

Application Note

Telink TLSR8232 BLE SDK

Developer Handbook

AN-19112700-E1

T
E

L
IN

K
 S

E
M

IC
O

N
D

U
C

T
O

R

Brief:

This document is the developer guide for TLSR8232

BLE SDK 1.3.0.

Version 1.0.0

2019-11-27

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 1 Ver.1.0.0

Published by

Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,

Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor

All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make
improvements without further notice to this document or any products herein. This
document may contain technical inaccuracies or typographical errors. Telink
Semiconductor disclaims any and all liability for any errors, inaccuracies or
incompleteness contained herein.

Copyright © 2019 Telink Semiconductor (Shanghai) Ltd, Co.

Information:

For further information on the technology, product and business term, please contact
Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

http://www.telink-semi.com/
mailto:telinkcnsales@telink-semi.com
mailto:telinkcnsupport@telink-semi.com

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 2 Ver.1.0.0

Revision History
Version 1.0.0 (2019-11-27)

This is the Initial release.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 3 Ver.1.0.0

Contents
Revision History ... 2

Contents ... 3

Contents of Figures ... 11

1. SDK Overview.. 14

1.1 Software Architecture ... 14

1.1.1 main.c ... 15

1.1.2 app_config.h ... 16

1.1.3 Application File ... 16

1.1.4 BLE Stack Entry ... 16

1.2 Applied ICs ... 17

1.3 library .. 17

1.4 Demo .. 18

1.4.1 BLE Slave Demo .. 19

1.4.2 Other Demos .. 20

2. MCU Basic Modules .. 21

2.1 MCU Address Space .. 21

2.1.1 MCU Address Space Allocation ... 21

2.1.2 SRAM Space Allocation ... 21

2.1.2.1 SRAM and Firmware Space .. 21

2.1.2.2 list File Analysis Demo ... 25

2.1.3 MCU Address Space Access ... 29

2.1.3.1 Peripheral Space Access .. 29

2.1.3.2 Flash Space Operation .. 30

2.1.4 SDK Flash Space Allocation .. 32

2.1.4.1 Space Allocation of 512kB Flash ... 33

2.1.4.2 Space Allocation of 128kB Flash ... 35

2.2 Clock Module .. 37

2.2.1 System Clock & System Timer .. 37

2.2.2 System Timer Usage.. 39

2.3 GPIO Module .. 40

2.3.1 GPIO Definition .. 40

2.3.2 GPIO State Control .. 40

2.3.3 GPIO Initialization .. 42

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 4 Ver.1.0.0

2.3.4 Configure SWS Pull-up to Avoid MCU Errors .. 43

3. BLE Module ... 44

3.1 BLE SDK Software Architecture ... 44

3.1.1 Standard BLE SDK Architecture .. 44

3.1.2 Telink BLE SDK Architecture ... 45

3.1.2.1 Telink BLE Controller ... 45

3.1.2.2 5316 BLE Slave ... 46

3.2 BLE Controller .. 47

3.2.1 BLE Controller Introduction .. 47

3.2.2 Link Layer State Machine .. 47

3.2.3 Link Layer State Machine Combined Application 49

3.2.3.1 Link Layer State Machine Initialization .. 49

3.2.3.2 Idle + Advertising ... 50

3.2.3.3 Idle + Advertising + ConnSlaveRole .. 50

3.2.4 Link Layer Timing Sequence ... 51

3.2.4.1 Timing Sequence in Idle State ... 52

3.2.4.2 Timing Sequence in Advertising State .. 52

3.2.4.3 Timing Sequence in Conn state Slave Role 53

3.2.4.4 Conn State Slave Role Timing Protection 54

3.2.5 Link Layer TX FIFO & RX FIFO ... 55

3.2.6 Controller HCI Event .. 58

3.2.6.1 HCI Event ... 59

3.2.6.2 HCI LE Event ... 60

3.2.7 Telink Defined Event .. 62

3.2.7.1 BLT_EV_FLAG_ADV ... 65

3.2.7.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT 65

3.2.7.3 BLT_EV_FLAG_SCAN_RSP .. 65

3.2.7.4 BLT_EV_FLAG_CONNECT .. 65

3.2.7.5 BLT_EV_FLAG_TERMINATE ... 66

3.2.7.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE 67

3.2.7.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE 67

3.2.7.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP 68

3.2.7.9 BLT_EV_FLAG_CHN_MAP_REQ .. 69

3.2.7.10 BLT_EV_FLAG_CHN_MAP_UPDATE ... 69

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 5 Ver.1.0.0

3.2.7.11 BLT_EV_FLAG_CONN_PARA_REQ ... 69

3.2.7.12 BLT_EV_FLAG_CONN_PARA_UPDATE 70

3.2.7.13 BLT_EV_FLAG_SUSPEND_ENETR .. 70

3.2.7.14 BLT_EV_FLAG_SUSPEND_EXIT .. 70

3.2.7.15 BLT_EV_FLAG_PHY_UPDATE .. 70

3.2.8 Controller API ... 71

3.2.8.1 Controller API Brief .. 71

3.2.8.2 API Return Type ble_sts_t ... 71

3.2.8.3 MAC Address Initialization ... 71

3.2.8.4 Link Layer State Machine Initialization .. 72

3.2.8.5 bls_ll_setAdvData .. 72

3.2.8.6 bls_ll_setScanRspData.. 73

3.2.8.7 bls_ll_setAdvParam ... 74

3.2.8.8 bls_ll_setAdvEnable .. 78

3.2.8.9 bls_ll_setAdvDuration .. 78

3.2.8.10 blc_ll_setAdvCustomedChannel.. 79

3.2.8.11 rf_set_power_level_index .. 79

3.2.8.12 bls_ll_terminateConnection ... 80

3.2.8.13 Get Connection Parameters .. 81

3.2.8.14 blc_ll_getCurrentState ... 81

3.2.8.15 blc_ll_getLatestAvgRSSI ... 81

3.2.8.16 Whitelist & Resolvinglist... 82

3.2.9 2M PHY Supported .. 83

3.2.10 Data Length Extension ... 84

3.3 L2CAP .. 85

3.3.1 Register L2CAP Data Processing Function ... 86

3.3.2 Update Connection Parameters... 87

3.3.2.1 Slave Requests for Connection Parameter Update 87

3.3.2.2 Master Responds to Connection Parameter Update Request 88

3.3.2.3 Master Updates Connection Parameters in Link Layer................... 90

3.4 ATT & GATT ... 90

3.4.1 GATT Basic Unit “Attribute” ... 90

3.4.2 Attribute and ATT Table ... 92

3.4.2.1 attNum ... 92

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 6 Ver.1.0.0

3.4.2.2 perm ... 93

3.4.2.3 uuid, uuidLen ... 94

3.4.2.4 pAttrValue, attrLen ... 94

3.4.2.5 Callback Function w ... 95

3.4.2.6 Callback Function r .. 97

3.4.2.7 Attribute Table Layout .. 98

3.4.2.8 ATT Table Initialization .. 99

3.4.3 Attribute PDU & GATT API .. 99

3.4.3.1 Read by Group Type Request, Read by Group Type Response . 100

3.4.3.2 Find by Type Value Request, Find by Type Value Response 101

3.4.3.3 Read by Type Request, Read by Type Response 101

3.4.3.4 Find Information Request, Find Information Response 102

3.4.3.5 Read Request, Read Response .. 103

3.4.3.6 Read Blob Request, Read Blob Response 103

3.4.3.7 Exchange MTU Request, Exchange MTU Response 104

3.4.3.8 Write Request, Write Response .. 105

3.4.3.9 Write Command ... 106

3.4.3.10 Handle Value Notification .. 106

3.4.3.11 Handle Value Indication ... 107

3.4.3.12 Handle Value Confirmation .. 108

3.5 SMP .. 109

3.5.1 SMP Parameter Configuration ... 109

3.5.1.1 Device Bonding .. 109

3.5.1.2 Device OOB data verification .. 109

3.5.1.3 Secure Connection Pairing (SC) ... 109

3.5.2 Enable SMP ... 110

3.5.3 SMP Event ... 111

3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN .. 111

3.5.3.2 BLT_EV_FLAG_PAIRING_END ... 112

3.5.4 SMP Bonding Information .. 112

4. Power Management (PM) .. 115

4.1 PM Driver .. 115

4.1.1 Low Power Modes .. 115

4.1.2 Hardware Wakeup Sources ... 115

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 7 Ver.1.0.0

4.1.3 Low Power Mode Entry and Wakeup .. 117

4.2 BLE Low Power Management .. 119

4.2.1 PM In Idle State .. 119

4.2.2 PM in BLE Adv State & Conn State ... 120

4.3 BLE PM Configuration .. 120

4.3.1 PM Module Initialization ... 120

4.3.2 Set Low Power Modes via “bls_pm_setSuspendMask” 121

4.3.3 bls_pm_setWakeupSource .. 121

4.3.4 Working Mechanism of Low Power Managment 122

