Write Request, Write Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.5.1 and 3.4.5.2) for details about the “Write Request” and
“Write Response” commands.

AN-21112300-E2 138 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The “Write Request” command sent by Master specifies certain attHandle and attaches related data. After
the request is received, Slave will find the specified Attribute, determine whether to process the data by
using the callback function w or directly write the data into corresponding Attribute Value depending on
whether the callback function w is set by user. Finally Slave will respond to Master via “Write Response”.

As shown in below, by sending “Write Request”, Master writes Attribute Value of 0x0001 to the Slave
Attribute with the attHandle of 0x0016. Then Slave will execute the write operation and respond to Master
via “Write Response”.

Figure 3.58: “Write Request Write Response”

(9) Write Command

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.5.3) for details about the “Write Command”.

The “Write Command” sent by Master specifies certain attHandle and attaches related data. After the
command is received, Slave will find the specified Attribute, determine whether to process the data by
using the callback function w or directly write the data into corresponding Attribute Value depending on
whether the callback function w is set by user. Slave won’t respond to Master with any information.

(10) Queued Writes

“Queued Writes” refers to ATT protocol including “Prepare Write Request/Response” and “Execute Write
Request/Response”. Please refer to “Core_v5.0” (Vol 3/Part F/3.4.6/Queued Writes).

“Prepare Write Request” and “Execute Write Request” can implement the two functions below.

a) Provide write function for long attribute value.

b) Allow to write multiple values in an atomic operation that is executed seperately.

Similar to “Read_Blob_Req/ Rsp”, “Prepare Write Request” contains AttHandle, ValueOffset and Par-
tAttValue. That means Client can prepare multiple attribute values or various parts of a long attribute value
in the queue. Thus, before executing the prepared queue indeed, Client can confirm that all parts of some
attribute can be written into Server.

Note: Current SDK version only supports the write function of long attribute value with the maximum length
not exceeding 244 bytes. If the length is greater than 244 bytes, the following API interface needs to be
called to make changes to the prepare write buffer and its length.

void blc_att_setPrepareWriteBuffer(u8 *p, u16 len)

AN-21112300-E2 139 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The figure below shows the case when Master writes a long character string “I am not sure what a new
song” (byte number is far more than 23, and use the default MTU) into certain characteristic of Slave. First
Master sends a “Prepare Write Request” with offset of 0x0000, to write the data “I am not sure what” into
Slave, and Slave responds to Master with a “Prepare Write Response”. Then Master sends a “Prepare Write
Request” with offset of 0x12, to write the data “ a new song” into Slave, and Slave responds to Master with
a “Prepare Write Response”. After the write operation of the long attribute value is finished, Master sends
an “Execute Write Request” to Slave. “Flags=1” indicates write result takes effect immediately. Then Slave
responds with an “Execute Write Response” to complete the whole Prepare Write process.

As we can see, “Prepare Write Response” also contains AttHandle, ValueOffsetand PartAttValue in the re-
quest, so as to ensure reliable data transfer. Client can compare field value of Response with that of Request,
to ensure correct reception of the prepared data.

Figure 3.59: “Example for Write Long Characteristic Values”

(11) Handle Value Notification

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.7.1).

Figure 3.60: “Handle Value Notification in BLE Spec”

AN-21112300-E2 140 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The figure above shows the format of “Handle Value Notification” in BLE Spec.

This BLE SDK supplies an API for Handle Value Notification of an Attribute. By invoking this API, user can
push the notify data into bottom-layer BLE software fifo. Stack will push the data of software fifo into
hardware fifo during the latest packet transfer interval, and finally send the data out via RF.

ble_sts_t blc_gatt_pushHandleValueNotify (u16 handle, u8 *p, int len);

The handle is the attHandle of the corresponding Attribute, p is the header pointer to the contiguous memory
data to be sent, and len specifies the number of bytes of data to be sent. Since this API supports auto packet
disassembly based on EffectiveMaxTxOctets, long indicate data to be sent can be disassembled into multiple
BLE RF packets, large “len” is supported. (EffectiveMaxTxOctets indicates the maximum RF TX octets to be
sent in the Link Layer. Its default value is 27, and DLE may modify it. Another API as a replacement will be
introduced later.)

When Link Layer is in Conn state, generally data will be successfully pushed into bottom-layer software
FIFO by invoking this API; however, some special cases may result in invoking failure, and the return value
“ble_sts_t” will indicate the corresponding error reason.

When this API is invoked in APP layer, it’s recommended to check whether the return value is
“BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is needed to re-push the data.

The return value is shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

LL_ERR_CONNECTION_NOT_ ESTABLISH See the definition in
the SDK

Link Layer is in None Conn
state

LL_ERR_ENCRYPTION_BUSY See the definition in
the SDK

Data cannot be sent during
pairing or encryption phase.

LL_ERR_TX_FIFO_NOT_ENOUGH See the definition in
the SDK

Since task with mass data is
being executed, software Tx
fifo is not enough.

GATT_ERR_DATA_PENDING_DUE
_TO_SERVICE_DISCOVERY_BUSY

See the definition in
the SDK

Data cannot be sent during
service discovery phase.

Note: Another alternative API has been added to the SDK (using min(EffectiveMaxTxOctets, Effec-
tiveRxMTU) as the minimum unit for subpackaging and can be called by both master and slave, users are
advised to use the new API).

ble_sts_t blc_gatt_pushHandleValueNotify (u16 connHandle, u16 attHandle, u8 *p, int len);

When calling this API, it is recommended that users check whether the return value is BLE_SUCCESS, and
whether it differs from the blc_gatt_pushHandleValueNotify return value：
1) When in the pairing phase, the new API returns the value: SMP_ERR_PAIRING_BUSY;

AN-21112300-E2 141 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

2) When in the encryption phase, the new API returns the value: LL_ERR_ENCRYPTION_BUSY;

3) When len is greater than ATT_MTU-3 (3 is the ATT layer packet format length opcode and handle), it
means that the data length PDU to be sent exceeds the maximum PDU length ATT_MTU supported by the
ATT layer, and the return value is GATT_ERR_DATA_LENGTH_EXCEED_MTU_SIZE.

(12) Handle Value Indication

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.7.2).

Figure 3.61: “Handle Value Indication in BLE Spec”

The figure above shows the format of “Handle Value Indication” in BLE Spec.

This BLE SDK supplies an API for Handle Value Indication of an Attribute. By invoking this API, user can
push the indicate data into bottom-layer BLE software fifo. Stack will push the data of software fifo into
hardware fifo during the latest packet transfer interval, and finally send the data out via RF.

ble_sts_t bls_att_pushIndicateData (u16 handle, u8 *p, int len);

The handle is the attHandle of the corresponding Attribute, p is the header pointer to the contiguous memory
data to be sent, and len specifies the number of bytes of data to be sent. Since this API supports auto packet
disassembly based on EffectiveMaxTxOctets, long indicate data to be sent can be disassembled into multiple
BLE RF packets, large “len” is supported. (EffectiveMaxTxOctets indicates the maximum RF TX octets to be
sent in the Link Layer. Its default value is 27, and DLE may modify it. Another API as a replacement will be
introduced later.)

The BLE Spec states that each indicate cannot be considered successful until the Master confirms it, and
the next indicate cannot be sent without success.

When Link Layer is in Conn state, generally data will be successfully pushed into bottom-layer software
FIFO by invoking this API; however, some special cases may result in invoking failure, and the return value
“ble_sts_t” will indicate the corresponding error reason. When this API is invoked in APP layer, it’s recom-
mended to check whether the return value is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a
delay is needed to re-push the data.

The return value is shown as below:

AN-21112300-E2 142 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

LL_ERR_CONNECTION_NOT_ ESTABLISH See the definition in
the SDK

Link Layer is in None Conn
state

LL_ERR_ENCRYPTION_BUSY See the definition in
the SDK

Data cannot be sent during
pairing or encryption phase.

LL_ERR_TX_FIFO_NOT_ENOUGH See the definition in
the SDK

Since task with mass data is
being executed, software Tx
fifo is not enough.

GATT_ERR_DATA_PENDING_DUE
_TO_SERVICE_DISCOVERY_BUSY

See the definition in
the SDK

Data cannot be sent during
service discovery phase.

GATT_ERR_PREVIOUS_INDICATE_
DATA_HAS_NOT_CONFIRMED

See the definition in
the SDK

The previous indicate data has
not been confirmed by Master.

Note: Another alternative API has been added to the SDK (using min(EffectiveMaxTxOctets, Effec-
tiveRxMTU) as the minimum unit for subpackaging and can be called by both master and slave, users are
advised to use the new API).

ble_sts_t blc_gatt_pushHandleValueIndicate (u16 connHandle, u16 attHandle, u8 *p, int len);

When calling this API, it is recommended that users check whether the return value is BLE_SUCCESS, and
whether it differs from the bls_att_pushIndicateData return value：
1) When in the pairing phase, the new API returns the value: SMP_ERR_PAIRING_BUSY;

2) When in the encryption phase, the new API returns the value: LL_ERR_ENCRYPTION_BUSY;

3) When len is greater than ATT_MTU-3 (3 is the ATT layer packet format length opcode and handle), it
means that the data length PDU to be sent exceeds the maximum PDU length ATT_MTU supported by the
ATT layer, and the return value is GATT_ERR_DATA_LENGTH_EXCEED_MTU_SIZE.

(13) Handle Value Confirmation

The details of Handle Value Confirmation refers to “Core_v5.0” (Vol 3/Part F/3.4.7.3).

Whenever the API “bls_att_pushIndicateData” (or “blc_gatt_pushHandleValueIndicate”) is invoked by APP
layer to send an indicate data to Master, Master will respond with “Confirmation” to confirm the data, then
Slave can continue to send the next indicate data.

Figure 3.62: “Handle Value Confirmation in BLE Spec”

AN-21112300-E2 143 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

As shown above, “Confirmation” is not specific to indicate data of certain handle, and the same “Confirma-
tion” will be responded irrespective of handle.

To enable the APP layer to know whether the indicate data has already been confirmed by Master, user can
register the callback of GAP event (see section 3.3.5.2 GAP event), and enable corresponding eventMask
“GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM” to obtain Confirm event.

3.3.3.4 GATT Service Security

Before reading “GATT Service Security”, user can refer to section 3.3.4 SMP to learn basic knowledge related
to SMP including LE pairing method, security level, and etc.

The figure below shows the mapping relationship of service request for GATT Service Security level given
by BLE spec. Please refer to “core5.0” (Vol3/Part C/10.3 AUTHENTICATION PROCEDURE).

Figure 3.63: “Mapping Diagram for Service Request and Response”

AN-21112300-E2 144 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

As shown in the figure above:

• The first column marks whether currently connected Slave device is in encryption state;

• The second column (local Device’s Access Requirement for service) is related to Permission Access
setting for attributes in ATT table;

• The third column includes four sub-columns corresponding to four levels of LE secuiry mode1 for
current device pairing state:

a) No authentication and no encryption

b) Unauthenticated pairing with encryption

c) Authenticated pairing with encryption

d) Authenticated LE Secure Connections

Figure 3.64: “ATT Permission Definition”

The final implementation of GATT Service Security is related to parameter settings during SMP initialization,
including the highest security level, permission access of attributes in ATT table. It is also related to Master,
for example, suppose Slave sets the highest security level supported by SMP as “Authenticated pairing
with encryption”, but the highest level supported by Master is “Unauthenticated pairing with encryption”; if
the permission for some write attribute in ATT table is “ATT_PERMISSIONS_AUTHEN_WRITE”, when Master
writes this attribute, an error will be responded to indicate “encryption level is not enough”.

User can set permission of attributes in ATT table to implement the application below:

Suppose the highest security level supported by Slave is “Unauthenticated pairing with encryption”,
but it’s not hoped to trigger Master pairing by sending “Security Request” after connection, user
can set the permission for CCC (Client Characteristic Configuration) attribute with nofity attribute as
“ATT_PERMISSIONS_ENCRYPT_WRITE”. Only when Master writes the CCC, will Slave respond that security
level is not enough and trigger Master to start pairing encryption.

Note：

AN-21112300-E2 145 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• Security level set by user only indicates the highest security level supported by device, and GATT
Service Secuiry can be used to realize control as long as ATT Permission does not exceed the highest
level that takes effect indeed. For LE security mode1 level 4, if use only sets the level “Authenticated
LE Secure Connections”, the setting supports LE Secure Connections only.

For the example of GATT security level, please refer to “b85m_feature_test/ feature_gatt_security/app.c”.

3.3.3.5 B85m master GATT

In the b85m_master kma dongle, the following GATT API is provided for doing simple service discovery or
other data access functions.

void att_req_find_info(u8 *dat, u16 start_attHandle, u16 end_attHandle);

The real length of dat (byte): 11

void att_req_find_by_type (u8 *dat, u16 start_attHandle, u16 end_attHandle, u8 *uuid, u8*

attr_value, int len);↪

The real length of dat (byte): 13 + attr_value length

void att_req_read_by_type (u8 *dat, u16 start_attHandle, u16 end_attHandle, u8 *uuid, int

uuid_len);↪

The real length of dat (byte): 11 + uuid length

void att_req_read (u8 *dat, u16 attHandle);

The real length of dat (byte): 9

void att_req_read_blob (u8 *dat, u16 attHandle, u16 offset);

The real length of dat (byte): 11

void att_req_read_by_group_type (u8 *dat, u16 start_attHandle, u16 end_attHandle, u8 *uuid,

int uuid_len);↪

The real length of dat (byte): 11 + uuid length

void att_req_write (u8 *dat, u16 attHandle, u8 *buf, int len);

The real length of dat (byte): 9 + buf data length

AN-21112300-E2 146 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void att_req_write_cmd (u8 *dat, u16 attHandle, u8 *buf, int len);

The real length of dat (byte): 9 + buf data length

For the above API, you need to pre-define the memory space *dat, then call the API to assemble the data,
and finally call blm_push_fifo to send the dat to the Controller, and note that you need to determine whether
the return value is TRUE. Take att_req_find_info as an example, other interfaces can use similar methods.

u8 cmd[12];

att_req_find_info(cmd, 0x0001, 0x0003);

if(blm_push_fifo (BLM_CONN_HANDLE, cmd)){

//cmd send OK

}

After sending the corresponding find info req, read req, etc. cmd to the Slave using the method referenced
above, you will soon receive the corresponding response message from the Slave in reply to find info rsp,
read rsp, etc. in int app_l2cap_handler (u16 conn_handle, u8 *raw_pkt) will be processed according to the
following framework.

if(ptrL2cap->chanId == L2CAP_CID_ATTR_PROTOCOL) //att data

{

if(pAtt->opcode == ATT_OP_EXCHANGE_MTU_RSP){

//add your code

}

if(pAtt->opcode == ATT_OP_FIND_INFO_RSP){

//add your code

}

else if(pAtt->opcode == ATT_OP_FIND_BY_TYPE_VALUE_RSP){

//add your code

}

else if(pAtt->opcode == ATT_OP_READ_BY_TYPE_RSP){

//add your code

}

else if(pAtt->opcode == ATT_OP_READ_RSP){

//add your code

}

else if(pAtt->opcode == ATT_OP_READ_BLOB_RSP){

//add your code

}

else if(pAtt->opcode == ATT_OP_READ_BY_GROUP_TYPE_RSP){

//add your code

}

else if(pAtt->opcode == ATT_OP_WRITE_RSP){

//add your code

}

}

AN-21112300-E2 147 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.3.4 SMP

Security Manager (SM) in BLE is mainly used to provide various encryption keys for LE device to ensure data
security. Encrypted link can protect the original contents of data in the air from being intercepted, decoded
or read by any attacker. For details about the SMP, please refer to “Core_v5.0” (Vol 3/Part H/ Security
Manager Specification).

3.3.4.1 SMP Security Level

BLE 4.2 Spec adds a new pairing method “LE Secure Connections” which further strengthens security. The
pairing method in earlier version is called “LE legacy pairing”.

Recalling the section “GATT service Security”, the following types of pairing status are available for local
devices.

Figure 3.65: “Local Device Pairing Status”

The four states correspond to the four levels of LE security mode1, details refer to “Core_v5.0” (Vol 3//Part
C/10.2 LE SECURITY MODES)

a) No authentication and no encryption (LE security mode1 level1)

b) Unauthenticated pairing with encryption (LE security mode1 level2)

c) Authenticated pairing with encryption (LE security mode1 level3)

d) Authenticated LE Secure Connections (LE security mode1 level4)

Note:

Security level set by local device only indicates the highest security level that local device may reach. How-
ever, to reach the preset level indeed, the two factors below are important:

a) The supported highest security level set by peer Master device >= the supported highest security level
set by local Slave device.

b) Both local device and peer device complete the whole pairing process (if pairing exsits) correctly as
per the preset SMP parameters.

For example, even if the highest security level supported by Slave is set as “mode1 level3” (Authenticated
pairing with encryption), when the highest security level supported by peer Master is set as “mode1 level1”

AN-21112300-E2 148 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(No authentication and no encryption), after connection Slave and Master won’t execute pairing, and indeed
Slave uses security mode1 level 1.

User can use the API below to set the highest security level supported by SM:

void blc_smp_setSecurityLevel(le_security_mode_level_t mode_level);

Following shows the definition for the enum type le_security_mode_level_t:

typedef enum {

LE_Security_Mode_1_Level_1 = BIT(0), No_Authentication_No_Encryption = BIT(0),

No_Security = BIT(0),↪

LE_Security_Mode_1_Level_2 = BIT(1), Unauthenticated_Paring_with_Encryption = BIT(1),

LE_Security_Mode_1_Level_3 = BIT(2), Authenticated_Paring_with_Encryption = BIT(2),

LE_Security_Mode_1_Level_4 = BIT(3),

Authenticated_LE_Secure_Connection_Paring_with_Encryption =BIT(3),↪

.....

}le_security_mode_level_t;

3.3.4.2 SMP Parameter Configuration

SMP parameter configuration In Telink BLE SDK is introduced according to the configuration of four SMP
security levels. For Slave, SMP function currently can support the highest security level “LE security mode1
level4”; for master, currently the SMP function in the traditional pairing method can support the highest
security level “LE security mode1 level2” (traditional pairing Just Works method).

(1) LE security mode1 level1

Level 1 indicates device does not support encryption pairing. If it’s needed to disable SMP function, user
only needs to invoke the function below during initialization:

blc_smp_setSecurityLevel(No_Security);

It means the device won’t implement pairing encryption for current connection. Even if the peer requests
for pairing encryption, the device will reject it. It generally applies to the device that does not support
encryption pairing process. As shown in the figure below, Master sends a pairing request, and Slave responds
with “SM_Pairing_Failed”.

Figure 3.66: “Packet Example for Pairing Disable”

AN-21112300-E2 149 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(2) LE security mode1 level2

Level 2 indicates device supports the highest security level “Unauthenticated_Paring_with_Encryption”, e.g.
“Just Works” pairing mode in legacy pairing and secure connection pairing method.

A. As introduced earlier, SMP supports legacy encryption and secure connection pairing. The SDK provides
the API below to set whether the new encryption feature in BLE4.2 is supported.

void blc_smp_setParingMethods (paring_methods_t method);

Following shows the definition for the enum type paring_methods_t:

typedef enum {

LE_Legacy_Paring = 0, // BLE 4.0/4.2

LE_Secure_Connection = 1, // BLE 4.2/5.0/5.1

}paring_methods_t;

B. When using security level other than LE security mode1 level1, the API below must be invoked to initialize
SMP parameter configuration, including flash initialization setting of bonded area.

int blc_smp_peripheral_init (void);

If only this API is invoked during initialization, the SDK will use default parameters to configure SMP:

• The highest security level supported by default: Unauthenticated_Paring_with_Encryption.

• Default bonding mode: Bondable_Mode (store KEY that is distributed after pairing encryption into
flash).

• Default IO capability: IO_CAPABILITY_NO_INPUT_NO_OUTPUT.

The default parameters above follow the configuration of legacy pairing “Just Works” mode. Therefore
invoking this API only is equivalent to configure LE security mode1 level2. LE security mode1 level2 has two
types of setting:

A. Device supports initialization setting of “Just Works” in legacy pairing.

blc_smp_peripheral_init();

B. Device supports initialization setting of “Just Works” in secure connections.

blc_smp_setParingMethods(LE_Secure_Connection);

blc_smp_peripheral_init();

(3) LE security mode1 level3

Level 3 indicates device supports the highest security level “Authenticated pairing with encryption”, e.g.
“Passkey Entry” / “Out of Band” in legacy pairing mode.

As required by this level, device should support Authentication, i.e. legal identity of two pairing sides should
be ensured. The three Authentication methods below are supported in BLE:

AN-21112300-E2 150 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• Method 1 with involvement of user, e.g. device has button or display capability, so that one side can
display TK, while the other side can input the same TK (e.g. Passkey Entry).

• Method 2: The two pairing sides can exchange information using the method of non-BLE RF transfer
to implement pairing (e.g. Out of Band which transfers TK via NFC generally).

• Method 3: Use the TK negotiated and agreed by two device sides (e.g. Just Works with TK 0 used by
two sides). Since this method is Unauthenticated, the security level of “Just Works” corresponds to LE
security mode1 level2.

Authentication can ensure the legality of two pairing sides, and this protection method is called MITM (Man-
in-the-Middle) protection.

A. Device with Authentication should set its MITM flag or OOB flag. The SDK provides the two APIs below to
set MITM flag and OOB flag.

void blc_smp_enableAuthMITM (int MITM_en);

void blc_smp_enableOobAuthentication (int OOB_en);

“MITM_en”/“OOB_en”: 1 - enable; 0 - disable.

B. As introduced earlier, SM provides three Authentication methods selectable depending on IO capability of
two sides. The SDK provides the API below to set IO capability for current device.

void blc_smp_setIoCapability (io_capability_t ioCapablility);

Following shows the definition for the enum type io_capability_t:

typedef enum {

IO_CAPABILITY_UNKNOWN = 0xff,

IO_CAPABILITY_DISPLAY_ONLY = 0,

IO_CAPABILITY_DISPLAY_YESNO = 1,

IO_CAPABILITY_KEYBOARD_ONLY = 2,

IO_CAPABILITY_NO_IN_NO_OUT = 3,

IO_CAPABILITY_KEYBOARD_DISPLAY = 4,

} io_capability_t;

C. The figure below shows the rule to use MITM flag and OOB flag in legacy pairing mode.

AN-21112300-E2 151 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 3.67: “Usage Rule for MITM OOB Flag in Legacy Pairing Mode”

The OOB and MITM flag of local device and peer device will be checked to determine whether to use OOB
method or select certain KEY generation method as per IO capability. As shown in the figure below, the
SDK will select different KEY generation methods according to IO capability (Row/Column parameter type
io_capability_t):

Figure 3.68: “Mapping Relationship for KEY Generation Method and IO Capability”

For details about the mapping relationship, please refer to “core5.0” (Vol3/Part H/2.3.5.1 Selecting Key
Generation Method).

LE security mode1 level 3 supports the methods below to configure initial values:

A. Initialization setting of OOB for device with legacy pairing:

blc_smp_enableOobAuthentication(1);

blc_smp_peripheral_init(); //SMP parameter configuration must be placed before this API

Considering TK value transfer by OOB, the SDK provides related GAP event in the APP layer (see section
3.3.5.2 GAP event). The API below serves to set TK value of OOB.

AN-21112300-E2 152 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void blc_smp_setTK_by_OOB (u8 *oobData);

The parameter “oobData” indicates the head pointer for the array of 16-digit TK value to be set.

B. Initialization setting of Passkey Entry (PK_Resp_Dsply_Init_Input) for device with legacy pairing:

blc_smp_enableAuthMITM(1);

blc_smp_setIoCapability(IO_CAPABILITY_DISPLAY_ONLY);

blc_smp_peripheral_init();

C. Initialization setting of Passkey Entry (PK_Init_Dsply_Resp_Input or PK_BOTH_INPUT) for device with
legacy pairing:

blc_smp_enableAuthMITM(1);

blc_smp_setIoCapability(IO_CAPABLITY_KEYBOARD_ONLY);

blc_smp_peripheral_init();

Considering TK value input by user, the SDK provides related GAP event in the APP layer (see section 3.3.5.2
GAP event). The API below serves to set TK value of Passkey Entry:

void blc_smp_setTK_by_PasskeyEntry (u32 pinCodeInput);

The parameter “pinCodeInput” indicates the pincode value to be set and its range is 0~999999. It applies
to the case of Passkey Entry method in which Master displays TK and Slave needs to input TK.

The KEY generation method finally adopted is related to SMP security level supported by two pairing sides.
If Master only supports LE security mode1 level1, since Master does not support pairing encryption, Slave
won’t enable SMP function.

(4) LE security mode1 level4

Level 4 indicates device supports the highest security level “Authenticated LE Secure Connections”, e.g. Nu-
meric Comparison/Passkey Entry/Out of Band in secure connection pairing mode.

LE security mode1 level4 supports the methods below to configure initial values:

A. Initialization setting of Numeric Comparison for device with secure connection pairing:

blc_smp_setParingMethods(LE_Secure_Connection);

blc_smp_enableAuthMITM(1);

blc_smp_setIoCapability(IO_CAPABLITY_DISPLAY_YESNO);

Considering display of numerical comparison result to user, the SDK provides related GAP event in the APP
layer (see section 3.3.5.2 GAP event).The API below serves to set numerical comparison result as “YES” or
“NO”.

AN-21112300-E2 153 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void blc_smp_setNumericComparisonResult(bool YES_or_NO);

The parameter “YES_or_NO” serves to confirm whether six-digit values on two sides are consistent. If yes,
input 1 to indicate “YES”; otherwise input 0 to indicate “NO”.

B. Initialization setting of Passkey Entry for device with secure connection pairing:

User initialization code of this part is almost the same with that of the configuration mode B/C (Passkey
Entry in legacy pairing) in LE security mode1 level3, except that pairing method herein should be set as
“secure connection pairing” at the start of initialization.

blc_smp_setParingMethods(LE_Secure_Connection);

.....//Refer to configuration method B/C in LE security mode1 level3

C. Initialization setting of Out of Band for device with secure connection pairing:

This part is not implemented in current SDK yet.

(5) Several APIs related to SMP parameter configuration:

A. The API below serves to set whether to enable bonding function:：

void blc_smp_setBondingMode(bonding_mode_t mode);

Following shows the enum type bonding_mode_t:

typedef enum {

Non_Bondable_Mode = 0,

Bondable_Mode = 1,

}bonding_mode_t;

For device with security level other than mode1 level1, bonding function must be enabled. Since the SDK
has enabled bonding function by default, generally user does not need to invoke this API.

B. The API below serves to set whether to enable Key Press function:

void blc_smp_enableKeypress (int keyPress_en);

It indicates whether it’s supported to provide some necessary input status information for KeyboardOnly
device during Passkey Entry. Since the current SDK does not support this function yet, the parameter must
be set as 0.

C. The API below serves to set whether to enable key pairs for ECDH (Elliptic Curve Diffie-Hellman) debug
mode:

void blc_smp_setEcdhDebugMode(ecdh_keys_mode_t mode);

Following shows the definition for the enum type ecdh_keys_mode_t:

AN-21112300-E2 154 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef enum {

non_debug_mode = 0,//ECDH distribute private/public key pairs

debug_mode = 1,//ECDH use debug mode private/public key pairs

} ecdh_keys_mode_t;

This API only applies to the case with secure connection pairing. The ellipse encryption algorithm can prevent
eavesdropping effectively, but at the same time, it’s not very friendly to debugging and development, since
user cannot capture BLE packet in the air by sniffer and analyze the data. Thus, as defined in BLE spec,
ellipse encryption mode with private and public key pairs is provided for debugging. As long as this mode is
enabled, BLE sniffer tool can use the known key to decrypt the link.

D. Following is a unified API to set whether to enable bonding, whether to enable MITM flag, whether to
support OOB, whether to support Keypress notification, as well as to set supported IO capability(The previous
documents are all separate configuration APIs. For the convenience of user settings, the SDK also provides
a unified configuration API).

void blc_smp_setSecurityParameters (bonding_mode_t mode,int MITM_en,int OOB_en, int keyPress_en,

io_capability_t ioCapablility);

Definition for each parameter herein is consistent with the same parameter in the corresponding indepen-
dent API.

3.3.4.3 Security Request Configuration

Only Slave can send SMP Security Request, so this part only applies to Slave device.

During phase 1 of pairing process, there’s an optional Security Request packet which serves to enable Slave
to actively trigger pairing process to start. The SDK provides the API below to flexibly set whether Slave
sends Security Request to Master immediately after connection/re-connection, or delay for pending_ms
miliseconds before sending Security Request, or does not send Security Request, so as to implement differ-
ent pairing trigger combination.

blc_smp_configSecurityRequestSending(secReq_cfg newConn_cfg, secReq_cfg reConn_cfg, u16

pending_ms);↪

Following shows the definition for the enum type secReq_cfg:

typedef enum {

SecReq_NOT_SEND = 0,

SecReq_IMM_SEND = BIT(0),

SecReq_PEND_SEND = BIT(1),

}secReq_cfg;

The meaning of each parameter is introduced as below:

• SecReq_NOT_SEND：After connection is established, Slave won’t send Security Request actively.

AN-21112300-E2 155 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• SecReq_IMM_SEND：After connection is established, Slave will send Security Request immediately.

• SecReq_PEND_SEND：After connection is established, Slave will wait for pending_ms miliseconds and
then determine whether to send Security Request.

(1) For the first connection, Slave receives Pairing_request from Master before pending_ms miliseconds,
and it won’t send Security Request;

(2) For re-connection, if Master has already sent LL_ENC_REQ before pending_ms miliseconds to encrypt
reconnection link, Slave won’t send Security Request.

The parameter “newConn_cfg” serves to configure new device, while the parameter “reConn_cfg” serves to
configure device to be reconnected. During reconnection, the SDK also supports the configuration whether
to send purpose of pairing request: During reconnection for a bonded device, Master may not actively initiate
LL_ENC_REQ to encrypt link, and Security Request sent by Slave will trigger Master to actively enrypt the
link. Therefore, the SDK provides reConn_cfg configuration, and user can configure it as needed.

Note:

• This API must be invoked before connection. It’s recommended to invoke it during initialization.

The input parameters for the API “blc_smp_configSecurityRequestSending” supports the nine combinations
below:

Table 3.13: Input parameter combination of blc_smp_configSecurityRequestSending

Parameter SecReq_NOT_SEND SecReq_IMM_SEND SecReq_PEND_SEND

SecReq_NOT
_SEND

Not send SecReq after the
first connection or
reconnection (the para
pending_ms is invalid).

Not send ecReq after the
first connection, and
immediately send SecReq
after reconnection (the
para pending_ms is
invalid).

Not send ecReq after the
first connection, and wait
for pending_ms
miliseconds to send
SecReq after
reconnection.

SecReq_IMM
_SEND

Immediately send SecReq
after the first connection,
and not send SecReq after
reconnection (the para
pending_ms is invalid).

Immediately send SecReq
after the first connection
or reconnection (the para
pending_ms is invalid).

Immediately send SecReq
after the first connection,
and wait for pending_ms
miliseconds to send
SecReq after
reconnection.

SecReq_PEND
_SEND

Wait for pending_ms
miliseconds to send
SecReq after the first
connection, and not send
SecReq after
reconnection.

Wait for pending_ms
miliseconds to send
SecReq after the first
connection, and
immediately send SecReq
after reconnection.

Wait for pending_ms
miliseconds to send
SecReq after the first
connection or
reconnection.

Following shows two examples:

AN-21112300-E2 156 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(1) newConn_cfg: SecReq_NOT_SEND

reConn_cfg: SecReq_NOT_SEND

pending_ms: This parameter does not take effect.

When newConn_cfg is set as SecReq_NOT_SEND, it means new Slave device won’t actively initiate Security
Request, and it will only respond to the pairing request from the peer device. If the peer device does not
send pairing request, encryption pairing won’t be executed. As shown in the figure below, when Master
sends a pairing request packet “SM_Pairing_Req”, Slave will respond to it, but won’t actively trigger Master
to initiate pairing request.

Figure 3.69: “Packet Example for Pairing Peer Trigger”

When reConn_cfg is set as SecReq_NOT_SEND, it means device pairing has already been completed, and
Slave won’t send Security Reqeust after reconnection.

(2) newConn_cfg: SecReq_IMM_SEND

reConn_cfg: SecReq_NOT_SEND

pending_ms: This parameter does not take effect.

When newConn_cfg is set as SecReq_IMM_SEND, it means new Slave device will immediately send Security
Request to Master after connection, to trigger Master to start pairing process. As shown in the figure below,
Slave actively sends a SM_Security_Req to trigger Master to send pairing request.

Figure 3.70: “Packet Example for Pairing Conn Trigger”

When reConn_cfg is set as SecReq_NOT_SEND, it means Slave won’t send Security Reqeust after reconnec-
tion.

The SDK also provides an API to send Security Request packet only for special use case. The APP layer can
invoke this API to send Security Request at any time.

int blc_smp_sendSecurityRequest (void);

Note: If user invokes the “blc_smp_configSecurityRequestSending” to control secure pairing request packet,
the “blc_smp_sendSecurityRequest” should not be invoked.

AN-21112300-E2 157 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.3.4.4 SMP Bonding info

SMP bonding information herein is discussed relative to Slave device. User can refer to the code of “direct
advertising” setting during initialization in the SDK demo “b85m_ble_remote”.

Slave can store pairing information of up to four Master devices at the same time, so that all of the four
devices can be reconnected successfully. The API below serves to set the max number of bonding devices
with the upper limit of 4 which is also the default value.

#define SMP_BONDING_DEVICE_MAX_NUM 4

ble_sts_t blc_smp_param_setBondingDeviceMaxNumber(int device_num);

If using blc_smp_param_setBondingDeviceMaxNumber (4) to set the max number as 4, after four devices
have been paired, excuting pairing for the fifth device will automatically delete the pairing info of the earliest
connected (first) device, so as to store the pairing info of the fifth device.

If using blc_smp_param_setBondingDeviceMaxNumber (2) to set the max number as 2, after two devices
have been paired, excuting pairing for the third device will automatically delete the pairing info of the earliest
connected (first) device, so as to store the pairing info of the third device.

The API below serves to obtain the number of currently bonded Master devices (successfully paired with
Slave) stored in the flash.

u8 blc_smp_param_getCurrentBondingDeviceNumber(void);

Assuming a return value of 3, this means that there are currently 3 successfully paired devices stored on
the flash, and that all 3 devices can be connected back successfully.

(1) Storage sequence for bonding info

Index is a concept related to BondingDeviceNumber. If current BondingDeviceNumber is 1, there’s only one
bonding device whose index is 0; if BondingDeviceNumber is 2, there’re two bonding devices with index 0
and 1.

The SDK provides two methods to update device index, Index_Update_by_Connect_Order and In-
dex_Update_by_Pairing_Order, i.e. update index as per the time sequence of lastest connection or pairing
for devices. The API below serves to select index update method.

void bls_smp_setIndexUpdateMethod(index_updateMethod_t method);

Following shows the enum type index_updateMethod_t:

typedef enum {

Index_Update_by_Pairing_Order = 0, //default value

Index_Update_by_Connect_Order = 1,

} index_updateMethod_t;

Two index update methods are introduced below:

AN-21112300-E2 158 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

A. Index_Update_by_Connect_Order

If BondingDeviceNumber is 2, device index stored in Slave flash includes 0 and 1. Index sequence is updated
by the order of the latest successful connection rather than the latest pairing. Suppose Slave is paired with
MasterA and MasterB in sequence, since MasterB is the latest connected device, the index for MasterA is
0, while the index for MasterB is 1. Then reconnect Slave with MasterA. Now MasterA becomes the latest
connected device, so the index for MasterB is 0, and the index for MasterA is 1.

If BondingDeviceNumber is 3, device index includes 0, 1 and 2. The index for the latest connected device is
2, and index for the earliest connected device is 0.

If BondingDeviceNumber is 4, device index includes 0, 1, 2 and 3. The index for the latest connected device
is 3, and index for the earliest connected device is 0. Suppose Slave is paired with MasterA, MasterB,
MasterC and MasterD in sequence, the index for the latest connected MasterD is 3. If Slave is reconnected
with MasterB, the index for the latest connected MasterB is 3.

Since the upper limit for bonding devices is 4, please note the case when more than four Master devices are
paired: When Slave is paired with MasterA, MasterB, MasterC and MasterD in sequence, pairing Slave with
MasterE will make Slave delete the pairing info for MasterA; however, if Slave is reconnected with MasterA
before pairing Slave with MasterE, since the sequence changes to B-C-D-A, the latest pairing operation
between Slave and MasterE will delete the pairing info for MasterB.

B. Index_Update_by_Pairing_Order

If BondingDeviceNumber is 2, device index stored in Slave flash includes 0 and 1. Index sequence is updated
by the order of the latest pairing. Suppose Slave is paired with MasterA and MasterB in sequence, since
MasterB is the latest paired device, the index for MasterA is 0, while the index for MasterB is 1. Then
reconnect Slave with MasterA. Now the index sequence for MasterA and MasterB is not changed.

If BondingDeviceNumber is 4, device index includes 0, 1, 2 and 3. The index for the latest paired device is
3, and the index for the earliest paired device is 0. Suppose Slave is paired with MasterA, MasterB, MasterC
and MasterD in sequence, the index for the latest paired MasterD is 3. No matter how Slave is reconnected
with MasterA/B/C/D, the index sequence won’t be changed.

Note:

• When Slave is paired with MasterA, MasterB, MasterC and MasterD in sequence, pairing Slave with
MasterE will make Slave delete the pairing info for MasterA; if Slave is reconnected with MasterA
before pairing Slave with MasterE, since the sequence is still A-B-C-D, the latest pairing operation
between Slave and MasterE will delete the pairing info for MasterA.

(2) Format for bonding info and related APIs

Bonding info of Master device is stored in flash with the format below:

typedef struct {

u8 flag;

u8 peer_addr_type; //address used in link layer connection

u8 peer_addr[6];

u8 peer_key_size;

u8 peer_id_adrType; //peer identity address information in key distribution, used to

identify↪

u8 peer_id_addr[6];

AN-21112300-E2 159 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

u8 own_ltk[16]; //own_ltk[16]

u8 peer_irk[16];

u8 peer_csrk[16];

}smp_param_save_t;

Bonding info includes 64 bytes.

• peer_addr_type and peer_addr indicate Master connection address in the Link Layer which is used
during device direct advertising.

• peer_id_adrType/peer_id_addr and peer_irk are identity address and irk declared in the key distribution
phase.

Only when the peer_addr_type and peer_addr are Resolvable Private Address (RPA), and address filtering
is needed, should related info be added into resolving list for Slave to analyze it (refer to TEST_WHITELIST
in the B91_feature_test).

Other parameters are negligible to user.

The API below serves to obtain device information from flash by using index.

u32 bls_smp_param_loadByIndex(u8 index, smp_param_save_t* smp_param_load);

If the return value is 0, it indicates failure to get info; non-zero return value indicates starting flash address
to store the info. For example, suppose there’re three bonded devices, get the information about the nearest
connected device.

bls_smp_param_loadByIndex(2，…)

The API below serves to obtain bonding device info from flash by using Master address (connection address
in the Link Layer).

u32 bls_smp_param_loadByAddr(u8 addr_type, u8* addr, smp_param_save_t* smp_param_load);

If the return value is 0, it indicates failure to get info; non-zero return value indicates starting flash address
to store the info.

The API below is used for Slave device to erase all pairing info stored in local flash.

void bls_smp_eraseAllParingInformation(void);

Note: Before invoking this API, please ensure the device is in non-connection state.

The API below is used for Slave device to configure address to store pairing info in flash.

void bls_smp_configParingSecurityInfoStorageAddr(int addr);

User can set the parameter “addr” as needed, and please refer to the section 2.1.4 SDK flash space partition
so as to determine a suitable flash area for bonding info storage.

AN-21112300-E2 160 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

3.3.4.5 master SMP

The highest level of the master SMP function currently supported in the traditional pairing method is LE
security mode1 level2 (traditional pairing Just Works method). The user can refer to the “b85m_master kma
dongle” and simply modify the macros in the “b85m_master kma dongle/app_config.h” file as follows

#define BLE_HOST_SMP_ENABLE 0

If this macro is configured to 1, standard SMP is used: the highest security level supported by the configured
master is LE security mode1 level2, which supports the traditional pairing Just Works method; if this macro
is configured to 0, it means that the non-standard custom pairing management function is enabled.

(1) master enable SMP (set macro BLE_HOST_SMP_ENABLE as 1)

To use this security level configuration, the following API calls must be made to initialize the SMP parameters,
including the initial configuration of the bound area FLASH:

int blc_smp_central_init (void);

If only this API is called during the initialization phase, the SDK will use the default parameters to configure
SMP:

• The highest security level supported by default: Unauthenticated_Paring_with_Encryption.

• The default bonding mode: Bondable_Mode (stores the KEY distributed after pairing encryption to
FLASH).

• Default IO capability is IO_CAPABILITY_NO_INPUT_NO_OUTPUT.

When the paired device supports LE security mode1 level2, the user is also required to configure the following
three APIs.

void blm_smp_configParingSecurityInfoStorageAddr (int addr);

void blm_smp_registerSmpFinishCb (smp_finish_callback_t cb);

void blm_host_smp_setSecurityTrigger(u8 trigger);

Three APIs are described below：

A. void blm_smp_configParingSecurityInfoStorageAddr (int addr);

This API can be used to master the location of the device configuration binding information stored in FLASH,
where the parameter addr can be modified according to actual needs.

B. void blm_smp_registerSmpFinishCb (smp_finish_callback_t cb);

This callback function is triggered after the key distribution in the third phase of the pairing is completed
and the user can register at the application layer to get the pairing completion event.

C. void blm_host_smp_setSecurityTrigger(u8 trigger);

AN-21112300-E2 161 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

This API is mainly used to configure whether master initiates encryption and encrypts the link actively when
connecting back. The specific parameters can be selected as follows.

#define SLAVE_TRIGGER_SMP_FIRST_PAIRING 0

#define MASTER_TRIGGER_SMP_FIRST_PAIRING BIT(0)

#define SLAVE_TRIGGER_SMP_AUTO_CONNECT 0

#define MASTER_TRIGGER_SMP_AUTO_CONNECT BIT(1)

Specifically: 1) When pairing for the first time, whether the master choose to initiate the pairing request
or start pairing after receiving the Security Request from the slave; 2) When connecting back to a device
that has already been paired, whether the master initiate the LL_ENC_REQ encrypted link or wait until it
receives the Security Request from the slave. Generally, we will configure the master to initiate the pairing
request for the first time and send LL_ENC_REQ when reconnecting.

The final user initialisation code reference is as follows and the user can refer to the “b85m_master kma
dongle”.

blm_smp_configParingSecurityInfoStorageAddr(0x78000);

blm_smp_registerSmpFinishCb(app_host_smp_finish);

blc_smp_central_init();

//SMP trigger by master

blm_host_smp_setSecurityTrigger(MASTER_TRIGGER_SMP_FIRST_PAIRING |

MASTER_TRIGGER_SMP_AUTO_CONNECT);↪

As for the following APIs related to binding information on the master end, they are for use by the bottom
layer master SMP protocol.

int tbl_bond_slave_search(u8 adr_type, u8 * addr);

int tbl_bond_slave_delete_by_adr(u8 adr_type, u8 *addr);

void tbl_bond_slave_unpair_proc(u8 adr_type, u8 *addr);

(2) Non-standard self-defined pairing management (set the macro “BLE_HOST_SMP_ENABLE” as 0)

When using self-defined pairing management, initialization related APIs are shown as below:

blc_smp_setSecurityLevel(No_Security);//disable SMP function

user_master_host_pairing_flash_init();//custom method

A. Design flash storage method

The default flash sector used for pairing is 0x78000 ~ 0x78FFF, and it’s modifiable in the “app_config.h”.

#define FLASH_ADR_PAIRING 0x78000

Starting from flash address 0x78000, every eight bytes form an area (named 8 bytes area). Each area can
store MAC address of one Slave, and includes 1-byte bonding mark, 1-byte address type and 6-byte MAC
address.

AN-21112300-E2 162 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef struct {

u8 bond_mark;

u8 adr_type;

u8 address[6];

} macAddr_t;

All valid Slave MAC addresses are stored in 8 bytes areas successively: The first valid Slave MAC address is
stored in 0x78000~0x78007, and the mark in 0x78000 is set as “0x5A” to indicate current address is valid.
The second valid Slave MAC address is stored in the next 8 bytes area 0x78008~ 0x7800f and the mark
in 0x78008 is set as “0x5A”.The third valid Slave MAC address is stored in the next 8 bytes area 0x78010~
0x78017 and the mark in 0x78010 is set as “0x5A”.

To un-pair certain Slave device, it’s needed to erase its MAC address in the Dongle side by setting the mark
of the corresponding 8 bytes area as “0x00”. For example, to erase the MAC addres of the first Slave device
as shown above, user should set 0x78000 as “0x00”.

The reason to adopt this design is: During execution of program, the SDK cannot invoke the function
“flash_erase_sector” to erash flash, since this operation takes 20~200ms to erase a 4kB sector of flash
and thus will result in BLE timing error.

Mark of “0x5A” and “0x00” are used to indicate pairing storage and un-pairing erasing of all Slave MAC
addresses. Considering 8 bytes areas may occupy the whole 4kB sector of flash and thus result in error, a
special processing is added during initialization: Read info of 8 bytes areas starting from address 0x78000,
and store all valid MAC addresses into Slave MAC table of RAM. During this process, it will check whether
there’re too many 8 bytes areas. If yes, erase the whole sector and then write the contents of Slave MAC
table in RAM back to 8 bytes areas starting from 0x78000.

B. Slave mac table

#define USER_PAIR_SLAVE_MAX_NUM 4 //telink demo use max 4, you can change this value

typedef struct {

u8 bond_mark;

u8 adr_type;

u8 address[6];

} macAddr_t;

typedef struct {

u32 bond_flash_idx[USER_PAIR_SLAVE_MAX_NUM]; //mark paired slave mac address in flash

macAddr_t bond_device[USER_PAIR_SLAVE_MAX_NUM]; //macAddr_t alreay defined in ble stack

u8 curNum;

} user_salveMac_t;

user_salveMac_t user_tbl_slaveMac;

The structure above serves to use Slave MAC table in RAM to maintain all paired devices. The macro
“USER_PAIR_SLAVE_MAX_NUM” serves to set the max allowed number of maintainable paired devices, and
the default value is 4 which indicates four paired device is maintainable. User can modify this value as
needed.