4.4 “latency_use” Configuration and Calculation ... 125

4.5 Other APIs .. 125

4.5.1 bls_pm_getSystemWakeupTick... 126

4.5.2 bls_pm_enableAdvMcuStall ... 127

4.6 Notes about GPIO Wakeup .. 127

4.6.1 Fail to Enter Suspend/Deepsleep When Wakeup Level is Valid 127

4.7 BLE System PM Reference.. 128

4.8 Timer Wakeup of APP Layer .. 129

5. Low Battery Detect .. 131

5.1 Significance of Low Battery Detect .. 131

5.2 Implementation of Low Battery Detect ... 131

5.2.1 Cautions of Low Battery Detect ... 131

5.2.1.1 MUST Use GPIO Input Channel .. 132

5.2.1.2 MUST Use ADC Differential Mode .. 133

5.2.1.3 MUST Use DFIFO for ADC Sampling Valu 133

5.2.2 Dedicated Low Battery Detect Demo ... 133

5.2.2.1 Initialization of Low Battery Detect .. 134

5.2.2.2 Low Battery Detect Processing ... 134

5.2.2.3 Low Battery Voltage Alarm .. 135

6. OTA .. 137

6.1 Flash Architecture and OTA Procedure ... 137

6.1.1 Flash Storage Architecture .. 137

6.1.2 OTA Update Procedure ... 138

6.1.3 Modify Firmware Size and Boot Address... 139

6.2 RF Data Proceesing in OTA Mode ... 141

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 8 Ver.1.0.0

6.2.1 OTA Processing in Attribute Table on Slave Side 141

6.2.2 OTA Data Packet Format ... 142

6.2.3 RF Transfer Processing on Master Side .. 143

6.2.4 RF Receive Processing on Slave Side .. 146

7. Key Scan .. 149

7.1 Key Matrix ... 149

7.2 Keyscan, Keymap and Keycode .. 151

7.2.1 Keyscan .. 151

7.2.2 Keymap &kb_event .. 151

7.3 Keycode .. 154

7.4 Keyscan Flow ... 156

7.4.1 Basic Keyscan Flow ... 156

7.4.2 Keyscan Flow Timing Optimization .. 157

7.5 Deepsleep Wakeup Fast Keyscan ... 159

7.6 Repeat Key Processing .. 161

7.7 Stuck Key Processing .. 162

7.8 Power Optimization for Long Key Press .. 164

8. LED Management .. 165

8.1 LED Task Related Functions.. 165

8.2 LED Task Configuration and Management .. 165

8.2.1 LED Event Definition .. 165

8.2.2 LED Event Priority .. 166

9. blt Software Timer .. 168

9.1 Timer Initialization... 168

9.2 Timer Inquiry Processing .. 168

9.3 Add Timer Task .. 171

9.4 Delete Timer Task .. 171

9.5 Demo .. 171

10. IR .. 174

10.1 PWM Driver .. 174

10.1.1 PWM id and Pin ... 174

10.1.2 PWM Clock .. 175

10.1.3 PWM Cycle and Duty ... 176

10.1.4 PWM Revert ... 177

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 9 Ver.1.0.0

10.1.5 PWM Start and Stop .. 177

10.1.6 PWM Mode .. 177

10.1.7 PWM Pulse Number... 177

10.1.8 PWM Phase ... 178

10.1.9 PWM Interrupt .. 178

10.1.10 API for IR DMA FIFO Mode ... 180

10.1.10.1 Configuration of DMA FIFO ... 180

10.1.10.2 Set DMA FIFO Buffer ... 181

10.1.10.3 Start and Stop of IR DMA FIFO Mode 181

10.2 IR Demo ... 181

10.2.1 PWM Mode Selection .. 181

10.2.2 Demo IR protocol ... 182

10.2.3 IR Timing Design .. 182

10.2.4 IR Initialization .. 185

10.2.4.1 rc_ir_init ... 185

10.2.4.2 IR Hardware Configuration .. 185

10.2.4.3 IR Variable Initialization ... 186

10.2.5 FIFO Task Configuration .. 186

10.2.5.1 FIFO Task_data ... 186

10.2.5.2 FifoTask_idle.. 187

10.2.5.3 FifoTask_repeat ... 188

10.2.5.4 FifoTask_repeat*n&FifoTask_idle_repeat*n 189

10.2.6 Check IR Busy Status in APP Layer .. 189

11. Drivers in BLE SDK ... 190

11.1 External Capacitor for 24 MHz Crystal ... 190

11.2 Select 32kHz Clock Sources .. 190

11.3 EMI ... 190

11.3.1 EMI Test ... 190

11.3.1.1 Carrier Mode .. 191

11.3.1.2 CD Mode .. 191

11.3.1.3 TX Mode .. 192

11.3.1.4 RX Mode .. 192

11.3.2 EMI Test Tool ... 193

11.4 PHY Test .. 198

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 10 Ver.1.0.0

12. BLE SPP Module ... 199

12.1 Command and Data Packet Format... 199

12.2 Function Description ... 205

12.2.1 Module Sends Commands and Data ... 206

12.2.2 Module Receives Data ... 207

12.3 Power Management of Module .. 209

Appendix .. 210

Appendix 1: crc16 Algorithm .. 210

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 11 Ver.1.0.0

Contents of Figures
Figure 1-1 SDK File Structure .. 14

Figure 1-2 Select library ... 18

Figure 1-3 Demos in BLE SDK... 19

Figure 2-1 MCU Address Space Allocation ... 21

Figure 2-2 SRAM and Firmware Space ... 22

Figure 2-3 Section Distribution in list File ... 26

Figure 2-4 Section Address in list File .. 27

Figure 2-5 512kB FLASH Space Allocation ... 33

Figure 2-6 128kB Flash Space Allocation .. 35

Figure 2-7 System Clock & System Timer ... 37

Figure 3-1 BLE SDK Standard Architecture ... 44

Figure 3-2 HCI Data Transfer Between Host and Controller 45

Figure 3-3 5316 hci Architecture .. 46

Figure 3-4 Telink BLE Slave Architecture .. 46

Figure 3-5 State Diagram of Link Layer State Machine in BLE Spec 48

Figure 3-6 Telink Link Layer State Machine .. 48

Figure 3-7 Idle + Advertising .. 50

Figure 3-8 BLE Slave LL State ... 50

Figure 3-9 Timing Sequence in Advertising State.. 52

Figure 3-10 Timing Sequence in Conn state Slave Role ... 53

Figure 3-11 RX Overflow Case 1 ... 56

Figure 3-12 RX Overflow Case 2 ... 57

Figure 3-13 HCI Event .. 58

Figure 3-14 Disconnection Complete Event .. 59

Figure 3-15 Read Remote Version Information Complete Event 59

Figure 3-16 LE Connection Complete Event ... 60

Figure 3-17 LE Advertising Report Event... 61

Figure 3-18 LE Connection Update Complete Event ... 61

Figure 3-19 Architecture of Telink Defined Event .. 62

Figure 3-20 Connect Request PDU ... 66

Figure 3-21 LL_CONNECTION_UPDATE_REQ Format in BLE Stack 70

Figure 3-22 Adv Packet Format in BLE Stack ... 72

Figure 3-23 Advertising Event in BLE Stack .. 74

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 12 Ver.1.0.0

Figure 3-24 Four Adv Events in BLE Stack ... 75

Figure 3-25 Connection Para Update Req Format in BLE Stack 87

Figure 3-26 BLE Sniffer Packet Sample: conn para Update Request & Response .. 87

Figure 3-27 conn para update rsp Format in BLE Stack ... 88

Figure 3-28 BLE Sniffer Packet Sample: ll conn update req 90

Figure 3-29 GATT Service Containing Attribute Group ... 91

Figure 3-30 5316 BLE SDK Attribute Table ... 92

Figure 3-31 BLE Sniffer Packet Sample When Master Reads hidInformation 95

Figure 3-32 Write Request in BLE Stack ... 96

Figure 3-33 Write Command in BLE Stack .. 96

Figure 3-34 Service/Attribute Layout .. 99

Figure 3-35 Read by Group Type Request/Read by Group Type Response 100

Figure 3-36 Find by Type Value Request/Find by Type Value Response 101

Figure 3-37 Read by Type Request/Read by Type Response 102

Figure 3-38 Find Information Request/Find Information Response 102

Figure 3-39 Read Request/Read Response .. 103

Figure 3-40 Read Blob Request/Read Blob Response ... 103

Figure 3-41 Exchange MTU Request/Exchange MTU Response 104

Figure 3-42 Write Request/Write Response .. 106

Figure 3-43 Handle Value Notification in BLE Spec .. 106

Figure 3-44 Handle Value Indication in BLE Spec ... 107

Figure 3-45 Handle Value Confirmation in BLE Spec .. 108

Figure 3-46 Pairing Disable .. 110

Figure 3-47 Pairing Conn Trigger ... 111

Figure 3-48 Pairing Peer Trigger .. 111

Figure 3-49 Pairing_Req Sent From Master .. 111

Figure 4-1 Hardware Wakeup Sources for 5316 MCU .. 116

Figure 4-2 PM in Link Layer Idle state ... 120

Figure 4-3 Trigger APP Wakup Tick in Advance ... 130