Suppose the “USER_PAIR_SLAVE_MAX_NUM” is set as 3 to indicate up to three paired devices can be main-
tained. In the “user_tbl_slaveMac”, the “curNum” indicates the number of current valid Slave devices in

AN-21112300-E2 163 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

flash, the array “bond_flash_idx” records offset relative to 0x78000 for starting address of each valid 8
bytes area in flash (When un-pairing certain device, based on corresponding offset, user can locate the
mark of the 8 bytes area, and then write the mark as 0x00), while the array “bond_device” records MAC
address.

C. Related APIs

Based on the design of flash storage and Slave MAC table above, user can invoke the APIs below.

a) user_master_host_pairing_flash_init

void user_master_host_pairing_flash_init(void);

This API should be invoked to implement flash initialization when enabling user-defined pairing manage-
ment.

b) user_tbl_slave_mac_add

int user_tbl_slave_mac_add(u8 adr_type, u8 *adr);

The API above should be invoked when a new device is paired, and it serves to add one Slave MAC address.
The return value should be either 1 (success) or 0 (failure). The API will check whether current number of
devices in flash and Slave MAC table has reached the maximum. If not, directly add the MAC address of
the new device into Slave MAC table, and store it in an 8 bytes area of flash. If yes, the viable processing
policy may be: “pairing is not allowed”, or “directly delete the earliest MAC address”. Telink demos adopts
the latter. Since Telink supported max number of paired device is 1, this method will preempt current paired
device, i.e. delete current device by using the “user_tbl_slave_mac_delete_by_index(0)” and then add MAC
address of new device into Slave MAC table.User can modify the implementation of this API as per his own
policy.

c) user_tbl_slave_mac_search

int user_tbl_slave_mac_search(u8 adr_type, u8 * adr)

This API serves to check whether the device is already available in Slave MAC table according to device
address reported by adv, i.e. whether the device sending adv packet currently has already been paired with
Master. The device that has already been paired can be directly reconnected.

d) user_tbl_slave_mac_delete_by_adr

int user_tbl_slave_mac_delete_by_adr(u8 adr_type, u8 *adr)

This API serves to delete MAC addr of certain paired device from Slave MAC table by specified address.

e) user_tbl_slave_mac_delete_by_index

AN-21112300-E2 164 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void user_tbl_slave_mac_delete_by_index(int index)

This API serves to delete MAC addr of certain paired device from Slave MAC table by specified index. The
parameter “index” indicates device pairing sequence. If the max pairing number is 1, the index for the paired
device is always 0; if the max pairing number is 2, the index for the first paired device is 0, and the index
for the second paired device is 1……

f) user_tbl_slave_mac_delete_all

void user_tbl_slave_mac_delete_all(void)

This API serves to delete MAC addr of all the paired devices from Slave MAC table.

g) user_tbl_salve_mac_unpair_proc

void user_tbl_salve_mac_unpair_proc(void)

This API serves to process un-pairing. The demo code adopts the processing method using the default max
pairing number (1) to delete all paired devices. User can modify the implementation of the API.

D. Connection and pairing

When Master receives adv packet reported by Controller, it will establish connection with Slave in the two
cases below:

Invoke the function “user_tbl_slave_mac_search” to check whether current Slave device has already been
paired with Master and un-pairing has not been executed. If yes, Master can automatically establish con-
nection with the device.

master_auto_connect = user_tbl_slave_mac_search(pa->adr_type, pa->mac);

if(master_auto_connect) { create connection }

If current adv device is not available in Slave MAC table, auto connection won’t be initiated, and it’s needed
to check whether manual pairing condition is met. The SDK provides two manual pairing solutions by default.
Premise: Current adv device is close enough. Solution 1: The pairing button on Master Dongle is pressed.
Solution 2: Current adv data is pairing adv packet data defined by Telink.

//manual paring methods 1: button triggers

user_manual_paring = dongle_pairing_enable && (rssi > -56); //button trigger pairing(rssi

threshold, short distance)↪

//manual paring methods 2: special paring adv data

if(!user_manual_paring){ //special adv pair data can also trigger pairing

user_manual_paring =

(memcmp(pa->data,telink_adv_trigger_paring,sizeof(telink_adv_trigger_paring)) == 0)↪

&& (rssi > -56);

}

if(user_manual_paring) { create connection }

AN-21112300-E2 165 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

After connection triggered by manual pairing is established successfully, the current device is added into
Slave MAC table when reporting “HCI LE CONECTION ESTABLISHED EVENT”.

//manual paring, device match, add this device to slave mac table

if(blm_manPair.manual_pair && blm_manPair.mac_type == pCon->peer_adr_type &&

!memcmp(blm_manPair.mac,pCon->mac, 6))

{

blm_manPair.manual_pair = 0;

user_tbl_slave_mac_add(pCon->peer_adr_type, pCon->mac);

}

E. Un-pairing

_attribute_ram_code_void host_pair_unpair_proc (void)

{

//terminate and unpair proc

static int master_disconnect_flag;

if(dongle_unpair_enable){

if(!master_disconnect_flag && blc_ll_getCurrentState() == BLS_LINK_STATE_CONN){

if(blm_ll_disconnect(cur_conn_device.conn_handle, HCI_ERR_REMOTE_USER_TERM_CONN) ==

BLE_SUCCESS){

master_disconnect_flag = 1;

dongle_unpair_enable = 0;

#if (BLE_HOST_SMP_ENABLE)

tbl_bond_slave_unpair_proc(cur_conn_device.mac_adrType,

cur_conn_device.mac_addr);↪

#else

user_tbl_salve_mac_unpair_proc();

#endif

}

}

}

if(master_disconnect_flag && blc_ll_getCurrentState() != BLS_LINK_STATE_CONN){

master_disconnect_flag = 0;

}

}

As shown in the code above, when un-pairing condition is triggered, Master first invokes the “blm_ll_disconnect”
to terminate connection, and then invokes the “user_tbl_salve_mac_unpair_proc” to process un-
pairing. The demo code will directly delete all paired devices. In the default case, the max pairing
number is 1, so only one device will be deleted. If user sets the max number larger than 1, the
“user_tbl_slave_mac_delete_by_adr” or “user_tbl_slave_mac_delete_by_index” should be invoked to
delete specified device.

The demo code provides two conditions to trigger un-pairing:

• The un-pairing button on Master Dongle is pressed.

AN-21112300-E2 166 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• The un-pairing key value “0xFF” is received in “HID keyboard report service”.

User can modify un-pairing trigger method as needed.

3.3.4.6 SMP Failure Management

When SMP fails, a callback function can be used to control whether the connection is maintained or discon-
nected. This is implemented as follows.

a. Register the handler function for the gap layer and open the event mask with the event
GAP_EVT_SMP_PAIRING_FAIL , as follows.

blc_gap_registerHostEventHandler(app_host_event_callback);

blc_gap_setEventMask(GAP_EVT_MASK_SMP_PARING_FAIL);

b. Modify the corresponding processing under this mask in the processing function.

int app_host_event_callback (u32 h, u8 *para, int n)

{

u8 event = h & 0xFF;

switch(event)

{

case GAP_EVT_SMP_PAIRING_FAIL:

{

gap_smp_paringFailEvt_t* p = (gap_smp_paringFailEvt_t*)para;

//the operation wanted

}

break;

default:

break;

}

return 0;

}

3.3.5 GAP

3.3.5.1 GAP initialization

GAP initialization for Master and Slave is different. Slave uses the API below to initialize GAP.

void blc_gap_peripheral_init(void);

The Master initialises the GAP using the following API.

AN-21112300-E2 167 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void blc_gap_central_init(void);

As introduced earlier, data transfer between the APP layer and the Host is not controlled via GAP; the
ATT, SMP and L2CAP can directly communicate with the APP layer via corresponding interface. In current
SDK version, the GAP layer mainly serves to process events in the Host layer, and GAP initialization mainly
registers processing function entry for events in the Host layer.

3.3.5.2 GAP Event

GAP event is generated during the communication process of Host protocol layers such as ATT, GATT, SMP
and GAP. As introduced earlier, current SDK supports two types of event: Controller event, and GAP (Host)
event. Controller event also includes two sub types: HCI event, and Telink defined event.

GAP event processing is added in current BLE SDK, which enables the protocol stack to layer events more
clearly and to process event communication in the user layer more conveniently. SMP related processing,
such as Passkey input and notification of pairing result to user, is also included.

If user wants to receive GAP event in the APP layer, it’s needed to register the corresponding callback
function, and then enable the corresponding mask.

Following shows the prototype and register interface for callback function of GAP event.

typedef int (*gap_event_handler_t) (u32 h, u8 *para, int n);

void blc_gap_registerHostEventHandler (gap_event_handler_t handler);

The “u32 h” in the callback function prototype is the mark of GAP event which will be frequently used in the
bottom layer protocol stack.

Following lists some events which user may use.

#define GAP_EVT_SMP_PAIRING_BEAGIN 0

#define GAP_EVT_SMP_PAIRING_SUCCESS 1

#define GAP_EVT_SMP_PAIRING_FAIL 2

#define GAP_EVT_SMP_CONN_ENCRYPTION_DONE 3

#define GAP_EVT_SMP_SECURITY_PROCESS_DONE 4

#define GAP_EVT_SMP_TK_DISPALY 8

#define GAP_EVT_SMP_TK_REQUEST_PASSKEY 9

#define GAP_EVT_SMP_TK_REQUEST_OOB 10

#define GAP_EVT_SMP_TK_NUMERIC_COMPARE 11

#define GAP_EVT_ATT_EXCHANGE_MTU 16

#define GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM 17

In the callback function prototype, “para” and “n” indicate data and data length of event. User can refer
to the usage below in the “b85m_feature_test/feature_smp_security/app.c” and the implementation of the
function “app_host_event_callback”.

AN-21112300-E2 168 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

blc_gap_registerHostEventHandler(app_host_event_callback);

The API below serves to enable the mask for GAP event.

void blc_gap_setEventMask(u32 evtMask);

Following lists the definition for some common eventMasks. For other event masks, user can refer to the
“ble/gap/gap_event.h”.

#define GAP_EVT_MASK_SMP_PAIRING_BEAGIN (1<<GAP_EVT_SMP_PAIRING_BEAGIN)

#define GAP_EVT_MASK_SMP_PAIRING_SUCCESS (1<<GAP_EVT_SMP_PAIRING_SUCCESS)

#define GAP_EVT_MASK_SMP_PAIRING_FAIL (1<<GAP_EVT_SMP_PAIRING_FAIL)

#define GAP_EVT_MASK_SMP_CONN_ENCRYPTION_DONE (1<<GAP_EVT_SMP_CONN_ENCRYPTION_DONE)

#define GAP_EVT_MASK_SMP_SECURITY_PROCESS_DONE (1<<GAP_EVT_SMP_SECURITY_PROCESS_DONE)

#define GAP_EVT_MASK_SMP_TK_DISPALY (1<<GAP_EVT_SMP_TK_DISPALY)

#define GAP_EVT_MASK_SMP_TK_REQUEST_PASSKEY (1<<GAP_EVT_SMP_TK_REQUEST_PASSKEY)

#define GAP_EVT_MASK_SMP_TK_REQUEST_OOB (1<<GAP_EVT_SMP_TK_REQUEST_OOB)

#define GAP_EVT_MASK_SMP_TK_NUMERIC_COMPARE (1<<GAP_EVT_SMP_TK_NUMERIC_COMPARE)

#define GAP_EVT_MASK_ATT_EXCHANGE_MTU (1<<GAP_EVT_ATT_EXCHANGE_MTU)

#define GAP_EVT_MASK_GATT_HANDLE_VLAUE_CONFIRM (1<<GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM)

If user does not set GAP event mask via this API, the APP layer won’t receive notification when corresponding
GAP event is generated.

Note：

• For the description about GAP event below, it’s supposed that GAP event callback has been registered,
and corresponding eventMask has been enabled.

(1) GAP_EVT_SMP_PAIRING_BEAGIN

Event trigger condition: When entering connection state, Slave sends a SM_Security_Req command, and
Master sends a SM_Pairing_Req to request for pairing. When Slave receives the pairing request, this event
will be triggered to indicate that pairing starts.

Figure 3.71: “master initiates Pairing_Req”

Data length “n”: 4.

Pointer “p”: p points to data of a memory area, corresponding to the structure below.

AN-21112300-E2 169 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef struct {

u16 connHandle;

u8 secure_conn;

u8 tk_method;

} gap_smp_paringBeginEvt_t;

“connHandle”: current connection handle.

“secure_conn”: If it’s 1, secure encryption feature (LE Secure Connections) will be used; otherwise LE legacy
pairing will be used.

“tk_method”: It indicates the method of TK value to be used in the subsequent pairing, e.g. JustWorks,
PK_Init_Dsply_Resp_Input, PK_Resp_Dsply_Init_Input, Numric_Comparison.

(2) GAP_EVT_SMP_PAIRING_SUCCESS

Event trigger condition: This event will be generated when the whole pairing process is completed correctly.
This phase is called “Key Distribution, Phase 3” of LE pairing phase. If there’s key to be distributed, the pairing
success event will be triggered after the two sides have completed key distribution; otherwise the pairing
success event will be triggered directly.

Data length “n”: 4.

Pointer “p”: p points to data of a memory area, corresponding to the structure below.

typedef struct {

u16 connHandle;

u8 bonding;

u8 bonding_result;

} gap_smp_paringSuccessEvt_t;

“connHandle”: current connection handle.

“bonding”: If it’s 1, bonding function is enabled; otherwise bonding function is disabled.

“bonding_result”: It indicates bonding result. If bonding function is disabled, the result value should be 0.
If bonding function is enabled, it’s also needed to check whether encryption Key is correctly stored in flash;
if yes, the result value is 1; otherwise the result value is 0.

(3) GAP_EVT_SMP_PAIRING_FAIL

Event trigger condition: If Slave or Master does not conform to standard pairing flow, or pairing process is
terminated due to abnormity such as error report during communication, this event will be triggered.

Data length “n”: 2.

Pointer “p”: p points to data of a memory area, corresponding to the structure below.

typedef struct {

u16 connHandle;

u8 reason;

} gap_smp_paringFailEvt_t;

AN-21112300-E2 170 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

“connHandle”: current connection handle.

“reason”: It indicates the reason for pairing failure. Following lists some common reason values, and for
other values, please refer to the file “stack/ble/smp/smp_const.h”.

For the definition of pairing failure values, please refer to “Core_v5.0” (Vol 3/Part H/3.5.5 “Pairing Failed”).

#define PAIRING_FAIL_REASON_CONFIRM_FAILED 0x04

#define PAIRING_FAIL_REASON_PAIRING_NOT_SUPPORTED 0x05

#define PAIRING_FAIL_REASON_DHKEY_CHECK_FAIL 0x0B

#define PAIRING_FAIL_REASON_NUMUERIC_FAILED 0x0C

#define PAIRING_FAIL_REASON_PAIRING_TIEMOUT 0x80

#define PAIRING_FAIL_REASON_CONN_DISCONNECT 0x81

(4) GAP_EVT_SMP_CONN_ENCRYPTION_DONE

Event trigger condition: When Link Layer encryption is completed (the LL receives “start encryption re-
sponse” from Master), this event will be triggered.

Data length “n”: 3.

Pointer “p”: p points to data of a memory area, corresponding to the structure below.

typedef struct {

u16 connHandle;

u8 re_connect; //1: re_connect, encrypt with previous distributed LTK; 0: pairing ,

encrypt with STK↪

} gap_smp_connEncDoneEvt_t;

“connHandle”: current connection handle.

“re_connect”: If it’s 1, it indicates fast reconnection (The LTK distributed previously will be used to encrypt
the link); if it’s 0, it indicates current encryption is the first encryption.

(5) GAP_EVT_MASK_SMP_SECURITY_PROCESS_DONE

Event trigger condition: when pairing for the first time, it is triggered after the GAP_EVT_SMP_PAIRING_SUCCESS
event, and in the fast reconnection, triggered after GAP_EVT_SMP_CONN_ENCRYPTION_DONE event.

Data length “n”: 3.

Pointer “p”: p points to data of a memory area, corresponding to the structure below.

typedef struct {

u16 connHandle;

u8 re_connect; //1: re_connect, encrypt with previous distributed LTK; 0: paring ,

encrypt with STK↪

} gap_smp_securityProcessDoneEvt_t;

“re_connect”: If it’s 1, it indicates fast reconnection (The LTK distributed previously will be used to encrypt
the link); if it’s 0, it indicates current encryption is the first encryption.

AN-21112300-E2 171 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(6) GAP_EVT_SMP_TK_DISPALY

Event trigger condition: After Slave receives a Pairing_Req from Master, as per the pairing parameter con-
figuration of the peer device and the local device, the method of TK (pincode) value to be used for pairing
will be known. If the method “PK_Resp_Dsply_Init_Input” is enabled, which means Slave displays 6-digit
pincode and Master inputs 6-digit pincode, this event will be triggered.

Data length “n”: 4.

Pointer “p”: p points to an u32-type variable “tk_set”. The value is 6-digit pincode that Slave needs to
inform the APP layer, and the APP layer needs to display the pincode.

The user can also manually set a user-specified pincode code such as “123456” without using the 6-digit
pincode code generated by underlying layer randomly.

case GAP_EVT_SMP_TK_DISPALY:

{

char pc[7];

#if 1 //Set pincode manually

u32 pinCode = 123456;

memset(smp_param_own.paring_tk, 0, 16);

memcpy(smp_param_own.paring_tk, &pinCode, 4);

#else//Using the pincode generated by bottom layer randomly

u32 pinCode = *(u32*)para;

#endif

}

break;

User should get the 6-digit pincode from Slave and input the pincode on Master side (e.g. Mobile phone), to
finish TK input and continue pairing process. If user has input wrong pincode, or has clicked “cancel”, the
pairing process fails.

The demo “vendor/b85m_feature/feature_smp_security/app.c” provides an example for Passkey Entry ap-
plication.

(7) GAP_EVT_SMP_TK_REQUEST_PASSKEY

Event trigger condition: When the slave device enables the Passkey Entry mode and the PK_Init_Dsply_Resp_Input
or PK_BOTH_INPUT pairing mode is used, this event will be triggered to notify the user that the TK value
needs to be input. After receiving the event, the user needs to input the TK value through the IO input port
(if the timeout is 30s, the pairing fails). The API for inputting the TK value: blc_smp_setTK_by_PasskeyEntry
is explained in the “SMP parameter configuration” chapter.

Data length “n”: 0.

Pointer “p”: NULL.

(8) GAP_EVT_SMP_TK_REQUEST_OOB

Event trigger condition: When Slave device enables the OOB method of legacy pairing, this event will be
triggered to inform user that 16-digit TK value should be input by the OOB method. After this event is
received, user needs to input 16-digit TK value within 30s via IO input capability, otherwise pairing will fail

AN-21112300-E2 172 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

due to timeout. For the API “blc_smp_setTK_by_OOB” to input TK value, please refer to section 3.3.4.2 SMP
parameter configuration.

Data length “n”: 0.

Pointer “p”: NULL.

(9) GAP_EVT_SMP_TK_NUMERIC_COMPARE

Event trigger condition: After Slave receives a Pairing_Req from Master, as per the pairing parameter con-
figuration of the peer device and the local device, the method of TK (pincode) value to be used for pairing
will be known. If the method “Numeric_Comparison” is enabled, this event will be triggered immediately.
For “Numeric_Comparison”, a method of SMP4.2 secure encryption, dialog window will pop up on both
Master and Slave to show 6-digit pincode, “YES” and “NO”; user needs to check whether pincodes on the
two sides are consistent, and decide whether to click “YES” to confirm TK check result is OK.

Data length “n”: 4.

Pointer “p”: p points to an u32-type variable “pinCode”. The value is 6-digit pincode that Slave needs to
inform the APP layer. The APP layer needs to display the pincode, and supplies “YES or “NO” confirmation
mechanism.

The demo “vendor/b85m_feature/feature_smp_security/app.c” provides an example for Numeric_Comparison
application.

(10) GAP_EVT_ATT_EXCHANGE_MTU

Event trigger condition: This event will be triggered in either of the two cases below.

• Master sends “Exchange MTU Request”, and Slave responds with “Exchange MTU Response”.
• Slave sends “Exchange MTU Request”, and Master responds with “Exchange MTU Response”.

Data length “n”: 6.

Pointer “p”: p points to data of a memory area, corresponding to the structure below.

typedef struct {

u16 connHandle;

u16 peer_MTU;

u16 effective_MTU;

} gap_gatt_mtuSizeExchangeEvt_t;

connHandle: current connection handle.

peer_MTU: RX MTU value of the peer device.

effective_MTU = min(CleintRxMTU, ServerRxMTU). “CleintRxMTU” and “ServerRxMTU” indicate RX MTU size
value of Client and Server respectively. After Master and Slave exchanges MTU size of each other, the
minimum of the two values is used as the maximum MTU size value for mutual communication between
them.

(11) GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM

AN-21112300-E2 173 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Event trigger condition: Whenever the APP layer invokes the “blc_gatt_pushHandleValueIndicate” to send
indicate data to Master, Master will respond with a confirmation for the data. This event will be triggered
when Slave receives the confirmation.

Data length “n”: 0.

Pointer “p”: Null pointer.

AN-21112300-E2 174 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

4 Low Power Management

Low Power Management is also called Power Management, or PM as referred by this document.

4.1 Low Power Driver

4.1.1 Low Power Mode

For the 8x5x family, when MCU works in normal mode, or working mode, current is about 3~7mA. To save
power consumption, MCU should enter low power mode.

There are three low power modes, or sleep modes: suspend mode, deepsleep mode, and deepsleep reten-
tion mode.

Table 4.1: Sleep mode description

Module suspend deepsleep retention deepsleep

Sram 100% keep first 32K(or 64K) keep, others lost 100% lost

digital register 99% keep 100% lost 100% lost

analog register 100% keep 99% lost 99% lost

The table above illustrates statistically data retention and loss for SRAM, digital registers and analog registers
during each sleep mode.

(1) Suspend mode (sleep mode 1)

In this mode, program execution pauses, most hardware modules of MCU are powered off, and the PM
module still works normally. In this mode, IC current is about 60~70uA. Program execution continues after
wakeup from suspend mode.

In suspend mode, data of the SRAM and all analog registers are maintained. In order to reduce power
consumption, the SDK has set the power-down mode for some modules when entering the suspend low-
power processing, at which time the digital register of the module will also be powered down, and must be
re-initialized and configured after waking up. Involving:

a) A small number of digital registers in the baseband circuit. User should pay close attenton to the
registers configured by the API “rf_set_power_level_index”. This API needs to be invoked after each
wakeup from suspend mode.

b) The digital register that controls the state of the Dfifo. Corresponding to the related APIs in drivers/
8258(8278)/dfifo.h. When using these APIs, the user must ensure that they are reset after each
suspend wake_up.

(2) Deepsleep mode (sleep mode 2)

In this mode, program execution pauses, vast majority of hardware modules are powered off, and the PM
module still works. In this mode, IC current is less than 1uA, but if flash standby current comes up at 1uA or

AN-21112300-E2 175 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

so, total current may reach 1~2uA. After wakeup from deepsleep mode, similar to power on reset, MCU will
restart, and program will reboot and re-initialize.

In deepsleep mode, except a few retention analog registers, data of all registers (analog & digital) and SRAM
are lost.

(3) Deepsleep retention mode (sleep mode 3)

In deepsleep mode, the current is very low, but cannot store SRAM data; while in suspend mode, though
SRAM and most registers are non-volatile, but the current is high.

The deepsleep with SRAM retention (deepsleep retention or deep retention) mode is designed in the 8x5x
family, so as to achieve application scenes with low sleep current and quick wakeup to restore state,
e.g. maintain BLE connection during long sleep. Corresponding to 16K or 32K SRAM retention area, deep-
sleep retention 16K Sram and deepsleep retention 32K Sram are introduced.

The deepsleep retention mode is also a kind of deepsleep. Most of the hardware modules of the MCU are
powered off, and the PM hardware modules remain working. Power consumption is the power consumed
by retention Sram plus that of deepsleep mode, and the current is between 2~3uA. When deepsleep mode
wake up, the MCU will restart and the program will restart to initialize.

The deepsleep retention mode and deepsleep mode are consistent in register state, almost all of them are
powered off. Compare with in deepsleep mode, in deepsleep retention mode, the first 32K (or the first 64K)
of Sram can be kept without power-off, and the remaining Sram is powered off.

In deepsleep mode and deepsleep retention mode, there are very few analog registers that can be kept
without power-down. These non-power-down analog registers include:

a) Analog registers to control GPIO pull-up/down resistance

When configured via the API “gpio_setup_up_down_resistor” or the following method in the app_config.h,
GPIO pull-up/down resistance are non-volatile:

#define PULL_WAKEUP_SRC_PD5 PM_PIN_PULLDOWN_100K

Please refer to the introduction of the GPIO module. Using GPIO output belongs to the state controlled by
the digital register. 8x5x can use GPIO output to control some peripherals during suspend, but after being
switched to deepsleep retention mode, the GPIO output status becomes invalid and it cannot accurately
control peripherals during sleep. At this point, you can use GPIO to simulate the state of the pull-up and
pull-down resistors instead: pull-up 10K ohm instead of GPIO output high, and pull-down 100K ohm instead
of GPIO output low.

b) Special retention analog registers of the PM module:

The code below shows the “DEEP_ANA_REG” in the “drivers/8258(8278)/pm.h”.

#define PM_ANA_REG_POWER_ON_CLR_BUF1 0x3a // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF2 0x3b // initial value 0x00

#define PM_ANA_REG_POWER_ON_CLR_BUF3 0x3c // system used, user can not use

Please note that customers are not allowed to use ana_3c. This analog register is reserved for the underlying
stack. If the application layer code uses this register, it needs to be modified to ana_3a, ana_3b. Because the

AN-21112300-E2 176 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

number of non-power-off analog registers is relatively small, it is recommended that customers use each
of its bits to indicate different status bits. For details, please refer to “b85m_ble_remote” in the vendor
directory of the SDK.

The following groups of non-drop analog registers may lose information due to wrong GPIO wakeup. For
example, GPIO_PAD wakes up deepsleep at high level, but gpio is already at high level before calling
cpu_sleep_wakeup function. It will cause wrong GPIO wakeup, then these analog register values will be
lost.

#define DEEP_ANA_REG6 0x35

#define DEEP_ANA_REG7 0x36

#define DEEP_ANA_REG8 0x37

#define DEEP_ANA_REG9 0x38

#define DEEP_ANA_REG10 0x39

The user can save some important information in these analog regsiter and read the previously stored values
after deepsleep/deepsleep retention wake_up.

4.1.2 Low Power Wake-up Source

The low-power wake-up source diagram of B85m MCU is shown below, suspend/deepsleep/deepsleep
retention can all be awakened by GPIO PAD and timer. In the BLE SDK, only two types of wake-up
sources are concerned, as shown below (note that the two definitions of PM_TIM_RECOVER_START and
PM_TIM_RECOVER_END in the code are not wake-up sources):

typedef enum {

PM_WAKEUP_PAD = BIT(3),

PM_WAKEUP_TIMER = BIT(5),

}SleepWakeupSrc_TypeDef;

AN-21112300-E2 177 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 4.1: “B85 MCU HW Wakeup Source”

As shown above, there are two hardware wakeup sources: TIMER and GPIO PAD.

• The “PM_WAKEUP_TIMER” comes from 32k HW timer (32k RC timer or 32k Crystal timer). Since 32k
timer is correctly initialized in the SDK, no configuration is needed except setting wakeup source in the
“cpu_sleep_wakeup ()”.

• The “PM_WAKEUP_PAD” comes from GPIO module. Except 4 MSPI pins, all GPIOs (PAx/PBx/PCx/PDx)
support high or low level wakeup .

The API below serves to configure GPIO PAD as wakeup source for sleep mode.

typedef enum{

Level_Low=0,

Level_High =1,

} GPIO_LevelTypeDef;

void cpu_set_gpio_wakeup (GPIO_PinTypeDef pin, GPIO_LevelTypeDef pol, int en);

• “pin”: GPIO pin
• “pol”: wakeup polarity, Level_High: high level wakeup, Level_Low: low level wakeup
• “en”: 1 indicates enable, 0 indicates disable.

Examples:

AN-21112300-E2 178 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

cpu_set_gpio_wakeup (GPIO_PC2, Level_High, 1); //Enable GPIO_PC2 PAD high level wakeup

cpu_set_gpio_wakeup (GPIO_PC2, Level_High, 0); //Disable GPIO_PC2 PAD wakeup

cpu_set_gpio_wakeup (GPIO_PB5, Level_Low, 1); //Enable GPIO_PB5 PAD low level wakeup

cpu_set_gpio_wakeup (GPIO_PB5, Level_Low, 0); //Disable GPIO_PB5 PAD wakeup

4.1.3 Sleep and Wake-up from Low Power Mode

The API below serves to configure MCU sleep and wakeup.

int cpu_sleep_wakeup (SleepMode_TypeDef sleep_mode, SleepWakeupSrc_TypeDef wakeup_src,

unsigned int wakeup_tick);

• sleep_mode: This parameter serves to set sleep mode as suspend mode, deepsleep mode, deepsleep
retention 16K Sram or deepsleep retention 32K Sram.

typedef enum {

SUSPEND_MODE = 0,

DEEPSLEEP_MODE = 0x80,

DEEPSLEEP_MODE_RET_SRAM_LOW16K = 0x43,

DEEPSLEEP_MODE_RET_SRAM_LOW32K = 0x07,

}SleepMode_TypeDef;

• wakeup_src: This parameter serves to set wakeup source for suspend/deep retention/deepsleep as
one or combination of PM_WAKEUP_PAD and PM_WAKEUP_TIMER. If set as 0, MCU wakeup is disabled
for sleep mode.

• “wakeup_tick”: if PM_WAKEUP_TIMER is assigned as wakeup source, the “wakeup_tick” serves to set
MCU wakeup time. If PM_WAKEUP_TIMER is not assigned, this parameter is negligible.

The “wakeup_tick” is an absolute value, which equals current value of System Timer tick plus intended sleep
duration. When System Timer tick reaches the time defined by the wakeup_tick, MCU wakes up from sleep
mode. The value of wakeup_tick needs to be based on the current System Timer tick value, plus an absolute
time converted from the time to be slept, in order to effectively control the sleep time. If the wakeup_tick
is set directly without taking into account the current System Timer tick, the wake-up time point cannot be
controlled.

Since the wakeup_tick is an absolute time, it follows the max range limit of 32bit System Timer tick. In
current SDK, 32bit max sleep time corresponds to 7/8 of max System Timer tick. Since max System Timer
tick is 268s or so, max sleep time is 268*7/8=234s, which means the “delta_Tick” below should not exceed
234s. If a longer sleep time is needed, user can call the long sleep function, as described in section 4.2.7.

cpu_sleep_wakeup(SUSPEND_MODE, PM_WAKEUP_TIMER, clock_time() + delta_tick);

The return value is an ensemble of current wakeup sources. Following shows wakeup source for each bit of
the return value.

AN-21112300-E2 179 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

enum {

WAKEUP_STATUS_TIMER = BIT(1),

WAKEUP_STATUS_PAD = BIT(3),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),

};

a) If WAKEUP_STATUS_TIMER bit = 1, wakeup source is Timer.

b) If WAKEUP_STATUS_PAD bit = 1, wakeup source is GPIO PAD.

c) If both WAKEUP_STATUS_TIMER and WAKEUP_STATUS_PAD equal 1, wakeup source is Timer and GPIO
PAD.

d) STATUS_GPIO_ERR_NO_ENTER_PM is a special state indicating GPIO wakeup error. E.g. Sup-
pose a GPIO is set as high level PAD wakeup (PM_WAKEUP_PAD). When MCU attempts to invoke
the “cpu_sleep_wakeup” to enter suspend, and PM_WAKEUP_PAD wake-up source is set, MCU
will fail to enter suspend and immediately exit the “cpu_sleep_wakeup” with return value STA-
TUS_GPIO_ERR_NO_ENTER_PM.

Sleep time is typically set in the following way：

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_TIMER, clock_time() + delta_Tick);

The “delta_Tick”, a relative time (e.g. 100* CLOCK_16M_SYS_TIMER_CLK_1MS), plus “clock_time()” becomes
an absolute time.

Some examples on cpu_sleep_wakeup：

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_PAD, 0);

When it’s invoked, MCU enters suspend, and wakeup source is GPIO PAD.

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_TIMER, clock_time() + 10*

CLOCK_16M_SYS_TIMER_CLK_1MS;↪

When it’s invoked, MCU enters suspend, wakeup source is timer, and wakeup time is current time plus 10ms,
so the suspend duration is 10ms.

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_PAD | PM_WAKEUP_TIMER,

clock_time() + 50* CLOCK_16M_SYS_TIMER_CLK_1MS);

When it’s invoked, MCU enters suspend, wakeup source includes timer and GPIO PAD, and timer wakeup
time is current time plus 50ms.

If GPIO wakeup is triggered before 50ms expires, MCU will be woke up by GPIO PAD in advance; otherwise,
MCU will be woke up by timer.

AN-21112300-E2 180 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

cpu_sleep_wakeup (DEEPSLEEP_MODE, PM_WAKEUP_PAD, 0);

When it’s invoked, MCU enters deepsleep, and wakeup source is GPIO PAD.

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K , PM_WAKEUP_TIMER, clock_time() + 8*

CLOCK_16M_SYS_TIMER_CLK_1S);↪

When it’s invoked, MCU enters deepsleep retention 32K Sram mode, wakeup source is timer, and wakeup
time is current time plus 8s.

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K , PM_WAKEUP_PAD | PM_WAKEUP_TIMER,clock_time()

+ 10* CLOCK_16M_SYS_TIMER_CLK_1S);↪

When it’s invoked, MCU enters deepsleep retention 32K Sram mode, wakeup source includes GPIO PAD and
Timer, and timer wakeup time is current time plus 10s. If GPIO wakeup is triggered before 10s expires, MCU
will be woke up by GPIO PAD in advance; otherwise, MCU will be woke up by timer.

4.1.4 Low Power Wake-up Procedure

When user calls the API cpu_sleep_wakeup, the MCU enters the sleep mode; when the wake-up source
triggers the MCU to wake up, the MCU software operation flow is inconsistent for different sleep modes.

The following is a detailed description of the MCU operating process after the suspend, deepsleep, and
deepsleep retention three sleep modes are awakened. Please refer to the figure below.

AN-21112300-E2 181 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 4.2: “Sleep Mode Wakeup Work Flow”

Detailed process after the MCU is powered on is introduced as following:

(1) Run hardware bootloader

It is pure MCU hardware operation without involvement of software.

Couple of examples:

Read the boot flag of flash to determine whether the firmware that should be run currently is stored on
flash address 0 or on flash address 0x20000 (related to OTA); read the value of the corresponding location
of flash to determine how much data currently needs to be copied from flash to Sram as resident memory
data (refer to Chapter (refer to the introduction of Sram allocation in Chapter 2). The part of running the
hardware bootloader involves copying data from flash to sram, which generally takes a long time to execute.
For example, it takes about 5ms to copy 10K data.

AN-21112300-E2 182 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(2) Run software bootloader

After hardware bootloader, MCU starts “Running software bootloader”. Software bootloader is vector side
corresponding to the .s assembly program in the boot directory of the b85m sdk.
Software bootloader serves to set up memory environment for C program execution, so it can be regarded
as memory initialization.

(3) System initialization

System initialization corresponds to the initialization of each hardware module (including cpu_wakeup_init,
rf_drv_init, gpio_init, clock_init) from cpu_wakeup_init to user_init in the main function, and sets the digital/
analog register status of each hardware module.

(4) User initialization

User initialization is divided into User initialization normal and User initialization deep retention, which cor-
respond to the functions user_init_normal and user_init_deepRetn in the SDK respectively. For projects
that do not use deep retention, such as kma master dongle, there is only user_init, which is equivalent to
user_init_normal.

The user_init and user_init_normal require all the initialisation to be done, which takes longer time.

The user_init_deepRetn only needs to do some hardware related initialization, no software initialization is
needed because the variables involved in software initialization are put into the MCU retention area during
design time, and these variables remain unchanged during deep retention and do not need to be reset after
waking up. So user_init_deepRetn is an accelerated mode, saving time and therefore power.

(5) main_loop

After User initialization, program enters main_loop inside while(1). The operation is called “Operation Set
A” before main_loop enters sleep mode, and called “Operation Set B” after wakeup from sleep.

As shown in figure above, sleep mode process is detailed as following:

(1) no sleep

Without sleep mode, MCU keeps looping inside while(1) between “Operation Set A” -> “Operation Set B”.

(2) suspend

MCU enters suspend mode by invoking cpu_sleep_wakeup, wakes up from suspend after exiting from
cpu_sleep_wakeup, and then executes “Operation Set B”.

Suspend can be regarded as the most “clean” sleep mode, in which data of SRAM, digital and analog registers
are retained (a few special exceptions). After wakeup from suspend, program continues from the breakpoint,
with almost no need to recover SRAM or registers. However, in suspend current is relatively high.

(3) deepsleep

MCU can also enter deepsleep by invoking cpu_sleep_wakeup. After wakeup from deepsleep, MCU restarts
from “Running hardware bootloader”. Almost the same as power on reset, all hardware and software ini-
tialization are required after deepsleep wakeup. Since SRAM and registers - except a few retention analog
registers - will lose their data in deepsleep, MCU current is decreased to less than 1uA.

(4) deepsleep retention

AN-21112300-E2 183 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

MCU can also enter deepsleep retention mode by invoking cpu_sleep_wakeup. After wakeup from deepsleep
retention, MCU restarts from “Running software bootloader”.

The deepsleep retention is an intermediate sleep mode between suspend and deepsleep. In suspend mode,
both SRAM and most registers need to retain data, which thus ends up with higher current. In deepsleep
retention, it’s only needed to maintain states of a few retention analog registers, as well as data of first 16K
or 32K SRAM, so current is largely decreased to 2uA or so.

After deepsleep wake_up, MCU needs to restart the whole flow. Since first 16K or 32K SRAM are non-volatile
in deepsleep retention, there’s no need to re-load from flash to SRAM after wake_up, and thus “Running
hardware bootloader” is skipped. Due to limited SRAM retention size, “Running software bootloader” can-
not be skipped. Since deepsleep retention does not keep register state, system initialization must also be
executed to re-initialize registers.

The user initialization after deepsleep retention wake_up can actually be optimized to differentiate from
MCU power on and deepsleep wake_up.

4.1.5 API pm_is_MCU_deepRetentionWakeup

According to the figure “sleep mode wakeup work flow” above, MCU power on, deepsleep wake_up and
deepsleep retention wake_up all need to go through “Running software bootloader”, “system initialization”,
and “user initialization”.

While running system initialization and user initialization, user needs to know whether MCU is woke up from
deepsleep retention, so as to differentiate from power on and deepsleep wake_up. The following API in the
PM driver serves to make this judgement.

int pm_is_MCU_deepRetentionWakeup(void);

Return value: 1 indicates deepsleep retention wake_up; 0 indicates power on or deepsleep wake_up.

4.2 BLE Low Power Management

4.2.1 BLE PM Initialization

For applications with low power mode, BLE PM module needs to be initialized by following API.

void blc_ll_initPowerManagement_module(void);

If low power is not required, DO NOT use this API, so as to skip compiling of PM related code and variables
into program and thus save firmware and SRAM space.

4.2.2 BLE PM for Link Layer

In this BLE SDK, PM module manages power consumption in BLE Link Layer. It would be helpful referring to
introduction to Link Layer in earlier chapter.

AN-21112300-E2 184 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Current SDK only applies low power management to Advertising state and Connection state Slave role with
a set of APIs for user. It’s not applicable yet to Scanning state, Initiating state and Connection state Master
role.

The SDK does not apply low power management to Idle state either. In Idle state, since there is no RF activity,
i.e. the “blt_sdk_main_loop” function is not valid, user can use PM driver for certain low power management.
E.g. In the demo code below, when Link Layer is in Idle state, every main_loop would suspend for 10ms.

void main_loop (void)

{

////////////////////// BLE entry ////////////////////////

blt_sdk_main_loop();

///////////////////// UI entry //////////////////////////

// add user task

//////////////////// PM configuration ////////////////////////

if(blc_ll_getCurrentState() == BLS_LINK_STATE_IDLE){ //Idle state

cpu_sleep_wakeup(SUSPEND_MODE, PM_WAKEUP_TIMER,

clock_time() + 10*CLOCK_16M_SYS_TIMER_CLK_1MS);

}

else{

blt_pm_proc(); //BLE Adv & Conn state

}

}

The figure below shows timing of sleep mode when Link Layer is in Advertising state or Conn state Slave
role with connection latency = 0.

Figure 4.3: “Sleep Timing for Advertising State and Conn State Slave Role”

(1) In Advertising state, during each Adv Internal, Adv Event is mandatory; MCU can enter sleep mode

AN-21112300-E2 185 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(suspend/deepsleep retention) during the rest time other than UI task.

In figure above, the starting time of Adv event at first Adv interval is defined as T_advertising, and the time
for MCU to wake up from sleep is defined as T_wakeup.T_wakeup is also the start of Adv event at next Adv
interval. Both these two parameters will be elaborated in later section.

(2) During each Conn-interval at Conn state Slave role, the time for brx Event (brx start+brx working+brx
post) is mandatory. MCU can enter sleep mode (suspend/ deepsleep retention) during the rest time
other than UI task.

The starting time of of Brx event at first Connection interval is defined as T_brx, and the time for MCU to
wake up from sleep is T_wakeup. T_wakeup is also the start of BRx event at next Connection interval. Both
these two parameters will be elaborated in later section.

BLE PM is basically the sleep mode management in Advertising state or Conn state Slave role. User can
select sleep mode and set related time parameters: enter sleep, enter suspend mode, or enter deepsleep
retention mode.

As explained earlier, the 8x5x family has 3 sleep modes: suspend, deepsleep, and deepsleep retention.

For suspend and deepsleep retention, since the blt_sdk_main_loop of the SDK includes low PM in BLE stack
according to Link Layer state, to configure low power management, user only needs to invoke corresponding
APIs instead of the “cpu_sleep_wakeup”.

Deepsleep is not included in BLE low PM, so user needs to manually invoke the API “cpu_sleep_wakeup” in
APP layer to enter deepsleep. Please refer to the “blt_pm_proc” function in the project “b85m_ble_remote”
of the SDK.

Following sections illustrate details of low power management in Advertising state and Connection state
Slave role.

4.2.3 BLE PM Variables

The variables in this section are helpful to understand BLE PM software flow.

The struct “st_ll_pm_t” is defined in BLE SDK. Following lists some variables of the struct which will be used
by PM APIs.

typedef struct {

u8 suspend_mask;

u8 wakeup_src;

u16 sys_latency;

u16 user_latency;

u32 deepRet_advThresTick;

u32 deepRet_connThresTick;

u32 deepRet_earlyWakeupTick;

}st_ll_pm_t;

Following struct is defined in the file “ll_pm.c” for understanding purpose.

AN-21112300-E2 186 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

st_ll_pm_t bltPm;

Please note that this file is assembled in library, and user is not allowed to make any operation on this struct
variable.

There will be a lot of variables like the “bltPm. suspend_mask” in later sections.

4.2.4 API bls_pm_setSuspendMask

The APIs below serve to configure low power management in Link Layer at “Advertising state” and “Conn
state Slave role”.

void bls_pm_setSuspendMask (u8 mask);

u8 bls_pm_getSuspendMask (void);

The “bltPm.suspend_mask” is set by the “bls_pm_setSuspendMask” and its default value is SUS-
PEND_DISABLE.

Following shows source code of the 2 APIs.

void bls_pm_setSuspendMask (u8 mask)

{

bltPm.suspend_mask = mask;

}

u8 bls_pm_getSuspendMask (void)

{

return bltPm.suspend_mask;

}

The “bltPm.suspend_mask” can be set as any one or the “or-operation” of following values:

#define SUSPEND_DISABLE 0

#define SUSPEND_ADV BIT(0)

#define SUSPEND_CONN BIT(1)

#define DEEPSLEEP_RETENTION_ADV BIT(2)

#define DEEPSLEEP_RETENTION_CONN BIT(3)

The “SUSPEND_DISABLE” means sleep is disabled which allows MCU to enter neither suspend nor deepsleep
retention.

The “SUSPEND_ADV” and “DEEPSLEEP_RETENTION_ADV” decide whether MCU at Advertising state can
enter suspend and deepsleep retention.

The “SUSPEND_CONN” and “DEEPSLEEP_RETENTION_CONN” decide whether MCU at Conn state Slave role
can enter suspend and deepsleep retention.

In low power sleep mode design of the SDK, deepsleep retention is a substitute of suspend mode to reduce
sleep power consumption.

AN-21112300-E2 187 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Take Conn state slave role as an example:

The SDK will first check whether SUSPEND_CONN is enabled in the “bltPm.suspend_mask”, and MCU
can enter suspend only when SUSPEND_CONN is enabled. Further on, based on the value of the DEEP-
SLEEP_RETENTION_CONN, MCU can decide whether it will enter suspend mode or deepsleep retention
mode.

Therefore, to enable MCU to enter suspend, user only needs to enable SUSPEND_ADV/SUSPEND_CONN. To
enable MCU to enter deepsleep retention mode, both SUSPEND_CONN and DEEPSLEEP_RETENTION_CONN
should be enabled.

Following shows 3 typical use cases:

bls_pm_setSuspendMask(SUSPEND_DISABLE);

MCU will not enter sleep mode (suspend/deepsleep retention).

bls_pm_setSuspendMask(SUSPEND_ADV | SUSPEND_CONN);

At Advertising state and Conn state Slave role, MCU can only enter suspend mode, and it’s not allowed to
enter deepsleep retention.

bls_pm_setSuspendMask(SUSPEND_ADV | DEEPSLEEP_RETENTION_ADV

|SUSPEND_CONN | DEEPSLEEP_RETENTION_CONN);

At Advertising state and Conn state Slave role, MCU can enter both suspend and deepsleep retention, but
the sleep mode to enter depends on sleeping time which will be explained later.

There may be some special applications, for example：

bls_pm_setSuspendMask(SUSPEND_ADV)

Only at Advertising state can MCU enter suspend, and at Conn state Slave role it’s not allowed to enter sleep
mode.

bls_pm_setSuspendMask(SUSPEND_CONN | DEEPSLEEP_RETENTION_CONN)

Only at Conn state Slave role, can MCU enter suspend or deepsleep retention, and at Advertising state it’s
not allowed to enter sleep mode.

4.2.5 API bls_pm_setWakeupSource

User can set the bls_pm_setSuspendMask to enable MCU to enter sleep mode (suspend or deepsleep reten-
tion), and use the following API to set wakeup source.

AN-21112300-E2 188 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void bls_pm_setWakeupSource(u8 source);

“source”: Wakeup source, can be set as PM_WAKEUP_PAD.

This API sets the bottom-layer variable “bltPm.wakeup_src”. Following shows source code in the SDK.

void bls_pm_setWakeupSource (u8 src)

{

bltPm.wakeup_src = src;

}

When MCU enters sleep mode at Advertising state or Conn state Slave role, its actual wakeup source is:

bltPm.wakeup_src | PM_WAKEUP_TIMER

So PM_WAKEUP_TIMER is mandatory, not depending on user setup. This guarantees that MCU will wake
up at specified time to handle Adv Event or Brx Event.

Everytime wakeup source is set by the “bls_pm_setWakeupSource”, after MCU wakes up from sleep mode,
the bltPm.wakeup_src is set to 0.

4.2.6 API blc_pm_setDeepsleepRetentionType

Deepsleep retention further separates into 16K SRAM retention or 32K SRAM retention. When entering
deepsleep retention mode, the following API can be set to decide which sub-mode to enter:

void blc_pm_setDeepsleepRetentionType(SleepMode_TypeDef sleep_type);

Only two options are available:

typedef enum {

DEEPSLEEP_MODE_RET_SRAM_LOW16K = 0x43,

DEEPSLEEP_MODE_RET_SRAM_LOW32K = 0x07,

}SleepMode_TypeDef;

In the SDK, default deepsleep retention mode is set as DEEPSLEEP_MODE_RET_SRAM_LOW16K，and to use
32K retention mode, user needs to invoke the API below during initialization.

Please note that this API must be invoked after the “blc_ll_initPowerManagement_module” to take effect.

blc_pm_setDeepsleepRetentionType(DEEPSLEEP_MODE_RET_SRAM_LOW32K);

Refer to Chapter 2, Sram memory allocation is designed according to deepsleep retention 16K Sram by
default. According to the description in Chapter 1, we know that we need to select different software

AN-21112300-E2 189 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

bootloader boot files and boot. link for different ICs and deep retention size values. Please refer to the
section “Software bootloader” for the specific mapping relationship and modification setting method.

If the current IC is 8258, using deepsleep retention 32K Sram requires the following two steps to modify:

Step 1 Select the software bootloader file as cstartup_8258_RET_32K.S；
Step 2 Modify the boot.link file: replace the content of the SDK/boot/boot_32k_retn_8253_8258.link file
with the boot.link file in the SDK root directory.

The settings of other ICs are similar to the above, and users can modify them according to the actual
situation.

4.2.7 PM software processing flow

Both actual code and pseudo-code are used herein to explain the flow details.

4.2.7.1 blt_sdk_main_loop

As shown below, the “blt_sdk_main_loop” is repetitively executed in while (1) loop of the SDK.

while(1)

{

////////////////////// BLE entry ////////////////////////

blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////

//UI task

////////////////////// user PM config ////////////////////////

//blt_pm_proc();

}

The blt_sdk_main_loop function is executed continuously in while(1), and the code for BLE low-power man-
agement is in the blt_sdk_main_loop function, so the code for low-power management is also executed all
the time.

Following shows the implementation of BLE PM logic inside the “blt_sdk_main_loop”.

int blt_sdk_main_loop (void)

{

……
if(bltPm. suspend_mask == SUSPEND_DISABLE) // SUSPEND_DISABLE, can not

{ // enter sleep mode

return 0;

}

if((Link Layer State == Advertising state) || (Link Layer State == Conn state Slave role)

)↪

{

AN-21112300-E2 190 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

if(Link Layer is in Adv Event or Brx Event) //RF is working, can not enter

{ //sleep mode

return 0;

}

else

{

blt_brx_sleep (); //process sleep & wakeup

}

}

return 0;

}

(1) When the “bltPm.suspend_mask” is SUSPEND_DISABLE, the SW directly exits without executing the
“blt_brx_sleep” function. So when using the “bls_pm_setSuspendMask(SUSPEND_DISABLE)”, PM logic
is completely ineffective; MCU will never enter sleep and the SW always execute while(1) loop.

(2) When the SW is executing Adv Event at Advertising State or Brx Event at Conn state Slave role,
the “blt_brx_sleep” won’t be executed either due to RF task ongoing. The SDK needs to guarantee
completion of Adv Event/Brx Event before MCU enters sleep mode.

Only when both cases above are invalid, the blt_brx_sleep will be executed.

4.2.7.2 blt_brx_sleep

Following shows logic implementation of the “blt_brx_sleep” function in the case of default deepsleep re-
tention 16K Sram.

void blt_brx_sleep (void)

{

if((Link Layer state == Adv state)&& (bltPm. suspend_mask &SUSPEND_ADV))

{ //current state is adv state, suspend is allowed

T_wakeup = T_advertising + advInterval;

”BLT_EV_FLAG_SUSPEND_ENTER” event callback execution

T_sleep = T_wakeup ‒ clock_time();

if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_ADV &&

T_sleep > bltPm.deepRet_advThresTick)

{ //suspend is automatically switched to deepsleep retention

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW16K,

PM_WAKEUP_TIMER | bltPm.wakeup_src,T_wakeup); //suspend

//MCU reset to 0 after wakeup, restart on “software bootloader”
}

else

{

cpu_sleep_wakeup (SUSPEND_MODE, PM_WAKEUP_TIMER | bltPm.wakeup_src, T_wakeup);

}

”BLT_EV_FLAG_SUSPEND_EXIT ” event callback execution

AN-21112300-E2 191 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

if(suspend is woke up by GPIO PAD)

{

”BLT_EV_FLAG_GPIO_EARLY_WAKEUP” event callback execution

}

}

else if((Link Layer state == Conn state Slave role)&& (SuspendMask&SUSPEND_CONN))

{ //current Conn state, enter suspend

if(conn_latency != 0)

{

latency_use = bls_calculateLatency();

T_wakeup = T_brx + (latency_use +1) * conn_interval;

}

else

{

T_wakeup = T_brx + conn_interval;

}

”BLT_EV_FLAG_SUSPEND_ENTER” event callback execution

T_sleep = T_wakeup ‒ clock_time();

if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_CONN &&

T_sleep > bltPm.deepRet_connThresTick)

{ //suspend is automatically switched to deepsleep retention

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW16K,

PM_WAKEUP_TIMER | bltPm.wakeup_src,T_wakeup); //suspend

//MCU reset to 0 after wakeup, restart on “software bootloader”
}

else

{

cpu_sleep_wakeup (SUSPEND_MODE, PM_WAKEUP_TIMER | bltPm.wakeup_src, T_wakeup);

}

” BLT_EV_FLAG_SUSPEND_EXIT” event callback execution

if(suspend is waken up by GPIO PAD)

{

”BLT_EV_FLAG_GPIO_EARLY_WAKEUP” event callback execution

Adjust BLE timing

}

}

bltPm.wakeup_src = 0;

bltPm.user_latency = 0xFFFF;

}

To simplify the discussion, let’s begin with an easy case: conn_latency =0, only suspend mode, no deepsleep
retention. This is the case when setting suspend mask in APP layer via the “bls_pm_setSuspendMask(SUSPEND_ADV
| SUSPEND_CONN)”.

Referring to controller event introduced earlier, please pay close attention to the timing of these suspend
related events and callback functions: BLT_EV_FLAG_SUSPEND_ENTER, BLT_EV_FLAG_SUSPEND_EXIT,

AN-21112300-E2 192 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

BLT_EV_FLAG_GPIO_EARLY_WAKEUP.

When Link Layer is in Advertising state with “bltPm. suspend_maskis” set to SUSPEND_ADV, or at Conn
state slave role with “bltPm. suspend_mask” set to SUSPEND_CONN, MCU can enter suspend mode.

In suspend mode, the API “cpu_sleep_wakeup” in the driver is finally invoked.

cpu_sleep_wakeup (SUSPEND_MODE, PM_WAKEUP_TIMER | bltPm.wakeup_src, T_wakeup);

This API sets wakeup source as PM_WAKEUP_TIMER | bltPm.wakeup_src, so Timer wakeup is mandatory
to guarantee MCU wakeup before next Adv Event or Brx Event. For wakeup time “T_wakeup”, please refer
to earlier “sleep timing for Advertising state & Conn state Slave role” diagram.

When exiting the “blt_brx_sleep” function, both the “bltPm.wakeup_src” and the “bltPm.user_latency” are
reset. So the API “bls_pm_setWakeupSource” and “bls_pm_setManualLatency” are only effective for current
sleep mode.

4.2.8 Analysis of deepsleep retention

Introduce deepsleep retention, and continue to analyze the above software processing flow. When the
application layer is set as follows, deepsleep retention mode is enabled.

bls_pm_setSuspendMask(SUSPEND_ADV | DEEPSLEEP_RETENTION_ADV | SUSPEND_CONN |

DEEPSLEEP_RETENTION_CONN);↪

4.2.8.1 API blc_pm_setDeepsleepRetentionThreshold

At Advertising state and Conn state slave role, suspend can switch to deep retention only when following
conditions are met, respectively:

if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_ADV &&T_sleep > bltPm.deepRet_advThresTick)

if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_CONN &&T_sleep > bltPm.deepRet_connThresTick)

Firstly, the “bltPm. suspend_mask” should be set to DEEPSLEEP_RETENTION_ADV or DEEPSLEEP_RETENTION
_CONN, as explained before.

Secondly, for T_sleep > bltPm.deepRet_advThresTick or T_sleep > bltPm.deepRet_connThresTick，T_sleep,
sleep duration time, equals Wakeup time “T_wakeup” minus current time “clock_time()”. It means that sleep
duration should exceed certain threshold so that MCU can switch sleep mode from suspend to deepsleep
retention.

Here is the API to set the two threshold in unit of ms for Advertising state and Conn state slave role.

void blc_pm_setDeepsleepRetentionThreshold(u32 adv_thres_ms,

u32 conn_thres_ms)

{

bltPm.deepRet_advThresTick = adv_thres_ms * CLOCK_16M_SYS_TIMER_CLK_1MS;

AN-21112300-E2 193 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

bltPm.deepRet_connThresTick = conn_thres_ms * CLOCK_16M_SYS_TIMER_CLK_1MS;

}

API blc_pm_setDeepsleepRetentionThreshold is used to set the time threshold when suspend is switched to
deepsleep retention trigger condition. This design is to pursue lower power consumption.

Refer to the description of the “Run Process After Sleep Wake_up” section above. After suspend mode
wake_up, you can immediately return to the environment before suspend to continue running. In the above
software flow, after T_wakeup wakes up, it can immediately start executing the Adv Event/Brx Event task.

After deepsleep retention wake_up, you need to return to the place where “Run software bootloader”
started. Compared with suspend wake_up, you need to run 3 more steps (Run software bootloader +
System initialization + User initialization) before you can return to main_loop to execute Adv Event again. /
Brx Event task.

Taking Conn state slave role as an example, the following figure shows the timing (sequence) & power (power
consumption) comparison when sleep mode is suspend and deepsleepretention respectively.

The time difference T_cycle between two adjacent Brx events is the current time period. Average the power
consumption of Brx Event, the equivalent current is I_brx, and the duration is t_brx (the name t_brx here
is to distinguish it from the previous concept T_brx). The bottom current of Suspend is I_suspend, and the
bottom current of deep retention is I_deepRet.

The average current in the process of “Run software bootloader + System initialization + User initialization”
is equivalent to I_init, and the total duration is T_init. In actual applications, the value of T_init needs to be
controlled and measured by the user, and how to implement it will be introduced later.

AN-21112300-E2 194 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 4.4: “Suspend Deep sleep Retention Timing Power”

The following is the description of terms in the figure.

• T_cycle: the time difference between two adjacent Brx events

• I_brx: average the power consumption of Brx Event, the equivalent current is I_brx

• t_brx: l_brx duration

• l_suspend: suspend bottom current

• l_deepRet: bottom current of deep retention

• l_init: Software bootloader + System initialization + User initialization process equivalent average cur-
rent

• T_init: the total duration of l_init

AN-21112300-E2 195 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Average Brx current with suspend mode is:

I_avgSuspend = I_brx*t_brx + I_suspend* (T_cycle – t_brx)

Simplified by T_cycle >> t_brx, (T_cycle – t_brx) can be regarded as T_cycle.

I_avgSuspend = I_brx*t_brx + I_suspend* T_cycle

Average Brx current with deepsleep retention mode is:

I_avgDeepRet = I_brx*t_brx + I_init*T_init + I_deepRet* (T_cycle – t_brx)

= I_brx*t_brx + I_init*T_init + I_ deepRet * T_cycle

Comparing I_avgSuspend and I_avgDeepRet, removing the same “I_brx*t_brx”, the final part of the com-
parison is

I_avgSuspend – I_avgDeepRet = I_suspend* T_cycle – I_init*T_init – I_ deepRet * T_cycle

= T_cycle((I_suspend – I_ deepRet) – (T_init*I_init)/T_cycle)

For application program with correct power debugging on both HW circuit and SW, the “(I_suspend - I_
deepRet)” and “(T_init*I_init)” can be regarded as fixed value.

Suppose I_suspend=30uA, I_deepRet=2uA, (I_suspend - I_ deepRet) = 28uA; I_init=3mA, T_init=400 us,
(T_init*I_init)=1200 uA*us:

I_avgSuspend – I_avgDeepRet = Tcycle (28 – 1200/Tcycle)

I_avgSuspend – I_avgDeepRet

>0 when Tcycle > (1200/28) = 43ms, DeepRet consumes less power;

<0 when Tcycle < 43ms, Suspend mode consumes less power.

Mathematically, when Tcycle < 43 ms, suspend mode is more power efficient; when Tcycle > 43 ms, deep-
sleep retention mode is a better choice.

Note:

• As you can see in the PM software processing flow section, the suspend is automatically switched to
deepsleep retention only when T_sleep > 43ms. We generally consider the MCU working time (Brx
Event + UI task) to be relatively short, and when T_cycle is large, we can consider T_sleep to be
approximately equal to T_cycle.

By using the threshold setting API below, MCU will automatically switch suspend to deepsleep retention for
T_sleep more than 43mS, and maintain suspend for T_sleep less than 43mS.

blc_pm_setDeepsleepRetentionThreshold(43, 43);

Take a long connection of 10ms connection interval * (99 + 1) = 1s as an example:

During the Conn state slave role, due to the tasks of the application layer, manual latency settings, etc., it
may lead to time values such as 10ms, 20ms, 50ms, 100ms, 1s, etc. when the MCU suspend. According
to the 43ms threshold setting, the MCU will automatically switch the 50ms, 100ms, 1s etc. suspend to

AN-21112300-E2 196 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

deepsleep retention, while the 10ms, 20ms etc. suspend will still maintain suspend, such processing can
ensure an optimal power consumption.

Since the power consumption of deepsleep retention is lower than that of suspend, and the presence of
the 3 steps “Run software bootloader + System initialization + User initialization” results in some additional
power consumption. Based on the above analysis, it must be the case that deepsleep retention will be more
power efficient when T_cycle is greater than a certain threshold. The values in the above example are just a
simple demo, the user needs to measure the corresponding values in the above equation according to certain
methods when implementing power optimisation, and only then can the threshold value be determined.

In practice, following demos in the SDK, as long as user initialization does not incorrectly run across extended
time, for T_cycle larger than 100ms, deepsleep retention mode should end up with lower power in most
application scenarios.

4.2.8.2 blc_pm_setDeepsleepRetentionEarlyWakeupTiming

According to the “suspend & deepsleep retention timing & power”, suspend wake_up time “T_wakeup” is
exactly the starting point of next Brx Event, or the time point when BLE master starts sending packet.

For deepsleep retention, wake_up time needs to start earlier than T_wakeup to allow T_init: running soft-
ware bootloader + system initialization + user initialization, or it will miss Brx Event, i.e., the time when BLE
master starts sending packet. So MCU wake_up time should be pulled in to T_wakeup’:

T_wakeup’ = T_wakeup – T_init

When applying to：

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K, PM_WAKEUP_TIMER | bltPm.wakeup_src,

T_wakeup - bltPm.deepRet_earlyWakeupTick);

The T_wakeup is automatically calculated by the BLE stack, while the “bltPm.deepRet_earlyWakeupTick”
can be assigned to the measured T_init (or slightly larger) by following API:

void blc_pm_setDeepsleepRetentionEarlyWakeupTiming(u32 earlyWakeup_us)

{

bltPm.deepRet_earlyWakeupTick = earlyWakeup_us * CLOCK_16M_SYS_TIMER_CLK_1US;

}

User can directly set the measured value of T_init to the above API, or set a value slightly larger than T_init,
but not less than this value.

4.2.8.3 Optimization and measurement of T_init

For SRAM concept to be discussed in this section such as ram_code, retention_data, deepsleep retention
area, please refer to section 2.1.2 SRAM space partition.

(1) T_init timing

AN-21112300-E2 197 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

From the figure “suspend & deepsleep retention timing & power”, combined with the previous analysis, we
can see that for the larger T_cycle, the sleep mode uses deepsleep retention with lower power consumption,
but in this mode the T_init time is mandatory. In order to minimize the power consumption of long sleep,
the time of T_init needs to be optimized to the minimum. The value of I_init is basically stable and does not
need to be optimized.

The T_init is the sum of the time consumed by the 3 steps of Run software bootloader + System initialization
+ User initialization. The 3 steps are disassembled and analyzed, and the time of each step is defined first.

• T_cstatup is the time of running software bootloader, i.e. executing assembly file cstartup_xxx.S.

• T_sysInit is system initialization time.

• T_userInit is user initialization time.

T_init = T_cstatup + T_sysInit + T_userInit

Following is a complete timing diagram of T_init:

Figure 4.5: “T_init Timing”

Based on earlier definition, T_wakeup is the starting point of next Adv Event/Brx Event, and T_wakeup’ is
MCU early wake_uptime.

After wake_up, MCU will execute cstatup_xxx.S, jump to main() to start system initialization followed by user
initialization, and then enter main_loop. Once getting in main_loop, it can start processing of Adv Event/
Brx Event. The end of T_userInit is the starting point of Adv Event/Brx Event, or T_brx/T_advertising as
shown in above diagram. “irq_enable” in the diagram is the separation between T_userInit and main_loop,
matching the code in the SDK.

In the SDK, T_sysInit includes execution time of cpu_wakeup_init, rf_drv_init, gpio_init and clock_init. These
timing parameters have been optimized in the SDK by placing the associated code into the ram_code.

AN-21112300-E2 198 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The T_cstatup and T_userInit in the SDK are elaborated herein.

(2) T_userInit

User initialization is executed at power on, deepsleep wake_up, and deepsleep retention wake_up.

For applications without deepsleep retention mode, user initialization does not need to differentiate between
deepsleep retention wake_up and power on/ deepsleep wake_up. In the BLE SDK, all user initialization can
be completed with the following functions. The same applies to the “b85m_master_kma_dongle” project in
the BLE SDK.

void user_init(void);

For applications with deepsleep retention mode, to reduce power, T_userInit needs to be as short as pos-
sible as explained earlier, so deepsleep retention wake_up would be different from power on / deepsleep
wakeup.

The initialization tasks in the user_init falls into 2 categories: initialization of hardware registers, and initial-
ization of logic variables in SRAM.

Since in deepsleep retention mode first 16K or 32K SRAM is non-volatile, logic variables can be defined as
retention_data to save time for initialization. Since registers cannot retain data across deepsleep retention,
re-initialization is required for registers.

In summary, for deepsleep retention wake_up, user_init_deepRetn applies; while for power on and deep-
sleep wake_up, user_init_normal function applies, as shown in following code:

int deepRetWakeUp = pm_is_MCU_deepRetentionWakeup();

if(deepRetWakeUp){

user_init_deepRetn ();

}

else{

user_init_normal ();

}

The user can compare the implementation of these two functions. The following is the implementation of
the user_init_deepRetn function in the SDK demo “b85m_ble_remote”.

_attribute_ram_code_ void user_init_deepRetn(void)

{

#if (PM_DEEPSLEEP_RETENTION_ENABLE)

blc_app_loadCustomizedParameters();

blc_ll_initBasicMCU(); //mandatory

rf_set_power_level_index (MY_RF_POWER_INDEX);

blc_ll_recoverDeepRetention();

app_ui_init_deepRetn();

#endif

}

AN-21112300-E2 199 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

First 3 lines (from code blc_app_loadCustomizedParameters to rf_set_power_level_index) are mandatory
BLE initialization of hardware registers.

The blc_ll_recoverDeepRetention() is to recover software and hardware state at Link Layer by low level
stack.

User is not recommended to modify these lines.

Finally, app_ui_init_deepRetn is the user’s re-initialization of the hardware registers used by the application
layer. The GPIO wakeup configuration and LED state setting in the demo “b85m_ble_remote” are hardware
initialization. The UART hardware register state in the demo “b85m_module” needs to re-initialize.

On top of SDK demo, if additional items are added to user initialization, following judgement is recom-
mended:

• If it is SRAM variable, put it to the “retention_data” section by adding the keyword “attribute_data_retention”,
so as to save re-initialization time after deepsleep retention wake_up. Then it can be run at
user_init_normal function.

• If it is hardware register, it should be placed inside user_init_deepRetn function to ensure the correct
hardware status.

With above implementation, after deepsleep retention wake_up, T_userInit is execution time of
user_init_deepRetn. The SDK also tries to place these functions inside ram_code to save time. If
deepsleep retention area allows, user should place added register initialization functions inside ram_code
as well.

(3) T_userInit Optimization for Conn state slave role

TBD

(4) T_cstartup

T_cstartupis the execution time of cstartup_xxx.S, e.g. cstartup_8258_RET_16K.S in the SDK. Please refer
to the boot file in the SDK.

T_cstartup has 4 components, in time sequence：
T_cstartup = T_cs_1 + T_cs_bss + T_cs_data + T_cs_2

T_cs_1 and T_cs_2 are fixed timing which user is not allowed to modify.

The T_cs_data is initialization of “data” sector in SRAM. The “data” is already initialized global variables with
initial values stored in “data initial value” sector of flash. Therefore, T_cs_data is the time transferring “data”
from flash “data initial value” sector to SRAM “data” sector. Corresponding assembly code is:

tloadr r1, DATA_I

tloadr r2, DATA_I+4

tloadr r3, DATA_I+8

COPY_DATA:

tcmp r2, r3

tjge COPY_DATA_END

tloadr r0, [r1, #0]

tstorer r0, [r2, #0]

tadd r1, #4

AN-21112300-E2 200 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

tadd r2, #4

tj COPY_DATA

COPY_DATA_END:

Data transferring from flash is slow. As a reference, 16 bytes would take 7us. So more data are in “data”
sector, the longer T_cs_data and T_init would be, or vice versa.

User can use method explained earlier to check size of “data” sector in list file.

If “data” sector is too big and there is enough space in deepsleep retention area, user can add the keyword
“attribute_data_retention” to place some of the variables in “data” sector into “retention_data” sector, so
as to reduce T_cs_data and T_init.

T_cs_bss is time to initialize SRAM “bss” sector. Initial values of “bss” sector are all 0s. It’s only need to reset
SRAM “bss” sector to 0, and no flash transferring is needed. Corresponding assembly code is：

tmov r0, #0

tloadr r1, DAT0 + 16

tloadr r2, DAT0 + 20

ZERO:

tcmp r1, r2

tjge ZERO_END

tstorer r0, [r1, #0]

tadd r1, #4

tj ZERO

ZERO_END:

Resetting each word (4 byte) to 0 can be very fast. So when “bss” is small, T_cs_bss is very small. But if
“bss” sector is large, for example when a huge global data array is defined (int AAA[2000] = {0})，T_cs_bss
can also be very long. So it is worth paying attention to “bss” size in list file.

To optimize T_cs_bss when “bss” sector is large, if retention area allows, some of them can also be defined
as “attribute_data_retention” to place in “retention_data” sector.

(5) T_init measurement

After T_cstartup and T_userInit are optimized to minimize T_init, it’s also needed to measure T_init, and
apply to API: blc_pm_setDeepsleepRetentionEarlyWakeupTiming

T_init starts at the timing as T_cstartup, which is the “_reset” point in cstartup_8258_RET_16K.S file as
shown below:

__reset:

#if 0

@ add debug, PB4 output 1

tloadr r1, DEBUG_GPIO @0x80058a PB oen

tmov r0, #139 @0b 11101111

tstorerb r0, [r1, #0]

AN-21112300-E2 201 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

tmov r0, #16 @0b 00010000

tstorerb r0, [r1, #1] @0x800583 PB output

#endif

Combined with the Debug gpio indication in the picture “T_init timing”, the Debug GPIO PB4 output high
operation is placed in “__reset“. The user only needs to change”#if 0” to “#if 1” to enable the PB4 output
high operation.

T_cstartup finishes at “tjl main”.

tjl main

END: tj END

Since main function starts almost at the end of T_cstartup, PB4 can be set to output low at beginning of main
function as shown below. Please note that DBG_CHN0_LOW requires enabling “DEBUG_GPIO_ENABLE” in
app_config.h.

_attribute_ram_code_ int main (void) //must run in ramcode

{

DBG_CHN0_LOW; //debug

cpu_wakeup_init();

……
}

By scoping signal of PB4, T_cstartup is obtained.

Adding PB4 output high at end of T_userInit inside user_init_deepRetn will generate same timing diagram
as Debug gpio as shown above. T_init and T_cstartup can be measured by oscilloscope or logic analyzer.
Following understanding of GPIO operation, user can modify the Debug gpio code as needed, so as to get
other timing parameters as well, e.g. T_sysInit, T_userInit etc.

4.2.9 Connection Latency

4.2.9.1 Sleep timing with non-zero connection latency

The previous introduction to the sleep mode of Conn state slave role (refer to the figure “sleep timing for
Advertising state & Conn state Slave role”) is based on the premise that connection latency (conn_latency
for short) does not take effect.

In the PM software processing flow, T_wakeup = T_brx + conn_interval, the corresponding code is as fol-
lows.

if(conn_latency != 0)

{

latency_use = bls_calculateLatency();

AN-21112300-E2 202 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

T_wakeup = T_brx + (latency_use +1) * conn_interval;

}

else

{

T_wakeup = T_brx + conn_interval;

}

When the BLE slave goes through the connection parameters update process and conn_latency takes effect,
the sleep wake_up time is:

T_wakeup = T_brx + (latency_use +1) * conn_interval;

Following diagram illustrates sleep timing with non-zero conn_latency when latency_use= 2.

Figure 4.6: “Sleep Timing for Valid Conn_latency”

When conn_latency is not effective, the sleep duration is no more than 1 connection interval (generally
small). After conn_latency becomes effective, the sleep time may have a relatively large value, such as
1S, 2S, etc., and the system power consumption can become very low. It makes sense to use deepsleep
retention mode with lower power consumption during long sleep.

4.2.9.2 latency_use calculation

At effective conn_latency, T_wakeup is determined by latency_use, so it is not necessarily equal to
conn_latency.

latency_use = bls_calculateLatency();

In the calculation of latency_use, user_latency is involved. This is the value that the user can set. The API
to be called and its source code are:

void bls_pm_setManualLatency(u16 latency)

{

bltPm.user_latency = latency;

}

AN-21112300-E2 203 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Initial value of bltPm.user_latency is 0xFFFF, and at the end of blt_brx_sleep function it will be reset to
0xFFFF, which means the value set by the API bls_pm_setManualLatency is only valid for latest sleep, so it
needs to be set on every sleep event.

The calculation process of latency_use is as follows.

First calculate the system latency:

(1) If connection latency is 0，system latency is 0

(2) If connection latency is not 0：

• If system task is not done in current connection interval, MCU needs to wake up on next connection
interval to continue the task such as transfer packet not completely sent out, or handle data from
master not fully processed yet, and under this scenario, system latency is 0.

• If no task is left over, system latency = connection latency. However, if slave receives master’s update
map request or update connection parameter request, and its updated timing is before (connection
latency+1)*interval, then the actual system latency would force MCU to wake up before the updated
timing point to ensure correct BLE timing sequence.

Combining user_latency and system_latency:

latency_use = min(system latency, user_latency)

Accordingly, if user_latency set by the API bls_pm_setManualLatency is less than system latency,
user_latency would be the final latency_use; otherwise, system latency is the final latency_use.

4.2.10 API bls_pm_getSystemWakeupTick

Following API is used to obtain wakeup time out of suspend (System Timer tick), or T_wakeup:

u32 bls_pm_getSystemWakeupTick(void);

According to blt_brx_sleep function in PM software process flow, T_wakeup is calculated fairly
late, almost next to cpu_sleep_wakeup. Application layer can only get an accurate T_wakeup by
BLT_EV_FLAG_SUSPEND_ENTER event callback function.

Following keyscan example explains usage of BLT_EV_FLAG_SUSPEND_ENTER event callback function and
bls_pm_getSystemWakeupTick.

bls_app_registerEventCallback(BLT_EV_FLAG_SUSPEND_ENTER, &ble_remote_set_sleep_wakeup);

↪

void ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{

if(blc_ll_getCurrentState() == BLS_LINK_STATE_CONN && ((u32)

(bls_pm_getSystemWakeupTick() - clock_time())) >↪

80 * CLOCK_SYS_CLOCK_1MS){

bls_pm_setWakeupSource(PM_WAKEUP_PAD);

}

}

AN-21112300-E2 204 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Above callback function is meant to prevent loss of key press.

A normal key press lasts for a few hundred ms, or at least 100~200ms for a fast press. When Advertising
state and Conn state are configured by bls_pm_setSuspendMask to enter sleep mode, without conn_latency
in effect, as long as Adv interval or conn_interval is not very long, typically less than 100ms, sleep time will
not exceed Adv Interval or conn_interval, in other words, sleep time is less than 100ms or a fast key press
time, loss of key press can be prevented and there is no need to enable GPIO wakeup.

With conn_latency ON, for example, with conn_interval = 10ms, connec_latency = 99, sleep time may last
1s, obviously key loss may occur. If current state is Conn state and wakeup time of suspend to be entered
is more than 80ms from current time as determined by BLT_EV_FLAG_SUSPEND_ENTER callback function,
key loss can be prevented by using GPIO level trigger to wake up MCU for keyscan process in case timer
wakeup is too late.

4.3 Issues in GPIO Wake-up

4.3.1 Fail to enter sleep mode when wake-up level is valid

In 8x5x, GPIO wakeup is level triggered instead of edge triggered, so when GPIO PAD is configured as
wakeup source, for example, suspend wakeup triggered by GPIO high level, MCU needs to make sure when
MCU invokes cpu_wakeup_suspend to enter suspend, that the wakeup GPIO is not at high level. If the
current level is already high, the actual entry into the cpu_wakeup_sleep function will be invalid when the
suspend is triggered, and it will exit immediately, i.e. it will not enter the suspend at all.

If the above situation occurs, it may cause unexpected problems, for example, it was intended to enter
deepsleep and be woken up and the program re-executed, but it turns out that the MCU cannot enter
deepsleep, resulting in the code continuing to run, not in the state we expected, and the whole flow of the
program may be messed up.

User should pay attention to avoid this problem when using Telink’s GPIO PAD to wake up.

If the APP layer does not avoid this problem, and GPIO PAD wakeup source is already effective at invoking
of cpu_wakeup_sleep, PM driver makes some improvement to avoid flow mess:

(1) Suspend & deepsleep retention mode

For both suspend and deepsleep retention mode, the SW will fast exit cpu_wakeup_sleep with two potential
return values:

• Return WAKEUP_STATUS_PAD if the PM module has detected effective GPIO PAD state.

• Return STATUS_GPIO_ERR_NO_ENTER_PM if the PM module has not detected effective GPIO PAD
state.

(2) deepsleep mode

For deepsleep mode, PM diver will reset MCU automatically in bottom layer (equivalent to watchdog reset).
The SW restarts from “Run hardware bootloader”.

To prevent this problem, following is implemented in the SDK demo “b85m_ble remote”.

In BLT_EV_FLAG_SUSPEND_ENTER, it is configured that only when suspend time is larger than a certain
value, can GPIO PAD wakeup be enabled.

AN-21112300-E2 205 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{

if(blc_ll_getCurrentState() == BLS_LINK_STATE_CONN && ((u32)(bls_pm_getSystemWakeupTick() -

clock_time())) >↪

80 * CLOCK_SYS_CLOCK_1MS){

bls_pm_setWakeupSource(PM_WAKEUP_PAD);

}

}

When key is pressed, manually set latency to 0 or a small value (as shown in below code), so as to ensure
short sleep time, e.g. shorter than 80ms as set in above code. Therefore, the high level on drive pin due to
a pressed key will never become a high-level GPIO PAD wakeup trigger.

Figure 4.7: “Low Power Code”

There are 2 scenarios that will make MCU enter deepsleep.

• First one is if there’s no event for 60s, MCU will enter deepsleep. The events here include keys being
pressed, so there is no drive pin high at this point to make deepsleep inaccessible.

• The other scenario is if a key is stuck for more than 60s, MCU will enter deepsleep. Under the second
scenario, the SDK will invert polarity from high level trigger to low level trigger to solve the problem.

4.4 BLE System Low Power Management

Based upon understanding of PM principle of this BLE SDK, user can configure PM under different application
scenarios, referring to the demo “b85m_ble remote” low power management code as explained below.

Function blt_pm_proc is added in PM configuration of main_loop. This function must be placed at the end
of main_loop to ensure it is immediate to blt_sdk_main_loop in time, since blt_pm_proc needs to configure
low power management according to different UI entry tasks.

Summary of highlights in blt_pm_proc function：

AN-21112300-E2 206 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(1) When UI task requires turning off sleep mode, such as audio (ui_mic_enable) and IR, set
bltm.suspend_mask to SUSPEND_DISABLE.

(2) After advertising for 60s in Advertising state, MCU enters deepsleep with wakeup source set to GPIO
PAD in user initialization. The 60s timeout is determined by software timer using advertise_begin_tick
variable to capture advertising start time.

The design of 60s into deepsleep is to save power, prevent slave wasting power on advertising even when
not connected with master. User can justify 60s setting based on different applications.

(3) At Conn state slave role, under conditions of no key press, no audio or LED task for over 60s
from last task, MCU enters deepsleep with GPIO PAD as wakeup source, and at the same time set
DEEP_ANA_REG0 label in deepsleep register, so that once after wakeup slave will connect quickly
with master.

The design of 60s into deepsleep is to save power. Actually if power consumption under connected state is
tuned low enough as with deepsleep retention, it is not absolutely necessary to enter deepsleep.

To enter deepsleep at Conn state slave role, slave first issues a TERMINATE command to master by calling
bls_ll_terminateConnection, after receiving ack which triggers BLT_EV_FLAG_TERMINATEcallback function,
slave will enter deepsleep. If slave enters deepsleep without sending any request, since master is still at
connected state and would constantly try to synchoroniz with slave till connection timeout. The connection
timeout could be a very large value, e.g. 20s. If slave wakes up before 20s, slave would send advertising
packet attempting to connect with master. But since master would assume it is already in connected state,
it would not be able to connect to slave, and user experience is therefore very slow reconnection.

(4) If certain task can not be disrupt by long sleep time, user_latency can be set to 0, so latency_use is 0.

Under applications such as key_not_released, or DEVICE_LED_BUSY, call API bls_pm_setManualLatency to
set user_latency to 0. When conn_interval is 10ms, sleep time is no more than 10ms.

(5) For scenario as in item 4, with latency set to 0, slave will wakeup at every conn interval, power might
be unnecessarily too high since key scan and LED task does not repeat on every conn interval. Further
power optimization can be done as following:

When LONG_PRESS_KEY_POWER_OPTIMIZE=1, once key press is stable (key_matrix_same_as_last_cnt >
5), manually set latency. With bls_pm_setManualLatency (3), sleep time will not exceed 4 *conn_interval.
If conn_interval=10 ms, MCU will wake up every 40ms to process LED task and keyscan.

User can tweak this approach toward different conn intervals and task response time requirements.

4.5 Timer Wake-up by Application Layer

At Advertising state or Conn state Slave role, without GPIO PAD wakeup, once MCU enters sleep mode, it
only wakes up at T_wakeup pre-determined by BLE SDK. User can not wake up MCU at an earlier time which
might be needed at certain scenario. To provide more flexibility, application layer wakeup and associated
callback function are added in the SDK:

Application layer timer wakeup API:

AN-21112300-E2 207 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void bls_pm_setAppWakeupLowPower(u32 wakeup_tick, u8 enable);

“wakeup_tick” is wakeup time at System Timer tick value.

“enable”: 1-wakeup is enabled; 0-wakeup is disabled.

Registered call back function bls_pm_registerAppWakeupLowPowerCb is executed at application layer
wakeup：

typedef void (*pm_appWakeupLowPower_callback_t)(int);

void bls_pm_registerAppWakeupLowPowerCb(pm_appWakeupLowPower_callback_t cb);

Take Conn state Slave role as an example:

When the user uses bls_pm_setAppWakeupLowPower to set the app_wakeup_tick for the application layer
to wake up regularly, the SDK will check whether app_wakeup_tick is before T_wakeup before entering
sleep.

• If app_wakeup_tick is before T_wakeup, as shown in the figure below, it will trigger sleep in
app_wakeup_tick to wake up early;

• If app_wakeup_tick is after T_wakeup, MCU will still wake up at T_wakeup.

Figure 4.8: “EarlyWake_upatapp_wakup_tick”

AN-21112300-E2 208 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

5 Low Battery Detect

Battery power detect/check, which may also appear in the Telink BLE SDK and related documentation
under other names, includes: battery power detect/check, low battery detect/check low power detect/
check), battery detect/check, etc. For example, the relevant files and functions in the SDK are named
battery_check, battery_detect, battery_power_check, etc.

This document is unified under the name of “low battery detect”.

5.1 The importance of low battery detect

For battery-powered products, as the battery power will gradually drop, when the voltage is low to a certain
value, it will cause many problems.

a) The operating voltage range of 8x5x chip is 1.8V~3.6V. When the voltage is lower than 1.8V, 8x5x chip
can no longer guarantee stable operation.

b) When the battery voltage is low, due to the unstable power supply, the “write” and “erase” operations
of Flash may have the risk of error, causing the program firmware and user data to be modified abnor-
mally, and eventually causing the product to fail. Based on our previous mass production experience,
we set the low voltage threshold for this risk to 2.0V.

According to the above description, for battery-powered products, a secure voltage must be set, and the
MCU is allowed to continue working only when the voltage is higher than this secure voltage; once the
voltage falls below the secure voltage, the MCU stops running and needs to be shutdown immediately (this
is achieved by entering deepsleep mode on the SDK).

The secure voltage is also called alarm voltage, and the value of this voltage is 2.0 V by default in the SDK.

Note:

• The low voltage protection threshold 2.0V is an example and reference value. Customers should evalu-
ate and modify these thresholds according to the actual situation. If users have unreasonable designs
in the hardware circuit, which leads to a decrease in the stability of the power supply network, the
safety thresholds must be increased as appropriate.

For the product developed and implemented using Telink BLE SDK, as long as the use of battery power, low
power detection must be a real-time operation of the task for the product’s entire life cycle to ensure the
stability of the product.

The protection of low voltage detection for flash operation will be introduced further in the chapter on
flash.

5.2 The implementation of low battery detect

The low battery detect requires the use of ADC to measure the power supply voltage. Users can refer
to the 8258/8278 Datasheet and Driver SDK Developer Handbook chapter on ADC to get the necessary
understanding of the B85 ADC module first.

AN-21112300-E2 209 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The implementation of the low battery detect is described in the SDK demo “B85m_ble_sample”, refer to
the files battery_check.h and battery_check.c.

Make sure the macro “BATT_CHECK_ENABLE” is enabled in app_config.h. This macro is disabled by default,
and users need to pay attention to it when using the low battery detect function.

#define BATT_CHECK_ENABLE 1

5.2.1 Notes on low battery detect

Low battery detect is a basic ADC sampling task, and there are a number of issues that need attention when
implementing an ADC to sample the supply voltage, as described below.

5.2.1.1 GPIO input channel recommended

The 8x5x ADC input channels support ADC sampling of the supply voltage on the “VCC/VBAT” input channel,
which corresponds to the last “VBAT” in the variable ADC_InputPchTypeDef below. However, for some
special reasons, the 8x5x “VBAT” channel cannot be used. Telink stipulates that the “VBAT” input channel is
not allowed, and the GPIO input channel must be used.

The available GPIO input channels are the input channels corresponding to PB0~PB7, PC4, and PC5.

/*ADC analog positive input channel selection enum*/

typedef enum {

……
B0P,

B1P,

B2P,

B3P,

B4P,

B5P,

B6P,

B7P,

C4P,

C5P,

……
VBAT,

}ADC_InputPchTypeDef;

ADC sampling of the supply voltage using the GPIO input channel can be implemented in two ways:

a) Power supply connected to the GPIO input channel

In the hardware circuit design, the power supply is directly connected to the GPIO input channel, and the
ADC is initialized by setting the GPIO to high resistance (ie, oe, output all set to 0), at which time the voltage
on the GPIO is equal to the power supply voltage, and ADC sampling can be performed directly.

b) Power supply does not touch the GPIO input channel

AN-21112300-E2 210 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

There is no need for power supply and GPIO input channel connection on the hardware circuit. It needs to
be measured with the output high level of GPIO. The 8x5x internal circuit structure is designed to ensure
that the voltage value of GPIO output high level and power supply voltage value are always equal. The high
level of the GPIO output can be used as the power supply voltage, and ADC sampling is performed through
the GPIO input channel.

The current GPIO input channel selected by “b85m_ble_remote” is PB7, which adopts the second “power
supply does not touch the GPIO input channel” method.

Choose PB7 as GPIO input channel, PB7 as ordinary GPIO function, initialize all states (ie, oe, output) using
the default state, no special modification.

#define GPIO_VBAT_DETECT GPIO_PB7

#define PB7_FUNC AS_GPIO

#define PB7_INPUT_ENABLE 0

#define ADC_INPUT_PCHN B7P

When ADC sampling is required, PB7 outputs high level:

gpio_set_output_en(GPIO_VBAT_DETECT, 1);

gpio_write(GPIO_VBAT_DETECT, 1);

The output state of PB7 can be turned off after the ADC sampling is finished. Since the PB7 pin on the
“b85m_ble_remote” hardware circuit is floting (not connected to other circuits), the high output level does
not cause any leakage, so the output state of PB7 is not turned off on the SDK.

5.2.1.2 Differential mode only

Although the 8x5x ADC input mode supports both Single Ended Mode and Differential Mode, for some specific
reasons, Telink specifies that only Differential Mode can be used, and Single Ended Mode is not allowed.

The differential mode input channel is divided into positive input channel and negative input channel, the
measured voltage is the voltage difference obtained by subtracting the negative input channel voltage from
the positive input channel voltage.

If the ADC sample has only one input channel, when using differential mode, set the current input channel
as the positive input channel and GND as the negative input channel, so that the voltage difference between
the two is equal to the positive input channel voltage.

The differential mode is used in SDK low battery detect, the interface function is as follows. The “#if 1” and
“#else” branches are the exact same function settings, the “#if 1” is just to make the code run faster to save
time. It can be understood by looking at “#else”, the adc_set_ain_channel_differential_mode API selects
PB7 as the positive input channel and GND as the negative input channel.

#if 1 //optimize, for saving time

//set misc channel use differential_mode,

//set misc channel resolution 14 bit, misc channel differential mode

analog_write (anareg_adc_res_m, RES14 | FLD_ADC_EN_DIFF_CHN_M);

AN-21112300-E2 211 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

adc_set_ain_chn_misc(ADC_INPUT_PCHN, GND);

#else

////set misc channel use differential_mode,

adc_set_ain_channel_differential_mode(ADC_MISC_CHN, ADC_INPUT_PCHN, GND);

//set misc channel resolution 14 bit

adc_set_resolution(ADC_MISC_CHN, RES14);

#endif

5.2.1.3 Must use Dfifo mode to obtain ADC sampling value

For 8x5x, Telink stipulates that only Dfifo mode can be used to read ADC sampling values. Refer to the
following function.

unsigned int adc_sample_and_get_result(void);

5.2.1.4 Need to switch different ADC tasks

Refer to the “8258 Datasheet” that the ADC state machine includes several channels such as Left, Right,
and Misc. Due to some special reasons, these state channels cannot work at the same time. Telink stipulates
that the channels in the ADC state machine must operate independently.

The Misc channel is used for low battery detect as the most basic ADC sampling. Users need to use the Misc
channel if they need other ADC tasks besides low battery detect. Amic Audio uses Left channel. The low
battery detect cannot run simultaneously with other ADC tasks and must be implemented by switching.

5.2.2 Stand-alone use of low battery detect

Users define the macro “BLE_AUDIO_ENABLE” in the “b85m_ble_remote” app_config.h file to 0 (turn off
all functions of Audio) to get a demo of the ADC being used only by low voltage detection. Or refer to the
“b85m_module” demo for low voltage detection.

5.2.2.1 Low battery detect initialization

Refer to the implementation of the adc_vbat_detect_init function.

The order of ADC initialization must satisfy the following procedure: first power off sar adc, then configure
other parameters, and finally power on sar adc. All initialization of ADC sampling must follow this flow.

void adc_vbat_detect_init(void)

{

/******power off sar adc********/

adc_power_on_sar_adc(0);

//add ADC configuration

AN-21112300-E2 212 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

/******power on sar adc********/

//note: this setting must be set after all other settings

adc_power_on_sar_adc(1);

}

For the configuration before sar adc power on and power off, the user try not to modify, and use the default
settings. If users choose a different GPIO input channel, directly modify the ADC_INPUT_PCHN related
macro definition described earlier. If user adopts the hardware circuit design “power supply connected to
GPIO input channel”, the operation of “GPIO_VBAT_DETECT” output high level needs to be removed

The adc_vbat_detect_init initialization function is called in app_battery_power_check with the following
code:

if(!adc_hw_initialized){

adc_hw_initialized = 1;

adc_vbat_detect_init();

}

Here a variable adc_hw_initialized is used, which is called once only when it is 0 and set to 1; it is not
initialized again when it is 1. The adc_hw_initialized is also manipulated in the following API.

void battery_set_detect_enable (int en)

{

lowBattDet_enable = en;

if(!en){

adc_hw_initialized = 0; //need initialized again

}

}

The functions that can be implemented by a design using adc_hw_initialized are:

a) Switching with other ADC task

The effect of sleep mode (suspend/deepsleep retention) is not considered first, and only the switching
between low battery detect and other ADC tasks is analyzed.