Figure 6-1 5316F512K Flash Storage Structure .. 137

Figure 6-2 Write Command Format in BLE Stack .. 142

Figure 6-3 Format of OTA Command and Data ... 142

Figure 6-4 Master Obtains OTA Attribute Handle via “Read By Type Request” 143

Figure 6-5 Firmware: Starting Part ... 144

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 13 Ver.1.0.0

Figure 6-6 Firmware: Ending Part .. 144

Figure 6-7 Master Sends “OTA start” ... 144

Figure 6-8 Master OTA Data .. 145

Figure 7-1 Row/Column Key Matrix ... 149

Figure 7-2 Keycode Processing Function .. 154

Figure 7-3 Keyscan Time Optimization .. 159

Figure 10-1 PWM Cycle & Duty ... 176

Figure 10-2 PWM interrupt ... 179

Figure 10-3 DMA FIFO Buffer for IR DMA FIFO Mode .. 180

Figure 10-4 Demo IR protocol .. 182

Figure 10-5 IR Timing 1 .. 183

Figure 10-6 IR Timing 2 .. 184

Figure 11-1 EMI Test Tool .. 193

Figure 11-2 Select Data Bus .. 193

Figure 11-3 Swire synchronization operation ... 194

Figure 11-4 Set Channel .. 194

Figure 11-5 Select RF Mode .. 195

Figure 11-6 Interface After RF Mode Setting ... 195

Figure 11-7 Select Test Mode .. 196

Figure 11-8 Set TX Packet Number ... 196

Figure 11-9 TX Mode Interface .. 197

Figure 11-10 Read RX Packet Number and RSSI ... 197

Figure 12-1 Module Hardware Connection .. 205

Figure 12-2 Scan Module Device ... 206

Figure 12-3 Connect Module Device .. 206

Figure 12-4 Module Sending Data ... 207

Figure 12-5 Phone Receiving Data .. 207

Figure 12-6 Phone Sending Data ... 208

Figure 12-7 Module Receiving Data ... 208

Figure 12-8 Connection of Hardware When Low Power is Enabled 209

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 14 Ver.1.0.0

1. SDK Overview
Telink 5316 BLE SDK provides demo code for BLE slave development, based on which
users can develop their own application programs.

Currently 5316 BLE SDK applies to ICs TLSR8232F512 and TLSR8232F128 (5316 and
8232 refer to the same IC, 5316 is the name for Telink internal use, while 8232 is the
name for external use).

1.1 Software Architecture

Software architecture for Telink 5316 BLE SDK includes APP layer and BLE protocol
stack.

Figure 1-1 shows the file structure after the SDK project is imported to Telink IDE, which
mainly contains six top-layer folders: “boot”, ”common”, ”drivers”, ”proj_lib”, ”stack”, and
“vendor”.

Figure 1-1 SDK File Structure

 boot: This folder contains software bootloader.

 common: This folder contains generic APIs, such as printf and shift operation.

 drivers: This folder contains all the peripheral drivers of 5316, such as ADC, I2C,

SPI, and UART.

 proj_lib: This folder contains library files necessary for MCU running, including BLE

stack, RF driver, PM driver, etc. This folder is provided in the form of library files, the

source files, like liblt_5316.a, are not open to users.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 15 Ver.1.0.0

 vendor: This folder contains user APP-layer code, e.g. 5316_ble_remote demo

application. The following four basic files are needed for each new user folder.

1.1.1 main.c

The “main.c” file includes the entry function “main” of the program, system
initialization functions and endless loop “while(1)”. It’s not recommended to make any
modification to this file.

int main(void){

 blc_pm_select_internal_32k_crystal(); // select internal 32k rc as 32k counter
clock source

 cpu_wakeup_init(); // basic MCU hardware initialization, negligible to users

 clock_init(SYS_CLK_16M_Crystal); // clock initialization, users only needs to fill
related parameters accordingly.

 gpio_init(); // GPIO initialization, users only need to configure related parameters
in app_config.h

 rf_drv_init(RF_MODE_BLE_1M); // RF initialization, negligible to users, only support
BLE 1M

 user_init (); // BLE initialization, initialization of the whole system, configured by
users

 irq_enable(); // enable global interrupt

 while (1) {

 #if (MODULE_WATCHDOG_ENABLE)

 wd_clear(); //clear watch dog

 #endif

 main_loop ();// include BLE Rx/Tx processing, power management and user
tasks

 }

}

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 16 Ver.1.0.0

1.1.2 app_config.h

The user configuration file “app_config.h” serves to configure parameters of the whole
system, including parameters related to BLE, GPIO, PM low-power management, and
etc.

Parameter details of each module will be illustrated in following sections.

1.1.3 Application File

“app.c”: User file for system initialization and adding user task UI.

“app_att.c” of BLE Slave project: configuration files for services and profiles. Based on
Telink Attribute structure, as well as Attributes such as GATT, standard HID, and
proprietary OTA, users can add their own services and profiles as needed.

1.1.4 BLE Stack Entry

There are two entry functions in BLE stack code of Telink BLE SDK.

1) BLE related interrupt processing entry in “irq_handler” function of “main.c” file

 “irq_blt_sdk_handler”.

_attribute_ram_code_ void irq_handler(void)

{

 ……

 irq_blt_sdk_handler ();

 ……

}

2) BLE logic and data processing function entry in application file mainloop

“blt_sdk_main_loop”.

void main_loop (void)

{

 tick_loop ++;

///////////////////// BLE entry ////////////////////////////

 blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////////

 ……

}

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 17 Ver.1.0.0

1.2 Applied ICs

TLSR8232F512/ TLSR8232F128: The two ICs share the same IP core, thus their
hardware modules are almost the same except Flash size as shown below.

IC Flash size SRAM size

TLSR8232F512 512kB 16kB

TLSR8232F128 128kB 16kB

1.3 library

SDK 1.2.0 provides two libraries, liblt_5316_512K.a and liblt_5316_128K.a. Providing
two libraries is to save some Flash space for 128k Flash IC, which is at the expense of
removing BLE4.2 DLE features, etc.

It is verified that removing some features of BLE saves little space while loses some
functions of BLE and brings inconvenience to users. Therefore, SDK 1.3.0 reduced its
library to liblt_5316.a only.

If the user uses SDK 1.2.0, he should adjust the library according to Flash size. Figure 1-
2 shows the adjustment method.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 18 Ver.1.0.0

Figure 1-2 Select library

1.4 Demo

5316 BLE SDK provides multiple BLE demos for users. Each demo code has its specific
hardware. Through running the demo, a user can observe effects directly and modify
demo code for his own application development.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 19 Ver.1.0.0

Figure 1-3 Demos in BLE SDK

1.4.1 BLE Slave Demo

BLE Slave demos and their differences are listed in the table below:

Demo Stack Application MCU function

5316 hci BLE controller No

Controller, communicate
with peer MCU hosts via
HCI interface

5316 module BLE controller + host
Application in Host
MCU

BLE SPP module

5316 remote BLE controller + host
Remote control
application

Host MCU

5316 sample BLE controller + host No Host MCU

5316 dual mode BLE + 2.4G Dual mode Host MCU

5316 hci is a BLE Slave controller. Through its UART-based HCI, 5316 hci can
communicate with other MCU Host, which therefor forms a complete BLE Slave system.