Because of the need to consider the switch between low battery detect and other ADC tasks,
adc_vbat_detect_init may be executed several times, so it cannot be written to user initialization
and must be implemented in main_loop.

The first time the app_battery_power_check function is executed, adc_vbat_detect_init is executed and will
not be executed repeatedly.

Once the “ADC other task” needs to be executed, it will take away the ADC usage and make sure
that the “ADC other task” must call battery_set_detect_enable(0) when it is initialized, which will clear
adc_hw_initialized to 0.

AN-21112300-E2 213 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

When the “ADC other task” is finished, the right to use the ADC is handed over. The app_battery_power_check
is executed again, and since the value of adc_hw_initialized is 0, adc_vbat_detect_init must be executed
again. This ensures that the low battery detect is reinitialized each time it is switched back.

b) Adaptive handling of suspend and deepsleep retention

Take sleep mode into account.

The adc_hw_initialized variable must be defined as a variable on the “data” or “bss” segment, not on the
retention_data. Defining it on the “data” segment or “bss” ensures that this variable is used after each
deepsleep retention wake_up when the software bootloader is executed (i.e., cstartup_xxx. S) will be re-
initialized to 0; after sleep wake_up, this variable can be left unchanged.

The common feature of the register configured inside the adc_vbat_detect_init function is that it does not
power down in suspend mode and can maintain the state; it will power down in deepsleep retention mode.

If the MCU enters into suspend mode, when it wakes up and executes app_battery_power_check again,
the value of adc_hw_initialized is the same as before suspend, so there is no need to re-execute the
adc_vbat_detect_init function.

If the MCU enters deepsleep retention mode and wakes up with adc_hw_initialized to 0, adc_vbat_detect_init
must be re-executed and the ADC-related register state needs to be reconfigured.

The state of register set in the adc_vbat_detect_init function can be kept from powering down during the
suspend.

Refer to the “Low Power Management” section that the Dfifo related registers will be powered down in
suspend mode, so the following two codes are not put in the adc_vbat_detect_init function, but in the app_
battery_power_check function, to ensure that it is reset before each low power detection.

adc_config_misc_channel_buf((u16 *)adc_dat_buf,ADC_SAMPLE_NUM<<2);

dfifo_enable_dfifo2();

The keyword “attribute_ram_code” is added to the adc_vbat_detect_init function in the SDK to set it to
ram_code, with the ultimate goal of optimizing power consumption for long sleep connection states. For
example, for a typical long sleep connection of 10ms * (99+1) = 1s, waking up every 1s and using deepsleep
retention mode during long sleep, adc_vbat_detect_init must be executed again after each wake-up, and
the execution speed will become faster after adding to ram_code.

This “_attribute_ram_code_” is not required. In the product application, the user can decide whether to put
this function into ram_code based on the usage of the deepsleep retention area and the results of the power
test.

5.2.2.2 Low battery detect processing

In main_loop, the app_battery_power_check function is called to implement the processing of low battery
detect, and the related code is as follows.

_attribute_data_retention_ u8 lowBattDet_enable = 1;

u8 adc_hw_initialized = 0;

void battery_set_detect_enable (int en)

AN-21112300-E2 214 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

{

lowBattDet_enable = en;

if(!en){

adc_hw_initialized = 0; //need initialized again

}

}

int battery_get_detect_enable (void)

{

return lowBattDet_enable;

}

if(battery_get_detect_enable() && clock_time_exceed(lowBattDet_tick, 500000)){

lowBattDet_tick = clock_time();

app_battery_power_check(bat_deep_thres,bat_suspend_thres);

}

The default value of lowBattDet_enable is 1. Low battery detect is allowed by default, and the MCU can
start low battery detect immediately after powering up. This variable needs to be set to retention_data to
ensure that deepsleep retention cannot modify its state.

The value of lowBattDet_enable can only be changed when other ADC tasks need to seize ADC usage: when
other ADC tasks start, battery_set_detect_enable(0) is called, at this time app_battery_power_check is not
called again in main_loop; After the other ADC tasks are finished, call battery_set_detect_enable(1) to sur-
render the right to use ADC, then the app_battery_power_check function can be called again in main_loop.

The frequency of low battery detect is controlled by the variable lowBattDet_tick, which is executed every
500ms in the demo. Users can modify this time according to their needs.

The specific implementation of the app_battery_power_check function seems to be cumbersome, involving
the initialization of low-power detection, Dfifo preparation, data acquisition, data processing, low-power
alarm processing, etc.

The ADC sampling data is acquired using Dfifo mode. Dfifo samples 8 strokes of data by default and calcu-
lates the average value after removing the maximum and minimum values.

The adc_vbat_detect_init function shows that the period of each adc sample is 10.4us, so the data acquisi-
tion process is about 83us.

The macro “ADC_SAMPLE_NUM” in the demo can be modified to 4, which shortens the ADC sampling time
to 41 us. it is recommended to use the method of 8 data strokes for more accurate calculation results.

#define ADC_SAMPLE_NUM 8

#if (ADC_SAMPLE_NUM == 4) //use middle 2 data (index: 1,2)

u32 adc_average = (adc_sample[1] + adc_sample[2])/2; #elif(ADC_SAMPLE_NUM == 8) //use

middle 4 data (index: 2,3,4,5)↪

u32 adc_average = (adc_sample[2] + adc_sample[3] + adc_sample[4] +

adc_sample[5])/4;

#endif

AN-21112300-E2 215 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The app_battery_power_check function is put on ram_code, refer to the above description of
“adc_vbat_detect_init” ram_code, also to save running time and optimize power consumption.

The “_attribute_ram_code_” is not necessary. In the product application, the user can decide whether to
put this function into ram_code based on the usage of the deepsleep retention area and the results of the
power test.

_attribute_ram_code_ void app_battery_power_check(u16 alram_vol_mv);

5.2.2.3 Low voltage alarm

The parameter alram_vol_mv of app_battery_power_check is to specify the alarm voltage in mV for low
battery detect. According to the previous content, the default setting in SDK is 2000 mV. In the low volt-
age detection of main_loop, when the power supply voltage is lower than 2000 mV, it enters low voltage
range.

The demo code for handling low voltage alarm is shown below. The MCU must be shutdown after low
voltage, and no other work can be done.

The “B85m_ble_remote” uses the way of entering deepsleep to shut down the MCU, and a button is set to
wake up the remote control.

In addition to shutdown, user can modify other alarm behaviors for low voltage alarm processing.

In the code below, 3 quick flashes are made using LED lights to inform the product user that the battery
needs to be charged or replaced.

if(batt_vol_mv < alram_vol_mv){

#if (1 && BLT_APP_LED_ENABLE) //led indicate

gpio_set_output_en(GPIO_LED, 1); //output enable

for(int k=0;k<3;k++){

gpio_write(GPIO_LED, LED_ON_LEVAL);

sleep_us(200000);

gpio_write(GPIO_LED, !LED_ON_LEVAL);

sleep_us(200000);

}

#endif

analog_write(DEEP_ANA_REG2, LOW_BATT_FLG); //mark

cpu_sleep_wakeup(DEEPSLEEP_MODE, PM_WAKEUP_PAD, 0);

}

After “B85m_ble_remote” is shutdown, they enter the deepsleep mode where they can be woken up. If a
key wake-up occurs, the SDK will do a quick low battery detect during user initialization instead of waiting
until the main_loop. The reason for this process is to avoid application errors, as illustrated by the following
example.

If the product user has been alerted by the flashing LED during the low power alarm and then wakes up
again by entering deepsleep, it takes at least 500ms to do the low battery detect from the processing of

AN-21112300-E2 216 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

main_loop. Before 500ms, the slave’s broadcast packet has been sent for a long time, and it is likely to
be connected to the master already. In this case, there is a bug that the device already having low power
alarm continues to work again.

For this reason, the SDK must do the low battery detect in advance during user initialization, and must
prevent the above situation from happening at this step. So add low battery detect during user initialization,
and the function interface in the SDK is:

if(analog_read(DEEP_ANA_REG2) == LOW_BATT_FLG){

app_battery_power_check(VBAT_ALRAM_THRES_MV + 200); //2.2 V

}

According to the value of DEEP_ANA_REG2 analog register can determine whether the low power alarm
shutdown is woken up, at this time, a fast low power detection is performed and the previous 2000mV
alarm voltage is increased to 2200mV (called recovery voltage). The reason for the 200mV increase is:

Low voltage detection will have some errors, can not guarantee the accuracy and consistency of the mea-
surement results. For example, if the error is 20mV, the voltage detected for the first time may be 1990mV
to enter shutdown mode, and then the voltage value detected again after waking up in user initialization is
2005mV. If the alarm voltage is still 2000mV, it still can’t stop the bug described above.

Therefore, it is necessary to adjust the alarm voltage slightly higher than the maximum error of low power
detection during the fast low power detection after the shutdown mode wakeup.

Only when a certain low power detection found that the voltage is lower than 2000mV into shutdown mode,
the recovery voltage 2200mV will appear, so user does not have to worry about this 2200mV will misreport
low voltage to the actual voltage 2V~2.2V products. Product users see the low voltage alarm indication,
after charging or replacing the battery to meet the requirements of recovery voltage, the product back to
normal use.

5.2.2.4 Low power detect debug mode

The “8258_ble_remote” demo code leaves two debug-related macros available to user for debugging.

#define DBG_ADC_ON_RF_PKT 0

#define DBG_ADC_SAMPLE_DAT 0

It is only possible to open the above two “macros” when debugging.

After “DBG_ADC_ON_RF_PKT” is turned on, the ADC sampling result information will be displayed on the
data packet of the broadcast packet and the key value of the connection state. Note: At this time, the
broadcast packet and key data are modified, so they can only be used for debugging。
When “DBG_ADC_SAMPLE_DAT” is turned on, the intermediate results of ADC sampling can be stored on
Sram.

5.2.3 Low battery detect and Amic Audio

Referring to the detailed introduction in Low Battery Detect Stand-alone Use mode, for products that need
to implement Amic Audio, just switch between Low Battery Detect and Amic Audio.

AN-21112300-E2 217 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

According to the low battery detection stand-alone use mode, after the program starts running, the default
low battery detection is enabled first. When Amic Audio is triggered, do the following two things.

(1) Disable low battery detection

Call battery_set_detect_enable(0) to inform the low battery detect module that the ADC resources have
been seized.

(2) Amic Audio ADC initialization

Since the ADC is used in a different way than the low battery detection, the ADC needs to be initialized
again. For details, refer to the “Audio” section of this document.

At the end of Amic Audio, battery_set_detect_enable(1) is called to inform the low battery detect module
that the ADC resources have been released. At this point the low battery detection needs to reinitialize the
ADC module and then start the low battery detection.

If it is low battery detection and other non-Amic Audio ADC tasks at the same time, the processing of other
ADC tasks can imitate the processing flow of Amic Audio.

If there are three kinds of tasks at the same time: low battery detection, Amic Audio and other ADC tasks,
user can refer to the method of switching between low battery detection and Amic Audio to implement
them according to the principle of “switching if ADC circuit needs”.

AN-21112300-E2 218 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

6 Audio

The source of Audio can be AMIC or DMIC.

• DMIC is a chip that directly uses peripheral audio processing to read digital signals onto 827x or 825x;

• AMIC needs to use the codec module inside the chip to sample and post-process the original Audio
signal, and finally convert it into a digital signal and transmit it to the MCU.

6.1 Initialization

6.1.1 AMIC and Low Power Detect

Refer to the introduction of “low-power detection” in this document, when Amic Audio and low-power
detection use the ADC module, ADC must be switched.

Similarly, if the two tasks of Amic Audio and other ADC task, ADC need to be switched. If the three tasks of
Amic Audio, low-power detect and other ADC task, ADC need to be switched.

825x/827x Amic needs to be set when the Audio task is on so that low power detection and Amic to ADC
module switching can be used.

6.1.2 AMIC Initialization

Refer to the SDK demo “b85m_8258_ble_remote” speech processing related code.

void ui_enable_mic (int en)

{

ui_mic_enable = en;

gpio_set_output_en (GPIO_AMIC_BIAS, en); //AMIC Bias output

gpio_write (GPIO_AMIC_BIAS, en);

if(en){ //audio on

audio_config_mic_buf (buffer_mic, TL_MIC_BUFFER_SIZE);

audio_amic_init(AUDIO_16K);

}

else{ //audio off

adc_power_on_sar_adc(0); //power off sar adc

}

#if (BATT_CHECK_ENABLE)

battery_set_detect_enable(!en);

#endif

}

AN-21112300-E2 219 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

In the function “ui_enable_mic”, the parameter “en” serves to enable (1) or disable (0) Audio task.

At the beginning of Audio, GPIO_AMIC_BIAS needs to output a high level to drive Amic; after Audio ends,
GPIO_AMIC_BIAS needs to be turned off to prevent this pin from leaking in sleep mode.

Following shows AMIC initialization setting:

audio_config_mic_buf (buffer_mic, TL_MIC_BUFFER_SIZE);

audio_amic_init(AUDIO_16K);

In the working process of Audio, the data is continuously copied to SRAM through designated Dfifo. au-
dio_config_mic_buf is used to configure the starting address and length of the Dfifo on the Sram.

The configuration of Dfifo is handled in the ui_enable_mic function, which is equivalent to doing it again
every time Audio starts. The reason is that the Dfifo control register will be lost during suspend.

After the Audio task is over, the SAR ADC must be closed to prevent leakage during suspend:

adc_power_on_sar_adc(0);

Since Amic and low power detect need to switch between using the ADC module, add battery_set_detect_enable(!
en) to the ui_enable_mic function to turn off and on the low power detect. Please refer to the introduction
in the low power detect section of this document.

The execution of the Audio task is placed in the UI entry part of the main_loop.

#if (BLE_AUDIO_ENABLE)

if(ui_mic_enable){ //audio

task_audio();

}

#endif

6.1.3 DMIC Initialization

TBD

6.2 Audio Data Processing

6.2.1 Audio Data Volume and RF Transfer

The raw data sampled by AMIC adopt pcm format. The demo currently provides three compression algo-
rithms, sbc, msbc and adpcm, with adpcm using the pcm-to-adpcm algorithm to compress the raw data into
adpcm format with compression ratio of 25%, thus BLE RF data volume will be decreased largely. Master
will decompress the received adpcm-format data back to pcm format.

AMIC sampling rate is 16K x 16bits, corresponding to 16K samples of raw data per second, i.e. 16 samples
per millisecond (16*16bits=32bytes per ms).

AN-21112300-E2 220 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

For every 15.5ms, 496-byte (15.5*16=248 samples) raw data are generated. Via pcm-to-adpcm convertion
with compression ratio of 1/4, the 496-byte data are compressed into 124 bytes.

The 128-byte data, including 4-byte header and 124-byte compression result, will be disassembled into five
packets, and sent to Master in L2CAP layer; since the maximum length of each packet is 27 bytes, the first
packet must contain 7-byte l2cap information, including: 2-byte l2caplen, 2-byte chanid, 1-byte opcode
and 2-byte AttHandle.

Figure below shows the RF data captured by sniffer. The first packet contains 7-byte extra information and
20-byte audio data, followed by four packets with 27-byte audio data each. As a result, total audio data
length is 20 + 27*4 = 128 bytes.

Figure 6.1: “Audio Data Sample”

According to “Exchange MTU size” in ATT & GATT (section 3.3.3 ATT & GATT), since 128-byte long audio
data packet are disassembled on Slave side, if peer device needs to re-assemble these received packets,
we should determine maximum ClientRxMTU of peer device. Only when “ClientRxMTU” is 128 or above, can
the 128-byte long packet of Slave be correctly processed by peer device.

So when the audio task is on and needs to send 128 byte long packets, blc_att_requestMtuSizeExchange
will be called for Exchange MTU size.

void voice_press_proc(void)

{

key_voice_press = 0;

ui_enable_mic (1);

AN-21112300-E2 221 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

if(ui_mtu_size_exchange_req && blc_ll_getCurrentState() == BLS_LINK_STATE_CONN){

ui_mtu_size_exchange_req = 0;

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 0x009e);

}

}

The recommended practice is:

(1) Turn on the MUT registration switch through blc_gap_setEventMask (GAP_EVT_MASK_ATT_EXCHANGE_MTU);

(2) Then register the GAP callback function through blc_gap_registerHostEventHandler (gap_event_handler_t
handler);

(3) Add if(event==GAP_EVT_ATT_EXCHANGE_MTU) judgment statement in the callback function to im-
plement the MTU size Exchange callback, and in the callback to determine whether the ClientRxMTU
of the peer device is greater than or equal to 128. Since the master device’s ClientRxMTU is generally
larger than 128, the SDK does not determine the actual ClientRxMTU through the callback.

Following is the audio service in Attribute Table:

Figure 6.2: “MIC Service in Attribute Table”

The second Attribute above is used to transfer audio data. This Attribute uses “Handle Value Notification” to
send Data to Master. After Master receives Handle Value Notification, the Attribute Value data corresponding
to the five successive packets will be assembled into 128 bytes, and then decompressed back to the pcm-
format audio data.

6.2.2 Audio Data Compression

Related macros are defined in the “application/audio/audio_config.h”, as shown below:

#if (TL_AUDIO_MODE == TL_AUDIO_RCU_ADPCM_GATT_TLEINK)

#define ADPCM_PACKET_LEN 128

#define TL_MIC_ADPCM_UNIT_SIZE 248

#define TL_MIC_BUFFER_SIZE 992

#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_ADPCM_GATT_GOOGLE)

#define ADPCM_PACKET_LEN 136 //(128+6+2)

#define TL_MIC_ADPCM_UNIT_SIZE 256

#define TL_MIC_BUFFER_SIZE 1024

#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB)

#define ADPCM_PACKET_LEN 120

#define TL_MIC_ADPCM_UNIT_SIZE 240

#define TL_MIC_BUFFER_SIZE 960

AN-21112300-E2 222 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_ADPCM_HID)

#define ADPCM_PACKET_LEN 120

#define TL_MIC_ADPCM_UNIT_SIZE 240

#define TL_MIC_BUFFER_SIZE 960

#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB)

#define ADPCM_PACKET_LEN 20

#define MIC_SHORT_DEC_SIZE 80

#define TL_MIC_BUFFER_SIZE 320

#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_SBC_HID)

#define ADPCM_PACKET_LEN 20

#define MIC_SHORT_DEC_SIZE 80

#define TL_MIC_BUFFER_SIZE 320

#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_MSBC_HID)

#define ADPCM_PACKET_LEN 57

#define MIC_SHORT_DEC_SIZE 120

#define TL_MIC_BUFFER_SIZE 480

Each compression needs to process 248-sample, i.e. 496-byte data. Since AMIC continuously samples audio
data and transfers the processed pcm-format data into buffer_mic, considering data buffering and preser-
vation, this buffer should be pre-configured so that it can store 496 samples for two compressions. If 16K
sampling rate is used, then 496 samples correspond to 992 bytes, i.e. “TL_MIC_BUFFER_SIZE” should be
configured as 992.

The “buffer_mic” is defined as below:

s16 buffer_mic[TL_MIC_BUFFER_SIZE>>1]; //496 sample,992 bytes

config_mic_buffer ((u32)buffer_mic, TL_MIC_BUFFER_SIZE);

Following shows the mechanism of data filling into buffer_mic via HW control.

Data sampled by AMIC are transferred into memory starting from buffer_mic address with 16K speed; once
the maximum length 992 is reached, data transfer returns to the buffer_mic address, the old data will be re-
placed directly without checking whether it’s read. It’s needed to maintain a write pointer when transferring
data into RAM; the pointer is used to indicate the address in RAM for current newest audio data.

The “buffer_mic_enc” is defined to store the 128-byte compression result data; the buffer number is con-
figured as 4 to indicate result of up to four compressions can be buffered.

int buffer_mic_enc[BUFFER_PACKET_SIZE];

Since “BUFFER_PACKET_SIZE” is 128, and “int” occupies four bytes, it’s equivalent to 128*4 signed char.

AN-21112300-E2 223 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.3: “Data Compression Processing”

The figure above shows data compression processing method:

The buffer_mic automatically maintains a write pointer by hardware, and maintains a read pointer by soft-
ware.

Whenever SW detects there are 248 samples between the two pointers, the compression handler is invoked
to read 248-sample data starting from the read pointer and compress them into 128 bytes; the read pointer
moves to a new location to indicate following data are new and not read. The buffer_mic is continuously
checked whether there are enough 248-sample data; if so, the data are compressed and transferred into
the buffer_mic_enc.

Since 248-sample data are generated for every 15.5ms, the firmware must check the buffer_mic with max-
imum frequency of 1/15.5ms. The FW only executes the task_audio once during each main_loop, so the
main_loop duration must be less than 15.5ms to avoid audio data loss. In Conn state, the main_loop dura-
tion equals connection interval; so for applications with audio task, connection interval must be less than
15.5ms. It’s recommended to configure connection interval as 10ms.

The buffer_mic_enc maintains a write pointer and a read pointer by software: after the 248-sample data
are compressed into 128 bytes, the compression result are copied into the buffer address starting from the
write pointer, and the buffer_mic_enc is checked whether there’s overflow; if so, the oldest 128-byte data
are discarded and the read pointer switches to the next 128 bytes.

The compression result data are copied into BLE RF Tx buffer as below:

The buffer_mic_enc is checked if it’s non-empty (when writer pointer equals read pointer, it indicates
“empty”, otherwise it indicates “non-empty); if the buffer is non-empty, the 128-byte data starting from
the read pointer are copied into the BLE RF Tx buffer, then the read pointer moves to the new location.

The function “proc_mic_encoder” is used to process Audio data compression.

6.3 Compression and Decompression Algorithm

The B85m single connection SDK provides sbc, msbc and adpcm compression and decompression algo-
rithms, the following mainly takes adpcm to explain the entire compression and decompression algorithm.

AN-21112300-E2 224 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

About sbc and msbc, the user can refer to the project implementation to understand.

The function below is used to invoke the adpcm compression algorithm:

void mic_to_adpcm_split (signed short *ps, int len, signed short *pds, int start);

• “ps” points to the starting storage address for data before compression, which corresponds to the read
pointer location of the buffer_mic as shown in figure above;

• “len” is configured as “TL_MIC_ADPCM_UNIT_SIZE (248)”, which indicates 248 samples;

• “pds” points to the starting storage address for compression result data, which corresponds to the
write pointer location of the buffer_mic_enc as shown in figure above.

Figure 6.4: “Data Corresponding to Compression Algorithm”

After compression, the data space stores 2-byte predict, 1-byte predict_idx, 1-byte length of current valid
adpcm-format audio data (i.e. 124), and 124-byte data compressed from the 496-byte raw data with com-
pression ratio of 1/4.

The function below is used to invoke the decompression algorithm:

void adpcm_to_pcm (signed short *ps, signed short *pd, int len);

• “ps” points to the starting storage address for data to be decompressed (i.e. 128-byte adpcm-format
data). This address needs user to define a buffer to store 128-byte data copied from BLE RF.

• “pd” points to the starting storage address for 496-byte pcm-format audio data after decompression.
This address needs user to define a buffer to store data to be transferred when playing audio.

• “len” is 248, same as the “len” during compression.

AN-21112300-E2 225 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

As shown in figure above, during decompression, the data read from the buffer are two-byte predict, 1-
byte predict_idx, 1-byte valid audio data length “124”, and the 124-byte adpcm-format data which will be
decompressed into 496-byte pcm-format audio data.

6.4 Audio data processing flow

The project in B85m SDK’s “b85m_ble_remote” and “b85m_master_kma_dongle” contains a num-
ber of mode options, the user can select by changing the macro in app_config.h, the default is
TL_AUDIO_RCU_ADPCM_GATT_TLEINK, that is, Telink custom Audio processing, its related settings
are as follows.

/* Audio MODE:

* TL_AUDIO_RCU_ADPCM_GATT_TLEINK

* TL_AUDIO_RCU_ADPCM_GATT_GOOGLE

* TL_AUDIO_RCU_ADPCM_HID

* TL_AUDIO_RCU_SBC_HID

* TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB

* TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB

* TL_AUDIO_RCU_MSBC_HID

*/

#define TL_AUDIO_MODE TL_AUDIO_RCU_ADPCM_GATT_TLEINK

Since several of these modes have similar processes and the default Telink customization is just a single
compression of voice data for transmission, the whole process is relatively simple.

The TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB and TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB
are two modes with similar implementation functions but different encoding. So this chapter mainly
describes on TL_AUDIO_RCU_ADPCM_GATT_GOOGLE, TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB
and TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB. To implement audio function in the provided sdk, for
slave program user can refer to the b85m_ble_remote project, for master program user can refer to the
b85m_master_kma_dongle project.

Note:

• If in setting different modes, compile prompt error that XX function or variable lack of definition, this is
due to the voice related lib library is not added, Users in the use of TL_AUDIO_RCU_ADPCM_GATT_GOOGLE,
TL_AUDIO_RCU_MSBC_HID, TL_AUDIO_RCU_SBC_HID, respectively, need to add the corresponding
library file, The code identified by encode is the encoding library on the slave side (b85m_ble_remote
project), and the decoding library identified by decode is the decoding library on the master side
(b85m_master_kma_dongle). The library file directory in the project is as shown in the figure below:

AN-21112300-E2 226 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.5: “Corresponding library files”

For example, if using SBC mode, the setting method is shown as below.

AN-21112300-E2 227 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.6: “SBC mode setting method”

6.4.1 TL_AUDIO_RCU_ADPCM_GATT_GOOGLE

Audio demo refers Google Voice V0.4 Spec for implementation, the user can use this demo and google TV
box for voice-related product development. Google’s Service UUID is also set in accordance with the Spec
provisions, as follows.

AN-21112300-E2 228 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.7: “Google Service UUID setting”

6.4.1.1 Initialization

Figure 6.8: “Google Voice initialization flow”

Initialization is mainly the slave end to obtain the configuration information of the master end, the entire
packet interaction information is as follows.

Figure 6.9: “Packet Interaction Information”

AN-21112300-E2 229 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

6.4.1.2 Voice data transmission

Figure 6.10: “Audio Data Transmission”

After the initialization is completed, the Slave end will send Search_KEY to the Master end, and the packet
is as follows.

Figure 6.11: “Search_KEY packet”

Then the Slave end will send Search to the Master end with the following packet.

Figure 6.12: “Search packet”

Then the Master end will send MIC_Open to the Slave end, and the packet is as follows.

AN-21112300-E2 230 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.13: “MIC_Open packet”

Then the Slave end sends Start to the Master end with the following packet.

Figure 6.14: “Start packet”

According to Google Voice’s Spec, the voice data transmission implemented in the program is 134 bytes per
frame, and the entire packet is displayed as follows.

Figure 6.15: “134-byte Audio frame”

Note:

• On the Dongle side, we do not send a close command to end the voice transmission, but use a timeout
judgment to end the voice. For details, please refer to the code of Dongle implementation on Master
end.

6.4.1.3 TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB

This mode uses Service for the HID service specified in the Bluetooth Spec, through which the service
can achieve communication with the Dongle connected devices, provided that the Dongle and the master
computer device support the HID service method of interaction.

AN-21112300-E2 231 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.16: “Audio data interaction in ADPCM_HID_DONGLE_TO_STB mode”

At the beginning, the Slave sends start_request to the Master with the following packet.

Figure 6.17: “Start_request packet”

After the Master receives the start_request, it sends the Ack,packet as follows.

Figure 6.18: “Ack packet”

Slave starts to send Audio voice data, the decompression and compression of voice data are operated in
480Bytes size, the voice data is first compressed to 120 bytes by ADPCM compression algorithm, then split
into 6 groups of packets and sent to Master end in turn, each group packet size is 20 bytes. In order to
ensure the sequence of voice packets, use every three groups of packets are changed in turn for a fixed
handle value. The receiver side starts to decompress and restore the voice signal after completing 6 groups
of packets. The packets are as follows.

AN-21112300-E2 232 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.19: “Audio voice data”

At the end of the voice transmission, the Slave sends an End Request to the Master with the following
packet.

Figure 6.20: “End request packet”

The Master sends an Ack after receiving the End Request with the following packet.

Figure 6.21: “Ack packet”

6.4.2 TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB

This mode and TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB, the same use of Service for the HID service
specified in the Bluetooth Spec, through the service can achieve the communication among the Dongle
connected, the premise is that the Dongle and the master computer device support the HID service interac-
tion.

AN-21112300-E2 233 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 6.22: “Audio data interaction in SBC_HID_DONGLE_TO_STB mode”

At the beginning, the Slave sends start_request to the Master with the following packet.

Figure 6.23: “Start_request packet”

After the Master receives the start_request, it sends the Ack,packet as follows.

Figure 6.24: “Ack packet”

Slave starts to send Audio voice data, voice data decompression and compression are operated in 160 bytes
size, voice data is first compressed to 20 bytes by SBC compression algorithm, and then sent to Master end,
each group of packet size is 20 bytes. In order to ensure the sequence of voice packets, use every three
groups of packets for fixed handle value. The receiver end starts to decompress and restore the voice signal
after each group of packets is completed. The packets are as follows.

Figure 6.25: “Audio voice data of sbc decode”

AN-21112300-E2 234 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

At the end of the voice transmission, the Slave sends an End Request to the Master with the following
packet.

Figure 6.26: “End request packet”

The Master sends an Ack after receiving the End Request with the following packet.

Figure 6.27: “Ack packet”

AN-21112300-E2 235 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

7 OTA

In order to realize the OTA function of the 8x5x BLE slave, a device is required as a BLE OTA master.

The OTA master can be a Bluetooth device actually used with the slave (you need to implement OTA in
the APP), or you can use Telink’s BLE master kma dongle. The following uses Telink’s BLE master kma
dongle as the ota master to introduce OTA in detail. The related code implementation can also be found in
feature_ota_big_pdu under the Multi-Connection SDK.

8x5x supports Flash multi-address boot: In addition to the first address of Flash 0x00000, it also supports
reading firmware from Flash high addresses 0x20000 (128K), 0x40000 (256K), 0x80000 (512K). This doc-
ument uses high address 0x20000 as an example to introduce OTA.

7.1 Flash Architecture and OTA Procedure

7.1.1 FLASH Storage Architecture

When booting address is 0x20000, size of firmware compiled by the SDK should not exceed 128kB, i.e. the
flash area 0~0x20000 serves to store firmware. If you’re using boot address as 0x0 and 0x20000, the
firmware size shouldn’t be larger than 124K. if your firmware size is larger than 124K, then you would need
to use 0x0 and 0x40000 as boot address, the firmware size shouldn’t be larger than 252K. If more than
252K must be upgraded alternately using boot address 0 and 0x80000, the maximum firmware size must
not exceed 508K.

Figure 7.1: “Flash Storage Structure”

(1) OTA Master burns new firmware2 into the Master flash area from 0x20000 to 0x40000.

AN-21112300-E2 236 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(2) OTA for the first time:

• When power on, Slave starts booting and executing firmware1 from flash 0~0x20000.

• When firmware1 is running, the area of Slave flash starting from 0x20000 (i.e. flash 0x20000~0x40000)
is cleared during initialization and will be used as storage area for new firmware.

• OTA process starts, Master transfers firmware2 into Slave flash area from 0x20000 to 0x40000 via
RF. Then slave reboot (Restart, similar to a power outage and power on again).

(3) For subsequent OTA updates, OTA Master first burns new firmware3 into the Master flash area from
0x20000 to 0x40000.

(4) OTA for the second time:

• When power on, Slave starts booting and executing firmware2 from flash 0x20000~0x40000.

• When firmware2 is running, the area of Slave flash starting from 0x0 (i.e. flash 0~0x20000) is cleared
during initialization and will be used as storage area for new firmware.

• OTA process starts, Master transfers firmware3 into Slave flash area 0~0x20000 via RF. Then slave
reboot (Restart, similar to a power outage and power on again).

(5) Subsequent OTA process repeats steps 1)~4): 1)~2) represents OTA of the (2n+1)-th time, while 3)~4)
represents OTA of the (2n+2)-th time.

7.1.2 OTA Update Procedure

Based on the flash storage structure introduced, the OTA update procedure is illustrated as below:

First introduce the multi-address booting mechanism (only the first two booting addresses 0x00000 and
0x20000 will be introduced here): after MCU is powered on, it boots from address 0 by default. First, read
the content of flash 0x08. If the value is 0x4b, the code starting from 0 are transferred to RAM, and the
following instruction fetch address equals 0 plus PC pointer value; if the value of 0x08 is not 0x4b, the
MCU directly reads the value of 0x20020, if the value is 0x4b, the MCU moves the code from 0x20000 to
RAM, and all subsequent fetches start from the 0x20000 address, that is, the fetch address = 0x20000+PC
pointer value.

So as long as you modify the value of the 0x08 and 0x20008 flag bits, you can specify which part of the
FLASH code that the MCU executes.

The power-on and OTA process of a certain SDK (2n+1 or 2n+2) is:

(1) The MCU is powered on, and the values of 0x08 and 0x20008 are read and compared with 0x4b to
determine the booting address, and then boots from the corresponding address and execute the code.
This function is automatically completed by the MCU hardware.

(2) During the program initialization process, read the MCU hardware register to determine which address
the MCU boots from:

If boots from 0, set ota_program_offset to 0x20000, and erase all non-0xff content in the 0x20000 area
to 0xff, which means that the new firmware obtained by the next OTA will be stored in the area starting at
0x20000;

AN-21112300-E2 237 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

If boots from 0x20000, set ota_program_offset to 0x0, and erase all the non-0xff content in the 0x0 area
to 0xff, which means that the new firmware obtained by the next OTA will be stored in the area starting
from 0x0.

(3) Slave MCU executes the firmware after booting; OTA Master is powered on and establishes BLE con-
nection with Slave.

(4) Trigger OTA Master to enter OTA mode by UI (e.g. button press, write memory by PC tool, etc.). After
entering OTA mode, OTA Master needs to obtain Handle value of Slave OTA Service Data Attribute
(The handle value can be pre-appointed by Slave and Master, or obtained via “read_by_type”.)

(5) After the Attribute Handle value is obtained, OTA Master may need to obtain version number of current
Slave Flash firmware, and compare it with the version number of local stored new firmware.

Note:

• If legacy protocol is used, user needs to implement the version number; if extend protocol is used, the
operation related to version number acquisition has been implemented. For the difference between
legacy and extend protocol, user can refer to section 7.2.2.

(6) To enable OTA upgrade, OTA Master will send an OTA_start command to inform Slave to enter OTA
mode.

(7) After the OTA_start command is received, Slave enters OTA mode and waits for OTA data to be sent
from Master.

(8) Master reads the firmware stored in the flash area starting from 0x20000, and continuously sends
OTA data to Slave until the entire firmware is sent.

(9) Slave receives OTA data and stores it in the area starting with ota_program_offset.

(10) After the master sends all the OTA data, check whether the data is received correctly by the slave (call
the relevant function of the underlying BLE to determine whether the data of the link layer is correctly
acknowledged).

(11) After the master confirms that all OTA data has been correctly received by the slave, it sends an
OTA_END command.

(12) Slave receives the OTA_END command and writes the offset address of the new firmware area 0x08
(that is, ota_program_offset+0x08) as 0x4b, and writes the offset address of the old firmware storage
area 0x08 as 0x00, which means it will Move code execution from the new area.

(13) Slave reports the results of OTA to master through Handle Value Notification.

(14) Reboot the slave, the new firmware takes effect.

During the whole OTA upgrade process, Slave will continuously check whether there’s packet error, packet
loss or timeout (A timer is started when OTA starts). Once packet error, packet loss or timeout is detected,
Slave will determine the OTA process fails. Then Slave reboots, and executes the old firmware.

The OTA related operations on Slave side described above have been realized in the SDK and can be used
by user directly. On Master side, extra firmware design is needed and it will be introduced later.

AN-21112300-E2 238 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

7.1.3 Modify FW Size and Booting Address

API blc_ota_setNewFirmwwareStorageAddress supports modification of the boot address. Herein booting
address means the address except 0 to store New_firmware, so it should be one of 0x20000, 0x40000 or
0x80000.

Table 7.1: Firmware size and boot address

Firmware_Boot_address Firmware size (max)/K

0x20000 124

0x40000 252

0x80000 508

The default maximum firmware size in the SDK is 252K (due to some special reasons, the firmware size of
the startup address 0x40000 must not be greater than 252K), and the corresponding startup addresses are
0x00000 and 0x40000. These two values are consistent with the previous description. User can call API
blc_ota_setNewFirmwwareStorageAddress to set the maximum firmware size.

ble_sts_t blc_ota_setNewFirmwwareStorageAddress(multi_boot_addr_e new_fw_addr);

The parameter multi_boot_addr_e indicates the available boot addresses, including three.

typedef enum{

MULTI_BOOT_ADDR_0x20000 = 0x20000, //128 K

MULTI_BOOT_ADDR_0x40000 = 0x40000, //256 K

MULTI_BOOT_ADDR_0x80000 = 0x80000, //512 K

};

This API can only be called before cpu_wakeup_init in main function, otherwise it is invalid. The reason is
that the cpu_wakeup_init function needs to do some settings according to the values of firmware_size and
boot_addr.

7.2 RF Data Processing for OTA Mode

7.2.1 OTA Processing in Attribute Table

OTA related contents needs to be added in the Attribute Table on slave end. The “att_readwrite_callback_t
r” and “att_readwrite_callback_t w” of the OTA data Attribute should be set as otaRead and otaWrite,
respectively; the attribute should be set as Read and Write_without_Rsp (Telink Master KMA Dongle sends
data via “Write Command” by default, with no need of ack from Slave to enable faster speed).

AN-21112300-E2 239 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

// OTA attribute values

static const u8 my_OtaCharVal[19] = {

CHAR_PROP_READ | CHAR_PROP_WRITE_WITHOUT_RSP | CHAR_PROP_NOTIFY,

U16_LO(OTA_CMD_OUT_DP_H), U16_HI(OTA_CMD_OUT_DP_H),

TELINK_SPP_DATA_OTA, };

{4,ATT_PERMISSIONS_READ, 2,16,(u8*)(&my_primaryServiceUUID), (u8*)(&my_OtaServiceUUID),

0},↪

{0,ATT_PERMISSIONS_READ, 2, sizeof(my_OtaCharVal),(u8*)(&my_characterUUID), (u8*)

(my_OtaCharVal), 0},↪

{0,ATT_PERMISSIONS_RDWR,16,sizeof(my_OtaData),(u8*)(&my_OtaUUID), (&my_OtaData), &otaWrite,

NULL},↪

{0,ATT_PERMISSIONS_RDWR,2,sizeof(otaDataCCC),(u8*)(&clientCharacterCfgUUID), (u8*)

(otaDataCCC), 0},↪

{0,ATT_PERMISSIONS_READ, 2,sizeof (my_OtaName),(u8*)(&userdesc_UUID), (u8*)(my_OtaName), 0},

When Master sends OTA data to Slave, it actually writes data to the second Attribute as shown above, so
Master needs to know the Attribute Handle of this Attribute in the Attribute Table. To use the Attribute
Handle value pre-appointed by Master and Slave, user can directly define it on Master side.

7.2.2 OTA Protocol

The current OTA architecture extends the functionality and is compatible with previous versions of the
protocol. The entire OTA protocol consists of two parts: the Legacy protocol and the Extend protocol.

Table 7.2: OTA protocol

OTA Protocol -

Legacy protocol Extend protocol

Note:

• Functions supported by OTA protocol are:

– OTA Result feedback function: this function is not optional, added by default.

– Firmware Version Compare function and Big PDU function: This function is optional and can not
be added, it should be noted that the version number comparison function is different in Legacy
protocol and Extend protocol, please refer to the following OTA_CMD section for details.

The following introductions are all focused on Legacy and Extend protocols.

OTA_CMD composition

The PDUs of OTA’s CMD are as follows.

AN-21112300-E2 240 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Table 7.3: PDU of OTA’s CMD

OTA Command Payload -

Opcode (2 octet) Cmd_data (0-18 octet)

Opcode

Table 7.4: Opcode of CMD

Opcode Name Use*

0xFF00 CMD_OTA_VERSION Legacy

0xFF01 CMD_OTA_START Legacy

0xFF02 CMD_OTA_END All

0xFF03 CMD_OTA_START_EXT Extend

0xFF04 CMD_OTA_FW_VERSION_REQ Extend

0xFF05 CMD_OTA_FW_VERSION_RSP Extend

0xFF06 CMD_OTA_RESULT All

Note:

• Use:To identify the command use in Legacy protocol、Extend protocol or both of all

• Legacy: Only use in the Legacy protocol

• Extend: Only use in the Extend protocol

• All: use both in the Legacy protocol and Extend protocol

(1) CMD_OTA_VERSION

It is a command to get the current firmware version number of the slave, and the user can choose to use it
if he adopts OTA Legacy protocol for OTA upgrade. It is Optional. This command can be used to pass the
firmware version number through the callback function reserved on the slave end.

void blc_ota_registerOtaFirmwareVersionReqCb(ota_versionCb_t cb);

The server side will trigger this callback function when it receives the CMD_OTA_VERSION command.

(2) CMD_OTA_START

This command is the OTA update start command. The master sends this command to the slave to officially
start the OTA update. This command is only for Legacy Protocol, if user uses OTA Legacy protocol, this
command must be used.

AN-21112300-E2 241 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(3) CMD_OTA_END

This command is the end command, which is used by both legacy and extend protocol in OTA. When Master
confirms all OTA data are correctly received by Slave, it will send this command, which can be followed by
four valid bytes to re-confirm Slave has received all data from Master.

Table 7.5: End command of OTA

- CMD_data -

Adr_index_max (2 octets) Adr_index_max_xor (2 octets) Reserved (16 octets)

• Adr_index_max: the maximum adr_index value

• Adr_index_max_xor: the anomaly value of Adr_index_max for verification

• Reserved: Reserved for future function extension

(4) CMD_OTA_START_EXT

This command is the OTA update start command in the extend protocol. master sends this command to
slave to officially start the OTA update. User must use this command as the start command if using OTA
extend protocol.

Table 7.6: Packet structure of OTA_START_EXT

- CMD_data -

Length (1 octets) Version_compare (1 octets) Reserved (16 octets)

• Length: PDU length

• Version_compare: 0x01: enable version compare 0x00: disable version compare

• Reserved: Reserved for future extension

(5) CMD_OTA_FW_VERSION_REQ

This command is the version comparison request command in the OTA upgrade process. This command is
initiated by client to Server side to request for version number and upgrade permission.

Table 7.7: Packet structure of OTA_FW_VERSION

- CMD_data -

version_num (2 octets) version_compare (1 octets) Reserved (16 octets)

• Version num: the firmware version number to be upgraded on the client side

AN-21112300-E2 242 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• Version compare: 0x01: Enable version compare 0x00: Disable version compare

• Reserved: Reserved for future extensions

(6) CMD_OTA_FW_VERSION_RSP

This command is a version response command, the server side will compare the existing firmware version
number with the version number requested by the client side after receiving the version comparison request
command (CMD_OTA_FW_VERSION_REQ) from the client side to determine whether to upgrade, and the
related information will be sent back to the client via this command.

Table 7.8: Response structure of OTA_FW_VERSION

- CMD_data -

version_num (2 octets) version_accept (1 octets) Reserved (16 octets)

• Version num: the firmware version number that Server side is currently running

• Version_accept: 0x01: accept client side upgrade request, 0x00: reject client side upgrade request

• Reserved: Reserved for future extensions

(7) CMD_OTA_RESULT

This command is the OTA result return command, the slave will send the result information to the master
after the OTA is finished. In the whole OTA process, no matter success or failure, the OTA_result will only
be reported once, the user can judge whether the upgrade is successful according to the returned result.

Table 7.9: OTA result return command structure

CMD_data -

Result (1 octets) Reserved (16 octets)

Result: OTA result information, all possible return results are shown in the following table.

Table 7.10: OTA return results

Value Type info

0x00 OTA_SUCCESS success

0x01 OTA_DATA_PACKET_
SEQ_ERR

OTA data packet sequence number error: repeated OTA PDU or lost
some OTA PDU

0x02 OTA_PACKET_INVALID invalid OTA packet: 1. invalid OTA command; 2. addr_index out of
range; 3.not standard OTA PDU length

0x03 OTA_DATA_CRC_ERR packet PDU CRC err

AN-21112300-E2 243 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Value Type info

0x04 OTA_WRITE_FLASH_ERR write OTA data to flash ERR

0x05 OTA_DATA_UNCOMPLETElost last one or more OTA PDU

0x06 OTA_FLOW_ERR peer device send OTA command or OTA data not in correct flow

0x07 OTA_FW_CHECK_ERR firmware CRC check error

0x08 OTA_VERSION_
COMPARE_ERR

the version number to be update is lower than the current version

0x09 OTA_PDU_LEN_ERR PDU length error: not 16*n, or not equal to the value it declare in
“CMD_OTA_START_EXT” packet

0x0a OTA_FIRMWARE_
MARK_ERR

firmware mark error: not generated by telink’s BLE SDK

0x0b OTA_FW_SIZE_ERR firmware size error: no firmware_size; firmware size too small or
too big

0x0c OTA_DATA_PACKET_
TIMEOUT

time interval between two consequent packet exceed a value(user
can adjust this value)

0x0d OTA_TIMEOUT OTA flow total timeout

0x0e OTA_FAIL_DUE_TO_
CONNECTION
_TERMIANTE

OTA fail due to current connection terminate(maybe connection
timeout or local/peer device terminate connection)

0x0f-
0xff

Reserved for future use /

Reserved: Reserved for future extensions

OTA Packet structure composition

When the Master sends commands and data to the Slave using WirteCommand or WriteResponse, the value
of the Attribute Handle of the ATT layer is the handle_value of the OTA data on the slave side. According
to the specification of the Ble Spec L2CAP layer regarding the PDU format, Attribute Value length is defined
as the OTA_DataSize part in the following figure.

AN-21112300-E2 244 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 7.2: “OTA packet in L2CAP PDU”

• DLE Size: CID + Opcode + Att_Handle + Adr_index + OTA_PDU + CRC

• MTU_Size: Opcode + Att_Handle + Adr_index + OTA_PDU +CRC

• OTA_Data_Size: Adr_index + OTA_PDU + CRC

OTA_Data introduction

Table 7.11: OTA data

Type Length

Default* + BigPDU* 16octets -240octets(n*16,n=1..15)

Note:

• Default: OTA PDU length fixed default size is 16 octets

• BigPDU: OTA PDU length can be changed in the range of 16octets - 240 octets, and is an integer
multiple of 16 bytes

OTA_PDU Format

When user adopts Extend protocol in OTA and supports Big PDU, it can support long packet for OTA upgrade
operation and reduce the time of OTA upgrade. User can customize the PDU size at the client side according
to the need. The last two bytes are a CRC_16 calculation of the previous Adr_Index and Data to get the first
CRC value, the slave will do the same CRC calculation after receiving the OTA data, and only when the CRC
calculated by both matches, it will be considered a valid data.