5316 remote/5316 module/5316 sample are all complete BLE Slave stacks. 5316 module
only acts as BLE SPP module to communicate with Host MCU via UART interface.
Usually applications are written in the (peer) MCU with BLE host. 5316 remote is a demo
of BLE remote controller which supports basic functions of remote. It can connect with
standard iOS/Android device or Telink 826x master kma dongle to control the peer. 5316
sample has the same functions with 5316 remote but different hardware. 5316 sample is
used for TLSR8232 development board. It can save the hardware cost for users for that
users can use Telink BLE without purchasing Telink demo RCU.

5316 dual mode supports both BLE and 2.4G. BLE and 2.4G work in a switch mode,
which means 2.4 cannot work when 5316 dual mode works in BLE and vice versa, but
you can switch the two modes in operation.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 20 Ver.1.0.0

1.4.2 Other Demos

5316 feature test provides demo code for some common features related to BLE. Users
can implement their own functions based on these demos. All features will be introduced
in BLE section.

5316 driver test provides sample code for basic drivers, based on which users can
implement their own driver functions.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 21 Ver.1.0.0

2. MCU Basic Modules

2.1 MCU Address Space

2.1.1 MCU Address Space Allocation

Telink 5316 MCU supports maximum addressing space of 16M bytes, including 8M-byte
program space from 0 to 0x7FFFFF (Please see the datasheet for Flash sizes) and 8M-
byte peripheral space from 0x800000 to 0xffffff. Among the 8M-byte peripheral space,
0x800000 to 0x808000 are for register space, 0x808000 to 0xFFFFFF for SRAM space
(Please see the datasheet for SRAM sizes).

Program
space

Peripheral
Space

0x800000

0x808000

Register

SRAM

0xffffff

0x000000

0x7fffff

FLASH

Customizable

Figure 2-1 MCU Address Space Allocation

2.1.2 SRAM Space Allocation

2.1.2.1 SRAM and Firmware Space

This section provides a further description of SRAM space allocation in MCU address
space.

For 16kB SRAM, the address space range is 0x808000 to 0x80C000.

The figure below shows SRAM and Firmware space allocation.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 22 Ver.1.0.0

stack

0x808000

ram_code

128K/512K

Sram Flash

0x808000+real_ramcode_size
Cache
2.25K

vector

_ramcode_size_ram_code

vector

0x808900+real_ramcode_size

unused area ……

0x80C000

text

real_ramcode_size

……

rodata & data
init value

data + bss

Firmware

power on
load

0x00000

wasted Sram area

Figure 2-2 SRAM and Firmware Space

In SDK, files related to SRAM space allocation include “boot.link” and “cstartup_5316.s”.

Firmware in Flash includes vector, ramcode, text, rodata, and data initial value. SRAM
includes vector, ramcode, cache, data, bss, stack and unused area. vector/ramcode in
SRAM is a copy of vector/ramcode in Flash.

1) vectors, ram_code

vectors is a code section of Flash Firmware (the executable bin file generated by
program compiling in SDK), and it corresponds to the assembling file
“cstartup_5316.s”, i.e. the startup code “bootloader”.

ramcode is memory resident code in Flash Firmware, and it corresponds to all
functions with keyword “_attribute_ram_code_” in SDK, such as function Flash
erase.

_attribute_ram_code_ void flash_erase_sector(u32 addr);

In the following two cases, functions should be memory resident:

 Some functions (e.g. Flash operation functions) involve timing multiplex with four

Flash MSPI pins must be memory resident. If these functions are placed in Flash, it

would cause timing conflict and system crash.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 23 Ver.1.0.0

 Whenever functions resident in RAM are called, it isn’t needed to re-read them from

Flash, thus time will be saved. Therefore, the functions with limited execution time

should be memory resident to increase execution efficiency. In SDK, some functions

related to BLE timing sequence need frequent execution, in order to decrease

execution time and save power consumption, these functions are memory resident.

Users can set a function as memory resident by adding the keyword

“_attribute_ram_code_” as function flash_erase_sector above. After compiling, users

can find this function in ramcode section of list files.

The vector and ramcode in firmware should be loaded to RAM when MCU powers

on. After compiling, the total size of the two parts is “_ramcode_size_”, which is a

variable recognizable by compiler. Its calculation is implemented in “boot.link”. As

shown below, the compiling result “_ramcode_size_” equals the code size of vector

and ramcode.

 . = 0x0;

 .vectors :

 {

 *(.vectors)

 (.vectors.)

 }

 .ram_code :

 {

 *(.ram_code)

 (.ram_code.)

 }

 PROVIDE(_ramcode_size_ = .); // Calculate actual ramcode size (vector +
ramcode)

 PROVIDE(_ramcode_size_div_16_ = (. + 15) / 16);

 PROVIDE(_ramcode_size_div_256_ = (. + 255) / 256);

 PROVIDE(_ramcode_size_div_16_align_256_ = ((. + 255) / 256) *

16);

2) cache

cache is high-speed instruction buffer of MCU, and it must be configured as a

section in SRAM. cache size is fixed as 2.25K (0x900), including 256-byte tag and

2048-byte Instructions cache.

Memory resident code can be directly read and executed from memory, however,

only a small part of firmware is memory resident code, and the majority are still in

Flash. According to program locality principle, a part of Flash code can be stored in

cache. Thus, if the code to be executed is in cache, instructions can be directly read

and executed from cache; otherwise the code must be read from Flash to replace

the old code in cache, and then MCU reads and executes instructions from cache.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 24 Ver.1.0.0

As shown in Figure 2-2, the “text” in firmware is the Flash code not placed in SRAM.

According to program locality principle, this part needs to be loaded to cache for

execution.

Though cache size is fixed as 2.25K, its starting address in SRAM is configurable.
To ensure enough space to store vector and ramcode in Flash, this starting address
must exceed “0x808000+_ramcode_size_”. As specified by 5316 MCU hardware,
cache starting address must be 256-byte aligned, therefore, the “real_ramcode_size”
is the 256-byte aligned size of “_ramcode_size_”. The starting address of cache
should be:

0x808000 + real_ramcode_size

= 0x808000 + ((_ramcode_size_+255)/256)* 256

= 0x808000 + _ramcode_size_div_256_* 0x100

The starting address of cache is 256-byte aligned “0x808000 +
_ramcode_size_div_256_* 0x100”, while generally “_ramcode_size_” is not 256-byte
aligned. The actual size of the code loaded from Flash to RAM when power on is
“_ramcode_size_div_256_* 256”, which means a part of SRAM space is wasted.

For example: Suppose “_ramcode_size_” is 0x780, and the size of code loaded to
SRAM is 0x800, then the code of 0x00000 ~ 0x007ff in Flash firmware is memory
resident, the 128 bytes of 0x808780 ~0x8087ff in SRAM is wasted as non-ramcode
is resident in SRAM.

If “_ramcode_size_” is 0x701, 255 bytes will be wasted; if “_ramcode_size_” is
0x800, no byte will be wasted. The maximum size of wasted SRAM area is 255
bytes, therefore, in program design users need to check list files to view ramcode
occupation and try to avoid serious waste.

Since cache size is fixed as 2.25K (0x900), the ending address of cache should be:

0x808000 + real_ramcode_size + 0x900 = 0x808900 + real_ramcode_size

3) data / bss

“data” in SRAM serves to store initialized global variables of a program, i.e. global
variables which are non-zero initially. “bss” in SRAM serves to store uninitialized
global variables of a program, i.e. global variables which are zero initially). “data” and
“bss” are introduced here as one section as they are connected – “data” is followed
by “bss”.

cache is followed by “data” and “bss”, The starting address of “data + bss” is the
ending address of cache, i.e. “0x808900 + _ramcode_size_div_256_* 0x100”. The
code in “boot.link” shown below directly defines the starting address of “data”.