Table 7.12: OTA PDU format

- OTA PDU -

Adr_Index (2 octets) Data(n*16 octets) n=1..15 CRC (2 octets)

(1) PDU packet length: n=1

AN-21112300-E2 245 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Data : 16 octets

Mapping of Adr_Index to Firmware address.

Table 7.13: Mapping of Adr_Index to firmware address when n=1

Adr_Index Firmware_address

0x0001 0x0000 - 0x000F

0x0002 0x0010 - 0x001F

……. ……

XXXX (XXXX -1)*16 - (XXXX)*16+15

(2) PDU packet length: n=2

Data : 32 octets

Mapping of Adr_Index to Firmware address.

Table 7.14: Mapping of Adr_Index to firmware address when n=2

Adr_Index Firmware_address

0x0001 0x0000 - 0x001F

0x0002 0x0020 - 0x003F

……. ……

XXXX (XXXX -1)*32 - (XXXX)*32+31

(3) PDU packet length: n=15

Data : 240 octets

Mapping of Adr_Index to Firmware address.

Table 7.15: Mapping of Adr_Index to firmware address when n=15

Adr_Index Firmware_address

0x0001 0x0000 - 0x00EF

0x0002 0x0010 - 0x01DF

……. ……

XXXX (XXXX -1)*240 - (XXXX)*240+239

AN-21112300-E2 246 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Note:

• In the OTA upgrade process, each packet of PDU length sent needs to be aligned with 16 bytes, that
is, when the valid OTA data in the last packet is less than 16 bytes, the 0xFF data is added to make up
the alignment, as listed below.

a) the current PDU length is set to 32, the last packet of valid data PDU is 4octets, then you need to add
12octets of 0xFF for alignment

Figure 7.3: “PDU length 32”

b) the current PDU length is set to 48, the last packet of valid data PDUs is 20octets, then you need to
add 12octets of 0xFF for alignment

Figure 7.4: “PDU length 48”

c) the current PDU length is set to 80, the last packet of valid data PDUs is 52octets, then you need to
add 12octets of 0xFF for alignment

Figure 7.5: “PDU length 80”

• For the packet capture records corresponding to different PDU sizes, users can contact Telink technical
support to obtain.

7.2.3 RF Transfer Processing on Master Side

The master end sends commands and data to the slave via Write Command or Write Request in the L2CAP
layer, and Spec specifies that it must return Write Response after receiving Write Request. For the introduc-
tion of ATT layer about Write Command and Write Request, please refer to Ble Spec or section 3.3.3.2 for its
specific composition user. Telink Ble master Dongle uses Write Command to send data and commands by
default, in this way, during OTA data transfer, Master won’t check whether each OTA data is acknowledged.
In other words, after sending an OTA data via write command, Master won’t check if there’s ack response
from Slave by software, but will directly push the following data into hardware TX buffer which yet does not
have enough data to be sent.

The following will introduce the process of Legacy Protocol and Extend Protocol, and Version Compare
of OTA, respectively, to explain the interaction process of Salve and Master in the whole RF Transform.
The Server side shown below is the Slave side, and the Client side is the Master side, which will not be
distinguished later.

OTA Legacy Protocol Process

OTA Legacy is compatible with the previous version of Telink’s OTA protocol. To better explain the whole
interaction process between Slave and Master, the following example is used to illustrate.

AN-21112300-E2 247 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Note:

• The default PDU length of 16 octets is used, which does not involve the operation of DLE long packets.

• Firmware compare function is not selected.

The specific operation flow is shown in the following figure.

Figure 7.6: “OTA Legacy protocol process”

Client side will first send CMD_OTA_START command to Server side, Server side will start to prepare to
receive OTA data after receiving the command, then Client side will start to send OTA_Data. If there is any
interaction failure during the process, Server side will send CMD_OTA_Result to Client side, that is, return
an error message and re-run the original program but will not enter reboot, the client side will stop the
OTA data transfer when receiving this message. If the Client side and Server side successfully complete the
OTA_Data transfer, the Client side will send CMD_OTA_END to the Server side, and the Server side will send
CMD_OTA_Result to the Client side after receiving the result information, and enter reboot and run the new
firmware.

OTA Extend Protocol Process

As mentioned above, there are some differences between the interaction commands of OTA Extend and
Legacy introduced above. To better illustrate the whole interaction process between Slave and Master, the
following example is used.

Note:

AN-21112300-E2 248 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• PDU length adopts 64 octets size, which involves the operation of DLE long packets.

• Firmware compare function is not selected.

Figure 7.7: “OTA Extend protocol process”

Due to the DLE long packet function, the Client side first needs to interact with the Server side for MTU and
DLE, then the next process is similar to the previous Legacy. The Client side sends CMD_OTA_START_EXT
command to the Server side, the Server side starts to prepare to receive OTA data after receiving the
command, then client side starts sending OTA_Data. If there is any interaction failure during the process,
the Server side will send CMD_OTA_Result to the Client side, which returns the error message and re-runs
the original program but will not enter reboot. If the Client side and Server side successfully complete the
OTA_Data transfer, the Client side will send CMD_OTA_END to the Server side, and the Server side will send
CMD_OTA_Result to the Client side after receiving the result information, and enter reboot and run the new
firmware.

OTA Version Compare Process

In the Slave side, both Extend and Legacy Protocol have version comparison function, where Legacy re-
served the interface, need to be implemented by the user, while Extend has implemented the version
comparison function, the user can directly use, as follows, need to enable the following macro.

AN-21112300-E2 249 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define OTA_FW_VERSION_EXCHANGE_ENABLE 1 //user can change

#define OTA_FW_VERSION_COMPARE_ENABLE 1 //user can change

The following is an example of the interaction flow in Extend with version comparison.

Note:

• PDU length is 16 octets size, no operation of DLE long packet is involved.

• Firmware compare function selection (OTA to be upgraded version number is 0x0001, enable version
compare enable)

Figure 7.8: “OTA Version Compare Process”

After enabling the version comparison function, the Client side first sends the CMD_OTA_FW_VERSION_REQ
version comparison request command to the Server side, where the PDU sent includes the Firmware ver-
sion number of the Client side (new_fw_version = 0x0001), and the Server side gets the version number
information of the Client side and compares it with the local version number (local_version).

If the received version number (new_fw_version = 0x0001) is not greater than the local version number
(local version = 0x0001), the Server side will reject the Client side OTA upgrade request and send the Client

AN-21112300-E2 250 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

side version response command (CMD_OTA_FW_VERSION_RSP). The information sent includes the receiving
parameter (accept = 0) and the local version number (local_version = 0x0001), and the Client will stop the
OTA related operation after receiving it, that is, the current version upgrade is not successful.

If the received version number (new_fw_version = 0x0001) is larger than the local version number (local
version = 0x0000), the Server side will receive the OTA upgrade request from the Client side and send the
version response command (CMD_OTA_FW_VERSION_RSP) to the Client side. The message sent includes
the acceptance parameter (accept = 1) and the local version number (local_version = 0x0000), which the
Client receives to start preparing the OTA upgrade related operations.The process is similar to the previous
content, that is, first send the CMD_OTA_START command to the Server side, and then the Server side
starts to prepare to receive the OTA data after receiving the command, client side starts sending OTA_data.
If there is any interaction failure during the process, the Server side will send CMD_OTA_Result to the Client
side, which will return the error message and re-run the original program but will not enter reboot, and the
Client side will stop OTA data transmission immediately after receiving it. If the Client side and Server side
successfully complete the OTA_Data transfer, the Client side will send CMD_OTA_END to the Server side,
and the Server side will send CMD_OTA_Result to the Client side after receiving the result information, and
enter reboot and run the new firmware.

OTA implementation

The above describes the entire OTA interaction process, the following example illustrates the specific data
interaction between Master and Slave.

Note:

• OTA Protocol: Legacy Protocol

• The PDU length is 16 octets, which does not involve the operation of long DLE packets.

• The Master side enables Firmware compare function.

(1) Check if there’s any behavior to trigger entering OTA mode. If so, Master enters OTA mode.

(2) To send OTA commands and data to Slave, Master needs to know the Attribute Handle value of current
OTA data Atrribute on Slave side. User can decide to directly use the pre-appointed value or obtain
the Handle value via “Read By Type Request”.

UUID of OTA data in Telink BLE SDK is always 16-byte value as shown below:

#define TELINK_SPP_DATA_OTA {0x12,0x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,

0x03,0x02,0x01,0x00}↪

In “Read By Type Request” from Master, the “Type” is set as the 16-byte UUID. The Attribute Handle for
the OTA UUID is available from “Read By Type Rsp” responded by Slave. In the figure below, the Attribute
Handle value is shown as “0x0031”.

Figure 7.9: “Master Obtains OTA Attribute Handle via Read by Type Request”

AN-21112300-E2 251 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(3) Obtain the current firmware version number of the slave and decide whether to continue the OTA
update (if the version is already the latest, no update is required). This step is for the user to choose
whether to do it or not. The BLE SDK does not provide a specific version number acquisition method,
users can play by themselves. In the current BLE SDK, legacy protocol does not implement version
number transmission. The user can use write cmd or write response to send a request to obtain the
OTA version to the slave through the OTA version cmd, but the slave side only provides a callback
function when receiving the OTA version request, and the user finds a way to set the slave side in
the callback function. The version number is sent to the master (such as manually sending a NOTIFY/
INDICATE data).

(4) Start a timing at the beginning of the OTA, and then continue to check whether the timing exceeds
30 seconds (this is only a reference time, and the actual evaluation will be made after the normal OTA
required by the user test).

If it takes more than 30 seconds to consider the OTA timeout failure, because the slave side will check the
CRC after receiving the OTA data. Once the CRC error or other errors (such as programming flash errors)
occur, the OTA will be considered as a failure and the program will be restarted directly. The layer cannot
ack the master, and the data on the master side has not been sent out, resulting in a timeout.

(5) Read the four bytes of Master flash 0x20018~0x2001b to determine the size of the firmware.

This size is implemented by our compiler. Assuming the size of the firmware is 20k = 0x5000, then
the value of 0x18~0x1b of the firmware is 0x00005000, so the size of the firmware can be read from
0x20018~0x2001b.

In the bin file shown in the figure below, the content of 0x18 ~ 0x1b is 0x0000cf94, so the size is 0xcf94 =
53140Bytes, from 0x0000 to 0xcf96.

Figure 7.10: “Firmware Sample Starting Part”

Figure 7.11: “Firmware Sample Ending Part”

(6) Master sends an OTA start command “0xff01” to Slave, so as to inform it to enter OTA mode and wait
for OTA data from Master, as shown below.

AN-21112300-E2 252 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 7.12: “OTA Start Sent From Master”

(7) Read 16 bytes of firmware each time starting from Master flash 0x20000, assemble them into OTA
data packet, set corresponding adr_index, calculate CRC value, and push the packet into TX FIFO, until
all data of the firmware are sent to Slave.

The data sending method is described above, using the OTA data format: 20-byte valid data contains 2-byte
adr_index, 16-byte firmware data and 2-byte CRC value to the former 18 bytes.

Note: If firmware data for the final transfer are less than 16 bytes, the remaining bytes should be comple-
mented with “0xff” and need to be considered for CRC calculation.

Below illustrates how to assemble OTA data.

Data for first transfer: “adr_index” is “0x00 00”, 16-byte data are values of addresses 0x0000 ~ 0x000f.
Suppose CRC calculation result for the former 18 bytes is “0xXYZW”, the 20-byte data should be:

0x00 0x00 0xf3 0x22 …. (12 bytes not listed)….. 0x60 0x15 0xZW 0xXY

Data for second transfer:

0x01 0x00 0x21 0xa8 ….(12 bytes not listed)….. 0x00 0x00 0xJK 0xHI

Data for third transfer:

0x02 0x00 0x4b 0x4e ….(12 bytes not listed)….. 0x81 0x7d 0xNO 0xLM

……..

Data for penultimate transfer:

0xf8 0x0c 0x20 0xa1 ….(12 bytes not listed)….. 0xff 0xff 0xST 0xPQ

Data for final transfer:

0xf9 0x0c 0xec 0x6e 0xdd 0xa9 0xff 0xff 0xff 0xff

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xWX 0xUV

12 “0xff” are added to complement 16 bytes.

0xec 0x6e 0xdd 0xa9 is the third to sixth, which is the CRC_32 calculation result of the entire firmware bin.
The slave will synchronously calculate the CRC_32 check value of the entire bin received during the OTA
upgrade process, and compare it with 0xec 0x6e 0xdd 0xa9 at the end.

The CRC calculation result for a total of 18 bytes from 0xf9 to 0xff is 0xUVWX.

The above data is shown in the figure below:

AN-21112300-E2 253 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 7.13: “Master OTA Data1”

Figure 7.14: “Master OTA Data2”

(8) After the firmware data is sent, check whether the data of the BLE link layer has been completely sent
(because only when the data of the link layer is acked by the slave, the data is considered to be sent
successfully). If it is completely sent, the master sends an ota_end command to notify the slave that
all data has been sent.

The packet effective bytes of the OTA end are set to 6, the first two are 0xff02, and the middle two bytes
are the maximum adr_index value of the new firmware (this is for the slave to confirm again that the last
or several OTA data is not lost) , The last two bytes are the inverse of the largest adr_index value in the
middle, which is equivalent to a simple check. OTA end does not require CRC check.

Take the bin shown in the above figure as an example, the largest adr_index is 0x0cf9, and its inverse value
is 0xf306, and the final OTA end package is shown in the figure above.

(9) Check if link-layer TX FIFO on Master side is empty: If it’s empty, it indicates all data and commands
in above steps are sent successfully, i.e. OTA task on Master succeeds.

Please refer to Appendix for CRC_16 calculation function.

As introduced above, Slave can directly invoke the otaWrite and otaRead in OTA Attribute. After Slave
receives write command from Master, it will be parsed and processed automatically in BLE stack by invoking
the otaWrite function.

In the otaWrite function, the 20-byte packet data will be parsed: first judge whether it’s OTA CMD or OTA
data, then process correspondingly (respond to OTA cmd; check CRC to OTA data and burn data into specific
addresses of flash).

The OTA related operations on Slave side are shown as below：

(1) OTA_FIRMWARE_VERSION command is received: Master requests to obtain Slave firmware version
number.

In this BLE SDK, after Slave receives this command, it will only check whether related callback function is
registered and determine whether to trigger the callback function correspondingly.

The interface in ble_ll_ota.h to register this callback function is shown as below:

AN-21112300-E2 254 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef void (*ota_versionCb_t)(void);

void blc_ota_registerOtaFirmwareVersionReqCb(ota_versionCb_t cb);

(2) OTA start command is received: Slave enters OTA mode.

If the “bls_ota_registerStartCmdCb” function is used to register the callback function of OTA start, then the
callback function is executed to modify some parameter states after entering OTA mode (e.g. disable PM to
stabilize OTA data transfer).

And the slave also starts and maintains a slave_adr_index to record the adr_index of the latest correct OTA
data. The slave_adr_index is used to check whether there’s packet loss in the whole OTA process, and its
initial value is -1. Once packet loss is detected, OTA fails, Slave MCU exits OTA and reboots; since Master
cannot receive any ack from Slave, it will discover OTA failure by software after timeout.

The following interface is used to register the callback function of OTA start:

typedef void (*ota_startCb_t)(void);

void blc_ota_registerOtaStartCmdCb(ota_startCb_t cb);

User needs to register this callback function to carry out operations when OTA starts, for example, configure
LED blinking to indicate OTA process.

After Slave receives “OTA start”, it enters OTA and starts a timer (The timeout duration is set as 30s by
default in current SDK). If OTA process is not finished within 30s, it’s regarded as OTA failure due to timeout.
User can evaluate firmware size (larger size takes more time) and BLE data bandwidth on Master (narrow
bandwidth will influence OTA speed), and modify this timeout duration accordingly via the variable as shown
below.

blotaSvr.process_timeout_us = 30 * 1000000; //default 30s

blotaSvr.packet_timeout_us = 5 * 1000000; //default 5s

After initializing the variable, the user can call the following timeout function to perform the timeout pro-
cess.

void blt_ota_procTimeout(void)；

The other is the timeout period of the receive packet. It will be updated every time an OTA data
packet is received. The timeout period is 5s, that is, if the next data is not received within 5s, the
OTA_RF_PACKET_TIMEOUT is considered as a failure.

(3) Valid OTA data are received (first two bytes are 0~0x1000):

Whenever Slave receives one 20-byte OTA data packet, it will first check if the adr_index equals
slave_adr_index plus 1. If not equal, it indicates packet loss and OTA failure; if equal, the slave_adr_index
value is updated.

Then carry out CRC_16 check to the former 18 bytes. If not matched, OTA fails; if matched, the
16-byte valid data are written into corresponding flash area (ota_program_offset+adr_index16 ~

AN-21112300-E2 255 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ota_program_offset+adr_index16 + 15). During flash writing process, if there’s any error, OTA also
fails.

In order to ensure the integrity of the firmware after the OTA is completed, a CRC_32 check will be performed
on the entire firmware at the end, and it will be compared with the check value calculated by the same
method sent by the master. If it is not equal, it means there is a data error in the middle, and the OTA is
considered a failure.

(4) “OTA end” command is received:

Check whether adr_max in OTA end packet and the inverted check value are correct. If yes, the adr_max
can be used to double check whether maximum index value of data received by Slave from Master equals
the adr_max in this packet. If equal, OTA succeeds; if not equal, OTA fails due to packet loss.

After successful OTA, Slave will set the booting flag of the old firmware address in flash as 0, set the booting
flag of the new firmware address in flash as 0x4b, then reboot MCU.

(5) The slave sends the OTA result back to the master:

Once the OTA is started on the slave side, regardless of whether the OTA succeeds or fails, the slave will
finally send the result to the master. The following is an example of the result information sent by the slave
after the OTA is successful (the length is only 3 bytes):

Figure 7.15: “Slave Sends OTA Succuss Result to Master”

(6) Slave supplies OTA state callback function:

After Slave starts OTA, MCU will finally reboot when OTA is successful.

If OTA succeeds, Slave will set flag before rebooting so that MCU executes the New_firmware.

If OTA fails, the incorrect new firmware will be erased before rebooting, so that MCU still executes the
Old_firmware.

Before rebooting, user can judge whether the OTA state callback function is registered and determine
whether to trigger it correspondingly.

The corresponding codes are as following:

void blc_ota_registerOtaResultIndicationCb (ota_resIndicateCb_t cb);

After the callback function is set, the enum of the parameter result of the callback function is the same as
the result reported by the OTA. The first 0 is OTA success, and the rest are different reasons for failure.

The OTA upgrade success or failure will trigger the callback function, the actual code can be debugged by
the result of the function to return parameters. When the OTA is unsuccessful, you can read the above
result and stop the MCU with while(1) to understand what causes the OTA failure.

AN-21112300-E2 256 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

7.3 OTA Security

7.3.1 OTA Service data security

OTA Service is a kind of GATT service, and the problem of OTA service security protection is the problem
of BLE GATT service data security protection, that is, data cannot be accessed illegally. According to the
design of BLE Spec, user can used the following methods:

(1) To enable SMP, it is recommended to use the Security Level as high as possible to achieve the function
that only legally paired devices have access to OTA server data. Refer to the introduction of SMP in
this document.

For example, using Security Mode 1 Level 3, the pairing of Authentication and MITM can effectively control
the product slave device and the specific master to pair encryption success and back connection, the attacker
cannot successfully encrypt with the slave device. Add the corresponding security level settings to the read
and write of the protected GATT service data, and the attacker will not be able to access these data. If you
use Mode 1 Level 4, Secure Connection + Authentication, the security level is even higher.

The codes that may be involved include the following:

typedef enum {

LE_Security_Mode_1_Level_1 = BIT(0), No_Authentication_No_Encryption = BIT(0),

No_Security = BIT(0),↪

LE_Security_Mode_1_Level_2 = BIT(1), Unauthenticated_Pairing_with_Encryption = BIT(1),

LE_Security_Mode_1_Level_3 = BIT(2), Authenticated_Pairing_with_Encryption = BIT(2),

LE_Security_Mode_1_Level_4 = BIT(3),

Authenticated_LE_Secure_Connection_Pairing_with_Encryption = BIT(3),↪

}le_security_mode_level_t;

#define ATT_PERMISSIONS_AUTHOR 0x10 //Attribute access(Read & Write) requires

Authorization↪

#define ATT_PERMISSIONS_ENCRYPT 0x20 //Attribute access(Read & Write) requires

Encryption↪

#define ATT_PERMISSIONS_AUTHEN 0x40 //Attribute access(Read & Write) requires

Authentication(MITM protection)↪

#define ATT_PERMISSIONS_SECURE_CONN 0x80 //Attribute access(Read & Write) requires

Secure_Connection↪

#define ATT_PERMISSIONS_SECURITY (ATT_PERMISSIONS_AUTHOR | ATT_PERMISSIONS_ENCRYPT |

ATT_PERMISSIONS_AUTHEN | ATT_PERMISSIONS_SECURE_CONN)↪

(2) Use whitelist. Users can use the whitelist to connect only to the master device they want to connect
to, or they can effectively intercept the attacker’s connection.

(3) Use address privacy protection, local device and peer device use resolvable private address (RPA),
which effectively hides the identity address of the other party or us and maks the connection more
secure.

AN-21112300-E2 257 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

7.3.2 OTA RF transmission data integrity

Since RF is an unstable transmission, a certain protection mechanism is needed to ensure the integrity and
correctness of the firmware during the OTA process.

Refer to the previous introduction, the OTA master needs to divide the Firmware into multiple data packets
according to a certain size in advance. The first 2 byte of each data packet is the packet sequence number,
starting from 0 and increasing by 1.

7.3.2.1 LinkLayer data transfer mechanism

BLE Spec has been made corresponding design in terms of data transmission integrity:

a) When the LinkLayer sender is transmitting a piece of data, it needs to see the other party’s response
before switching to the next packet of data transmission to ensure that the data transmission will not
be lost;

b) The LinkLayer receiver needs to check the packet sequence number of each piece of data, and the
repeated data will be discarded to ensure that the data will not be received repeatedly;

c) For each packet of data, the sender adds a CRC24 check value at the end, and the receiver recalculates
the check value and compares it to eliminate the data with RF transmission errors.

Telink BLE SDK has passed the official Sig BQB certification and is implemented in full accordance with the
above design.

These design mechanisms of LinkLayer can prevent data errors caused by RF transmission.

7.3.2.2 OTA PDU CRC16 check

Refer to the previous introduction, on the basis of LinkLayer data protection, add a CRC16 checksum to the
OTA protocol to make data transmission more secure.

7.3.2.3 OTA PDU serial number check

The OTA master splits the Firmware into several OTA PDUs, each PDU has its own package serial number.

For the convenience of explanation, assume the Firmware size is 50K, split according to OTA PDU 16Byte,
the number of PDUs is 50*1024/16=3200, then the serial number is 0 ~ 3199, i.e. 0x0 ~ 0xC7F.

After the OTA starts, set the expected serial number to 0. For each OTA data received, use the expected se-
rial number and the actual serial number to compare, only when the two are equal, the process is considered
correct and the expected serial number is updated +1. If the two are not equal, the process is considered
failed and the OTA is ended. This design can ensure the continuity and uniqueness of OTA PDUs.

At the end of OTA, you can read the serial number 0xC7F of the last OTA PDU of Firmware on the OTA_END
packet, and use this serial number to compare with the actual maximum serial number received, you can
determine whether the OTA PDU loss a number. If the actual received maximum serial number is 0xC7E, it
means the master missed the last packet, and the OTA will fail at this time.

The combination of the above designs can ensure that the OTA master splits the firmware correctly, and
each OTA PDU is effectively sent out.

AN-21112300-E2 258 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

7.3.3 Firmware CRC32 check

There is a subjectively incorrect operation of the OTA master, which may cause the BLE product to be down.
After generating a correct binary file with Telink compiler tool, the binary file may be accidentally modified
due to operation error, for example, the content of a byte is tampered with. When this wrong binary file is
taken to the OTA master for OTA upgrade, the master cannot know the error and will be used as the correct
firmware to upgrade the slave, causing the program on the slave side to not run correctly.

To solve the above problems, Firmware CRC32 checksum is added in SDK. In the last step of compiling
and generating the binary file, CRC32 calculation is performed on the binary file and the result is spliced in.
During the OTA upgrade process, the server performs CRC32 calculation while receiving data. The OTA_END
link uses the calculated value to compare with the value on the last OTA PDU. Only when the two are equal
can the Firmware be considered to have not been tampered with.

7.3.4 OTA abnormal power failure protection

The Telink OTA design can ensure that the device is powered off at any time without the risk of device
downtime.

Refer to the previous introduction in this chapter, the MCU uses a multi-address boot mechanism, and uses
a byte marker for the MCU to determine which address the firmware starts from when the MCU is powered
on. For the convenience of explanation, assume that the current firmware of the device is stored in the
Flash 0x0 ~ 0x20000 range, where the value at address 0x0008 marks the Firmware as valid, which is
0x4B at this time; the new Firmware will be stored in the 0x20000 ~ 0x40000 range, where the value at
address 0x20008 is used to mark the validity of the new Firmware, and the initial value is 0xFF.

After the OTA upgrade starts, the value on the 0x08 address of the first OTA PDU received is 0x4B, but
this PDU will be intentionally written to 0x20008 as 0xFF when it is written to Flash, which is not effective.
When all OTA processes are correct and all Flash writes are correct, the value of address 0x20008 will be
written as 0x4B. Any power failure occurs at any time before this, it does not affect the Firmware of 0x0
~ 0x20000, even if the power failure causes some Flash writes on 0x20000 ~ 0x40000 to fail, after re-
powering, the Firmware of 0x0 ~ 0x20000 can be written to 0x40000. The Firmware of 0x20000 can be
operated after re-powering.

In the last step, after confirming that the firmware on 0x20000 ~ 0x40000 is processed correctly, write
0x4B corresponding to the address 0x0008 in 0x0 ~ 0x20000 to 0x00, which means that the firmware
on this area is invalid. We can write address 0x0008 to 0x00 as an atomic operation, no matter at which
moment the power is turned off, this operation either succeeds (the value is changed to 0x00 or mistakenly
written as a value other than 0x4B) or fails (i.e. 0x4B remains unchanged). If the operation succeeds, the
next time the power is turned on, it will run the Firmware on 0x20000 ~ 0x40000; if it fails, it will run the
Firmware on 0x0 ~ 0x20000.

AN-21112300-E2 259 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

8 Flash

8.1 Flash address allocation

The basic unit of FLASH storage information is the size of a sector (4K byte), because the flash erase is
based on the sector (the erase function is flash_erase_sector). Theoretically the same kind of information
needs to be stored in one sector, and different kinds of information need to be stored in different sectors
(to prevent other types of information from being erased by mistake when erasing information). Therefore,
it is recommended that users follow the principle of “different types of information in different sectors”
when using FLASH to store customized information. The default location of system related information
(Customized Value, MAC address, Pair&Sec Info) will be adaptively shifted to a later position of the flash
according to the actual size of the flash.

The following figure shows the address allocation of various information in 512K/1M Flash. Take the default
OTA Firmware maximum size not exceeding 128K as an example to illustrate, if the user modifies the OTA
Firmware size.

AN-21112300-E2 260 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 8.1: “512K/1M FLASH address allocation”

As shown in the figure above, all address assignments provide users with corresponding modification in-
terfaces, and users can plan address assignments according to their needs. The following introduces the
default address allocation method and the corresponding interface to modify the address. In actual appli-
cations, the corresponding Flash size can be determined by mid, and the corresponding application address
space can be allocated according to the corresponding Flash size.

AN-21112300-E2 261 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

u8 flash_cap = temp_buf[2];

unsigned char adc_vref_calib_value_rd[4] = {0};

if(flash_cap == FLASH_SIZE_512K){

flash_sector_mac_address = CFG_ADR_MAC_512K_FLASH;

flash_sector_calibration = CFG_ADR_CALIBRATION_512K_FLASH;

}

else if(flash_cap == FLASH_SIZE_1M){

flash_sector_mac_address = CFG_ADR_MAC_1M_FLASH;

flash_sector_calibration = CFG_ADR_CALIBRATION_1M_FLASH;

}

else{

//This SDK do not support flash size other than 512K/1M

//If code stop here, please check your Flash

while(1);

}

(1) When using 512K Flash, the sector 0x76000~0x76FFF stores the MAC address. When using 1M Flash,
it is 0xFF000~0x100000. In fact, the 6 bytes of MAC address are stored in 0x76000~0x76005
(0xFF000~0xFF005). In fact, the 6 bytes of MAC address are stored in 0x76000~0x76005
(0xFF000~0xFF005). When using 512K Flash, the high byte address is stored in 0x76005, and the
low byte address is stored in 0x76000. For example, the contents of FLASH 0x76000 to 0x76005
are 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, then the MAC address is 0x665544332211. Telink’s mass
production fixture system will burn the actual product’s MAC address to 0x76000 (0xFF000) address,
which corresponds to the SDK. If the user needs to modify this address, please make sure that the
address programmed by the fixture system is also modified accordingly. In the SDK, the MAC address
will be read from the CFG_ADR_MAC of FLASH in the user_init function. This macro can be modified
in stack/ble/blt_config.h.

/**************************** 512 K Flash *****************************/

#ifndef CFG_ADR_MAC_512K_FLASH

#define CFG_ADR_MAC_512K_FLASH 0x76000

#endif

/**************************** 1 M Flash *******************************/

#ifndef CFG_ADR_MAC_1M_FLASH

#define CFG_ADR_MAC_1M_FLASH 0xFF000

#endif

(2) For the sector storage of 512K Flash 0x77000~0x77FFF, Telink MCU needs to calibrate the customized
information, which is 0xFE000~0xFEFFF for 1M Flash. Only this part of the information does not
follow the principle of “different types of information are placed in different sectors”. Divide the 4096
bytes of this sector into different units for each 64 bytes, and each unit stores one type of calibration
information. The calibration information can be placed in the same sector, because the calibration
information is burned to the corresponding address during the fixture burning process. The actual
firmware can only read the calibration information when it is running, and it is not allowed to write or
erase it.

AN-21112300-E2 262 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

For details of calibration area information, please refer to “Telink_IC_Flash Customize Address_Spec”. The
calibration information is described with the offset address relative to the start address of the calibration
area. For example, the offset address 0x00 refers to 0x77000 or 0xFE000.

a) Offset address 0x00, 1 byte, stores the BLE RF frequency offset calibration value.

b) Offset address 0x40, 4 byte, stores the TP value calibration. B85m IC does not require TP calibration,
which is ignored here.

c) Offset address 0xC0, stores the ADC Vref calibration value.

d) Offset address 0x180, 16 byte, stores the Firmware digital signature, which is used to prevent theft of
the client Firmware.

e) Offset address 0x1C0, 2 byte, stores the Flash VDDF calibration value.

f) Others, reserved.

(3) 512K Flash 0x74000 ~ 0x75FFF these two sectors are occupied by the BLE protocol stack system. For
1M Flash, they are 0xFC000~0xFDFFF, which are used to store pairing and encryption information.
User can also modify the location of these two sectors. The size is fixed at two sectors 8K and cannot
be modified. User can call the following function to modify the starting address of the paired encryption
information storage:

void bls_smp_configParingSecurityInfoStorageAddr (int addr);

(4) Use 0x00000 ~ 0x3FFFF 256K space as program space by default;

0x00000 ~ 0x1FFFF total 128K is Firmware storage space; 0x20000 ~ 0x3FFFF 128K is the space to store
new Firmware when OTA update, i.e. the maximum Firmware space supported is 128K.

If the default 128K program space is too large for the user and the user wants to free up some space in
the 0x00000 ~ 0x3FFFF area for data storage, the protocol stack also provides the corresponding API, the
modification method is described in the OTA chapter.

(5) All the remaining flash space is used as data storage space for USER.

8.2 Flash operation

Flash space read/write operations use flash_read_page and flash_write_page functions, and flash erase
uses flash_erase_sector function.

(1) Flash read/write operations

Flash read/write operations use flash_read_page and flash_write_page functions.

void flash_read_page(u32 addr, u32 len, u8 *buf);

void flash_write_page(u32 addr, u32 len, u8 *buf)

The flash_read_page function reads the contents of the flash:

AN-21112300-E2 263 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void flash_read_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0 };

flash_read_page(0x11000, 6, data); //Read 6 bytes starting from flash 0x11000 to the data array.

The flash_write_page function writes the flash:

flash_write_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0x11,0x22,0x33,0x44,0x55,0x66 };

flash_write_page(0x12000, 6, data); //Write 0x665544332211 to the 6 byte starting at flash

0x12000.↪

The flash_write_page function is an operation on the page. A page in the flash is 256 byte. The maximum
address size of this function operation is 256 byte, which cannot span two different page ranges.

When the operated address is the first address of a page, the maximum address is 256 byte,
flash_write_page(0x12000, 256, data) is operated correctly, but flash_write_page(0x12000, 257,
data) is wrong, because the last address does not belong to the page where 0x12000 is located anymore,
the write operation will fail.

When the address being operated is not the first address of a page, pay more attention to the problem of
cross-page. For example, flash_write_page (0x120f0, 20, data) is wrong. The first 16 addresses are in the
page 0x12000, and the last 4 addresses are in the page 0x12100.

The flash_read_page does not have the cross-page problem mentioned above, and can read more than 256
bytes of data at one time.

Note:

• When using the flash_write_page function, user can only write up to 16 bytes at a time, more than
that will cause a BLE interrupt exception.

• For the principle of this limitation, please refer to the introduction in the section “The Impact of Flash
API on BLE Timing”.

(2) flash erase operation

Use the flash_erase_sector function to erase the flash.

void flash_erase_sector(u32 addr);

A sector is 4096 byte, e.g. 0x13000 ~ 0x13fff is a complete sector.

addr must be the first address of a sector, and this function erases the entire sector each time.

It takes a long time to erase a sector. When the system clock is 16M, it takes about 30 ~ 100ms or even
longer.

(3) Impact of flash read/write and erase operations on system interrupts

The three flash operation functions flash_read_page, flash_write_page, and flash_erase_sector introduced
above must first turn off the system interrupt irq_disable() when executing, and then restore the interrupt

AN-21112300-E2 264 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

irq_restore() after the operation is completed, the purpose of which is to ensure the integrity and continuity
of the flash MSPI timing operation, and to prevent the reentry of hardware resources caused by another
flash operation calling the MSPI bus in the interrupt.

The timing of the BLE SDK RF receiving and sending packets is all controlled by interrupts. The consequence
of turning off the system interrupt during the flash operation is that the timing of BLE receiving and sending
packets will be destroyed and no timely response.

The execution time of the flash_read_page function is not too long and has little impact on the interruption
of BLE. When using flash_write_page, it is recommended to write up to 16 Bytes at a time when BLE is
connected, if it is too long, it may affect the BLE timing. Therefore, it is strongly recommended that users
do not continuously read and write too long addresses in the main_loop when BLE is connected.

The execution time of the flash_erase_sector function is tens to hundreds of ms, so in the main_loop of
the main program, once the BLE connection state is entered, it is not allowed to call the flash_erase_sector
function, otherwise it will destroy the time point of BLE receiving and sending packets, causing the connec-
tion to be disconnected. If it is unavoidable to erase the flash when BLE is connected, please follow the Conn
state Slave role timing protection implementation method described later in this document to operate.

(4) Use pointer access to read flash

The firmware of the BLE SDK is stored on the flash, and when the program runs, only the first part of the
flash is placed on the ram for execution as resident memory code, and the vast majority of the remaining
code is read from the flash to the ram cache cache area (cache for short) when needed according to the
program’s locality principle. MCU reads the content on the flash by automatically controlling the internal
MSPI hardware module.

User can use the pointer form to read the content on the flash. The principle of the pointer form to read the
flash is that when the MCU system bus accesses the data, when it finds that the data address is not on the
resident memory ramcode, the system bus will automatically switch to the MSPI, and the four lines MSCN,
MCLK, MSDI and MSDO will operate the timing of the spi to get to read the flash data.

List three examples below:

u16 x = *(volatile u16*)0x10000; //Read flash 0x10000 2 byte

u8 data[16];

memcpy(data, 0x20000, 16); //Read flash 0x20000 16 byte copy to data

if(!memcmp(data, 0x30000, 16)){ //Read flash 0x30000 16 bytes and compare with data

//……
}

When reading the calibration value on the flash in user_init and setting it to the corresponding register, it is
implemented by using pointers to access the flash. Please refer to the functions in the SDK.

static inline void blc_app_loadCustomizedParameters(void);

Read flash with pointer, but can’t write flash with pointer (write flash can only be achieved by
flash_write_page).

It should be noted that there is a problem with pointer read flash: as long as the data is read through the
MCU system bus, the MCU will cache the data in the cache, if the data in the cache is not covered by other

AN-21112300-E2 265 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

content, and there is a new request to access the data, the MCU will directly use the cached content in the
cache as the result. If the following situation occurs in the user’s code.

u8 result;

result = *(volatile u16*)0x40000; //Pointer read flash

u8 data = 0x5A;

flash_write_page(0x40000, 1, &data);

result = *(volatile u16*)0x40000; //Pointer read flash

if(result != 0x5A){ }

The flash address 0x40000 was originally 0xff, the first read result is 0xff, then write 0x5A, theoretically
the second read value is 0x5A, but the actual program gives the result is still 0xff, which was the first cache
taken from the cache.

Note:

• If this happens when the same address is read multiple times and the value of this address will be
rewritten, do not use the pointer form, use API flash_read_page to achieve the safest, this function
reads the result without taking the previously cached value from the cache.

It is correct to implement it as follows:

u8 result;

flash_read_page(0x40000, 1, &result); //API read flash

u8 data = 0x5A;

flash_write_page(0x40000, 1, &data);

The position will be adaptively shifted to a later position of the flash according to the actual size of the
flash.

8.3 Flash operation protection

Since the process of writing flash and erasing flash requires to transfer the address and data to flash through
the SPI bus, the level stability on the SPI bus is very important. Any error in these critical data will cause irre-
versible consequences, such as writing the firmware wrong or erasing it by mistake will cause the firmware
to no longer work and the OTA function will be disabled.

In the years of mass production experience of Telink chips, there have been errors caused by Flash operation
under unstable conditions. Unstable conditions mainly include low power supply voltage, excessive power
supply ripple, and intermittent power consumption of other modules on the system causing power supply
jitter, and so on. In order to avoid similar operational risks in subsequent products, here we introduce some
related Flash operation protection methods. After reading carefully, customers need to consider these issues
as much as possible and add more security protection mechanisms to ensure product stability.

8.3.1 Low voltage detection protection

Combine with the introduction of low power protection chapter, it is necessary to consider doing voltage
detection before all Flash write and erase operations to avoid the situation of operating Flash at too low

AN-21112300-E2 266 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

voltage. In addition, in order to ensure that the system is always working at a safe voltage, it is also
recommended to do low voltage detection in main_loop at regular intervals to ensure the normal operation
of the system.

Note:

• About flash low-voltage protection, the following many places appear 2.0V, 2.2V and other thresholds,
emphasize that these values are only examples, reference values. Customers have to assess the actual
situation to modify these thresholds, such as single-layer boards, power supply fluctuations and other
factors, are to improve the safety threshold as appropriate.

Take the low voltage detection in the SDK demo as an example:

Step 1 First, when powering on or waking up from deepsleep, before calling the Flash function, a low voltage
test must be performed to prevent flash problems caused by low voltage:

_attribute_ram_code_ int main (void) //must run in ramcode

{

…
if(!deepRetWakeUp){//read flash size

user_init_battery_power_check(); //battery check must do before flash code

blc_readFlashSize_autoConfigCustomFlashSector();

…
Main_loo();

}

Step 2 In the main_loop, low-voltage detection is required every 500ms:

if(battery_get_detect_enable() && clock_time_exceed(lowBattDet_tick, 500000)){

lowBattDet_tick = clock_time(); //Each detection to get the latest time, 500ms apart for a

detection↪

u8 analog_deep = analog_read(USED_DEEP_ANA_REG);

u16 vbat_deep_thres = VBAT_DEEP_THRES_MV;

u16 vbat_suspend_thres = VBAT_SUSPEND_THRES_MV;

if(analog_deep & LOW_BATT_FLG){

if(analog_deep & LOW_BATT_SUSPEND_FLG){//When the previous voltage has been lower than

1.8V↪

vbat_deep_thres += 200;

vbat_suspend_thres += 100;

}

else{//The previous voltage was between 1.8 - 2.0V

vbat_deep_thres += 200;

}

}

app_battery_power_check(vbat_deep_thres,vbat_suspend_thres);

}

AN-21112300-E2 267 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Considering the working voltage of MCU and the working voltage of flash, if the Demo is set below 1.8V,
the chip will directly enter suspend, and the chip below 1.8~2.0V will directly enter deepsleep, and once the
chip is detected to be lower than 2.0V, it needs to wait until the voltage rises to 2.2V, the chip will resume
normal operation. Consider the following points in this design:

• At 1.8V, there is a risk that the voltage is lower than the flash operating voltage. When you wake up
after entering deepsleep, it may cause the flash to be abnormal and crash, so enter the suspend below
1.8V to ensure the safety of the chip;

• At 2.0V, when other modules are operated, the voltage may be pulled down and the flash will not
work normally. Therefore, it is necessary to enter deepsleep below 2.0V to ensure that the chip no
longer runs related modules;

• When there is a low voltage situation, need to restore to 2.2V in order to make other functions normal,
this is to ensure that the power supply voltage is confirmed in the charge and has a certain amount of
power, then start to restore the function can be safer.

The above is the timing detection voltage and management method in SDK Demo, users can refer to it for
design.

Note:

• About flash low-voltage protection, the threshold values that appear above are only reference values.
Customers have to assess the actual situation to modify these thresholds, such as single-layer boards,
power supply fluctuations and other factors, are to improve the safety threshold as appropriate.

8.3.2 Flash lock protection

In addition to the above-mentioned timing voltage detection and management solutions, it is strongly rec-
ommended that customers do Flash erase and write protection.This is because in some cases, even if the
low voltage detection result is safe, there is a small risk that the operation of each module in the application
layer after the detection will cause the Flash power supply voltage to be pulled down, resulting in the Flash
content being tampered when the Flash power supply voltage does not meet the conditions for real oper-
ation. Therefore, it is recommended that customers perform Flash erasing protection after the program is
started, so that even if there is a misoperation, the content of the Flash will be more secure.

Generally, it is recommended that customers only write-protect the part of the program (the front part of
Flash), so that the remaining Flash addresses can still be used for user-level data storage. Here we take
the SDK Sample project as an example to describe how to calculate the protection size and the protection
method.

8.3.2.1 Initialize write protection

a) Calculate the protection size: Before initialization, first calculate the size of the flash address to be
write-protected. The following figure is the list file compiled by 825x_ble_sample. According to the
knowledge in Chapter 8.1, the bin area and the area where the OTA is located in the flash need to be
protected, so it is low 256k.

b) Call flash_read_mid to determine the flash type, call the related function according to the result, and
pass in the corresponding parameters according to the size to be protected. Since the mid value read

AN-21112300-E2 268 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

back is 13325e, the functions to be used can be found in flash_mid13325e.c/ flash_mid13325e.h in
the drivers directory. From the previous calculations, it is known that the required protection area
is 256k lower, and the chip flash corresponds to the parameter of protecting the lower 256k, so the
implementation method is as follows:

Figure 8.2: “Write Protection by Flash Type”

8.3.2.2 Protection operations in the OTA process

In OTA, because the flash needs to be erased and written, if there is a write-protected operation when
power is on, it needs to be unlocked and protected during the OTA process. Flash unlock protection can be
performed in the OTA_START callback, the steps are as follows:

Step 1 First, register the callback function in the initialization function as follows:

blc_ota_registerOtaStartCmdCb (&flash_ota_start);

Step 2 In the callback function, call the corresponding function to unlock the protection according to the
flash type obtained before power-on:

void flash_ota_start(void)

{

switch(flash_lock_mid)

{

case 0x13325e:

flash_unlock_mid13325e();

break;

…
}

}

After the OTA ends, regardless of success or failure, the program will be re-run. Therefore, at the begin-
ning of the program, the program will be write-protected again by the flash_lock method described in the
previous section to form a closed loop to ensure the security of the application.

AN-21112300-E2 269 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

8.4 Internal Flash introduction

8.4.1 Impact of Flash access timing on BLE timing

8.4.1.1 Flash access timing

(1) Flash Operation Basic Timing

Figure 8.3: “Flash Operation Basic Timing”

The figure above shows a typical MCU accessing Flash timing. During MSCN pull-down, the data interaction
with Flash is completed through the level state change of MSDI and MSDO under the control of MCLK.

Flash access timing is the basic timing of Flash operations. The period of MSCN being pulled down is data
interaction, and it ends after being pulled up. All Flash functions are based on it, and complex Flash functions
can be divided into several basic sequence of Flash operations.

The basic timing of each Flash operation is relatively independent, and the next round of operations can
only be performed after one operation timing is completed.

(2) MCU hardware access to Flash

Firmware is stored in Flash, and the MCU execution program needs to read instructions and data from Flash
in advance. Combining with the introduction of section 2.1.2.1, we can see that the content that needs to be
read is the text segment and the “read only data” segment. The MCU reads the instructions on the Flash in
real time during the running process, so it will start the basic sequence of the Flash operation continuously.
This process is automatically controlled by the MCU hardware and the software does not participate.

If an interrupt occurs during the main_loop program, it enters irq_handler. Even if the programs in main_loop
and irq_handler are both in the text segment, there will be no Flash timing conflict because it is done by the
MCU hardware, which will do the relevant arbitration and control work.

(3) Software access to Flash

MCU hardware access to Flash only solves the problem of reading program instructions and “read only
data”. If you need to manually read, write, and erase the Flash, use the flash_read_page, flash_write_page,
flash_erase_sector and other APIs in the flash driver. Looking at the specific implementation of these APIs,
it can be seen that the software controls the basic timing of Flash operations, first pulling down MSCN, then
reading and writing data, and finally pulling up MSCN.