. = 0x808900 + _ramcode_size_div_256_ * 0x100;

.data :

The initial value of the initialized global variables in “data” is “data init value” in
Firmware shown in Figure 2-2.

4) stack / unused area

“stack” in SRAM starts from the highest address 0x80C000 (default 16kB SRAM) or
0x810000 (32kB SRAM) and to low address. Its SP pointer will descend during push
operation, and ascend during pop operation.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 25 Ver.1.0.0

By default, the size of stack used by SDK library does not exceed 256 bytes.
However, since the size of used stack depends on the deepest stack address, the
stack’s final size is related to users’ upper-layer program design. Any case which
causes deep stack, e.g. a complex recursive function is called, or a large local array
variable is used in a function, will increase the final size of the stack.

When large area of SRAM is used, users need to know the size of the stack used by
program. This cannot be obtained by analyzing list files. Users can only run actual
product application with all of the code which may use deep stack being executed,
then reset MCU and read SRAM space to determine the size of used stack.

“unused area” in SRAM is the space left from deepest stack address and bss ending
address. This area should exist to ensure non-overlap between stack and bss;
otherwise it indicates SRAM size is not enough.

“bss” ending address can be obtained via the list file, thus the maximum size for
stack is determined. Users need to analyze whether this space is enough for stack
usage. Please refer to section 2.1.2.2 for analysis method.

5) text

“text” is a part of Flash firmware. Functions with “_attribute_ram_code_” in firmware
will be compiled as “ram_code”, while other functions without this keyword will be
compiled as “text”.

“text” occupies the maximum space of Firmware, which largely exceeds SRAM size
generally. Therefore, the code needs to be executed after it is loaded into cache by
cache buffer function.

6) rodata/data init value

In Firmware except “vector”, “ram_code” and “text”, there are “rodata” and “data
initial value”.

“rodata” is read-only data in firmware, i.e. variables with keyword “const”, such as
ATT table in Slave:

const attribute_t my_Attributes[] = ……

Users can see the “my_Attributes” is within the “rodata” by checking the
corresponding list file.

As introduced above, “data” is initialized global variables in Firmware, e.g.:

int testValue = 0x1234;

The compiler will store the initial value “0x1234” in “data initial value”. When the
bootloader (cstartup_826x.s) is executed, this initial value will be copied to memory
address corresponding to “testValue”.

2.1.2.2 list File Analysis Demo

“5316_ble_remote” is taken as an example to illustrate SRAM and Flash address space
allocation (please refer to Figure 2-2). Based on the understanding of this demo, users
can analyze SRAM and Flash space allocation of their own programs.

The bin file and list file of this demo are available under the directory “SDK” -> “Demo” ->
“list file analyze”. Information of SRAM space allocation can be analyzed from the
“5316_ble_remote.lst” file.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 26 Ver.1.0.0

All screenshots herein are from files “boot.link”, “cstartup_5316.s”, “5316_ble_remote.bin”
and “5316_ble_remote.lst”.

In the list file, each code of a specific function is called a “section”. The figure below
shows section distribution in the list file “5316_ble_remote.lst”.

Figure 2-3 Section Distribution in list File

Below lists the sections in the list file. Detailed introductions are followed.

1) vectors: start from Flash 0, size is 0x100.

2) ram_code: start from Flash 0x100, size is 0x168c.

3) text: start from Flash 0x1790, size is 0x6f30.

4) rodata: start from Flash 0x86c0, size is 0xa64.

5) data: start from SRAM 0x80a100, size is 0x194.

6) bss: start from SRAM 0x80a2a0, size is 0xc98. By calculation “bss” ending address

is 0x80a2a0 + 0xc98 = 0x80af38. The remaining space size following the “bss” is

0x80c000 – 0x80af38 = 0x10c8 = 4296 bytes, from which minus 256 bytes for stack,

the remaining 4040 bytes are unused.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 27 Ver.1.0.0

Figure 2-4 Section Address in list File

Figure 2-4 shows the starting/ending addresses of various sections by searching
“section” in the list file. From this figure and Figure 2-3 Section Distribution in list File, the
analysis is shown as below:

1) vector

 “vector” is the bootloader corresponding to the assembly file “startup_5316.s”. As shown
in the list file, the size of this section is 256 bytes with starting address in Flash being 0,
ending address 0xff. After power on it is loaded to SRAM and the corresponding address
in SRAM is 0x808000 ~ 0x8080ff.

2) ram_code

“ram_code” section contains 0x168c bytes with starting address being 0x100, ending
address 0x178c. Since “_ramcode_size_” is 0x178c, 256-byte aligned
“real_ramcode_size” is 0x1800, actually 116 bytes (0x38) in SRAM are wasted.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 28 Ver.1.0.0

3) cache

The starting address and ending address of cache are:

0x808000 + real_ramcode_size ~ 0x808900 + real_ramcode_size

0x809800 ~ 0x80a100

cache related information is not shown in the list file.

4) text

“text” section contains 0x6f30 bytes (size = 0x86c0 – 0x1790) with starting address being
0x1790 (ending address of “ram_code”), ending address 0x86c0, the same as what
shown in Figure 2-3 above.

5) rodata

The starting address of “rodata” is the ending address of “text” 0x86c0 and the ending
address is 0x9124.

As shown in “5316_ble_remote.bin”, the actual bin size is 0x92c4. According to the
analysis above, the remaining firmware space 0x9124 ~ 0x92c4 is actually “data init
value”, i.e. initial values of initialized global variables in Firmware. “data init value” is not a
specific section in the list file. Users can search the keyword “_dstored_” and find the
value “0x9124” which is the starting address of “data init value”.

00009124 g *ABS* 00000000 _dstored_

The “_dstored_” definition in the “boot.link is shown below. It tells the compiler that initial
values of initialized global variables in the “data” section are all stored in “_dstored_” of
Firmware.

. = 0x808900 + _ramcode_size_div_256_ * 0x100;

 .data :

 AT (_dstored_)

 {

 . = (((. + 3) / 4)*4);

 PROVIDE(_start_data_ = .);

 *(.data);

 (.data.);

 . = (((. + 3) / 4)*4);

 PROVIDE(_end_data_ = .);

 }

6) data

The starting address of “data” is the ending address of cache 0x80a100. The size of
“data” shown in Figure 2-3 is 0x194.

The final variable in “data” section is “ota_firmware_size_k”, a int variable. Its address is
0x80a290 and its size is 4-byte. Therefore the ending address of “data” is 0x80a294, and
the size of “data” is 0x80a294 - 0x80a100 = 0x194, as shown in Figure 2-3.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 29 Ver.1.0.0

7) bss

“data” is followed by “bss”. Since the first array “_start_bss_” should be 16-byte aligned,
the “bss” section starts from 0x80a2a0, and its size is 0xc98, as shown in Figure 2-3.

The final variable in “bss” is “blt_ota_start_tick”, a int variable. Its address is 0x80af34,
and its size is 4-byte. Therefore the ending address of “bss” is 0x80af38, and the size of
the “bss” is 0x80af38 - 0x80a2a0 = 0xc98, as shown in Figure 2-3.

By calculation the remaining SRAM space size is 0x80c000 – 0x80af38 = 0x10c8 = 4296
bytes, from which minus 256 bytes for stack, the remaining 4040 bytes are unused.

2.1.3 MCU Address Space Access

MCU address space 0x000000 ~ 0xffffff can be accessed in the program in the following
two cases.

2.1.3.1 Peripheral Space Access

The peripheral space (register & SRAM) is directly accessed (read/write) via pointer.

u8 x = *(volatile u8*)0x800066; // read register 0x66

(volatile u8)0x800066 = 0x26; // write register 0x66

u32 y = *(volatile u32*)0x808000; // read SRAM 0x8000-0x8003

(volatile u32)0x808000 = 0x12345678; // write SRAM 0x8000-0x8003

In the program, functions including “write_reg8”, “write_reg16”, “write_reg32”,
“read_reg8”, “read_reg16” and “read_reg32”, which implement pointer operation, are
used to write or read the peripheral space correspondingly. Please see
“drivers/5316/bsp.h” for details.

Please note that for operations such as write_reg8 (0x8000), read_reg16 (0x8000) ,
whose definitions are shown as below, the base address “0x800000” is automatically
added (address line BIT(23) is 1) to ensure the access space is Register/SRAM rather
than Flash.