AN-21112300-E2 270 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(4) Flash access timing conflicts and solutions

Since the basic timing of Flash operation is an indivisible and destructive process, when software and MCU
hardware access Flash at the same time, there is a possibility of timing conflicts because software and MCU
hardware do not have coordination and arbitration mechanisms.

The scenario where this timing conflict occurs is that the software calls flash_read_page, flash_write_page,
flash_erase_sector and other APIs in main_loop, and when the MSCN is pulled low and data is being read
or written, an interrupt occurs and some instructions in the irq_handler are stored in the text segment, the
MCU hardware also starts a new basic timing for Flash operation, and this timing conflicts with the previous
timing in main_loop, causing errors such as MCU crash.

As shown in the figure below, when Software access to Flash ends, an interrupt occurs and responds, and
MCU hardware starts to access Flash. At this time, the result of Flash access will inevitably be wrong.

Figure 8.4: “Flash Timing Conflicts Caused by Interrupts”

Analyzing the conditions that must be met at the same time for timing conflicts, it can be concluded that
the methods for resolving the conflicts include the following:

a) Do not show any APIs for software manipulation of Flash timings in main_loop. this approach is not
feasible and the use of APIs such as flash_write_page will appear on both the SDK and the application.

b) All procedures in the irq_handler function are stored in the ramcode in advance, without relying on any
text segment or “read_only_data” segment. This method is not good either. It is limited by the Sram
size of 825x/827x chips, if all the interrupt codes are stored in ramcode, the Sram resources are not
enough. In addition, it is not easy to control this restriction for users, and it is not possible to ensure
that the user interrupt code is written so tightly.

AN-21112300-E2 271 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

c) In the several APIs of the software operating Flash timing, add protection, close the interrupt, and
prevent the irq_handler from responding. After the Flash access is over, the interrupt is resumed.

The Telink BLE SDK currently uses method 3, the Flash API to turn off interrupt protection. As shown in the
code below (several codes are omitted in between), use irq_disable to turn off interrupts and irq_restore to
restore them.

void flash_mspi_write_ram(unsigned char cmd, unsigned long addr, unsigned char addr_en, unsigned

char *data, unsigned long data_len)↪

{

unsigned char r = irq_disable();

…… //flash access

irq_restore(r);

}

The following diagram shows the principle of turning off the interrupt to protect the Flash access timing. The
interrupt is turned off when the software accesses Flash, and the interrupt occurs in the middle but does
not respond immediately (interrupt wait). When the software accesses Flash timing is all finished correctly,
the interrupt is turned back on, and the interrupt responds immediately at this time, and then the MCU
hardware accesses Flash.

Figure 8.5: “Proper inerrupt handling and flash operation”

AN-21112300-E2 272 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

8.4.1.2 Impact of Flash API on BLE timing

Previously introduced the use of Flash API to turn off the interrupt protection to solve the problem of timing
conflicts between software and hardware MCU access to Flash. Since turning off the interrupt will make all
interrupts unable to respond in real time, queuing to wait for the interrupt to resume and delay execution,
you need to consider the possible side effects of the delayed time.

(1) Impact of off interrupt on BLE timing

Combine the characteristics of BLE timing to introduce. The BTX and BRX state machines in the BLE con-
nection state in this SDK are all completed by interrupt tasks. BTX and BRX are similar implementations.
Take BRX of slave role as an example.

The processing of BRX timing is more complicated. Take the processing of RX IRQ when more data appears
in the BLE slave BRX as an example, as shown in the figure below. The SDK design requires the software to
respond to every RX IRQ, which can be delayed but cannot be discarded. If a certain RX IRQ is lost, the RX
packet that triggered this RX IRQ will also be lost, causing Linklayer packet loss errors.

Figure 8.6: “Flash Operation on Link Layer Risk”

In the figure, RX1 triggers RX IRQ 1 at t1, and RX2 triggers RX IRQ 2 at t2. If no close interrupt occurs, the
interrupt will respond in real time at t1 and t2, and the software correctly processes the RX packet.

The time difference between t1 and t2 is T_rx_irq, the off interrupt duration is T_irq_dis, T_irq_dis>
T_rx_irq.

AN-21112300-E2 273 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The off interrupt duration for all three cases IRQ disable case 1, IRQ disable case and IRQ disable case 3 is
T_irq_dis, but the starting point of the off interrupt and the relative time of t1 are not the same.

IRQ disable case 1, t3 turns off the interrupt, t4 resumes the interrupt. t3 < t1; t4 > t2. RX IRQ 1 fails to
respond at t1 and the interrupt is queued. RX IRQ 2 is triggered at t2, overwriting RX IRQ1 (because there
can be only one RX IRQ in the interrupt wait queue), and RX IRQ 2 is queued and executed correctly at t4.
RX IRQ 1 corresponding to RX1 is lost and Linklayer errors out if RX1 is a valid packet.

IRQ disable case 2 and IRQ disable case 3, RX IRQ 1 and RX IRQ 2 are delayed, but they are not lost and no
error occurs.

An important conclusion can be drawn from the analysis of the above examples:

When the interrupt closing duration is greater than a certain safety threshold, there may be a risk of Linklayer
error.

This safety threshold is related to the timing design of the Linklayer in the SDK and the timing characteristics
of the BLE Spec. The T_rx_irq in the scale is much more complicated. The specific details will not be
introduced in detail, and the safety threshold is directly given here as 220us.

The same is the off-interrupt duration T_irq_dis. In the above example, IRQ disable case 2 and IRQ disable
case 3 are different. Because the off interrupt occurs at different time points, RX IRQ 1 or RX IRQ2 will be
delayed in response, and RX IRQ 2 will not overwrite packet loss caused by RX IRQ1. Even with IRQ disable
case 1, if RX1 and RX2 are irrelevant empty packets, packet loss will not cause any errors.

When the interrupt off duration is greater than 220us, it is not certain that an error will occur. Multiple
conditions must be met at the same time to trigger an error. These conditions include: a long time to turn
off the interrupt, and the time point of the RX IRQ occurrence match a specific relationship, more data
appears in BTX or BRX, the two RX packets that continuously trigger RX IRQ are valid data packets rather
than empty packets, and so on. So the final conclusion is:

There is a risk of linlayer errors when the interrupt off duration is greater than 220us, and the probability is
very low.

The design of BLE SDK Linklayer aims at zero risk, that is, the interrupt closing duration is always less than
220us, and no chance of error is given.

Here is an additional introduction to the problem of RX packet loss in the above example. In the production of
Telink BLE SDK, we often encounter this problem with customer feedback: under the premise that encryption
is turned on, we see that the device sends a terminate packet with a reason of 0x3D (MIC_FAILURE), which
leads to disconnection.

The above analysis shows that a long interrupt off time will cause the RX IRQ to be delayed for too long
and then overwritten, and eventually lost packets. However, the SDK will handle the interrupt shutdown
time correctly, which will be described in detail later in the document. The more likely reason is that the
user uses other interrupts (such as Uart, USB, etc.), and the software execution time for these interrupts to
respond is too long, which will have the same effect as the interrupt shutdown, and will also delay the RX
IRQ. Here we limit the maximum safe time for a user interrupt execution to 100us.

(2) Impact of Flash API off interrupt protection on BLE timing

In order to avoid the timing conflict between software access to Flash and MCU hardware access to Flash,
the Flash API uses a method of turning off interrupts. When the interrupt closing duration is greater than
220us, there is a risk of error in Linklayer. In order to solve the contradiction between the two, it is necessary
to pay attention to the maximum time for the Flash API to close the interrupt.

AN-21112300-E2 274 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The affected BLE timing is connection state slave role and master role. System initialization and Advertiisng
state in mainloop are not affected. In the mainloop connection state, the following three Flash APIs are
mainly concerned: flash_read_page, flash_write_page, flash_erase_sector. Other Flash APIs are generally
not used or used during initialization.

a) flash_read_page

It has been tested and verified that when the number of bytes read by flash_read_page at a time does not
exceed 64, the time is very safe, within 220us. After this value is exceeded, there will be a certain risk.

It is strongly recommended that users read up to 64 bytes when using flash_read_page to read Flash. If it
exceeds 64 bytes, it needs to be split into multiple calls to flash_read_page to achieve.

b) flash_erase_sector

The time of flash_erase_sector is generally in the order of 10ms ~ 100ms, which is far more than 220us.
So this SDK requires users not to call flash_erase_sector in the BLE connection state. If you call this API
directly, the connection will definitely go wrong.

We recommend that users use other methods to replace the design of flash_erase_sector. For example,
some applications are designed to repeatedly update some key information stored in Flash. In the design,
you can consider selecting a larger area and using flash_write_page to continuously extend back.

For BLE slave applications, if the unavoidable flash_erase_sector occurs occasionally, you can use the Conn
state Slave role timing protection mechanism to avoid it. Please refer to the details of this document.

Note that because the timing protection mechanism is very complicated, it is not recommended to use
the high-frequency flash_erase_sector as it cannot guarantee the stability of the mechanism of repeated
connection calls when the BLE slave is connected. It is recommended that users avoid this situation as much
as possible by design.

c) flash_write_page

The flash_write_page time is affected by many key factors, including: Flash type, Flash technology, write
byte number, high and low temperature, etc. The following is a detailed description from several types of
internal Flash.

8.4.2 Use of internal Flash API

According to the previous section, flash_write_page in Flash API is related to the type of internal Flash. This
section describes in detail with several kinds of internal Flash already supported by 825x and 827x.

Note:

• PUYA Flash will not be mass-produced on the 825x and 827x for the time being, but it retains the
introduction of related compatibility principles to deepen users’ understanding of BLE timing.

8.4.2.1 GD Flash

GD Flash belongs to the ETOX process and is the earliest internal Flash supported by 825x and 827x.

The consumption time of flash_write_page is related to the parameter len (i.e. the number of bytes written
at once), which is close to a positive relationship. After detailed testing and analysis within Telink, it is found

AN-21112300-E2 275 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

that when the number of bytes is less than or equal to 16, the writing time can be stabilized within 220us;
if the number of bytes exceeds 16, there will be risks.

For GD Flash, the maximum number of bytes written by flash_write_page is required to be 16. If it exceeds
16, such as 32, it can be split into two and write 16 bytes.

In the SDK design, there are two places involving flash_write_page. One is SMP storage configuration
information, which uses 16 bytes per write; the other is when OTA writes new firmware, it also uses 16
bytes per write. In the design of OTA long package, for example, each package of 240 bytes of valid data
is divided into 15 writes (16*15=240).

It is strongly recommended that customers use flash_write_page to write at most 16 bytes each time,
otherwise there will be a risk of conflict with BLE timing.

8.4.2.2 Zbit Flash

Zbit Flash is ETOX process, flash_write_page time is similar to GD Flash, and the maximum number of bytes
written is limited to 16.

However, due to some characteristics of Zbit Flash itself, when the temperature rises, flash_write_page
consumes longer time. For this characteristic, the BLE SDK handles it as follows:

(1) For products with high-temperature application scenarios, the operations department will not send
customers chips with internal Zbit Flash. Please note this point as well.

(2) The SDK increases the power supply voltage of Flash where flash_write_page is involved (SMP stores
pairing information, OTA writes new firmware), which can prevent Zbit Flash write time from being
too long.

The measures in point 2 above are very important. Products that use Zbit Flash must ensure that the above
measures have taken effect.

The corresponding B85m single-connection SDK of the Handbook (including 825x and 827x series chips)
has added this measure to support Zbit FLash.

For several important historical versions of the historical 825x/827x BLE single connection SDK, the Telink
BLE Team released related patches to support Zbit Flash. Customers must update the patch to ensure
risk-free production.

8.4.2.3 PUYA Flash

The internal PUYA Flash added on 825x and 827x is Sonos process, flash_write_page time law and ETOX
process is very different.

Note:

• PUYA Flash will not be mass-produced on the 825x and 827x for the time being, but it retains the
introduction of related compatibility principles to deepen users’ understanding of BLE timing.

The flash with Sonos process does not support byte programming, only page programming.

For example, call flash_write_page to write a byte value of 0x5A to the address 0x1000. the internal
practice of Flash is to first read all the contents of the page corresponding to 0x1000 (0x1000 ~ 0x10FF

AN-21112300-E2 276 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

total 256 byte) out of the cache, then modify the first byte on the cache to 0x5A, and finally write all the
values of the entire page cache to the page 0x1000.

The problem caused by this mechanism is that whether the number of bytes written is 1, 2, 4, 8, or 200,
255, etc., the time consumed is similar to that of writing a page 256 byte, which takes about 2ms. But as
we said before, if the interrupt time exceeds 220us, the linlayer is at risk of error.

Since the Sonos process Flash write time of 2ms is much larger than the safety threshold of 220us, it needs
to be solved by doing circumvention solutions in the Linklayer design.

When users need to write Flash, they must call the flash_write_page function. flash_write_page is a function
in the old version of the SDK, and a pointer in the new version of the SDK. This pointer points to the
flash_write_data function by default, which is aimed at the implementation of flash_write_page of GD and
Zbit Flash.

BLE SDK detects the Flash type during initialization, and if it is found to be Sonos process Flash, it will
modify the flash_write_page pointer to another special function that interacts with Linklayer’s timing design
to actively avoid the BTX, BRX timings, so that the write flash action never coincides with BTX and BRX in
time. This design is not visible to the user in the underlying SDK implementation, so the user can use
flash_write_page without worry.

The following is an example to explain BRX as an example, BTX principle is similar. The simplified model is
shown in the figure below.

Assume that the execution time of flash_write_page is the standard 2ms (the actual time is not so standard,
it is far more complicated than it, and the SDK internally deals with time fluctuations).

Figure 8.7: “Sonos Process Flash Action Before and After The Reception Window”

AN-21112300-E2 277 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

In the figure, write_req refers to calling the flash_write_page function in the software, write_wait refers
to a safe time point when the BRX state machine is idle (a while loop is used in the software to read),
write_execute is to call the basic timing of the Flash operation to complete the flash write. Write_done
indicates a successful write. The total time consumed by flash_write_pag as seen by the application layer
is the schedule from write_req to write_done.

Write flash case 1, write_req occurs at a very safe time outside of BRX, execute wrire_execute directly. The
flash_write_pag time seen by the application layer is 2ms.

Write flash case 2, write_req is in the event of BRX, if write_execute at this time, BRX timing may be
broken and packet loss may occur, so execute write_wait first, and then write_execute after BRX ends. The
flash_write_pag time seen by the application layer is the write_wait time plus the write_execute time (2ms),
and the write wait time is related to the actual running time of the BRX.

Write flash case 3. Although write_req is not in BRX timing, because there is a BRX that will respond within
2ms in the future, if write_execute directly consumes 2ms, the BRX start time will be postponed, causing
the BLE slave to receive the packet time error. Therefore, it is considered that write_req is an unsafe point
in time, execute write_wait until the end of BRX and then write_execute. The flash_write_pag time seen
by the application layer is the write_wait time plus the write_execute time (2ms), and the write wait time
is related to the actual running time of the BRX.

From the above introduction, when using the flash_write_page function on PUYA Flash, the write flash
action is not executed immediately, and it may take a short time to wait before the write action is executed.
If flash_write_page is called frequently and frequently, the efficiency of the program may decrease, which is
a side effect. The wasted waiting time is the time consumed by write_wait. The figure below is an example
of flash_write_page time in an extreme case. At this time, there is a large amount of more data in BRX,
which leads to a very long BRX duration.

Figure 8.8: “Flash write action delay due to more data”

AN-21112300-E2 278 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

9 Key Scan

Telink provides a keyscan architecture based on row/column scan to detect and process key state update
(press/release). User can directly use the demo code, or realize the function by developing his own code.

9.1 Key Matrix

Figure shows a 5*6 Key matrix which supports up to 30 buttons. Five drive pins (Row0~Row4) serve to
output drive level, while six scan pins (CoL0~CoL5) serve to scan for key press in current column.

Figure 9.1: “Row Column Key Matrix”

The Telink EVK board is a 2*2 keyboard matrix. In the actual product application, more keys may be needed,
such as remote control switches, etc. The following is an example of Telink’s demo board providing remote

AN-21112300-E2 279 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

control. Combined with the above figure, the keyscan related configuration in app_config.h is explained in
detail as follows.

According to the real hardware circuit, on Telink demo board, Row0~Row4 pins are PE2, PB4, PB5, PE1 and
PE4, CoL0~CoL5 pins are PB1, PB0, PA4, PA0, PE6 and PE5.

Define drive pin array and scan pin array:

#define KB_DRIVE_PINS {GPIO_PE2, GPIO_PB4, GPIO_PB5, GPIO_PE1, GPIO_PE4}

#define KB_SCAN_PINS {GPIO_PB1, GPIO_PB0, GPIO_PA4, GPIO_PA0, GPIO_PE6, GPIO_PE5}

Keyscan adopts analog pull-up/pull-down resistor of GPIO: drive pins use 100K pull-down resistor, and scan
pins use 10K pull-up resistor. When no button is pressed, scan pins act as input GPIOs and read high level
due to 10K pull-up resistor. When key scan starts, drive pins output low level; if low level is detected on
a scan pin, it indicates there’s button pressed in current column (Note: Drive pins are not in float state, if
output is not enabled, scan pins still detect high level due to voltage division of 100K and 10K resistor.)

Define valid voltage level detected on scan pins when drive pins output low level in Row/Column scan:

#define KB_LINE_HIGH_VALID 0

Define pull-up resistor for scan pins and pull-down resistor for drive pins:

#define MATRIX_ROW_PULL PM_PIN_PULLDOWN_100K

#define MATRIX_COL_PULL PM_PIN_PULLUP_10K

#define PULL_WAKEUP_SRC_PE2 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PB4 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PB5 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PE1 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PE4 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PB1 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PB0 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PA4 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PA0 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PE6 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PE5 MATRIX_COL_PULL

Since “ie” of general GPIOs is set as 0 by default in gpio_init, to read level on scan pins, corresponding “ie”
should be enabled.

#define PB1_INPUT_ENABLE 1

#define PB0_INPUT_ENABLE 1

#define PA4_INPUT_ENABLE 1

#define PA0_INPUT_ENABLE 1

#define PE6_INPUT_ENABLE 1

#define PE5_INPUT_ENABLE 1

AN-21112300-E2 280 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

When MCU enters sleep mode, it’s needed to configure PAD GPIO wakeup. Set drive pins as high level
wakeup; when there’s button pressed, drive pin reads high level, which is 10/11 VCC. To read level state of
drive pins, corresponding “ie” should be enabled.

#define PE2_INPUT_ENABLE 1

#define PB4_INPUT_ENABLE 1

#define PB5_INPUT_ENABLE 1

#define PE1_INPUT_ENABLE 1

#define PE4_INPUT_ENABLE 1

9.2 Keyscan and Keymap

9.2.1 Keyscan

After configuration as shown above, the function below is invoked in main_loop to implement keyscan.

u32 kb_scan_key (int numlock_status, int read_key)

numlock_status: Generally set as 0 when invoked in main_loop. Set as “KB_NUMLOCK_STATUS_POWERON”
only for fast keyscan after wakeup from deepsleep (corresponding to DEEPBACK_FAST_KEYSCAN_ENABLE).

read_key: Buffer processing for key values, generally not used and set as 1 (if it’s set as 0, key values will
be pushed into buffer and not reported to upper layer).

The return value is used to inform user whether matrix keyboard update is detected by current scan: if yes,
return 1; otherwise return 0.

The “kb_scan_key” is invoked in main_loop. As in BLE timing sequence, each main_loop is an adv_interval
or conn_interval. In advertising state (suppose adv_interval is 30ms), key scan is processed once for each
30ms; in connection state (suppose conn_interval is 10ms), key scan is processed once for each 10ms.

In theory, when button states in matrix are different during two adjacent key scans, it’s considered as an
update.

In actual code, a debounce filtering processing is enabled: It will be considered as a valid update, only
when button states stay the same during two adjacent key scans, but different with the latest stored matrix
keyboard state. “1” will be returned by the function to indicate valid update, matrix keyboard state will
be indicated by the structure “kb_event”, and current button state will be updated to the newest matrix
keyboard state. Corresponding code in keyboard.c is shown as below:

unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

The newest button state means press or release state set of all buttons in the matrix. When power on,
initial matrix keyboard state shows all buttons are “released” by default, and debounce filtering processing
is enabled. As long as valid update occurs to the button state, “1” will be returned, otherwise “0” will be
returned.

For example: press a button, a valid update is returned; release a button, a valid update is returned; press
another button with a button held, a valid update is returned; press the third button with two buttons held,
a valid update is returned; release a button of the two pressed buttons, a valid update is returned……

AN-21112300-E2 281 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

9.2.2 Keymap & kb_event

If a valid button state update is detected by invoking the “kb_scan_key”, user can obtain current button
state via a global structure variable “kb_event”.

#define KB_RETURN_KEY_MAX 6

typedef struct{

u8 cnt;

u8 ctrl_key;

u8 keycode[KB_RETURN_KEY_MAX];

}kb_data_t;

kb_data_t kb_event;

The “kb_event” consists of 8 bytes:

• “cnt” serves to indicate valid count number of pressed buttons currently;

• “ctrl_key” is not used generally except for standard USB HID keyboard (user is not allowed to set
keycode in keymap as 0xe0~0xe7).

• keycode[6] indicates keycode of up to six pressed buttons can be stored (if more than six buttons are
pressed actually, only the former six can be reflected).

Keycode definition of all buttons in the “app_config.h” is shown as below:

#define KB_MAP_NORMAL {\

VK_B, CR_POWER, VK_NONE, VK_C, CR_HOME, \

VOICE, VK_NONE, VK_NONE, CR_VOL_UP, CR_VOL_DN, \

VK_2, VK_RIGHT, CR_VOL_DN, VK_3, VK_1, \

VK_5, VK_ENTER, CR_VOL_UP, VK_6, VK_4, \

VK_8, VK_DOWN, VK_UP, VK_9, VK_7, \

VK_0, CR_BACK, VK_LEFT, CR_VOL_MUTE, CR_MENU, }

The keymap follows the format of 5*6 matrix structure. The keycode of pressed button can be configured
accordingly, for example, the keycode of the button at the cross of Row0 and CoL0 is “VK_B”.

In the “kb_scan_key” function, the “kb_event.cnt” will be cleared before each scan, while the array
“kb_event.keycode[]” won’t be cleared automatically. Whenever “1” is returned to indicate valid update,
the “kb_event.cnt” will be used to check current valid count number of pressed buttons.

a) If current kb_event.cnt = 0, previous valid matrix state “kb_event.cnt” must be uncertain non-zero
value; the update must be button release, but the number of released button is uncertain. Data in
kb_event.keycode[] (if available) is invalid.

b) If current kb_event.cnt = 1, the previous kb_event.cnt indicates button state update. If previous
kb_event.cnt is 0, it indicates the update is one button is pressed; if previous kb_event.cnt is 2, it
indicates the update is one of the two pressed buttons is released; if previous kb_event.cnt is 3, it in-
dicates the update is two of the three pressed buttons are released……kb_event.keycode[0] indicates
the key value of currently pressed button. The subsequent keycodes are negligible.

AN-21112300-E2 282 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

c) If current kb_event.cnt = 2, the previous kb_event.cnt indicates button state update. If previous
kb_event.cnt is 0, it indicates the update is two buttons are pressed at the same time; if previous
kb_event.cnt is 1, it indicates the update is another button is pressed with one button held; if pre-
vious kb_event.cnt is 3, it indicates the update is one of the three pressed buttons is released……
kb_event.keycode[0] and kb_event.keycode[1] indicate key values of the two pressed buttons cur-
rently. The subsequent keycodes are negligible.

User can manually clear the “kb_event.keycode” before each key scan, so that it can be used to check
whether valid update occurs, as shown in the example below.

In the sample code, when kb_event.keycode[0] is not zero, it’s considered a button is pressed, but the code
won’t check further complex cases, such as whether two buttons are pressed at the same time or one of
the two pressed buttons is released.

kb_event.keycode[0] = 0;//clear keycode[0]

int det_key = kb_scan_key (0, 1);

if (det_key)

{

key_not_released = 1;

u8 key0 = kb_event.keycode[0];

if (kb_event.cnt == 2) //two key press, do not process

{

}

else if(kb_event.cnt == 1)

{

key_buf[2] = key0;

//send key press

bls_att_pushNotifyData (HID_NORMAL_KB_REPORT_INPUT_DP_H, key_buf, 8);

}

else //key release

{

key_not_released = 0;

key_buf[2] = 0;

//send key release

bls_att_pushNotifyData (HID_NORMAL_KB_REPORT_INPUT_DP_H, key_buf, 8);

}

}

9.3 Keyscan Flow

When “kb_scan_key” is invoked, a basic keyscan flow is shown as below:

(1) Initial full scan through the whole matrix.

All drive pins output drive level (0). Meanwhile read all scan pins, check for valid level, and record the column
on which valid level is read. (The scan_pin_need is used to mark valid column number.)

AN-21112300-E2 283 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

If row-by-row scan is directly adopted without initial full scan through the whole matrix, each time all rows
should be scanned at least, even if no button is pressed. To save scan time, initial full scan through the
whole matrix can be added, thus it will directly exit keyscan if no button press is detected on any column.

The first full scan codes:

scan_pin_need = kb_key_pressed (gpio);

In the “kb_key_pressed” function, all rows output low level, and stabilized level of scan pins will be read after
20us delay. A release_cnt is set as 6; if a detection shows all pressed buttons in the matrix are released,
it won’t consider no button is pressed and stop row-by-row scan immediately, but buffers for six frames.
If six successive detections show buttons are all released, it will stop row-by-row scan. Thus key debounce
processing is realized.

(2) Scan row by row according to full scan result through the whole matrix.

If button press is detected by full scan, row-by-row scan is started: Drive pins (ROW0~ROW4) output valid
drive level row by row; read level on columns, and find the pressed button. Following is related code:

u32 pressed_matrix[ARRAY_SIZE(drive_pins)] = {0};

kb_scan_row (0, gpio);

for (int i=0; i<=ARRAY_SIZE(drive_pins); i++) {

u32 r = kb_scan_row (i < ARRAY_SIZE(drive_pins) ? i : 0, gpio);

if (i) {

pressed_matrix[i - 1] = r;

}

}

The following methods are used to optimize code execution time for row-by-row scan.

• When a row outputs drive level, it’s not needed to read level of all columns (CoL0~CoL5). Since the
scan_pin_need marks valid column number, user can read the marked columns only.

• After a row outputs drive level, a 20us or so delay is needed to read stabilized level of scan pins, and
a buffer processing is used to utilize the waiting duration.

The array variable “u32 pressed_matrix[5]” (up to 40 columns are supported) is used to store final matrix
keyboard state: pressed_matrix[0] bit0~bit5 mark button state on CoL0~CoL5 crossed with Row0, ……,
pressed_matrix[4] bit0~bit5 mark button state on CoL0~CoL5 crossed with Row4.

(3) Debounce filtering for pressed_matrix[].

Corresponding codes:

unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

u32 key_changed = key_debounce_filter(pressed_matrix, (numlock_status &

KB_NUMLOCK_STATUS_POWERON) ? 0 : 1);↪

During fast keyscan after wakeup from deepsleep, “numlock_status” equals “KB_NUMLOCK_STATUS_POWERON”;
the “filt_en” is set as 0 to skip filtering and fast obtain key values.

AN-21112300-E2 284 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

In other cases, the “filt_en” is set as 1 to enable filtering. Only when pressed_matrix[] stays the same during
two adjacent key scans, but different from the latest valid pressed_matrix[], will the “key_changed” set as
1 to indicate valid update in matrix keyboard.

(4) Buffer processing for pressed_matrix[].

Push pressed_matrix[] into buffer. When the “read_key” in “kb_scan_key (int numlock_status, int read_key)”
is set as 1, the data in the buffer will be read out immediately. When the “read_key” is set as 0, the buffer
stores the data without notification to the upper layer; the buffered data won’t be read until the read_key
is 1.

In current SDK, the “read_key” is fixed as 1, i.e. the buffer does not take effect actually.

(5) According to pressed_matrix[], look up the KB_MAP_NORMAL table and return key values.

Corresponding functions are “kb_remap_key_code” and “kb_remap_key_row”.

9.4 Deepsleep wake_up fast keyscan

When the Slave device enters deepsleep while it is connected, it is woken up by a keystroke. After waking
up, the program starts from the beginning and has to send broadcast packets in main_loop after user_init
and wait until it is connected before sending the value of the key to ble master.

The BLE SDK has already done the relevant processing to make the deep back as fast as possible, but this
time may still reach the 100 ms level (e.g. 300 ms). In order to prevent the wake up keystroke from being
lost, a fast keyscan and data caching process is done in the SDK。
The fast keyscan is because the MCU will consume some time to re-initialize from the flash load program
after the key wakes up, and the time of keyscan in main_loop will also take some more time due to the
anti-jitter filter processing, which may lead to the loss of this key.

The data is cached because if valid key data is scanned in the broadcast state, after pushing to the BLE TX
fifo, the data in the connected state will be cleared again.

The relevant code is controlled by the macro DEEPBACK_FAST_KEYSCAN_ENABLE in app_config.h.

#define DEEPBACK_FAST_KEYSCAN_ENABLE 1

void deep_wakeup_proc(void)

{

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

if(analog_read(DEEP_ANA_REG0) == CONN_DEEP_FLG){

if(kb_scan_key (KB_NUMLOCK_STATUS_POWERON,1) && kb_event.cnt){

deepback_key_state = DEEPBACK_KEY_CACHE;

key_not_released = 1;

memcpy(&kb_event_cache,&kb_event,sizeof(kb_event));

}

}

#endif

}

AN-21112300-E2 285 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

When initializing, scan the key before user_init, read the deep non-power-off analog register to detect that
it is connected state into deep wakeup, call kb_scan_key. Then do not start the anti-jitter filtering process,
and directly get the key state of the whole matrix currently read. If the scan finds that a key is pressed (the
key change is returned and kb_event.cnt is not 0), the kb_event variable is copied to the cache variable
kb_event_cache.

Add deepback_pre_proc and deepback_post_proc processing to the keyscan of main_loop.

void proc_keyboard (u8 e, u8 *p)

{

kb_event.keycode[0] = 0;

int det_key = kb_scan_key (0, 1);

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

if(deepback_key_state != DEEPBACK_KEY_IDLE){

deepback_pre_proc(&det_key);

}

#endif

if (det_key){

key_change_proc();

}

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

if(deepback_key_state != DEEPBACK_KEY_IDLE){

deepback_post_proc();

}

#endif

}

The deepback_pre_proc processing is to wait until the slave and master are connected, and when there is
no key state change in a certain kb_key_scan, the value of the previously cached kb_event_cache is used
as the current latest key change, which realizes the cache processing of fast sweep key value.

Pay attention to the processing of key release: When manually setting the key value, determine whether
the current matrix key is still pressed. If a key is pressed, there is no need to add a manual release, because
a release action will be generated when the actual key is released; if the current key has been released, mark
a manual release later, otherwise there may be a cached key event is always valid and cannot be released.

The deepback_post_proc processing is to decide whether to put a key release event in the ble TX fifo ac-
cording to whether there is a manual release event left in the deepback_pre_proc.

9.5 Repeat Key Processing

The most basic keyscan described above only generates a change event when the state of a key is changed
and reads the current key value via kb_event, but it is not possible to implement the repeat key function.
When a key is pressed all the time, a key value needs to be sent at regular intervals.

The “repeat key” function is masked by default. By configuring related macros in the “app_config.h”, this
function can be controlled correspondingly.

AN-21112300-E2 286 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define KB_REPEAT_KEY_ENABLE 0

#define KB_REPEAT_KEY_INTERVAL_MS 200

#define KB_REPEAT_KEY_NUM 1

#define KB_MAP_REPEAT {VK_1, }

(1) KB_REPEAT_KEY_ENABLE

This macro serves to enable or mask the repeat key function. To use this function, first set “KB_REPEAT_KEY_ENABLE”
as 1.

(2) KB_REPEAT_KEY_INTERVAL_MS

This macro serves to set the repeat interval time. For example, if it’s set as 200ms, it indicates when a
button is held, kb_key_scan will return an update with the interval of 200ms. Current button state will be
available in kb_event.

(3) KB_REPEAT_KEY_NUM & KB_MAP_REPEAT

The two macros serve to define current repeat key values: KB_REPEAT_KEY_NUM specifies the number of
keycodes, while the KB_MAP_REPEAT defines a map to specify all repeat keycodes. Note that the keycodes
in the KB_MAP_REPEAT must be the values in the KB_MAP_NORMAL.

Following example shows a 6*6 matrix keyboard: by configuring the four macros, eight buttons including
UP, DOWN, LEFT, RIGHT, V+, V-, CHN+ and CHN- are set as repeat keys with repeat interval of 100ms, while
other buttons are set as non-repeat keys.

Figure 9.2: “Repeat Key Application Example”

User can search for the four macros in the project to locate the code about repeat key.

9.6 Stuck Key Processing

Stuck key processing is used to save power when one or multiple buttons of a remote control/keyboard is/are
pressed and held for a long time unexpectedly, for example a RC is pressed by a cup or ashtray. If keyscan
detects some button is pressed and held, without the stuck key processing, MCU won’t enter deepsleep or
other low power state since it always considers the button is not released.

Following are two related macros in the app_config.h:

AN-21112300-E2 287 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define STUCK_KEY_PROCESS_ENABLE 0

#define STUCK_KEY_ENTERDEEP_TIME 60//in s

By default the stuck key processing function is masked. User can set the “STUCK_KEY_PROCESS_ENABLE”
as 1 to enable this function.

The “STUCK_KEY_ENTERDEEP_TIME” serves to set the stuck key time: if it’s set as 60s, it indicates when
button state stays fixed for more than 60s with some button held, it’s considered as stuck key, and MCU
will enter deepsleep.

User can search for the macro “STUCK_KEY_PROCESS_ENABLE” to locate related code in the keyboard.c,
as shown below:

#if (STUCK_KEY_PROCESS_ENABLE)

u8 stuckKeyPress[ARRAY_SIZE(drive_pins)];

#endif

An u8-type array stuckKeyPress[5] is defined to record row(s) with stuck key in current key matrix. The
array value is obtained in the function “key_debounce_filter”.

Upper-layer processing is shown as below:

kb_event.keycode[0] = 0;

int det_key = kb_scan_key (0, 1);

if (det_key){

if(kb_event.cnt){ //key press

stuckKey_keyPressTime = clock_time() | 1;;

}

.......

}

For each button state update, when button press is detected (i.e. kb_event.cnt is non-zero value), the
“stuckKey_keyPressTime” is used to record the time for the latest button press state.

Processing in the “blt_pm_proc” is shown as below:

#if (STUCK_KEY_PROCESS_ENABLE)

if(key_not_released && clock_time_exceed(stuckKey_keyPressTime,

STUCK_KEY_ENTERDEEP_TIME*1000000)){↪

u32 pin[] = KB_DRIVE_PINS;

for (u8 i = 0; i < ARRAY_SIZE(pin); i ++)

{

extern u8 stuckKeyPress[];

if(stuckKeyPress[i])

continue;

cpu_set_gpio_wakeup (pin[i],0,1);

}

AN-21112300-E2 288 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

…… if(sendTerminate_before_enterDeep == 1){ //sending Terminate and wait for ack before enter

deepsleep↪

if(user_task_flg){ //detect key Press again, can not enter deep now

sendTerminate_before_enterDeep = 0;

bls_ll_setAdvEnable(BLC_ADV_ENABLE); //enable adv again

}

}

else if(sendTerminate_before_enterDeep == 2){ //Terminate OK

cpu_sleep_wakeup(DEEPSLEEP_MODE, PM_WAKEUP_PAD, 0); //deepSleep

}}#endif

Determine whether the time of the most recent key press has exceeded 60s continuously. If it exceeds, it
is considered that the stuck key processing has occurred. According to the stuckKeyPress[] of the bottom
layer, all the row numbers where the stuck key occurs are obtained, and the original high-level PAD wake-up
deepsleep is changed to the low-level PAD wake-up deepsleep.

The reason for the modification is that when the key is pressed, the drive pin on the corresponding line
reads a high level of 10/11 VCC. At this time, it is impossible to enter deepsleep because it is already high.
As long as you enter deepsleep, it will immediately Wake up by this high level; after modifying it to low level,
you can enter deepsleep normally, and when the button is released, the level of the drive pin on the row
changes to a low level of 100K pull-down, releasing the button can wake up the entire MCU.

AN-21112300-E2 289 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

10 LED Management

10.1 LED task related functions

The source code about LED management is available in vendor/common/blt_led.c of this BLE SDK for user
reference. User can directly include the “vendor/common/blt_led.h” into his C file.

User needs to invoke the following three functions:

void device_led_init(u32 gpio,u8 polarity);

int device_led_setup(led_cfg_t led_cfg);

static inline void device_led_process(void);

During initialization, the “device_led_init(u32 gpio,u8 polarity)” is used to set current GPIO and polarity
corresponding to LED. If “polarity” is set as 1, it indicates LED will be turned on when GPIO outputs high
level; if “polarity” is set as 0, it indicates LED will be turned on when GPIO outputs low level.

The “device_led_process” function is added at UI Entry of main_loop. It’s used to check whether LED task
is not finished (DEVICE_LED_BUSY). If yes, MCU will carry out corresponding LED task operation.

10.2 LED Task Configuration and Management

10.2.1 LED Event Definition

The following structure serves to define a LED event.

typedef struct{

unsigned short onTime_ms;

unsigned short offTime_ms;

unsigned char repeatCount;

unsigned char priority;

} led_cfg_t;

The unsigned short int type “onTime_ms” and “offTime_ms” specify light on and off time (unit: ms) for
current LED event, respectively. The two variables can reach the maximum value 65535.

The unsigned char type “repeatCount” specifies blinking times (i.e. repeat times for light on and off action
specified by the “onTime_ms” and “offTime_ms”). The variable can reach the maximum value 255.

The “priority” specifies the priority level for current LED event.

To define a LED event when the LED always stays on/off, set the “repeatCount” as 255(0xff), set “on-
Time_ms”/“offTime_ms” as 0 or non-zero correspondingly.

LED event examples:

(1) Blink for 3s with 1Hz frequency: keep on for 500ms, stay off for 500ms, and repeat for 3 times.

AN-21112300-E2 290 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

led_cfg_t led_event1 = {500, 500 , 3, 0x00};

(2) Blink for 50s with 4Hz frequency: keep on for 125ms, stay off for 125ms, and repeat for 200 times.

led_cfg_t led_event2 = {125, 125 , 200, 0x00};

(3) Always on: onTime_ms is non-zero, offTime_ms is zero, and repeatCount is 0xff.

led_cfg_t led_event3 = {100, 0 , 0xff, 0x00};

(4) Always off: onTime_ms is zero, offTime_ms is non-zero, and repeatCount is 0xff.

led_cfg_t led_event4 = {0, 100, 0xff, 0x00};

(5) Keep on for 3s, and then turn off: onTime_ms is 1000, offTime_ms is 0, and repeatCount is 0x3.

led_cfg_t led_event5 = {1000, 0, 3, 0x00};

The “device_led_setup” can be invoked to deliver a led_event to LED task management.

device_led_setup(led_event1);

10.2.2 LED Event Priority

User can define multiple LED events in the SDK, however, only a LED event is allowed to be executed at the
same time.

No task list is set for the simple LED management: When LED is idle, LED will accept any LED event delivered
by invoking the “device_led_setup”. When LED is busy with a LED event (old LED event), if another event
(new LED event) comes, MCU will compare priority level of the two LED events; if the new LED event has
higher priority level, the old LED event will be discarded and MCU starts to execute the new LED event; if
the new LED event has the same or lower priority level, MCU continues executing the old LED event, while
the new LED event will be completely discarded, rather than buffered.

By defining LED events with different priority levels, user can realize corresponding LED indicating effect.

Since inquiry scheme is used for LED management, MCU should not enter long suspend (e.g. 10ms * 50 =
500ms) with latency enabled and LED task ongoing (DEVICE_LED_BUSY); otherwise LED event with small
onTime_ms value (e.g. 250ms) won’t be responded in time, thus LED blinking effect will be influenced.

#define DEVICE_LED_BUSY (device_led.repeatCount)

The corresponding processing is needed to add in blt_pm_proc, as shown below:

AN-21112300-E2 291 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

user_task_flg = scan_pin_need || key_not_released || DEVICE_LED_BUSY;

if(user_task_flg){

bls_pm_setManualLatency(0); // manually disable latency

}

AN-21112300-E2 292 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

11 Software Timer

Telink BLE SDK supplies source code of blt software timer demo for user reference on timer task. User can
directly use this timer or modify as needed.

The source code are available in “vendor/common/blt_soft_timer.c” and “blt_soft_timer.h”. To use this
timer, the macro below should be set as 1.

#define BLT_SOFTWARE_TIMER_ENABLE 0 //enable or disable

Since blt software timer is inquiry timer based on system tick, it cannot reach the accuracy of hardware
timer, and it should be continuously inquired during main_loop.

The blt soft timer applies to the use scenarios with timing value more than 5ms and without high requirement
for time error.

Its key feature is: This timer will be inquired during main_loop, and it ensures MCU can wake up in time
from suspend and execute timer task. This design is implemented based on “Timer wakeup by Application
layer” (section 4.5 Timer wakeup by Application Layer).

The current design can run up to four timers, and maximum timer number is modifiable via the macro
below:

#define MAX_TIMER_NUM 4 //timer max number

11.1 Timer Initialization

The API below is used for blt software timer initialization:

void blt_soft_timer_init(void);

Timer initialization only registers “blt_soft_timer_process” as callback function of APP layer wakeup in ad-
vance.

void blt_soft_timer_init(void){

bls_pm_registerAppWakeupLowPowerCb(blt_soft_timer_process);

}

11.2 Timer Inquiry Processing

The function “blt_soft_timer_process” serves to implement inquiry processing of blt software timer.

void blt_soft_timer_process(int type);

AN-21112300-E2 293 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

On one hand, main_loop should always invoke this function in the location as shown in the figure below.
On the other hand, this function must be registered as callback function of APP layer wakeup in advance.
Whenever MCU is woke up from suspend in advance by timer, this function will be quickly executed to
process timer task.

_attribute_ram_code_ void main_loop (void)

{

tick_loop++;

#if (FEATURE_TEST_MODE == TEST_USER_BLT_SOFT_TIMER)

blt_soft_timer_process(MAINLOOP_ENTRY);

#endif

blt_sdk_main_loop();

}

The parameter “type” of the “blt_soft_timer_process” indicates two cases to enter this function: If “type” is
0, it indicates entering this function via inquiry in main_loop; if “type” is 1, it indicates entering this function
when MCU is woke up in advance by timer.

#define MAIN_LOOP_ENTRY 0

#define CALLBACK_ENTRY 1

The implementation of the “blt_soft_timer_process” is rather complex, and its basic principle is shown as
below:

(1) First check whether there is still user-defined timer in current timer table. If not, directly exit the
function and disable timer wakeup of APP layer; if there’s timer task, continue the flow.

if(!blt_timer.currentNum){

bls_pm_setAppWakeupLowPower(0, 0); //disable

return;

}

(2) Check whether the nearest timer task is reached: if the task is not reached, exit the function; otherwise
continue the flow. Since the design will ensure all timers are time-ordered, herein it’s only needed to
check the nearest timer.

if(!blt_is_timer_expired(blt_timer.timer[0].t, now)){

return;

}

(3) Inquire all current timer tasks, and execute corresponding task as long as timer value is reached.

for(int i=0; i<blt_timer.currentNum; i++){

if(blt_is_timer_expired(blt_timer.timer[i].t ,now)){ //timer trigger

if(blt_timer.timer[i].cb == NULL){

}

AN-21112300-E2 294 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

else{

result = blt_timer.timer[i].cb();

if(result < 0){

blt_soft_timer_delete_by_index(i);

}

else if(result == 0){

change_flg = 1;

blt_timer.timer[i].t = now + blt_timer.timer[i].interval;

}

else{ //set new timer interval

change_flg = 1;

blt_timer.timer[i].interval = result * CLOCK_16M_SYS_TIMER_CLK_1US;

blt_timer.timer[i].t = now + blt_timer.timer[i].interval;

}

}

}

}

The code above shows processing of timer task function: If the return value of this function is less than 0,
this timer task will be deleted and won’t be responded; if the return value is 0, the previous timing value
will be retained; if the return value is more than 0, this return value will be used as the new timing cycle
(unit: us).

(4) In step 3, if tasks in timer task table change, the previous time sequence may be disturbed, and
re-ordering is needed.

if(change_flg){

blt_soft_timer_sort();

}

(5) If the nearest timer task will be responded within 3s (it can be changed to a value larger than 3s as
needed) from now, the response time will be set as wakeup time by APP layer in advance; otherwise
APP layer wakeup in advance will be disabled.

if((u32)(blt_timer.timer[0].t - now) < 3000 * CLOCK_16M_SYS_TIMER_CLK_1MS){

bls_pm_setAppWakeupLowPower(blt_timer.timer[0].t, 1);

}

else{

bls_pm_setAppWakeupLowPower(0, 0); //disable

}

11.3 Add Timer Task

The API below serves to add timer task.

AN-21112300-E2 295 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

typedef int (*blt_timer_callback_t)(void);

int blt_soft_timer_add(blt_timer_callback_t func, u32 interval_us);

“func”: timer task function.

“interval_us”: timing value (unit: us).

The int-type return value corresponds to three processing methods:

a) If the return value is less than 0, this task will be automatically deleted after execution. This feature
can be used to control the number of timer execution times.

b) If the return value is 0, the old interval_us will be used as timing cycle.

c) If the return value is more than 0, this return value will be used as new timing cycle (unit: us).

int blt_soft_timer_add(blt_timer_callback_t func, u32 interval_us)

{

int i;

u32 now = clock_time();

if(blt_timer.currentNum >= MAX_TIMER_NUM){ //timer full

return 0;

}

else{

blt_timer.timer[blt_timer.currentNum].cb = func;

blt_timer.timer[blt_timer.currentNum].interval = interval_us *

CLOCK_16M_SYS_TIMER_CLK_1US;↪

blt_timer.timer[blt_timer.currentNum].t = now +

blt_timer.timer[blt_timer.currentNum].interval;↪

blt_timer.currentNum ++;

blt_soft_timer_sort();

bls_pm_setAppWakeupLowPower(blt_timer.timer[0].t, 1);

return 1;

}

}

As shown in the implementation code, if timer number exceeds the maximum value, the adding operation
will fail. Whenever a new timer task is added, re-ordering must be implemented to ensure timer tasks are
time-ordered, while the index corresponding to the nearest timer task should be 0.