#define REG_BASE_ADDR 0x800000

#define write_reg8(addr,v) U8_SET((addr + REG_BASE_ADDR),v)

#define write_reg16(addr,v) U16_SET((addr + REG_BASE_ADDR),v)

#define write_reg32(addr,v) U32_SET((addr + REG_BASE_ADDR),v)

#define read_reg8(addr) U8_GET((addr + REG_BASE_ADDR))

#define read_reg16(addr) U16_GET((addr + REG_BASE_ADDR))

#define read_reg32(addr) U32_GET((addr + REG_BASE_ADDR))

Please pay attention to one thing of memory alignment: If a pointer pointing to 2 bytes/4
bytes is used to access the peripheral space, make sure the address is 2-byte/4-byte
aligned to avoid data read/write error. The following shows two incorrect formats:

u16 x = *(volatile u16*)0x808001; // 0x808001 is not 2-byte aligned

(volatile u32)0x808005 = 0x12345678; // 0x808005 is not 4-byte aligned

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 30 Ver.1.0.0

The correct formats should be:

u16 x = *(volatile u16*)0x808000; // 0x808000 is 2-byte aligned

(volatile u32)0x808004 = 0x12345678; // 0x808004 is 4-byte aligned

2.1.3.2 Flash Space Operation

Reading or writing Flash space is implemented via functions “flash_read_page” and
“flash_write_page”. Code of Flash erasing is available in “drivers/5316/flash.c” and
“flash.h”.

1) Flash read/write

Functions “flash_read_page” and “flash_write_page” serve to read or write Flash space
correspondingly.

void flash_read_page(u32 addr, u32 len, u8 *buf);

void flash_write_page(u32 addr, u32 len, u8 *buf)

Flash read operation via “flash_read_page”:

void flash_read_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0 };

flash_read_page(0x11000, 6, data); // read 6 bytes starting from 0x11000 in Flash
into a data array

Flash write via “flash_write_page”:

flash_write_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0x11,0x22,0x33,0x44,0x55,0x66 };

flash_write_page(0x12000, 6, data); // write 6-byte data “0x665544332211” into
Flash starting from 0x12000

“flash_write_page” accesses pages in Flash. The maximum “len” for operations of
“flash_write_page” is 256 bytes, the size of one page. This function is not allowed to write
Flash space across two or more pages.

 If the “addr” is the starting address of one page, the “len” cannot exceed 256 bytes.

flash_write_page (0x12000, 256, data) is correct. flash_write_page (0x12000, 257,

data) is incorrect as the final byte does not belong to the page where 0x12000 is,

and the write will fail.

 If the “addr” is not the starting address of one page, the “len” cannot exceed the end

address of the page - “addr” + 1. For example, flash_write_page (0x120f0, 20, data)

is incorrect as the first 16 bytes are in page of 0x12000 while the last 4 bytes are in

page of 0x12100.

“flash_read_page” can read data more than 256 bytes once. It’s allowed to read Flash
area across pages.

2) Flash erase operation

Use function “flash_erase_sector” to erase Flash.

void flash_erase_sector(u32 addr);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 31 Ver.1.0.0

One sector contains 4096 bytes, e.g. 0x13000 ~0x13fff. The “addr” must be the starting
address of one sector, and every time the function erases a complete sector.

Erasing a sector takes some time. In the case of a 16M system clock, it takes about
30~100ms or even longer time to erase a sector.

3) Influence of flash access/erasing operations to system interrupt

System interrupt must be disabled via “irq_disable()” when flash_read_page,
flash_write_page or flash_erase_sector is executed, and then restored via “irq_restore()”
after operations are finished. This will ensure integrity and continuity of Flash MSPI
timing operation, and avoid hardware resource reentry due to MSPI bus lines invoking by
Flash operation in interrupt.

Since timing sequence of BLE SDK RF packet transmission and reception is always
controlled by interrupt, when system interrupt is disabled during Flash operation, it may
ruin the timing sequence, thus MCU fails to respond in time.

The influence to BLE interrupt by execution time of the Flash access function is almost
negligible; howerver, the “len” in the function will determine the time to access the Flash
area, it’s highly recommended not to set the “len” as large value in BLE connection state
during mainloop.

It takes tens of milliseconds to hundreds of milliseconds to execute the
“flash_erase_sector” function. Therefore, during mainloop of main program, once MCU
enters BLE connection state, try not to invoke the “flash_erase_sector” to avoid
disconnection. If it’s inevitable to erase Flash during BLE connection, BLE timing
sequence protection as introduced in section 3.2.4.4 Conn State Slave Role Timing
Protection should be adopted.

4) Read Flash via pointer

Firmware of 5316 BLE SDK is stored in Flash. When the firmware is running, only former
part of the code in Flash is stored and executed as memory resident code in RAM, and
the majority will be transferred to the high-speed “cache” of RAM from Flash when
needed. MCU will automatically control internal MSPI hardware module to read Flash.

Flash can also be read via pointer. When data are accessed by MCU system bus, if the
data address is not in the memory resident ramcode, system bus will automatically switch
to MSPI, and read data from Flash by using MSCN, MCLK, MSDI and MSDO lines to
operate SPI timing sequence.

The following shows three examples:

u16 x = *(volatile u16*)0x10000; // read two bytes from Flash 0x10000

u8 data[16];

memcpy(data, 0x20000, 16); // read 16 bytes from Flash 0x20000 and copy to
data

if(!memcmp(data, 0x30000, 16)){ // read 16 bytes from Flash 0x30000 and compare
with data

//……

}

In user_init, when calibration values are read from Flash and set to corresponding
registers, the reading is implemented via pointer. Please refer to the function below in
SDK:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 32 Ver.1.0.0

static inline void blc_app_loadCustomizedParameters(void);

Flash can be read by using function “flash_read_page” or pointer, but it can be written via
function “flash_write_page” only. Pointer does not support Flash writing operation.

Please note that when Flash is read by pointer, since data read by system bus will be
buffered in cache, MCU may directly use the buffered data as the result of the new
reading operation if the data is not covered by other data and new request of accessing
the data is received. If a user’s code is shown as below:

u8 result;

result = *(volatile u16*)0x40000; // read Flash via pointer

u8 data = 0x5A;

flash_write_page(0x40000, 1, &data);

result = *(volatile u16*)0x40000; // read Flash via pointer

if(result != 0x5A){ }

The original data in Flash 0x40000 is 0xff; the result of the first reading is 0xff; then 0x5A
is written into Flash 0x40000 by the following writing; in theory, the result of the second
reading should be the new value “0x5A”, but the actual result is still the old data buffered
in the cache, i.e. “0xff”. Therefore, in the case of multiple reading of the same address, if
its value will be modified, use the API “flash_read_page” rather than pointer to ensure the
result of reading is the new value written into this address rather than the old value in the
cache.

u8 result;

flash_read_page(0x40000, 1, &result); // read Flash via API

u8 data = 0x5A;

flash_write_page(0x40000, 1, &data);

flash_read_page(0x40000, 1, &result); // read Flash via API

if(result != 0x5A){ }

2.1.4 SDK Flash Space Allocation

Flash uses a sector (4K bytes) as the basic unit to store information as Flash erases
information based on a sector. (Erase function “flash_erase_sector”). In theory,
information of the same type should be stored in a sector, and information of different
types should be stored in different sectors to avoid unexpected erasing. It’s
recommended to follow this rule to store customized information in Flash.

Two allocation methods of Flash space are supported according to actual Flash sizes:
one is for 512kB Flash (TLSR8232F512), the other is for 128kB Flash (TLSR8232F128).

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 33 Ver.1.0.0

2.1.4.1 Space Allocation of 512kB Flash

Figure 2-5 512kB FLASH Space Allocation

The figure above shows the default FLASH space allocation for TLSR8232F512 IC.
Corresponding interfaces are provided to users for modifying Flash space allocation. The
following introduces the default address space allocation and corresponding interfaces.

1. The sector from 0x76000 to 0x76FFF serves to store MAC address. Actually the 6-

byte MAC address is stored in Flash area from 0x76000 (for lower byte of MAC

address) to 0x76005 (for higher byte of MAC address). For example, if “0x11 0x22

0x33 0x44 0x55 0x66” are stored in FLASH 0x76000 to 0x76005, the MAC address

is “0x665544332211”.

Corresponding to SDK, MAC address of actual product will be downloaded into its

Flash starting from 0x76000 by Telink jig system. If users want to modify this starting

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 34 Ver.1.0.0

address to store MAC address, please ensure the consistency. The “user_init”

function in the SDK will read MAC address from Flash area starting from the macro

“CFG_ADR_MAC”. This macro can be modified in the “drivers/5316/flash.h”.

 #ifndef CFG_ADR_MAC

 #define CFG_ADR_MAC 0x76000

#endif

2. The sector from 0x77000 to 0x77fff serves store customized calibration information

for Telink MCU. Only this sector does not follow the rule that storing information of

different types into different sectors; the 4096 bytes in this sector are divided into 64

units with 64 bytes each, and each unit stores one type of calibration information.

Since calibration information is burned to corresponding addresses by jig, it can be

stored in the same sector; when firmware is running, the calibration information is

read only and not allowed to be written or erased.

1) The first 64-byte unit serves to store frequency offset calibration information.

Actually this calibration value has only 1 byte and is stored in 0x77000.

2) The second 64-byte unit serves to store calibration value of TP value which has

2 bytes (TP0, TP1) and is stored in 0x77040 and 0x77041 correspondingly.

3) The third 64-byte unit serves to store capacitance calibration value of external

32kHz crystal.

Corresponding to SDK, actual calibration values will be burned into the addresses above
by Telink jig system. If users want to modify the address, please ensure the burning
address of Telink jig system is also modified correspondingly . In “user_init” function of
SDK, “blc_app_loadCustomizedParameters()” function will read calibration values from
these addresses starting from the following macros. These macros can be modified in the
“drivers/5316/flash.h”.

 #ifndef CUST_CAP_INFO_ADDR

 #define CUST_CAP_INFO_ADDR 0x77000

 #endif

 #ifndef CUST_TP_INFO_ADDR

 #define CUST_TP_INFO_ADDR 0x77040

 #endif

3. The two sectors 0x74000 ~ 0x75FFF are occupied by BLE stack system, and the

8kB area is used to store pairing and security information. Users can modify the

starting address of this 8kB area by calling the function below:

stack/ble/ble_smp.h

void bls_smp_configParingSecurityInfoStorageAddr (int addr);

4. The 256kB area 0x00000 ~ 0x3FFFF is used as program space by default:

 The first 128kB area 0x00000 ~ 0x1FFFF is used as storage space for old firmware.

 The second 128kB area 0x20000 ~ 0x3FFFF is used as storage space for OTA new

firmware, which means the maximum space for Firmware is 128kB.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 35 Ver.1.0.0

 If firmware doesn’t need to occupy the whole 128kB space 0x00000~0x3FFFF, users

can use corresponding API to modify the allocation as needed, thus the remaining

space can be used as data storage space. Please refer to OTA section for details.

5. The remaining Flash space is all used as user data area (storage space for user

data).

2.1.4.2 Space Allocation of 128kB Flash

Figure 2-6 128kB Flash Space Allocation

The figure above shows the default space allocation for the 128kB Flash of
TLSR8232F128. Users can choose different allocation methods as needed. Please see
OTA section for allocation methods.

The space allocation shown above is the default allocation method of 128K chip. Actually
all the space allocations provide users corresponding interfaces for modification, by
which users can modify Flash space allocation as needed. The following introduces the
default space allocation and corresponding interfaces.

1. The sector 0x1F000~0x1FFFF serves to store MAC address. Actually the 6-byte

MAC address is stored in area from 0x1F000 (for lower byte of MAC address) to

0x1F005 (for higher byte of MAC address). For example, if “0x11 0x22 0x33 0x44

0x55 0x66” are stored in FLASH 0x1F000~0x1F005, the MAC address is

“0x665544332211”.

Corresponding to SDK, MAC address of actual products will be burned into its Flash

starting from 0x1F000 by Telink jig system. If users want to modify this starting

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 36 Ver.1.0.0

address to store MAC address, please ensure the burning addresses of Telink jig

system are also modified correspondingly. The “user_init” function in the SDK will

read MAC address from Flash area starting from the macro “CFG_ADR_MAC”. This

macro can be modified in “drivers/5316/flash.h”.

 #ifndef CFG_ADR_MAC

 #define CFG_ADR_MAC 0x1F000

#endif

2. The sector 0x1E000~0x1EFFF serves to store customized calibration information for

Telink MCU. Only this sector does not follow the rule that storing information of

different types into different sectors; the 4096 bytes in this sector are divided into 64

units with 64 bytes each, and each unit stores one type of calibration information.

Since calibration information is burned to corresponding addresses by jig, it can be

stored in the same sector; when firmware is running, these calibration information is

read only and not allowed to be written or erased.

1) The first 64-byte unit serves to store frequency offset calibration information.

Actually this calibration value has only 1 byte and is stored in 0x1E000.

2) The second 64-byte unit serves to store calibration value of TP value. Actually

this calibration value has only 2 bytes (TP0, TP1) and stored in 0x1E040 and

0x1E041 correspondingly.

Corresponding to SDK, actual calibration values will be burned into the addresses

above by Telink jig system. If users want to modify the address, please ensure the

burning address of Telink jig system is also modified correspondingly. In “user_init”

function of SDK, “blc_app_loadCustomizedParameters()” function will read

calibration values from the addresses starting from the following macros. These

macros can be modified in the “drivers/5316/flash.h”.

 #ifndef CUST_CAP_INFO_ADDR

 #define CUST_CAP_INFO_ADDR 0x1E000

 #endif

 #ifndef CUST_TP_INFO_ADDR

 #define CUST_TP_INFO_ADDR 0x1E040

 #endif

3. The two sectors 0x1C000 ~ 0x1DFFF are occupied by BLE stack system, and the

8kB area is used to store pairing and security information. Users can modify the

starting address of the 8K area by calling the function below:

void bls_smp_configParingSecurityInfoStorageAddr (int addr);

4. The remaining 112kB space 0x00000 ~ 0x1bFFF are configurable area for user code

and user data. The default allocation is as below. The 48kB area 0x00000 ~0x0BFFF

is used as storage space for old firmware. The 48kB area 0x10000 ~0x1BFFF is

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 37 Ver.1.0.0

used as storage space for OTA new firmware. The 16kB area 0xC000 ~ 0x10000 is

used as storage space for user data.

If the default space allocation does not meet users’ requirements, e.g. firmware size

exceeds 48kB, or user data need more than 16kB space, corresponding APIs are

provided to modify allocation as needed. Please refer to section 6.1.3 for details.

2.2 Clock Module

2.2.1 System Clock & System Timer

System clock is the clock reference for MCU firmware running.

System timer, a read-only timer, is formerly used as time reference for BLE timing. For
some reasons, currently we use system timer with timer0 to provide time reference for
BLE timing. Therefore, users cannot use timer0 for other functions.

For last generation IC of Telink (826x), the clock for system timer is the system clock,
while for TLSR8232, as the figure shown below, though system timer has multiple
sources SDK divides the external 24MHz crystal oscillator by 2/3 and obtains 16M clock
which will not change with the change of system clock.

Figure 2-7 System Clock & System Timer

From the figure above, system clock can obtain 16MHz/32MHz/48MHz and other clocks
in the way that doubling the external 24MHz crystal oscillator to 48M and then dividing
frequency, we call these clocks crystal clocks(such as 16M crystal system clock, 32M
crystal system clock); system clock can also obtain 16MHz/32MHz/48MHz and other
clocks by processing internal 24MHz RC Oscillator, we call these clocks RC clocks (BLE
SDK does not support RC clock.)

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 38 Ver.1.0.0

In BLE SDK, we recommend using crystal clock.

In initialization, call API below to configure system clock and choose the corresponding
clock from the definition of enumeration variable SYS_CLK_TYPEDEF:

void clock_init(SYS_CLK_TYPEDEF SYS_CLK)

As 5316 System Timer is different from system clock, users need to know whether the
clock of each MCU hardware module is derived from system clock or System Timer.
Taking a system clock of 32MHz crystal for example, the system clock is 32MHz while
System Timer is 16MHz.