11.4 Delete Timer Task

As introduced above, timer task will be automatically deleted when the return value is less than 0. Except
for this case, the API below can be invoked to specify the timer task to be deleted.

int blt_soft_timer_delete(blt_timer_callback_t func);

AN-21112300-E2 296 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

11.5 Demo

For Demo code of blt soft timer, please refer to “TEST_USER_BLT_SOFT_TIMER” in feature_test.

int gpio_test0(void)

{

DBG_CHN3_TOGGLE;

return 0;

}

int gpio_test1(void)

{

DBG_CHN4_TOGGLE;

static u8 flg = 0;

flg = !flg;

if(flg){

return 7000;

}

else{

return 17000;

}

}

int gpio_test2(void)

{

DBG_CHN5_TOGGLE;

if(clock_time_exceed(0, 5000000)){

//return -1;

blt_soft_timer_delete(&gpio_test2);

}

return 0;

}

int gpio_test3(void)

{

DBG_CHN6_TOGGLE;

return 0;

}

Initialization:

blt_soft_timer_init();

blt_soft_timer_add(&gpio_test0, 23000);

blt_soft_timer_add(&gpio_test1, 7000);

blt_soft_timer_add(&gpio_test2, 13000);

blt_soft_timer_add(&gpio_test3, 27000);

Four timer tasks are defined with different features:

(1) gpio_test0: Toggle once for every 23ms.

AN-21112300-E2 297 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(2) gpio_test1: Switch between two timers of 7ms/17ms.

(3) gpio_test2: Delete itself after 5s, which can be implemented by invoking “blt_soft_timer_delete(&gpio_test2)”
or “return -1”.

(4) gpio_test3: Toggle once for every 27ms.

AN-21112300-E2 298 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12 IR

12.1 PWM Driver

By operating registers, hardware configurations for PWM are very simple. To improve execution efficiency
and save code size, related APIs, implemented via “static inline function”, are defined in the “pwm.h”.

12.1.1 PWM ID and Pin

B85 supports up to 12-channel PWM: PWM0 ~ PWM5 and PWM0_N ~ PWM5_N.

Six-channel PWM is defined in driver:

typedef enum {

PWM0_ID = 0,

PWM1_ID,

PWM2_ID,

PWM3_ID,

PWM4_ID,

PWM5_ID,

}pwm_id;

Only six channels PWM0~PWM5 are configured in software, while the other six channels PWM0_N~PWM5_N
are inverted output of PWM0~PWM5 waveform. For example: PWM0_N is inverted output of PWM0 wave-
form. When PWM0 is high level, PWM0_N is low level; When PWM0 is low level, PWM0_N is high level.
Therefore, as long as PWM0~PWM5 are configured, PWM0_N~PWM5_N are also configured.

IC pins corresponding to 12-channel PWM are shown as below:

Table 12.1: PWM pin allocation

PWMx Pin PWMx_n Pin

PWM0 PA2/PC1/PC2/PD5 PWM0_N PA0/PB3/PC4/PD5

PWM1 PA3/PC3 PWM1_N PC1/PD3

PWM2 PA4/PC4 PWM2_N PD4

PWM3 PB0/PD2 PWM3_N PC5

PWM4 PB1/PB4 PWM4_N PC0/PC6

PWM5 PB2/PB5 PWM5_N PC7

The “void gpio_set_func(GPIO_PinTypeDef pin, GPIO_FuncTypeDef func)” serves to set specific pin as PWM
function.

AN-21112300-E2 299 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

“pin”: GPIO pin corresponding to actual PWM channel

“func”: Must set as corresponding PWM function, i.e. AS_PWM0 ~ AS_PWM5_N in table above, as shown
below.

typedef enum{

……
AS_PWM0 = 20,

AS_PWM1 = 21,

AS_PWM2 = 22,

AS_PWM3 = 23,

AS_PWM4 = 24,

AS_PWM5 = 25,

AS_PWM0_N = 26,

AS_PWM1_N = 27,

AS_PWM2_N = 28,

AS_PWM3_N = 29,

AS_PWM4_N = 30,

AS_PWM5_N = 31,

}GPIO_FuncTypeDef;

For example, to use PA2 as PWM0:

gpio_set_func(GPIO_PA2, AS_PWM0);

12.1.2 PWM Clock

Use API void pwm_set_clk (int system_clock_hz, int pwm_clk) to set the PWM clock.

The system_clock_hz fills in the current system clock CLOCK_SYS_CLOCK_HZ (this macro is defined in
app_config.h);

The pwm_clk is the clock to be set, system_clock_hz must be divisible by pwm_clk to get the correct PWM
clock.

The PWM clock needs to be as large as possible to make the PWM waveform accurate, the maximum value
cannot exceed the system clock. It is recommended to set pwm_clk to CLOCK_SYS_CLOCK_HZ, that is:

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, CLOCK_SYS_CLOCK_HZ);

For example, the current system clock CLOCK_SYS_CLOCK_HZ is 16000000, and the PWM clock set above
is equal to the system clock, which is 16M.

If you want the PWM clock to be 8M, you can set it as follows: no matter how the system clock changes
(CLOCK_SYS_CLOCK_HZ is 16000000, 24000000 or 32000000), the PWM clock is 8M.

AN-21112300-E2 300 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, 8000000);

12.1.3 PWM Cycle and Duty

The basic unit of the PWM waveform is the PWM Signal Frame.

Configuring a PWM Signal Frame requires setting both the cycle and cmp parameters.

void pwm_set_cycle (pwm_id id, unsigned short cycle_tick) is used to set the PWM cycle, the unit is the
number of PWM clocks.

void pwm_set_cmp (pwm_id id, unsigned short cmp_tick) is used to set the PWM cmp, the unit is the number
of PWM clock.

The following API combines the above two APIs into one, which can improve the efficiency of settings.

void pwm_set_cycle_and_duty(pwm_id id, unsigned short cycle_tick, unsigned short cmp_tick)

Then for a PWM signal frame, calculate the PWM duty:

PWM duty = PWM cmp/PWM cycle

The figure below is equivalent to the result obtained by pwm_set_cycle_and_duty (PWM0_ID, 5, 2). The
cycle of a Signal Frame is 5 PWM clocks, the high level time is 2 PWM clocks, and the PWM duty is 40%.

Figure 12.1: “PWM cycle & duty”

For PWM0 ~ PWM5, the hardware will automatically put the high level in the front and the low level in the
back. If you want the low level first, there are several ways:

1) Use the corresponding PWM0_N ~ PWM5_N, which is the negative of PWM0 ~ PWM5.

2) Use the API static inline void pwm_revert (pwm_id id) to invert the PWM0 ~ PWM5 waveforms directly.

For example, the current pwm clock is 16MHz, you need to set the PWM period of 1ms, duty cycle of 50%
of the PWM0 a frame method as follows:

AN-21112300-E2 301 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

pwm_set_cycle(PWM0_ID , 16000)

pwm_set_cmp (PWM0_ID , 8000)

or

pwm_set_cycle_and_duty(PWM0_ID, 16000, 8000);

12.1.4 PWM Revert

The following API serves to invert PWM0~PWM5 waveform.

void pwm_revert (pwm_id id)

The following API serves to invert PWM0_N ~ PWM5_N waveform.

void pwm_n_revert (pwm_id id)

12.1.5 PWM Start and Stop

The following 2 APIs serve to enable/disable specified PWM.

void pwm_start(pwm_id id) ;

void pwm_stop(pwm_id id) ;

12.1.6 PWM Mode

PWM supports 5 modes: Normal mode (Continuous mode), while only PWM0 supports Counting mode, IR
mode, IR FIFO mode and IR DMA FIFO mode, defined as following:

typedef enum{

typedef enum{

PWM_NORMAL_MODE = 0x00,

PWM_COUNT_MODE = 0x01,

PWM_IR_MODE = 0x03,

PWM_IR_FIFO_MODE = 0x07,

PWM_IR_DMA_FIFO_MODE = 0x0F,

}pwm_mode;

PWM0 supports all 5 modes, Normal mode (Continuous mode), while only PWM0 supports Counting mode,
IR mode, IR FIFO mode and IR DMA FIFO mode, PWM1~PWM5 supports only normal mode.

AN-21112300-E2 302 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.1.7 PWM Pulse Number

The API below serves to set pulse number, i.e. number of Signal Frames, for output waveform of specified
PWM channel.

void pwm_set_pulse_num(pwm_id id, unsigned short pulse_num)

This API is only used for Counting mode, IR mode, IR FIFO mode and IR DMA FIFO mode, but not applies
to Normal mode with continuous pulses. Normal mode (Continuous mode) is not limited by the number of
Signal Frames, so this API is not relevant for Normal mode.

12.1.8 PWM Interrupt

First introduce some basic concepts of Telink MCU interrupt.

The interrupt “status” is a status marker bit generated by a specific action of the hardware (i.e. interrupt
action). It does not depend on any software setting, no matter whether the interrupt “mask” is on or not, as
soon as the interrupt action occurs, “status” will be set (value is 1). This “status” can be cleared by writing
a 1 to “status” (the value returns to 0).

Define the concept of interrupt response: interrupt response means that after the hardware interrupt action
is generated, the software program pointer PC jumps to irq_handler for related processing.

If the user wants the interrupt to be responded to, he needs to make sure that all the “masks” corresponding
to the current interrupt are turned on. There may be more than one “mask”, and the relationship between
multiple “masks” is a logical “with” relationship. Only when all “masks” are turned on, the interrupt “status”
will trigger the final interrupt response and the MCU will jump to irq_handler to execute; as long as one
“mask”is not turned on, the interrupt “status” will not be generated to trigger the interrupt response.

The interrupts that users may need to use in the PWM driver are as follows (code is in the file regis-
ter_8258.h). Other interrupts are not needed, and users don’t need to pay attention.

#define reg_pwm_irq_mask REG_ADDR8(0x7b0)

#define reg_pwm_irq_sta REG_ADDR8(0x7b1)

enum{

FLD_IRQ_PWM0_PNUM = BIT(0),

FLD_IRQ_PWM0_IR_DMA_FIFO_DONE = BIT(1),

FLD_IRQ_PWM0_FRAME = BIT(2),

FLD_IRQ_PWM1_FRAME = BIT(3),

FLD_IRQ_PWM2_FRAME = BIT(4),

FLD_IRQ_PWM3_FRAME = BIT(5),

FLD_IRQ_PWM4_FRAME = BIT(6),

FLD_IRQ_PWM5_FRAME = BIT(7),

};

The above 8 interrupts correspond to BIT<0:7> of core_7b0/7b1. core_7b0 is the “mask” of these 8 inter-
rupts, and core_7b1 is the “status” of the 8 interrupts.

AN-21112300-E2 303 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Divide the 8 interrupt “status” into 3 types. Refer to the figure below, assume PWM0 is operating in IR
mode, the duty cycle of PWM Signal Frame is 50%, and the pulse number (or Signal Frame number) of each
IR task is 3.

Figure 12.2: “PWM interrupt”

1) First type: IRQ_PWMn_FRAME (n=0,1,2,3,4,5)

The latter 6 interrupt sources are the same interrupt, which are generated on PWM0~PWM5 respectively.

As shown in the figure, IRQ_PWMn_FRAME is an interrupt generated after each PWM Signal Frame ends. In
the five modes of PWM, Signal Frame is the basic unit of PWM waveform. So no matter which PWM mode,
IRQ_PWMn_FRAME will appear.

2) Second type: IRQ_PWM0_PNUM

IRQ_PWM0_PNUM is an interrupt generated at the end of a Signal Frame (the number is determined by API
pwm_set_pulse_num). In the figure, one IRQ_PWM0_PNUM is generated after every three Signal Frames.

The Counting mode and IR mode of PWM will use API pwm_set_pulse_num. Therefore, only the counting
mode and IR mode of PWM0 will generate IRQ_PWM0_PNUM.

3) Third type：IRQ_PWM0_IR_DMA_FIFO_DONE

When PWM0 is operating in IR DMA FIFO mode, IRQ_PWM0_IR_DMA_FIFO_DONE is triggered when all
configured PWM waveforms on the DMA have been sent.

As mentioned above, the interrupt response will be triggered when all related interrupt “masks” are turned
on at the same time. For PWM interrupts, taking FLD_IRQ_PWM0_PNUM as an example, there are 3 layers
of “masks” that need to be turned on:

1) “mask” of FLD_IRQ_PWM0_PNUM

That is the “mask” corresponding to core_7b0, can be opened as follows:

reg_pwm_irq_mask |= FLD_IRQ_PWM0_PNUM;

AN-21112300-E2 304 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Generally, clear the previous status before opening the mask to prevent the interrupt response from being
triggered by mistake:

reg_pwm_irq_sta = FLD_IRQ_PWM0_PNUM;

2) PWM “mask” on MCU system interrupt

That is, BIT<14> of core_640.

#define reg_irq_mask REG_ADDR32(0x640)

enum{

……
FLD_IRQ_SW_PWM_EN = BIT(14), //irq_software | irq_pwm

……
};

Open as follows:

reg_irq_mask |= FLD_IRQ_SW_PWM_EN;

3) MCU total interrupt enable bit, irq_enable().

12.1.9 PWM phase

void pwm_set_phase(pwm_id id, unsigned short phase)

It is used to set the delay time before the PWM starts.

The phase is the delay time, and the unit is the number of PWM clocks. Generally, there is no need to delay,
set to 0.

12.1.10 IR DMA FIFO mode

IR DMA FIFO mode is to write configuration data to FIFO through DMA. Each FIFO uses 2 bytes to represent
a PWM waveform. When the DMA data buffer takes effect, the PWM hardware module will sent out PWM
waveform 1, waveform 2 Waveform n in chronological order continuously, when fifo finishes executing the
cfg_data sent by DMA, it triggers the interrupt IRQ_PWM0_IR_DMA_FIFO_DONE.

12.1.10.1 Configuration for DMA FIFO

On each DMA FIFO, use 2bytes (16 bits) to configure a PWM waveform. Call the following API to return 2
bytes of DMA FIFO data.

unsigned short pwm_config_dma_fifo_waveform(int carrier_en,

Pwm0Pulse_SelectDef pulse, unsigned short pulse_num);

AN-21112300-E2 305 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

The API has three parameters: “carrier_en”, “pulse” and “pulse_num”. The configured PWM waveform is a
collection of “pulse_num” PWM signal frames.

BIT(15) determines the format of Signal Frame, the basic unit of the current PWM waveform, corresponding
to the “carrier_en” in the API:

• When “carrier_en” is 1, the high pulse in the Signal Frame is effective;

• When “carrier_en” is 0, the signal frame is all 0 data, and the high pulse is invalid.

“Pulse_num” is the number of Signal Frames in the current PWM waveform.

“pulse” can choose the following two definitions.

typedef enum{

PWM0_PULSE_NORMAL = 0,

PWM0_PULSE_SHADOW = BIT(14),

}Pwm0Pulse_SelectDef;

When “pulse” is PWM0_PULSE_NORMAL, the Signal Frame comes from the configuration of API
pwm_set_cycle_and_duty; when “pulse” is PWM0_PULSE_SHADOW, the Signal Frame comes from
the configuration of PWM shadow mode.

The purpose of PWM shadow mode is to add a set of signal frame configuration, thereby adding more
flexibility to the PWM waveform configuration of IR DMA FIFO mode. The configuration API is as follows,
and the method is exactly the same as API pwm_set_cycle_and_duty.

void pwm_set_pwm0_shadow_cycle_and_duty(unsigned short cycle_tick,

unsigned short cmp_tick);

12.1.10.2 Set DMA FIFO Buffer

After DMA FIFO buffer is configured, the API below should be invoked to set the starting address of the
buffer to DMA module.

void pwm_set_dma_address(void * pdat);

12.1.10.3 Start and Stop for IR DMA FIFO Mode

After DMA FIFO buffer is prepared, the API below should be invoked to start sending PWM waveforms.

void pwm_start_dma_ir_sending(void);

After all PWM waveforms in DMA FIFO buffer are sent, the PWM module will be stopped automatically. The
API below can be invoked to manually stop the PWM module in advance.

AN-21112300-E2 306 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void pwm_stop_dma_ir_sending(void);

12.2 IR Demo

User can refer to the code of IR in SDK demo “ble_remote” and set the macro REMOTE_IR_ENABLE in
app_config.h to 1.

12.2.1 PWM mode selection

As required by IR transmission, PWM output needs to switch at specific time with small error tolerance of
switch time accuracy to avoid incorrect IR.

As described in Link Layer timing sequence (section 3.2.4), Link Layers uses system interrupt to process brx
event. (In the new SDK, adv event is processed in the main_loop and does not occupy system interrupt
time.) When IR is about to switch PWM output soon, if brx event related interrupt comes first and occupies
MCU time, the time to swtich PWM output may be delayed, thus to result in IR error. Therefore IR cannot
use PWM Normal mode.

The B85 family introduces an extra IR DMA FIFO mode. In IR DMA FIFO mode, since FIFO can be defined in
SRAM, more FIFOs are available, which can effectively solve the shortcoming of PWM IR mode above.

The IR DMA FIFO mode supports pre-storage of multiple PWM waveforms into SRAM. Once DMA is started,
no software involvement is needed. This can save frequent SW processing time, and avoid PWM waveform
delay caused by simultaneous response to multiple IRQs in interrupt system.

Only PWM0 with IR DMA FIFO mode can be used to implement IR. Therefore, in HW design, IR control GPIO
must be PWM0 pin or PWM0_n pin.

12.2.2 Demo IR Protocol

The figure below shows demo IR protocol in the SDK.

AN-21112300-E2 307 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 12.3: “Demo IR Protocol”

12.2.3 IR Timing Design

The figure below shows basic IR timing abased demo IR protocol and feature of IR DMA FIFO mode.

In IR DMA FIFO mode, a complete task is defined as FifoTask. Herein the processing of IR repeat signal
adopts the method of “add repeat one by one”, i.e. the macro below is defined as 1.

#define ADD_REPEAT_ONE_BY_ONE 1

Figure 12.4: “IR Timing 1”

When a button is pressed to trigger IR transmission, IR is disassembled to FifoTasks as shown in the figure
above.

AN-21112300-E2 308 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(1) After IR is started, run FifoTask_data to send valid data. The duration of FifoTask_data, marked
as T_data, is not certain due to the uncertainty of data. After FifoTask_data is finished, trigger
IRQ_PWM0_IR_DMA_FIFO_DONE.

(2) In interrupt function of IRQ_PWM0_IR_DMA_FIFO_DONE, start FifoTask_idle phase to send signal with-
out carrier and it lasts for a duration of (110ms – T_data). This phase is designed to guarantee the
time point the first FifoTask_repeat is 110ms later after IR is started. After FifoTask_idle is finished,
trigger IRQ_PWM0_IR_DMA_FIFO_DONE.

(3) In interrupt function of IRQ_PWM0_IR_DMA_FIFO_DONE, start the first FifoTask_repeat. Each Fifo-
Task_repeat lasts for 110ms. By adding FifoTask_repeat in corresponding interrupt function, IR repeat
signals can be sent continuously.

(4) The time point to stop IR is not certain, and it depends on the time to release the button. After the APP
layer detects key release, as long as FifoTask_data is correctly completed, IR transmission is finished
by manually stoppng IR DMA FIFO mode.

Following shows some optimization steps for the IR timing design above.

(1) Since FifoTask_repeat timing is fixed, and there are many DMA fifos in IR DMA FIFO mode, multiple
FifoTask_repeat of 110ms can be assembled into one FifoTask_repeat*n, so as to reduce the num-
ber of times to process IRQ_PWM0_IR_DMA_FIFO_DONE in SW. Correponding to the processing of
“ADD_REPEAT_ONE_BY_ONE” macro defined as 0, the Demo herein assembles five IR repeat signals
into one FifoTask_repeat*5. User can further optimize it according to the usage of DMA fifos.

(2) Based on step 1, combine FifoTask_ilde and the first “FifoTask_repeat*n” to form “FifoTask_idle_repeat*n”.

The figure below shows IR timing after optimization.

Figure 12.5: “IR Timing 2”

As per the IR timing design above, corresponding code in SW flow is shown as below:

At IR start, invoke the function “ir_nec_send”, enable FifoTask_data, and use interrupt to control the follow-
ing flow. In the interrupt when FifoTask_data is finished, enable FifoTask_idle. In the interrupt when Fifo-
Task_idle is finished, enable FifoTask_repeat. Before manually stopping IR DMA FIFO mode, FifoTask_repeat
is executed continually.

AN-21112300-E2 309 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void ir_nec_send(u8 addr1, u8 addr2, u8 cmd)

{

if(ir_send_ctrl.last_cmd != cmd)

{

if(ir_sending_check())

{

return;

}

ir_send_ctrl.last_cmd = cmd;

// set waveform input in sequence

T_dmaData_buf.data_num = 0;

//waveform for start bit

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_2nd;

//add data

u32 data = (~cmd)<<24 | cmd<<16 | addr2<<8 | addr1;

for(int i=0;i<32;i++){

if(data & BIT(i)){

//waveform for logic_1

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_2nd;

}

else{

//waveform for logic_0

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_2nd;

}

}

//waveform for stop bit

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_2nd;

T_dmaData_buf.dma_len = T_dmaData_buf.data_num * 2;

ir_send_ctrl.repeat_enable = 1; //need repeat signal

ir_send_ctrl.is_sending = IR_SENDING_DATA;

//dma init

pwm_set_dma_config(PWM_DMA_CHN);

pwm_set_dma_buf(PWM_DMA_CHN, (u32) &T_dmaData_buf ,T_dmaData_buf.dma_len);

pwm_ir_dma_mode_start(PWM_DMA_CHN);

pwm_set_irq_mask(FLD_PWM0_IR_DMA_FIFO_IRQ);

pwm_clr_irq_status(FLD_PWM0_IR_DMA_FIFO_IRQ);

core_interrupt_enable();//

plic_interrupt_enable(IRQ16_PWM);

AN-21112300-E2 310 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

ir_send_ctrl.sending_start_time = clock_time();

}

}

12.2.4 IR Initialization

12.2.4.1 rc_ir_init

IR initialization function is shown as below. Please refer to demo code in the SDK.

void rc_ir_init(void)

12.2.4.2 IR Hardware Configuration

Following shows the demo code.

pwm_n_revert(PWM0_ID);

gpio_set_func(GPIO_PB3, AS_PWM0_N);

pwm_set_mode(PWM0_ID, PWM_IR_DMA_FIFO_MODE);

pwm_set_phase(PWM0_ID, 0); //no phase at pwm beginning

pwm_set_cycle_and_duty(PWM0_ID, PWM_CARRIER_CYCLE_TICK,

PWM_CARRIER_HIGH_TICK);

pwm_set_dma_address(&T_dmaData_buf);

reg_irq_mask |= FLD_IRQ_SW_PWM_EN;

reg_pwm_irq_sta = FLD_IRQ_PWM0_IR_DMA_FIFO_DONE;

Only PWM0 supports ID DMA FIFO mode, so choose PB3 corresponding to PWM0_N.

The Demo IR carrier frequency is 38K, the cycle is 26.3uS, and the duty is 1/3. Use API pwm_set_tmax
and pwm_set_tcmp and configure the cycle and duty. In Demo IR, there are no multiple different carrier
frequencies. This 38K carrier is sufficient for all FifoTask configurations. So there is no need to use PWM
shadow mode.

DMA FIFO buffer is T_dmaData_buf。
Turn on the system interrupt mask “FLD_IRQ_SW_PWM_EN”.

Clear interrupt status “FLD_IRQ_PWM0_IR_DMA_FIFO_DONE”.

12.2.4.3 IR Variable Initialization

Related variables in the SDK demo includes waveform_start_bit_1st, waveform_start_bit_2nd, and etc.

As introduced in IR timing design, FifoTask_data and FifoTask_repeat should be configured.

Start signal = 9ms carrier signal + 4.5ms low level signal (no carrier). The “pwm_config_dma_fifo_waveform”
is invoked to configure the two corresponding DMA FIFO data.

AN-21112300-E2 311 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

//start bit, 9000 us carrier, 4500 us low

waveform_start_bit_1st = pwm_config_dma_fifo_waveform(1, PWM0_PULSE_NORMAL, 9000 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);↪

waveform_start_bit_2nd = pwm_config_dma_fifo_waveform(0, PWM0_PULSE_NORMAL, 4500 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);↪

u16 waveform_stop_bit_2nd;

The method also applies to configure stop signal, repeat signal, data logic “1” signal, and data logic “0”
signal.

12.2.5 FifoTask Configuration

12.2.5.1 FifoTask_data

As per demo IR protocol, to send a cmd (e.g. 7), first send start signal, i.e. 9ms carrier signal + 4.5ms low
level signal (no carrier); then send “address+ ~address+ cmd + ~cmd”. In the demo code, address is 0x88.

When sending the final bit of “~cmd”, logical “0” or logical “1” always contains some non-carrier signals
at the end. If “~cmd” is not followed by any data, there may be a problem on Rx side: Since there’s no
boundary to differentiate carrier, the FW does not know whether the non-carrier signal duration of the final
bit is 560us or 1690us, and fails to recognize whether it’s logical “0” or logical “1”.

To solve this problem, the Data signal should be followed by a “stop” signal which is defined as 560us carrier
signal + 500us non-carrier signal.

Thus, the FifoTask_data mainly contains the three parts below:

(1) start signal: 9ms carrier signal + 4.5ms low level signal (no carrier)

(2) data signal: address+ ~address+ cmd + ~cmd

(3) stop signal: 560us carrier signal + 500us non-carrier signal

According to the above 3 signals, configure the Dma FIfo buffer to start the IR transmission, which is partially
implemented in the ir_nec_send function, where part of the relevant code is as follows.

// set waveform input in sequence

T_dmaData_buf.data_num = 0;

//waveform for start bit

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_2nd;

//add data

u32 data = (~cmd)<<24 | cmd<<16 | addr2<<8 | addr1;

for(int i=0;i<32;i++){

if(data & BIT(i)){

//waveform for logic_1

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_2nd;

AN-21112300-E2 312 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

}

else{

//waveform for logic_0

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_2nd;

}

}

//waveform for stop bit

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_2nd;

T_dmaData_buf.dma_len = T_dmaData_buf.data_num * 2;

12.2.5.2 FifoTask_idle

As introduced in IR timing design, FifoTask_idle lasts for the duration “110mS – T_data”. Record the time
when FifoTask_data starts:

ir_send_ctrl.sending_start_time = clock_time();

Then calculate FifoTask_idle time in the interrupt triggered when FifoTask_data is finished:

110mS ‒ (clock_time() - ir_send_ctrl.sending_start_time)

Demo code:

u32 tick_2_repeat_sysClockTimer16M = 110*CLOCK_16M_SYS_TIMER_CLK_1MS - (clock_time()

ir_send_ctrl.sending_start_time);↪

u32 tick_2_repeat_sysTimer = (tick_2_repeat_sysClockTimer16M*CLOCK_PWM_CLOCK_1US>>4);

Please pay attention to the switch of time unit. As introduced in Clock module, Sytem Timer frequency used
in software timer is fixed as 16MHz. Since PWM clock is derived from system clock, user needs to consider
the case with system clock rather than 16MHz (e.g. 24MHz, 32MHz).

FifoTask_idle does not send PWM waveform, which can be considered to continually send non-carrier signal.
It can be implemented by setting the first parameter “carrier_en” of the API “pwm_config_dma_fifo_waveform”
as 0.

waveform_wait_to_repeat = pwm_config_dma_fifo_waveform(0, PWM0_PULSE_NORMAL,

tick_2_repeat_sysTimer/PWM_CARRIER_CYCLE_TICK);↪

12.2.5.3 FifoTask_repeat

As per Demo IR protocol, repeat signal is 9ms carrier signal + 2.25ms non-carrier signal.

AN-21112300-E2 313 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Similar to the processing of FifoTask_data, the end of repeat signal should be followed by 560us carrier
signal as stop signal.

As introduced in IR timing design, repeat signal lasts for 110ms, so the duration of non-carrier signal after
the 560us carrier signal should be:

110ms – 9ms – 2.25ms – 560us = 99190us

The code below shows the configuration for a complete repeat signal.

//repeat signal first part, 9000 us carrier, 2250 us low

waveform_repeat_1st = pwm_config_dma_fifo_waveform(1, PWM0_PULSE_NORMAL, 9000 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);↪

waveform_repeat_2nd = pwm_config_dma_fifo_waveform(0, PWM0_PULSE_NORMAL, 2250 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);↪

//repeat signal second part, 560 us carrier, 99190 us low

waveform_repeat_3rd = pwm_config_dma_fifo_waveform(1, PWM0_PULSE_NORMAL, 560 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);↪

waveform_repeat_4th = pwm_config_dma_fifo_waveform(0, PWM0_PULSE_NORMAL, 99190 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);↪

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_2nd;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_3rd;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_4th;

12.2.5.4 FifoTask_repeat*n and FifoTask_idle_repeat*n

By simple superposition in DMA Fifo buffer, “FifoTask_repeat*n” and “FifoTask_idle_repeat*n” can be imple-
mented on the basis of FifoTask_idle and FifoTask_repeat.

12.2.6 Check IR Busy Status in APP Layer

In the Application layer, user can use the variable “ir_send_ctrl.is_sending” to check whether IR is busy
sending data or repeat signal.

The following shows the determination of whether IR is busy in power management. When IR is busy, MCU
cannot enter suspend.

if(ir_send_ctrl.is_sending)

{

bls_pm_setSuspendMask(SUSPEND_DISABLE);

}

AN-21112300-E2 314 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.3 IR Learn

12.3.1 IR Learn introduction

The IR learning is done by using the characteristics of IR tube to transmit and receive IR signals, and using
the amplifier circuit to amplify and convert the received weak signals into digital signals, thus completing
the learning of IR waveforms. After learning, the relevant data is stored in RAM/Flash, and then the learned
waveform is sent out using the transmitting characteristics of the IR tube.

12.3.2 IR Learn hardware principle

The hardware circuit of IR learn is shown as below.

Figure 12.6: “IR Learn hardware circuit”

When in the IR learning state, IR_OUT and IR_CONTROL pin should be set to GPIO function and pulled low
at the same time, then Q2 and Q3 will be in the cutoff state, IR_IN level is high when there is no waveform,
and then will follow the waveform received by the triode and change: when the input waveform is high,
IR_IN is pulled low, on the contrary IR_IN back to high. IR learning also takes advantage of this feature,
using GPIO low level trigger to complete the learning algorithm, which will be described in detail later. As
shown in the figure below, the transmitter is using NEC format IR, and the waveform of IR_IN is captured
as shown in the figure below.

AN-21112300-E2 315 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 12.7: “IR_IN waveform of NEC protocol”

The dark part is the carrier waveform and the white part is the non-carrier waveform. The waveform of
the amplified carrier part is shown in the figure below, which is high when no IR signal is received in front,
and IR_IN is pulled down when a signal is received. The IR_IN low level is 9.35us and the period is 26.4us,
which is converted to a carrier frequency of 37.88kHz. This matches the NEC protocol carrier of 38kHz with
a duty cycle of 1/3.

Figure 12.8: “IR_IN waveform of NEC carrier”

12.3.3 IR Learn software principle

During IR learning, the chip will set and enable the IR_IN trigger interrupt at falling edge. Every time it
receives an IR carrier waveform from its device, IR_IN will be pulled low and trigger the interrupt. In the
interrupt, the timing, number of waveforms, and carrier period of the carrier and non-carrier waveforms
will be recorded by the algorithm, and the waveforms will be copied and sent out according to the above
information when sending.

The following figure shows the order of recording during interrupt processing, the duration of the carrier/
non-carrier part shown in the previous 1, 2… will be recorded in the buff. At the same time, the duration of a
certain number of single carriers constituting 1 is recorded, and the carrier frequency fc of the waveform is
obtained by averaging. When the waveform is sent after the recording is completed, the carrier frequency
fc is fixed with a duty cycle of 1/3, and the time corresponding to 1 and 2 is sent out in the carrier/non-carrier
order to complete the IR learning process.

AN-21112300-E2 316 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 12.9: “Carrier and non-carrier”

To quickly complete the IR learning and sending function, the following steps are required.

(1) Initialize with ir_learn_init(void).

(2) Add the relevant part of the ir_learn_irq_handler(void) interrupt handling function to the interrupt
function.

(3) Add the ir_learn_detect(void) section to the program to determine the learning results.

(4) Modify the relevant macro definitions in rc_ir_learn.h.

(5) Add the ir_learn_start(void) function to the appropriate location in the UI layer to start learning.

(6) After judging the result by the judgment function set in step 3, use get_ir_learn_state(void) to check
the IR learning status and do UI layer operations according to the success or failure of learning: if
successful, continue steps 7~9 to finish sending, if failure, you can re-execute step 5 or perform other
custom UI actions.

(7) After successful learning, the learning result can be sent. The first step of sending is to initialize the
IR transmission, using ir_learn_send_init(void). Be noted that after calling this function IR_OUT will be
changed to PWM output pin, if you want to re-enter the IR learning state, you must re-execute step
1 to re-initialize the pin function.

(8) The second step of sending is to copy the useful parameters of the learning result to a fixed area,
RAM/Flash are suitable, use the ir_learn_copy_result(ir_learn_send_t* send_buffer) function to copy
to the structure defined for sending the IR learning result.

(9) The final step of sending is to call the ir_learn_send(ir_learn_send_t* send_buffer) function to send
the learning results.

At this point, the entire functionality of IR learning has been implemented. In the following section, we will
specify how to add the functions mentioned in the steps, one by one, in the order of the above steps.

12.3.3.1 IR_Learn initialization

When using the IR Learn function, after copying rc_ir_learn.c and rc_ir_learn.h into the project, the first step
is to call the initialization function.

void ir_learn_init(void)

This function finds its entity in rc_ir_learn.c. It first clears the structure used, then sets IR_OUT and
IR_CONTROL to GPIO and outputs 0. Then it sets the GPIO interrupt enable and clears the interrupt flag
bit.

AN-21112300-E2 317 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.3.3.2 IR_Learn interrupt handling

Since the IR Learn function is implemented based on interrupts, the second step requires adding interrupt
handling functions to the interrupts. As the protocol stack will be constructed to enter the interrupt several
times, in order to distinguish it is a GPIO interrupt, the interrupt flag bit will be read first and then recorded
when it is an interrupt generated by GPIO. The implementation code is as follows.

void ir_learn_irq_handler(void)

{

gpio_clr_irq_status(FLD_GPIO_IRQ_CLR);

if ((g_ir_learn_ctrl -> ir_learn_state != IR_LEARN_WAIT_KEY) && (g_ir_learn_ctrl ->

ir_learn_state != IR_LEARN_BEGIN))↪

{

return;

}

ir_record(clock_time()); // IR Learning

}

Where ir_record() is the specific learning algorithm, the function pre_attribute_ram_code_ is put into the
ram in order to speed up the learning and avoid errors caused by long execution time.

12.3.3.3 IR_Learn result processing function

The main role of the result processing function is to change the state of IR learning in time according to the
current IR learning situation, and each loop needs to be executed to complete the detection in time. The
function can be called in the main_loop().

void ir_learn_detect(void)

As can be seen from the function entity, when the time after the start of learning exceeds IR_LEARN_
OVERTIME_THRESHOLD, the waveform is still not received and it is a timeout failure; after learning has
started and has received the signal, the set threshold time passed but no new signal received, it is considered
to have completed the learning state, at this time, if the received carrier and non-carrier part exceeds the
set number (default is 15), the learning is considered successful, otherwise it is considered failed.

12.3.3.4 IR_Learn macro definition

To increase extensibility, some macro definitions are added to rc_ir_learn.h.

#define GPIO_IR_OUT PWM_PIN // GPIO_PE3

#define GPIO_IR_CONTROL GPIO_PE0

#define GPIO_IR_LEARN_IN GPIO_PE1

The first three define the GPIO pins, IN/OUT/CONTROL, which change according to the specific design.

AN-21112300-E2 318 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.3.3.5 IR_Learn start function

The IR Learn start function is called where needed in the UI layer to start the IR learning process. The
function is as follows.

ir_learn_start();

12.3.3.6 IR_Learn state query

Users can call the status query function to query the learning results, the function is as follows.

unsigned char get_ir_learn_state(void)

{

if(g_ir_learn_ctrl -> ir_learn_state == IR_LEARN_SUCCESS)

return 0;

else if(g_ir_learn_ctrl -> ir_learn_state < IR_LEARN_SUCCESS)

return 1;

else

return (g_ir_learn_ctrl -> ir_learn_state);

}

Return value = 0: IR learning is successful.

Return value = 1: IR learning is in progress or not started.

Return value > 1: IR learning failed, the return value is the reason for failure, which corresponds to the
reason for failure known in ir_learn_states. The ir_learn_states is defined as follows.

enum {

IR_LEARN_DISABLE = 0x00,

IR_LEARN_WAIT_KEY,

IR_LEARN_KEY,

IR_LEARN_BEGIN,

IR_LEARN_SAMPLE_END,

IR_LEARN_SUCCESS,

IR_LEARN_FAIL_FIRST_INTERVAL_TOO_LONG,

IR_LEARN_FAIL_TWO_LONG_NO_CARRIER,

IR_LEARN_FAIL_WAIT_OVER_TIME,

IR_LEARN_FAIL_WAVE_NUM_TOO_FEW,

IR_LEARN_FAIL_FLASH_FULL,

IR_LEARN_FAIL,

}ir_learn_states;

12.3.3.7 IR_Learn_Send initialization

After the UI layer determines that the learning is successful, the send initialization function needs to be
called before sending the learned waveform, and the function is as follows.

AN-21112300-E2 319 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

void ir_learn_send_init(void)

The initialization function mainly sets PWM-related parameters, interrupt-related parameters, and sets
IR_OUT as the output port of PWM, noting that the IR learning function stops after this function is used, and
the initialization function described in 11.3.4.1 needs to be called again if it needs to be enabled again.

12.3.3.8 IR_Learn result copy function

In the design, there are often cases where several keys need to have IR learning functions, so the UI layer
wants to be able to copy the learning results to a location in RAM/Flash for later transmission after successful
learning, and to start the learning process for other keys. Therefore, a result copy function is provided to
copy the necessary parameters for sending. The function is as follows.

void ir_learn_copy_result(ir_learn_send_t* send_buffer)

The send_buffer is the structure needed for IR learning to send, which contains the clock_tick value for one
carrier cycle, the total number of carriers and non-carriers (counting from 0), and the buffer of carriers and
non-carriers already to be sent.

typedef struct{

unsigned int ir_learn_carrier_cycle;

unsigned short ir_learn_wave_num;

unsigned int ir_lenrn_send_buf[MAX_SECTION_NUMBER];

}ir_learn_send_t;

12.3.3.9 IR_Learn send function

After the learning is successful and the pre-send operation is done, the send function can be called to send
the learning result. The function is as follows.

void ir_learn_send(ir_learn_send_t* send_buffer);

where send_buffer is the structure used in the previous function. The send function does not carry the
repeat function, each call to the function will send the learned waveform, if you need to repeat the user
can use the timer in the UI layer to design their own repeated calls to the function.

12.3.4 IR Learn algorithm details

To facilitate understanding the code, the principle of the IR learning algorithm is explained in detail here.
The following is a simulated waveform, which simulates a complete packet of IR data. The data contains
Start carrier, Start No carrier, bit 1 carrier, bit 1 no carrier, bit 0 carrier, bit 0 no carrier, End carrier, End no
carrier.

AN-21112300-E2 320 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 12.10: “A frame of IR code”

Since IR_IN is set in the IR learning state to wake up on the falling edge of the GPIO, normally every falling
edge goes to an interrupt where we do the recording operation. In the IR learning algorithm, instead of
identifying the waveform to a specific code type, the waveform is recorded with the concept of carrier/
non-carrier. Consecutive carriers are considered as one carrier segment, while two carriers separated by
a long time are considered as non-carriers. Thus the above is considered in the IR learning algorithm as
follows.

Figure 12.11: “Carrier and no carrier in IR Learn”

Each time the algorithm is executed, the current time curr_trigger_tm_point is recorded, and the
last_trigger_tm_point is subtracted from the last interrupt time to get a time_interval of one cycle. If this
time is relatively small, it is considered to be still in the carrier; if this time exceeds the set threshold, it is
considered to be in the middle of a no carrier segment, and at this time it is in the first waveform of the
new carrier segment: at this time, it is necessary to record the last carrier time and put it into the buffer,
which is the difference between the first interrupt entry time and the last interrupt time, as shown below.

AN-21112300-E2 321 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 12.12: “IR learn algorithm”

According to this method, let wave_series_cnt increase from 0, corresponding to the first carrier
segment, the first non-carrier segment, the second carrier segment, the second non-carrier seg-
ment… At the same time, the calculated time of each segment is stored in the corresponding location
(wave_series_buf[wave_series_cnt]) in wave_series_buf[0], wave_series_buf[1], and wave_series_buf[2].
All the way to the end of the waveform, wave_series_cnt represents the total number of segments, and
wave_series_buf is loaded with the length of each segment.

In addition, during the first N (settable) interrupts, N times are recorded, and the smallest one of them is
taken as the carrier period, which is used when sending after the learning is finished, and the duty cycle is
1/3 (settable) by default.

After the IR learning process is finished, the learning result can be sent. When sending the learning result, it
is also sent according to the concept of carrier and non-carrier. Using PWM DMA_FIFO mode, after putting
the learned carrier frequency, duty cycle, and duration of each segment into DMA buffer, enable DMA,
the chip will automatically send out the learned waveform until all the sending is finished, and generate
FLD_IRQ_PWM0_IR_DMA_FIFO_DONE interrupt.

12.3.5 IR Learn learning parameter adjustment

Some parameters related to IR learning are defined in rc_ir_learn.h. When setting the parameter mode to
USER_DEFINE is selected and set by yourself, it will have different effects on the learning effect, which will
be described in detail here.

#define IR_LEARN_MAX_FREQUENCY 40000

#define IR_LEARN_MIN_FREQUENCY 30000

#define IR_LEARN_CARRIER_MIN_CYCLE 16000000/IR_LEARN_MAX_FREQUENCY

AN-21112300-E2 322 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define IR_LEARN_CARRIER_MIN_HIGH_TICK IR_LEARN_CARRIER_MIN_CYCLE/3

#define IR_LEARN_CARRIER_MAX_CYCLE 16000000/IR_LEARN_MIN_FREQUENCY

#define IR_LEARN_CARRIER_MAX_HIGH_TICK IR_LEARN_CARRIER_MAX_CYCLE/3

The above parameters set the frequencies supported by IR learning. The default value is set to 30k~40k. The
following parameters are the maximum and minimum values of the sys_tick value per carrier cycle, default
1/3 duty cycle high level to sys_tick value, calculated from the frequency parameters for later parameter
calculation. Other parameters that affect the learning results are described below, and each parameter is
defined in rc_ir_learn.h using macros.

#define IR_LEARN_INTERVAL_THRESHOLD (IR_LEARN_CARRIER_MAX_CYCLE*3/2)

#define IR_LEARN_END_THRESHOLD (30*SYSTEM_TIMER_TICK_1MS)

#define IR_LEARN_OVERTIME_THRESHOLD 10000000 // 10s

#define IR_CARR_CHECK_CNT 10

#define CARR_AND_NO_CARR_MIN_NUMBER 15

#define MAX_SECTION_NUMBER 100

(1) IR_LEARN_INTERVAL_THRESHOLD.

For carrier period threshold, the default value is 1.5 times the IR_LEARN_CARRIER_MAX_CYCLE value, when
the time to enter the interrupt twice is more than this threshold is considered at the carrier side.

(2)IR_LEARN_END_THRESHOLD

For IR learn end threshold, when the time to enter interrupt twice exceeds this threshold, or the threshold
is exceeded without entering the next interrupt, the IR learning process is considered to be finished.

(3) IR_LEARN_OVERTIME_THRESHOLD

For timeout time, after the start of IR learning process, if the threshold value is exceeded and the received
waveform enters interrupt, the learning process is considered to be finished and failed.

(4) IR_CARR_CHECK_CNT

Set the number of packets to be collected to determine the carrier cycle time, the default is set to 10, which
means the smallest of the time_interval of the first 10 interrupts will be taken as the carrier time and used
to calculate the carrier cycle when sending learning results.

(5) CARR_AND_NO_CARR_MIN_NUMBER

The minimum threshold of carrier and non-carrier segments. When the IR learning process is completed,
if the total number of recorded carrier and non-carrier segments is less than this threshold, the entire
waveform is considered not learned and the IR learning fails.

(6) MAX_SECTION_NUMBER

The maximum threshold value of carrier and non-carrier section, which will be used when setting the buffer
size. If setting to 100, the IR learning process will record at most 100 carrier and non-carrier sections; if it
exceeds, the IR learning will be considered failed.

AN-21112300-E2 323 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.3.6 IR Learn common issues

During the learning process, sometimes it encounters that the frequency of the waveform sent after suc-
cessful learning changes. The possible cause is that the frequency of the learned waveform is too high,
resulting in the execution of the algorithm in the interrupt for more than the carrier period. This is shown
in the figure below.

Figure 12.13: “IR learn error”

Take the IR signal with duty cycle 1/3 and transmitting frequency 38K as an example, one carrier cycle is
about 26.3us, high level accounts for 1/3 about 8.7us. At the moment of t0, the external waveform carrier
end point is pulled low from high, the chip GPIO triggers an interrupt, and the interrupt needs to execute
several instructions in the assembly to save the site to enter the interrupt, after testing at t1 after about
4us to enter the interrupt function to start executing the operation. Due to the long execution time in the
interrupt, the interrupt execution ends at t2, and it also takes about 4us to restore the site. In the process of
restoring the site at t3 moment, as the next falling edge of the transmit waveform arrives, the interrupt flag
bit is cleared at this time and the hardware will trigger the interrupt again. The interrupt has been triggered
again after restoring the site about 4us after t2, so the chip saves the site again to enter the interrupt at t4
after 4us in entering the interrupt for operation, after which the above process will be repeated. As seen by
the waveform executed by the interrupt, its time is completely deformed and the time to enter the interrupt
twice is also larger than the time of one carrier cycle of the original waveform. Since the IR learning is done
exactly according to the time recorded in the interrupt, the abnormal time of entering the interrupt will lead
to abnormal IR learning results.

There are several ways to solve this problem.

One is to put the IR learning algorithm into the ram_code to reduce the execution time, by default this
operation is already performed and does not need to be modified.

The second is to make sure to reduce other processing of interrupts. BLE needs to be disabled in IR learning
because it takes up a lot of time in interrupts during non-IDLE states, and the UI layer also tries to prohibit
other interrupt sources from causing interrupts during IR learning to prevent exceptions.

AN-21112300-E2 324 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

12.4 Demo description

The feature_IR of the BLE SDK contains the normal IR sending function and IR learning function, and the IR
encoding method used is NEC encoding. The switch between the different modes is shown in the following
code.

void key_change_proc(void)

{

switch(key0)

{……
if(switch_key == IR_mode){……

}

else if(switch_key == IR_Learn_mode){……
}

else{……
}

}

}

Each mode can be switched to a different mode by pressing a key to perform the corresponding initialization
operation, the specific code implementation can be referred to the BLE SDK.

AN-21112300-E2 325 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

13 Feature Demo Introduction

B85m_feature_test provides demo codes for some commonly used BLE-related features. Users can refer
to these demos to complete their own function implementation. See code for details. Select the macro
“FEATURE_TEST_MODE” in app_config.h in the B91_feature_test project to switch to the demo of different
feature test.

Figure 13.1: “Feature Test Demo”

Test methods of each demo are described below.

13.1 Broadcast Power Consumption Test

This item mainly tests the power consumption during broadcasting of different broadcasting parameters.
Users can measure the power consumption with an external multimeter during the test. Need to modify
FEATURE_TEST_MODE to TEST_POWER_ADV in app_config.h.

AN-21112300-E2 326 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define FEATURE_TEST_MODE TEST_POWER_ADV

Modify the broadcast type and broadcast parameters in feature_adv_power as required. There are two
types of broadcasts provided in Demo: connectable broadcast and non-connectable broadcast.

13.1.1 Connectable Broadcast Power Consumption Test

In feature_adv_power, the default test non-connectable broadcast power consumption needs to be changed
from #if 0 to #if 1, as shown in the following code.

#if 1 //connectable undirected ADV

The default broadcast data length of Demo is 12 bytes, and users can modify it according to their needs.

//ADV data length: 12 byte

u8 tbl_advData[12] = {0x08, 0x09, 't', 'e', 's', 't', 'a', 'd', 'v',0x02, 0x01, 0x05,};

The Demo provides 1s1channel, 1s3channel, 500ms3channel broadcast parameters, users can select the
corresponding test items according to their needs.

13.1.2 Un-connectable Broadcast Power Consumption Test

In feature_adv_power, the default test is non-connectable broadcast power consumption.

#if 0 //un-connectable undirected ADV

The Demo provides two broadcast data lengths of 16byte and 31byte, which users can choose according to
their needs.

#if 1 //ADV data length: 16 byte

u8 tbl_advData[8] = {

0x0C, 0x09, 't', 'e', 's', 't', 'a', 'd',

};

#else //ADV data length: max 31 byte

u8 tbl_advData[] = {

0x1E, 0x09, 't', 'e', 's', 't', 'a', 'd', 'v', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F',

'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D'↪

};

#endif

The Demo provides 1s3channel, 1.5s3channel, and 2s3channel broadcast parameters. Users can select the
corresponding test items according to their needs.

AN-21112300-E2 327 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

13.2 SMP Test

SMP test mainly tests the process of pairing encryption, mainly divided into the following ways:

(1) LE_Security_Mode_1_Level_1, no authentication and no encryption.

(2) LE_Security_Mode_1_Level_2, unauthenticated paring with encryption.

(3) LE_Security_Mode_1_Level_3, authenticated paring with encryption-legacy.

(4) LE_Security_Mode_1_Level_4, authenticated paring with encryption-sc.

Users need to set FEATURE_TEST_MODE to TEST_SMP_SECURITY in app_config.h.

#define FEATURE_TEST_MODE TEST_SMP_SECURITY

Below is a brief introduction to each pairing mode.

13.2.1 LE_Security_Mode_1_Level_1

LE_Security_Mode_1_Level_1 is the simplest pairing method, neither authentication nor encryption. The
user changes the SMP_TEST_MODE of feature_security.c to SMP_TEST_NO_SECURITY.

#define SMP_TEST_MODE SMP_TEST_NO_SECURITY

13.2.2 LE_Security_Mode_1_Level_2

The LE_Security_Mode_1_Level_2 mode is just work, only encryption but not authentication. Just work is
divided into legacy just work and sc just work. The user changes the SMP_TEST_MODE of feature_security.c
to SMP_TEST_LEGACY_PARING_JUST_WORKS or SMP_TEST_SC_PARING_JUST_WORKS as required. Intro-
duced separately below.

13.2.2.1 SMP_TEST_LEGACY_PARING_JUST_WORKS

The user makes the following modifications:

#define SMP_TEST_MODE SMP_TEST_LEGACY_PARING_JUST_WORKS

The process is shown as following:

AN-21112300-E2 328 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.2: “Legacy Just Work Process”

13.2.2.2 SMP_TEST_SC_PAIRING_JUST_WORKS

The user makes the following modifications:

#define SMP_TEST_MODE SMP_TEST_SC_PAIRING_JUST_WORKS

The process is shown as following:

AN-21112300-E2 329 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.3: “SC Just Work Process”

13.2.3 LE_Security_Mode_1_Level_3

LE_Security_Mode_1_Level_3 is both the authentication and encryption Legacy pairing method. According
to the pairing parameter settings, it is divided into OOB, PassKey Entry, and Numeric Comparison. Currently
the demo provides two sample codes for PassKey Entry, namely SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI
and SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI. Users can choose according to their needs. The two
methods are briefly introduced below.

13.2.3.1 SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI

The user needs to modify as follows in feature_security.c:

AN-21112300-E2 330 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define SMP_TEST_MODE SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI

During the pairing process, the slave side needs to display the key and the master side enters the key. During
initialization, a gap event related to pairing is registered. The pairing information will be notified to the app
layer.

blc_gap_registerHostEventHandler(app_host_event_callback);

blc_gap_setEventMask(GAP_EVT_MASK_SMP_PARING_BEAGIN | \

GAP_EVT_MASK_SMP_PARING_SUCCESS | \

GAP_EVT_MASK_SMP_PARING_FAIL | \

GAP_EVT_MASK_SMP_TK_DISPALY | \

GAP_EVT_MASK_SMP_CONN_ENCRYPTION_DONE);

The user needs to print the current key information when receiving the GAP_EVT_MASK_SMP_TK_DISPLAY
message.

int app_host_event_callback (u32 h, u8 *para, int n)

{

u8 event = h & 0xFF;

switch(event)

{

…
case GAP_EVT_SMP_TK_DISPALY:

{

char pc[7];

u32 pinCode = *(u32*)para;

}

break;

…
}

}

The process is shown as following:

AN-21112300-E2 331 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.4: “Legacy Just Work SDMI Process”

13.2.3.2 SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI

The difference from the above is that the key is displayed on the master and the key is entered by the slave.
The user needs to modify the code:

#define SMP_TEST_MODE SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI

The process is shown as following:

AN-21112300-E2 332 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.5: “Legacy Just Work SIMD Process”

13.2.4 LE_Security_Mode_1_Level_4

LE_Security_Mode_1_Level_4 is both an authentication and encryption SC pairing method. According
to the pairing parameter settings, it is divided into OOB, PassKey Entry, and Numeric Compari-
son. Currently the demo provides three sample codes of SC PassKey Entry and SC Numeric Com-
parison, namely SMP_TEST_SC_PASSKEY_ENTRY_SDMI, SMP_TEST_SC_PASSKEY_ENTRY_MDSI and
SMP_TEST_SC_NUMERIC_COMPARISON. Users can choose according to their needs. These methods are
briefly introduced below.

AN-21112300-E2 333 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

13.2.4.1 SMP_TEST_SC_NUMERIC_COMPARISON

The user needs to modify as follows in feature_security.c:

#define SMP_TEST_MODE SMP_TEST_SC_NUMERIC_COMPARISON

This pairing method is numeric comparison, that is, during the pairing process, both the master and slave
will display a six-digit PIN code. If the user compares the numbers for the same, if they are the same, click
to confirm and agree to the pairing. Demo is to send YES or NO in the form of a button. The sample code
is as follows:

if(consumer_key == MKEY_VOL_DN){

blc_smp_setNumericComparisonResult(1);// YES

/*confirmed YES*/

led_onoff(LED_ON_LEVAL);

}

else if(consumer_key == MKEY_VOL_UP){

blc_smp_setNumericComparisonResult(0);// NO

/*confirmed NO*/

led_onoff(LED_ON_LEVAL);

}

The process is shown as following:

AN-21112300-E2 334 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.6: “Numeric Comparison Paring”

13.2.4.2 SMP_TEST_SC_PASSKEY_ENTRY_SDMI

The user needs to modify as follows in feature_security.c:

#define SMP_TEST_MODE SMP_TEST_SC_PASSKEY_ENTRY_SDMI

During the pairing process, the slave side needs to display the key and the master side enters the key. During
initialization, a gap event related to pairing is registered. The pairing information will be notified to the app
layer.

AN-21112300-E2 335 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

blc_gap_registerHostEventHandler(app_host_event_callback);

blc_gap_setEventMask(GAP_EVT_MASK_SMP_PARING_BEAGIN | \

GAP_EVT_MASK_SMP_PARING_SUCCESS | \

GAP_EVT_MASK_SMP_PARING_FAIL | \

GAP_EVT_MASK_SMP_TK_DISPALY | \

GAP_EVT_MASK_SMP_CONN_ENCRYPTION_DONE);

The user needs to print the current key information when receiving the GAP_EVT_MASK_SMP_TK_DISPLAY
message.

int app_host_event_callback (u32 h, u8 *para, int n)

{

u8 event = h & 0xFF;

switch(event)

{

…
case GAP_EVT_SMP_TK_DISPLAY:

{

char pc[7];

u32 pinCode = *(u32*)para;

}

break;

…
}

}

The process is shown as following:

AN-21112300-E2 336 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.7: “SC SDMI Paring Processing”

13.3 GATT Security Test

As known from the BLE module 3.3.3 ATT&GATT chapter, each Attribute in the service list defines read
and write permissions, that is, the pairing mode must reach the corresponding level to read or write. For
example, in the SPP service of Demo:

// client to server RX

{0,ATT_PERMISSIONS_READ,2,sizeof(TelinkSppDataClient2ServerCharVal),(u8*)(&my_characterUUID),

(u8*)(TelinkSppDataClient2ServerCharVal), 0}, //prop↪

{0,SPP_C2S_ATT_PERMISSIONS_RDWR,16,sizeof(SppDataClient2ServerData),(u8*)

(&TelinkSppDataClient2ServerUUID), (u8*)(SppDataClient2ServerData), &module_onReceiveData},

//value

↪

↪

AN-21112300-E2 337 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

{0,ATT_PERMISSIONS_READ,2,sizeof(TelinkSPPC2SDescriptor),(u8*)&userdesc_UUID,(u8*)

(&TelinkSPPC2SDescriptor)},↪

The read and write permissions of the second Attribute are defined as: SPP_C2S_ATT_PERMISSIONS_RDWR.

This read and write permission is up to the user to choose, you can choose one of the following:

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_RDWR

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_ENCRYPT_RDWR

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_AUTHEN_RDWR

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_SECURE_CONN_RDWR

No matter which one you choose, the current pairing mode must be higher than or equal to this level of
read and write permissions to read and write services correctly.

The user needs to modify feature_config.h as follows:

#define FEATURE_TEST_MODE TEST_GATT_SECURITY

SMP test encryption levels are LE_SECURITY_MODE_1_LEVEL_1, LE_SECURITY_MODE_1_LEVEL_2,
LE_SECURITY_MODE_1_LEVEL_3, LE_SECURITY_MODE_1_LEVEL_4. The user needs to select app_config.h
according to the needs of the corresponding pairing mode.

#define SMP_TEST_MODE LE_SECURITY_MODE_1_LEVEL_3

For example, the current pairing mode is LE_SECURITY_MODE_1_LEVEL_3, that is, there are both authenti-
cation and encryption Legacy pairing modes. So the current read and write permissions can be selected as
follows.

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_AUTHEN_RDWR

The process is shown as following:

AN-21112300-E2 338 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 13.8: “Gatt Security”

13.4 DLE Test

The DLE test mainly tests the long package. Demo is divided into master and slave. Users need to compile
and burn to two EVB boards respectively. For the code at master end, users can refer to feature_master_dle.
For the corresponding feature_config.h selection at slave end, the code is as follows:

#define FEATURE_TEST_MODE TEST_SDATA_LENGTH_EXTENSION

After programming, they are reset respectively, and the master is triggered to establish a connection. After
the connection is successful, the MTU and DataLength are exchanged respectively.

AN-21112300-E2 339 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, MTU_SIZE_SETTING);

blc_ll_exchangeDataLength(LL_LENGTH_REQ , DLE_TX_SUPPORTED_DATA_LEN);

After the exchange is successful, the slave will send a long packet of data to the master every 3.3s, or the
master will trigger the pairing key GPIO_PC6 every time at a low level, the mater will write a long packet of
data to the slave, and the slave will send the same data to the master after receiving it.

The test process is as follows:

Figure 13.9: “DLE Test Process”

13.5 Soft Timer Test

Please refer to the chapter of Software Timer.

AN-21112300-E2 340 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

13.6 WhiteList Test

If the whitelist is set, only the devices in the whitelist are allowed to establish connections. The user needs
to modify app_config.h as follows:

#define FEATURE_TEST_MODE TEST_WHITELIST

When the slave has no binding information, any other device is allowed to connect. After the connection
is successful, the slave will add the current master’s information to the whitelist, and then only the current
device can connect with the slave.

The test process is as follows:

Figure 13.10: “Whitelist Test Process”

AN-21112300-E2 341 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

13.7 1M Extended Advertising Test

The 1M Extended advertising demo is mainly to test the extended broadcasting of 1M PHY. You need to
modify FEATURE_TEST_MODE to TEST_EXTENDED_ADVERTISING in app_config.h.

#define FEATURE_TEST_MODE TEST_EXTENDED_ADVERTISING

The relevant codes are in vendor/ b85m_feature_test /feature_extend_adv, and the slave demo is pro-
vided.

Set the maximum length of broadcast data as follows:

#define APP_ADV_SETS_NUMBER 1 // Number of Supported Advertising Sets

#define APP_MAX_LENGTH_ADV_DATA 1024 // Maximum Advertising Data Length

#define APP_MAX_LENGTH_SCAN_RESPONSE_DATA 31 // Maximum Scan Response Data Length

In feature_ext_adv_init_normal, different types of extended broadcast packets based on 1M PHY configu-
ration have been reserved.

#if 1 //Legacy, non_connectable_non_scannable

……
#elif 0 //Legacy, connectable_scannable

……
#elif 0 // Extended, None_Connectable_None_Scannable undirected, without auxiliary packet

……
#elif 0 // Extended, None_Connectable_None_Scannable directed, without auxiliary packet

……
#elif 0 // Extended, None_Connectable_None_Scannable undirected, with auxiliary packet

……
#elif 0 // Extended, None_Connectable_None_Scannable Directed, with auxiliary packet

……
#elif 0 // Extended, Scannable, Undirected

……
#elif 0 // Extended, Connectable, Undirected

……
#endif

Users need to use a mobile phone or protocol analysis device that supports the Bluetooth 5 Low Energy
Advertising Extension function to see the extended broadcast data.

13.8 2M/Coded PHY Used on Extended Advertising Test

The 2M/ Coded PHY used on Extended advertising demo is mainly to test the extended broadcast-
ing of various combinations of 1M/ 2M/ Coded PHY. You need to modify FEATURE_TEST_MODE to
TEST_2M_CODED_PHY_EXT_ADV in app_config.h.

AN-21112300-E2 342 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY_EXT_ADV

The relevant codes are in vendor/ b85m_feature_test /feature_phy_extend_adv, and the slave demo is
provided.

Set the maximum length of broadcast data as follows:

#define APP_ADV_SETS_NUMBER 1 // Number of Supported Advertising Sets

#define APP_MAX_LENGTH_ADV_DATA 1024 // Maximum Advertising Data Length

#define APP_MAX_LENGTH_SCAN_RESPONSE_DATA 31 // Maximum Scan Response Data Length

Feature_ext_adv_init_normal has reserved different types of extended broadcast packets based on various
combinations of 1M PHY / Coded PHY(S2) / Coded PHY(S8).

#if 0 // Extended, None_Connectable_None_Scannable undirected, without auxiliary packet

#if 0 // ADV_EXT_IND: 1M PHY

#elif 1 // ADV_EXT_IND: Coded PHY(S2)

#elif 0 // ADV_EXT_IND: Coded PHY(S8)

#endif#

#elif 0 // Extended, None_Connectable_None_Scannable undirected, with auxiliary packet

#if 1 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY

#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY

#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S2)

#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)

#elif 0 // ADV_EXT_IND: Coded PHY(S2); AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY

#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY

#elif 0 // ADV_EXT_IND: Coded PHY(S2); AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY

#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY

#elif 0 // ADV_EXT_IND: Coded PHY(S2); AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S2)

#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)

#endif

#elif 1 // Extended, Scannable, Undirected

#if 1 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY

#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY

#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)

#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY

#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY

#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)

#endif

#endif

Users can refer to the demo to combine the types of extended broadcast packages they need.

Users need to use mobile phones or protocol analysis devices that support Bluetooth 5 Low Energy Adver-
tising Extension, Bluetooth 5 Low Energy 2Mbps and Bluetooth 5 Low Energy Coded (Long Range) functions
to see the data broadcast by the above various types of extensions.

Note:

AN-21112300-E2 343 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

• API blc_ll_init2MPhyCodedPhy_feature() is used to enable 2M PHY/Coded PHY.

13.9 2M/Coded PHY used on Legacy advertising and Connection Test

The 2M/Coded PHY used on Legacy advertising and Connection demo is mainly to test that after establishing
a connection based on Legacy advertising, switch to 1M/2M/Coded PHY in the connected state, and change
FEATURE_TEST_MODE to TEST_2M_CODED_PHY_CONNECTION in app_config.h.

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY_CONNECTION

The relevant codes are in vendor/ b85m_feature_test /feature_phy_conn, and the slave demo is provided.
Initially open 2M Phy and Coded Phy:

blc_ll_init2MPhyCodedPhy_feature(); // mandatory for 2M/Coded PHY

After the connection is successful, the mainloop will use the API blc_ll_setPhy() to initiate a PHY change
request in a 2-second cycle, 1M –> Coded PHY(S2) –> 2M –> Coded PHY(S8) –> 1M. The process is shown
in the figure below:

Figure 13.11: “PHY change flowchart”

if(phy_update_test_tick && clock_time_exceed(phy_update_test_tick, 2000000)){

phy_update_test_tick = clock_time() | 1;

int AAA = phy_update_test_seq%4;

if(AAA == 0){

blc_ll_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_CODED, PHY_PREFER_CODED,

CODED_PHY_PREFER_S2);↪

AN-21112300-E2 344 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

}

else if(AAA == 1){

blc_ll_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_2M, PHY_PREFER_2M,

CODED_PHY_PREFER_NONE);↪

}

else if(AAA == 2){

blc_ll_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_CODED, PHY_PREFER_CODED,

CODED_PHY_PREFER_S8);↪

}

else{

blc_ll_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_1M, PHY_PREFER_1M,

CODED_PHY_PREFER_NONE);↪

}

phy_update_test_seq ++;

}

Peer Master Device can use Demo “b85m_master_kma_dongle”, but also need to use API blc_ll_init2MPhyCodedPhy
_feature() to open 2M Phy and Coded Phy.

Users can also choose to use other manufacturers’ Master devices or mobile phones that support Bluetooth
5 Low Energy 2Mbps and Bluetooth 5 Low Energy Coded (Long Range) functions.

13.10 CSA #2 Test

CSA #2 demo mainly uses Channel Selection Algorithm #2 (Channel Selection Algorithm #2) for frequency
hopping when testing the connection state. You need to modify FEATURE_TEST_MODE to TEST_CSA2 in
app_config.h.

#define FEATURE_TEST_MODE TEST_CSA2

The relevant codes are all in vendor/b85m_feature_test/feature_misc, and the slave demo is provided.

Initial CSA #2:

blc_ll_initChannelSelectionAlgorithm_2_feature()

After enabling CSA #2, the ChSel field in the broadcast packet of Slave has been set to 1. If the CONNECT_IND
PDU of the Peer Master Device has also set the ChSel field to 1, the channel selection algorithm #2 is used
after the connection is successful. Otherwise, channel selection algorithm #1 should be used.

Peer Master Device can use SDK Demo “b85m_master_kma_dongle”, but also need to use API
blc_ll_initChannelSelectionAlgorithm_2_feature() to open CSA #2.

Users can also choose to use Master devices or mobile phones from other manufacturers that support
Bluetooth 5 Low Energy CSA #2.

AN-21112300-E2 345 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

13.11 EMI Test

The feature_emi is used to generate the required EMI test signals. This routine needs to be used with the
EMI_Tool and “Non_Signaling_Test_Tool” tools.

13.11.1 Protocol

Please refer to “Telink SoC EMI Test User Guide” for the communication protocol.

13.11.2 Demo introduction

EMI test in B85 supports carrieronly mode, continue mode, burst mode, and packet receiving mode.

Supported wireless communication methods include Ble1M, Ble2M, Ble125K, Ble500K, Zigbee250K.

For the introduction of each mode and functional function, users can refer to “Telink Driver SDK Developer
Handbook”.

AN-21112300-E2 346 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

14 Other Modules

14.1 24MHz Crystal External Capacitor

Refer to the position C19/C20 of the 24MHz crystal matching capacitor in the figure below.

The SDK defaults to use B85 internal capacitance (that is, the cap corresponding to ana_8a<5:0>) as the
matching capacitance of the 24MHz crystal oscillator. At this time, C19/C20 does not need to be soldered.
The advantage of using this solution is that the capacitance can be measured and adjusted on the Telink
fixture to make the frequency value of the final application product reach the best.

Figure 14.1: “24M Crystal Schematic”

If you need to use an external welding capacitor as the matching capacitor (C19/C20 welding capacitor) of
the 24MHz crystal oscillator, just call the following API at the beginning of the main function (must be before
the blc_app_loadCustomizedParameters() function and after the cpu_wakeup_init function):

static inline void blc_app_setExternalCrystalCapEnable(u8 en)

{

blt_miscParam.ext_cap_en = en;

WriteAnalogReg (0x8a, ReadAnalogReg(0x8a)|0x80);//close internal cap

}

As long as the API is called before cpu_wakeup_init, the SDK will automatically handle all the settings,
including disabling the internal matching capacitor, no longer reading the frequency bias correction value,
etc.

AN-21112300-E2 347 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

14.2 32KHz Clock Source Selection

The SDK supports the use of either the MCU’s internal 32k RC oscillator circuit (referred to as 32k RC) or
an external 32k RC oscillator circuit (referred to as 32k Pad). The error of 32k RC is relatively large, so for
applications with long suspend or deep retention time, the time accuracy will be worse. At present, the
maximum long connection supported by 32k RC by default cannot exceed 3s. Once exceeding this time,
ble_timing will have errors, resulting in inaccurate packet receiving time points, prone to receiving and
sending packets retry, increased power consumption, and even disconnection. The error is much smaller
when using the 32k Pad.

The user only needs to call the following API at the beginning of the main function (must be before the
cpu_wakeup_init function):

Call 32k RC：

void blc_pm_select_internal_32k_crystal(void);

Call 32k Pad：

void blc_pm_select_external_32k_crystal (void);

14.3 Firmware Digital Signature

There is a method of malicious copying of products in the market. For example, if customer A develops
a product using Telink’s chip and SDK, customer A’s competitor customer B, who also uses Telink’s chip,
gets the product and can copy the same hardware circuit design. If the product’s data burn-in bus is not
disabled, it is possible for customer B to read the complete firmware on the product’s Flash, and customer
B can copy the product using the same hardware and software.

To address these security risks, the SDK supports a software digital signature function. The principle is to
take advantage of the fact that the chip’s internal Flash has a unique UID. The product reads the 16 byte UID
from the internal Flash during the fixture burn-in process and then performs a complex encryption operation
with the contents of the Firmware to produce a set of checksum values called Signature, which are stored
at the corresponding address in the Flash calibration area. Which is:

Signature = Encryption_function (Firmware, Flash_UID)

Signature is related to both Firmware and Flash_UID. The same calculation is done when the program is
initialized on the SDK, the result is compared with the Signature burned on the fixture and if it does not
match, the program is not legal and is prohibited from running.

It is important to emphasize that this feature involves a number of technical aspects, including the fitment
of the jig, the corresponding configuration on the SDK, etc. Customers must confirm the details with Telink
FAE in advance if required.

Below are some technical details of the implementation of this feature.

(1) The jig end must be correctly matched, including file configuration, writing scripts, etc. Please refer
to the Telink testbench documentation and instructions for details.

AN-21112300-E2 348 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

(2) The Signature memory address is the Flash Calibration area offset address 0x180 continuous 16 byte.

(3) This feature is disabled by default on the SDK, to use it, enable the following macro in app_config.h.

#define FIRMWARES_SIGNATURE_ENABLE 1 //firmware check

Note:

• There are only a few projects on the SDK that add Firmware digital signature verification to the initializa-
tion of the main function (see FIRMWARES_SIGNATURE_ENABLE by searching for it). If the customer
is using a project that does not have this feature, please make sure to merge from another project to
your own.

The code in the SDK is shown below and the program needs to be disabled when the digital signature does
not match. The SDK uses the simplest while(1) to disable the program when the digital signature does not
match, this is just a sample writeup, please evaluate for yourself if this method meets the requirements, if
not you can use other methods such as putting the MCU into deepsleep, modifying various data, bss, stack
segments etc. stack segments, etc.

void blt_firmware_signature_check(void)

{

unsigned int flash_mid;

unsigned char flash_uid[16];

unsigned char signature_enc_key[16];

int flag = flash_read_mid_uid_with_check(&flash_mid, flash_uid);

if(flag==0){ //reading flash UID error

while(1);

}

firmware_encrypt_based_on_uid (flash_uid, signature_enc_key);

//signature not match

if(memcmp(signature_enc_key, (u8*)(flash_sector_calibration +

CALIB_OFFSET_FIRMWARE_SIGNKEY), 16)){↪

while(1); //user can change the code here to stop firmware running

}

}

(4) The calculation method for the digital signature, Encryption_function, is defined by Telink and
takes into account both the Firmware content and the Flash_UID, using AES 128 encryption. The
details of the calculation are not publicly available and are packaged in a sealed library. The above
firmware_encrypt_based_on_uid function is implemented in libfirmware_encrypt.a.

If customers feel that the generic encryption algorithm is not secure enough and need to use their own
encryption algorithm, they can contact Telink FAE to discuss the solution.

AN-21112300-E2 349 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

14.4 Firmware Integrity Self-check

The Firmware Integrity Self-check function is used to check the integrity of the current firmware during
initialization to prevent errors in the firmware from causing problems.

This function is disabled by default on the SDK, to use it, enable the following macro in app_config.h.

#define FIRMWARES_CHECK_ENABLE 1 //firmware check

Note:

• There are only a few projects on the SDK that add the Firmware self-check function to the initialization
of the main function (you can see this by searching for FIRMWARES_CHECK_ENABLE). If the customer
is using a project that does not have this feature, please make sure to merge from another project to
your own.

Referring to the introduction of Firmware CRC32 checksum in OTA chapter, the SDK adds the checksum
value at the end when generating the Firmware, the last step of OTA upgrade can confirm whether the
Firmware is complete by the checksum value. Here the Firmware integrity self-check is done with the help
of CRC32 checksum value, during initialization the Firmware is read to calculate the CRC32 and compared,
if it does not meet, the Firmware is considered corrupted.

The code is as follows, the simplest while(1) is used on the SDK to disable the run when the checksum fails,
this is just an example write up, users need to modify this write up to suit their own UI design, such as LED
indication errors etc.

#if FIRMWARE_CHECK_ENABLE

if(flash_fw_check(0xffffffff)){ //return 0, flash fw crc check ok. return 1, flash

fw crc check fail↪

while(1); //Users can process according to the actual application.

}

#endif

It is clear from the above description of the principle and details that the Firmware self-check cannot detect
100% of program abnormalities, for example, if the Firmware is extensively damaged, the program may not
be initialized properly and will not run here with the self-check function. Therefore, the self-check function
can only be effective when the Firmware is less damaged.

AN-21112300-E2 350 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

15 Debug

15.1 Introduction to GPIO simulation UART_TX printing method

To facilitate the user to print information when debugging, B85 supports gpio simulation printing printf(const
char *fmt, …) , array_printf(unsigned char*data, unsigned int len), the relevant information needs to be
defined in app_config.h as follows.

#ifndef UART_PRINT_DEBUG_ENABLE

#define UART_PRINT_DEBUG_ENABLE 1

#endif

/////////////////////////////////////// PRINT DEBUG INFO ///////////////////////////////////////

#if (UART_PRINT_DEBUG_ENABLE)

#define PRINT_BAUD_RATE 115200

#define DEBUG_INFO_TX_PIN GPIO_PA0

#define PULL_WAKEUP_SRC_PA0 PM_PIN_PULLUP_10K

#define PA0_OUTPUT_ENABLE 1

#define PA0_DATA_OUT 1 //must

#endif

The default baud rate here is 115200 and the TX_PIN is GPIO_PA0, the user can change the baud rate and
TX_PIN according to the actual needs.

If the user wants to use a higher baud rate (greater than 115200, maximum support 1M), the user needs to
increase the cclk, at least to 24MHz or more, change the cclk in app_config.h.

/////////////////// Clock /////////////////////////////////

/**

* @brief MCU system clock

*/

#define CLOCK_SYS_CLOCK_HZ 24000000

Note:

• The information printed by printf may be interrupted by a garbled message, do not print in an interrupt!

AN-21112300-E2 351 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

16 Q&A

Q．When compiling a project of the SDK, the following error is generated, how to solve it?

Figure 16.1: “Error in compiling a SDK project”

A．This situation is due to the default 16k retention used in the SDK, and some projects need to switch to
a 32k retention configuration due to the complexity of the project or the need for a larger buffer and the
ram in the retention_code section exceeds 16k. The modification process is as follows.

Step 1 Right-click on the project, select Properties -> C/C++ Build -> Settings -> General, in Other GCC
Flags change *****16K to *****32K.

Step 2 Paste the contents of the boot_32k_retn_….link file corresponding to the required boot in the boot/
directory into the boot.link in the subfolder, then clean the project.

For the known Module projects, and slave projects with large DLEs, phy_extend_adv, phy_conn, Big_pdu,
etc. in feature projects need to be changed to the 32k retention case.

Q．How to create my own project in the SDK?

A．Generally, to ensure that the various settings in the project are in place, we usually build new projects
based on a particular demo. For example, we use b85m_ble_sample as a base to complete a new project.

Step 1 Copy and paste the code and rename it. As shown below, we copy the code for b85m_ble_sample
and newly name it Test_Demo.

Figure 16.2: “Enter a new name for a project”

Step 2 Right-click on the project, Properties -> Settings –> Manage Configurations, create a new project,
for example: Test_Demo.

AN-21112300-E2 352 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 16.3: “Create new configuration for a project”

After clicking OK, you can see the new project in the project list, as shown below.

Figure 16.4: “New project in the project list”

Step 3 Right-click on the Test_Demo folder, Resource Configurations -> Exclude from Build, tick all the items
in Test_Demo’s settings except for itself. And tick Test_Demo in the same settings for its copy source. This

AN-21112300-E2 353 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

is shown as below.

Figure 16.5: “Exclude Test_Demo from build”

Figure 16.6: “Exclude source project from build”

Step 4 Change the Setting-TC32 Compiler-symbols in the Test_Demo property to the new symbols and click
Apply after the change, as shown below:

AN-21112300-E2 354 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

Figure 16.7: “Modify compiler symbol”

Step 5 In vender/common/user_config.h, add corresponding to the settings for the new code. As shown
below:

Figure 16.8: “Add user config for new code”

At this point, the new project has been built. You can now select the new project, clean it and build it for
use.

AN-21112300-E2 355 Ver1.0.1

Te
lin

k Se
m

ico
nd

uc
to

r

Telink B85m BLE Single Connection SDK Development Handbook

17 Appendix

17.1 crc16 Algorithm

unsigned short crc16 (unsigned char *pD, int len)

{

static unsigned short poly[2]={0, 0xa001};

unsigned short crc = 0xffff;

unsigned char ds;

int i,j;

for(j=len; j>0; j--)

{

unsigned char ds = *pD++;

for(i=0; i<8; i++)

{

crc = (crc >> 1) ^ poly[(crc ^ ds) & 1];

ds = ds >> 1;

}

}

return crc;

}

AN-21112300-E2 356 Ver1.0.1

	Revision History
	1 SDK Overview
	1.1 Software architecture
	1.1.1 main.c
	1.1.2 app_config.h
	1.1.3 application file
	1.1.4 BLE stack entry

	1.2 Applicable IC
	1.3 Software Bootloader
	1.4 Demo codes
	1.4.1 BLE Slave Demo
	1.4.2 BLE master demo
	1.4.3 Feature Demo and driver demo

	2 MCU Basic Modules
	2.1 MCU Address Space
	2.1.1 MCU Address Space Allocation
	2.1.2 SRAM Space Allocation
	2.1.2.1 SRAM and Firmware Space
	2.1.2.2 list file analysis demo

	2.1.3 MCU Address Space Access
	2.1.3.1 Peripheral Space R/W Operation
	2.1.3.2 Flash operation

	2.1.4 SDK Flash space allocation

	2.2 Clock Module
	2.2.1 System clock & System Timer
	2.2.2 System Timer Usage

	2.3 GPIO Module
	2.3.1 GPIO definition
	2.3.2 GPIO state control
	2.3.3 GPIO initialization
	2.3.4 GPIO digital states fail in deepsleep retention mode
	2.3.5 Configure SWS pull-ups to prevent crashes

	2.4 System interrupt

	3 BLE Module
	3.1 BLE SDK Software Architecture
	3.1.1 Standard BLE SDK Architecture
	3.1.2 Telink BLE SDK Architecture
	3.1.2.1 Telink BLE controller
	3.1.2.2 Telink BLE Slave
	3.1.2.3 Telink BLE master

	3.2 BLE Controller
	3.2.1 BLE Controller Introduction
	3.2.2 Link Layer State Machine
	3.2.3 Link Layer State Machine Combined Application
	3.2.3.1 Link Layer State Machine Initialization
	3.2.3.2 Idle + Advertising
	3.2.3.3 Idle + Scanning
	3.2.3.4 Idle + Advertising + ConnSlaveRole
	3.2.3.5 Idle + Scanning + Initiating + ConnMasterRole

	3.2.4 Link Layer Timing Sequence
	3.2.4.1 Timing Sequence in Idle State
	3.2.4.2 Timing Sequence in Advertising State
	3.2.4.3 Timing Sequence in Scanning State
	3.2.4.4 Timing Sequence in Initiating State
	3.2.4.5 Timing Sequence in Conn State Slave Role
	3.2.4.6 Timing Sequence in Conn State Master Role
	3.2.4.7 Timing Protect for Conn State Slave role

	3.2.5 Link Layer State Machine Extension
	3.2.5.1 Scanning in Advertising state
	3.2.5.2 Scanning in ConnSlaveRole
	3.2.5.3 Advertising in ConnSlaveRole
	3.2.5.4 Advertising and Scanning in ConnSlaveRole

	3.2.6 Link Layer TX fifo & RX fifo
	3.2.7 Controller Event
	3.2.7.1 Controller HCI Event
	3.2.7.2 HCI event
	3.2.7.3 HCI LE event
	3.2.7.4 Telink Defined Event

	3.2.8 Data Length Extension
	3.2.9 Controller API
	3.2.9.1 Controller API Introduction
	3.2.9.2 API Return Type ble_sts_t
	3.2.9.3 BLE MAC address initialization
	3.2.9.4 Link Layer state machine initialization
	3.2.9.5 bls_ll_setAdvData
	3.2.9.6 bls_ll_setScanRspData
	3.2.9.7 bls_ll_setAdvParam
	3.2.9.8 bls_ll_setAdvEnable
	3.2.9.9 bls_ll_setAdvDuration
	3.2.9.10 blc_ll_setAdvCustomedChannel
	3.2.9.11 rf_set_power_level_index
	3.2.9.12 blc_ll_setScanParameter
	3.2.9.13 blc_ll_setScanEnable
	3.2.9.14 blc_ll_createConnection
	3.2.9.15 blc_ll_setCreateConnectionTimeout
	3.2.9.16 blm_ll_updateConnection
	3.2.9.17 bls_ll_terminateConnection
	3.2.9.18 blm_ll_disconnect
	3.2.9.19 Get Connection Parameters
	3.2.9.20 blc_ll_getCurrentState
	3.2.9.21 blc_ll_getLatestAvgRSSI
	3.2.9.22 Whitelist & Resolvinglist
	3.2.9.23 blc_att_setServerDataPendingTime_upon_ClientCmd

	3.2.10 Coded PHY/2M PHY
	3.2.10.1 Coded PHY/2M PHY Introduction
	3.2.10.2 Coded PHY/2M PHY Demo Introduction
	3.2.10.3 Coded PHY/2M PHY API Introduction

	3.2.11 Channel Selection Algorithm #2
	3.2.12 Extended Advertising
	3.2.12.1 Extended Advertising Introdcution
	3.2.12.2 Extended Advertising Demo Setup
	3.2.12.3 Extended Advertising Related API

	3.3 BLE Host
	3.3.1 BLE Host Introduction
	3.3.2 L2CAP
	3.3.2.1 Register L2CAP Data Processing Function
	3.3.2.2 Update connection parameters

	3.3.3 ATT & GATT
	3.3.3.1 GATT basic unit Attribute
	3.3.3.2 Attribute and ATT Table
	3.3.3.3 Attribute PDU and GATT API
	3.3.3.4 GATT Service Security
	3.3.3.5 B85m master GATT

	3.3.4 SMP
	3.3.4.1 SMP Security Level
	3.3.4.2 SMP Parameter Configuration
	3.3.4.3 Security Request Configuration
	3.3.4.4 SMP Bonding info
	3.3.4.5 master SMP
	3.3.4.6 SMP Failure Management

	3.3.5 GAP
	3.3.5.1 GAP initialization
	3.3.5.2 GAP Event

	4 Low Power Management
	4.1 Low Power Driver
	4.1.1 Low Power Mode
	4.1.2 Low Power Wake-up Source
	4.1.3 Sleep and Wake-up from Low Power Mode
	4.1.4 Low Power Wake-up Procedure
	4.1.5 API pm_is_MCU_deepRetentionWakeup

	4.2 BLE Low Power Management
	4.2.1 BLE PM Initialization
	4.2.2 BLE PM for Link Layer
	4.2.3 BLE PM Variables
	4.2.4 API bls_pm_setSuspendMask
	4.2.5 API bls_pm_setWakeupSource
	4.2.6 API blc_pm_setDeepsleepRetentionType
	4.2.7 PM software processing flow
	4.2.7.1 blt_sdk_main_loop
	4.2.7.2 blt_brx_sleep

	4.2.8 Analysis of deepsleep retention
	4.2.8.1 API blc_pm_setDeepsleepRetentionThreshold
	4.2.8.2 blc_pm_setDeepsleepRetentionEarlyWakeupTiming
	4.2.8.3 Optimization and measurement of T_init

	4.2.9 Connection Latency
	4.2.9.1 Sleep timing with non-zero connection latency
	4.2.9.2 latency_use calculation

	4.2.10 API bls_pm_getSystemWakeupTick

	4.3 Issues in GPIO Wake-up
	4.3.1 Fail to enter sleep mode when wake-up level is valid

	4.4 BLE System Low Power Management
	4.5 Timer Wake-up by Application Layer

	5 Low Battery Detect
	5.1 The importance of low battery detect
	5.2 The implementation of low battery detect
	5.2.1 Notes on low battery detect
	5.2.1.1 GPIO input channel recommended
	5.2.1.2 Differential mode only
	5.2.1.3 Must use Dfifo mode to obtain ADC sampling value
	5.2.1.4 Need to switch different ADC tasks

	5.2.2 Stand-alone use of low battery detect
	5.2.2.1 Low battery detect initialization
	5.2.2.2 Low battery detect processing
	5.2.2.3 Low voltage alarm
	5.2.2.4 Low power detect debug mode

	5.2.3 Low battery detect and Amic Audio

	6 Audio
	6.1 Initialization
	6.1.1 AMIC and Low Power Detect
	6.1.2 AMIC Initialization
	6.1.3 DMIC Initialization

	6.2 Audio Data Processing
	6.2.1 Audio Data Volume and RF Transfer
	6.2.2 Audio Data Compression

	6.3 Compression and Decompression Algorithm
	6.4 Audio data processing flow
	6.4.1 TL_AUDIO_RCU_ADPCM_GATT_GOOGLE
	6.4.1.1 Initialization
	6.4.1.2 Voice data transmission
	6.4.1.3 TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB

	6.4.2 TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB

	7 OTA
	7.1 Flash Architecture and OTA Procedure
	7.1.1 FLASH Storage Architecture
	7.1.2 OTA Update Procedure
	7.1.3 Modify FW Size and Booting Address

	7.2 RF Data Processing for OTA Mode
	7.2.1 OTA Processing in Attribute Table
	7.2.2 OTA Protocol
	7.2.3 RF Transfer Processing on Master Side

	7.3 OTA Security
	7.3.1 OTA Service data security
	7.3.2 OTA RF transmission data integrity
	7.3.2.1 LinkLayer data transfer mechanism
	7.3.2.2 OTA PDU CRC16 check
	7.3.2.3 OTA PDU serial number check

	7.3.3 Firmware CRC32 check
	7.3.4 OTA abnormal power failure protection

	8 Flash
	8.1 Flash address allocation
	8.2 Flash operation
	8.3 Flash operation protection
	8.3.1 Low voltage detection protection
	8.3.2 Flash lock protection
	8.3.2.1 Initialize write protection
	8.3.2.2 Protection operations in the OTA process

	8.4 Internal Flash introduction
	8.4.1 Impact of Flash access timing on BLE timing
	8.4.1.1 Flash access timing
	8.4.1.2 Impact of Flash API on BLE timing

	8.4.2 Use of internal Flash API
	8.4.2.1 GD Flash
	8.4.2.2 Zbit Flash
	8.4.2.3 PUYA Flash

	9 Key Scan
	9.1 Key Matrix
	9.2 Keyscan and Keymap
	9.2.1 Keyscan
	9.2.2 Keymap & kb_event

	9.3 Keyscan Flow
	9.4 Deepsleep wake_up fast keyscan
	9.5 Repeat Key Processing
	9.6 Stuck Key Processing

	10 LED Management
	10.1 LED task related functions
	10.2 LED Task Configuration and Management
	10.2.1 LED Event Definition
	10.2.2 LED Event Priority

	11 Software Timer
	11.1 Timer Initialization
	11.2 Timer Inquiry Processing
	11.3 Add Timer Task
	11.4 Delete Timer Task
	11.5 Demo

	12 IR
	12.1 PWM Driver
	12.1.1 PWM ID and Pin
	12.1.2 PWM Clock
	12.1.3 PWM Cycle and Duty
	12.1.4 PWM Revert
	12.1.5 PWM Start and Stop
	12.1.6 PWM Mode
	12.1.7 PWM Pulse Number
	12.1.8 PWM Interrupt
	12.1.9 PWM phase
	12.1.10 IR DMA FIFO mode
	12.1.10.1 Configuration for DMA FIFO
	12.1.10.2 Set DMA FIFO Buffer
	12.1.10.3 Start and Stop for IR DMA FIFO Mode

	12.2 IR Demo
	12.2.1 PWM mode selection
	12.2.2 Demo IR Protocol
	12.2.3 IR Timing Design
	12.2.4 IR Initialization
	12.2.4.1 rc_ir_init
	12.2.4.2 IR Hardware Configuration
	12.2.4.3 IR Variable Initialization

	12.2.5 FifoTask Configuration
	12.2.5.1 FifoTask_data
	12.2.5.2 FifoTask_idle
	12.2.5.3 FifoTask_repeat
	12.2.5.4 FifoTask_repeat*n and FifoTask_idle_repeat*n

	12.2.6 Check IR Busy Status in APP Layer

	12.3 IR Learn
	12.3.1 IR Learn introduction
	12.3.2 IR Learn hardware principle
	12.3.3 IR Learn software principle
	12.3.3.1 IR_Learn initialization
	12.3.3.2 IR_Learn interrupt handling
	12.3.3.3 IR_Learn result processing function
	12.3.3.4 IR_Learn macro definition
	12.3.3.5 IR_Learn start function
	12.3.3.6 IR_Learn state query
	12.3.3.7 IR_Learn_Send initialization
	12.3.3.8 IR_Learn result copy function
	12.3.3.9 IR_Learn send function

	12.3.4 IR Learn algorithm details
	12.3.5 IR Learn learning parameter adjustment
	12.3.6 IR Learn common issues

	12.4 Demo description

	13 Feature Demo Introduction
	13.1 Broadcast Power Consumption Test
	13.1.1 Connectable Broadcast Power Consumption Test
	13.1.2 Un-connectable Broadcast Power Consumption Test

	13.2 SMP Test
	13.2.1 LE_Security_Mode_1_Level_1
	13.2.2 LE_Security_Mode_1_Level_2
	13.2.2.1 SMP_TEST_LEGACY_PARING_JUST_WORKS
	13.2.2.2 SMP_TEST_SC_PAIRING_JUST_WORKS

	13.2.3 LE_Security_Mode_1_Level_3
	13.2.3.1 SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI
	13.2.3.2 SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI

	13.2.4 LE_Security_Mode_1_Level_4
	13.2.4.1 SMP_TEST_SC_NUMERIC_COMPARISON
	13.2.4.2 SMP_TEST_SC_PASSKEY_ENTRY_SDMI

	13.3 GATT Security Test
	13.4 DLE Test
	13.5 Soft Timer Test
	13.6 WhiteList Test
	13.7 1M Extended Advertising Test
	13.8 2M/Coded PHY Used on Extended Advertising Test
	13.9 2M/Coded PHY used on Legacy advertising and Connection Test
	13.10 CSA #2 Test
	13.11 EMI Test
	13.11.1 Protocol
	13.11.2 Demo introduction

	14 Other Modules
	14.1 24MHz Crystal External Capacitor
	14.2 32KHz Clock Source Selection
	14.3 Firmware Digital Signature
	14.4 Firmware Integrity Self-check

	15 Debug
	15.1 Introduction to GPIO simulation UART_TX printing method

	16 Q&A
	17 Appendix
	17.1 crc16 Algorithm