The definitions of system clock and S, mS, uS in “app_config.h” are as follows:

#define CLOCK_SYS_CLOCK_HZ 16000000

enum{

 CLOCK_SYS_CLOCK_1S = CLOCK_SYS_CLOCK_HZ,

 CLOCK_SYS_CLOCK_1MS = (CLOCK_SYS_CLOCK_1S / 1000),

 CLOCK_SYS_CLOCK_1US = (CLOCK_SYS_CLOCK_1S / 1000000),

};

All the clock sources are the hardware modules of system clock. When setting the clock
for a module, only CLOCK_SYS_CLOCK_HZ, CLOCK_SYS_CLOCK_1S can be used.
In other words, if a user see that the above definitions are used for clock setting, it means
the clock source of this module is system clock.

If the setting of PWM cycle and duty ratio in PWM driver is as follows, it means the clock
source of PWM is system clock.

pwm_set_cycle_and_duty(PWM0_ID, (u16) (1000 * CLOCK_SYS_CLOCK_1US),

 (u16) (500 * CLOCK_SYS_CLOCK_1US));

As System Timer is fixed 16MHz, for it SDK code uses the values below for S, mS and
uS.

//system timer clock source is constant 16M, never change

enum{

 CLOCK_16M_SYS_TIMER_CLK_1S = 16000000,

 CLOCK_16M_SYS_TIMER_CLK_1MS = 16000,

 CLOCK_16M_SYS_TIMER_CLK_1US = 16,

};

The following APIs in SDK is related to System Timer, therefore, time of these API
operations is showed in a similar way as “CLOCK_16M_SYS_TIMER_CLK_xxx”.

void sleep_us(unsigned long us);

unsigned int clock_time(void);

int clock_time_exceed(unsigned int ref, unsigned int span_us);

#define WaitUs sleep_us

#define WaitMs(t) sleep_us((t)*1000)

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 39 Ver.1.0.0

2.2.2 System Timer Usage

After the Main function “cpu_wakeup_init” is initialized System Timer starts running, and
users can read the counter value of System Timer (“System Timer tick” for short).

The 32-bit System Timer tick will increase by 1 for each clock cycle (i.e. 1/16us). It takes
268 seconds or so (i.e. (1/16) us * (2^32)) for the system tick to loop from the initial value
0x00000000 to the maximum value 0xffffffff.

The System Timer tick won’t stop counting during MCU running process.

The System Timer tick value can be obtained by function “clock_time()”, for instance,
recording current system tick:

u32 current_tick = clock_time();

Function “clock_time()” actually reads the value counted by System Timer.

5316 BLE SDK uses System Timer tick massively to time and judge timeout. It’s highly
recommended to use the System Timer tick to implement simple timing and timeout
judgment.

The software timer based on query mechanism cannot ensure high real-time and
accuracy. Generally it applies to applications which have not very harsh error
requirement. The usage of the software timer is shown as below:

1) Start timing: Set an u32 variable, read and record current System Timer tick.

u32 start_tick = clock_time(); // clock_time() returns System Timer tick value

2) Continuously query if the difference between current System Timer tick and start_tick

exceeds the timing value at somewhere of the firmware. If yes, the timer is triggered

to execute corresponding operation, and clear timer or start a new timing cycle as

needed. Suppose the timing value is 100ms, for 16MHz system clock, the following

sentence can be used to query the timer:

if((u32) (clock_time() - start_tick) > 100 * 1000 * 16)

The difference is switched to u32 type to slove the extreme case that System Timer

tick counts from 0xffffffff to 0.

In SDK, a unified calling function to solve the u32 switching problem caused by

different system clocks. No matter how many system clocks there are, the function

below can be used for query:

if(clock_time_exceed(start_tick,100 * 1000)) // unit of the second parameter is

us, it’s unnecessary to worry about “16” and “32”.

Please note that for 16M clock this function only applies to timing within 268s, if

exceeds, a counter must be added to the software.

Application example: 2 seconds after condition A is triggered (only once), B()

operation is executed.

u32 a_trig_tick;

int a_trig_flg = 0;

while(1)

{

 if(A){

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 40 Ver.1.0.0

 a_trig_tick = clock_time();

 a_trig_flg = 1;

 }

 if(a_trig_flg &&clock_time_exceed(a_trig_tick,2 *1000 * 1000)){

 a_trig_flg = 0;

 B();

 }

}

2.3 GPIO Module

For details about GPIO module, please refer to source code in
“drivers/5316/gpio_default.h”, “gpio.c” and “gpio.h”.

Please refer to document Hawk_gpio_lookuptable for understanding register operations
in the code.

2.3.1 GPIO Definition

5316 IC has 23 GPIOs in three groups:

GPIO_PA0 - GPIO_PA7, GPIO_PB0 - GPIO_PB7, GPIO_PC1 - GPIO_PC7

Please note: there are 23 GPIOs in IC core, but in actual IC packages not all the GPIOs
are packaged, such as the 24-pin package has part of the GPIOs. Therefore, users
should refer to the actual IC package when using GPIOs.

Please follow the format above to use GPIO, see “drivers/5316/gpio.c” for details.

There is a special GPIO with SWS (Single Wire Slave) function. Its SWS function for
debugging and firmware burning is enabled when power on. Generally it is not used in
firmware. The SWS pin of 5316 is PC7.

2.3.2 GPIO State Control

In this section only the basic GPIO states are listed.

1. func: Configure pin as special function or general GPIO. To use input/output function,

the pin should be configured as general GPIO.

void gpio_set_func(GPIO_PinTypeDef pin, GPIO_FuncTypeDef func);

“func” can be configured as “AS_GPIO” or other special functions.

2. ie: Input enable

void gpio_set_input_en(GPIO_PinTypeDef pin, unsigned int value)

Value: 1-enable, 0-disable.

3. datai: Data input. When input is enabled for some GPIO pin, the datai value

indicates its current input level.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 41 Ver.1.0.0

static inline unsigned char gpio_read(GPIO_PinTypeDef pin)；

Note: If GPIO input is low level, 0 is returned; if GPIO input is high level, non-zero

value (may not be 1) is returned.

In firmware, it’s recommended to invert the read values rather than using the format

such as “if(gpio_read(GPIO_PA0) == 1)”. Inverted values will be either 1 or 0.

 if(!gpio_read(GPIO_PA0)) // judge high/low level

4. oe: Output enable

static inline void gpio_set_output_en(GPIO_PinTypeDef pin, unsigned

int value)

Value: 1-enable, 0-disable

5. dataO: Data output. Value: When output is enabled, “1” indicates high-level output,

while “0” indicates low-level output.

static inline void gpio_write(GPIO_PinTypeDef pin, unsigned int

value)

6. Configurations for internal analog pull-up/pull-down resistor: x1 pull-up, x10 pull-

down, x100 pull- up. The resistance range for x1 is 8Kohm~60Kohm; x10

80Kohm~600Kohm; x100 500Kohm~2Mohm.

void gpio_setup_up_down_resistor(GPIO_PinTypeDef gpio,

GPIO_PullTypeDef up_down)；

There are four configurations for up_down.

PM_PIN_PULLUP_1M

PM_PIN_PULLUP_10K

PM_PIN_PULLDOWN_100K

PM_PIN_UP_DOWN_FLOAT

Note: PM_PIN_PULLUP_1M represents x100 pull-up; PM_PIN_PULLUP_10K

represents x1 pull-up; PM_PIN_PULLDOWN_100K represents x10 pull-down.

Analog resistor has a feature: In deepsleep, all states of digital modules are invalid,

including input/output state (cannot output level in deepsleep). However, the

configured analog resistor can still take effect in deepsleep.

GPIO configuration examples:

1) Configure GPIO_PA4 as high level output.

gpio_set_func(GPIO_PA4, AS_GPIO) ; // PA4 is used as general GPIO function by

default, so this step to configure “func” can be skipped.

gpio_set_input_en(GPIO_PA4, 0);

gpio_set_output_en(GPIO_PA4, 1);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 42 Ver.1.0.0

gpio_write(GPIO_PA4,1)

2) Configure GPIO_PC6 as input, and check if it’s low-level input. Enable 10K pull up

resistor to avoid influence of float level.

gpio_set_func(GPIO_PC6, AS_GPIO) ; // PC6 is used as general GPIO function by

default, so this step to configure “func” can be skipped.

gpio_setup_up_down_resistor(GPIO_PC6, PM_PIN_PULLUP_10K);

 gpio_set_input_en(GPIO_PC6, 1)

 gpio_set_output_en(GPIO_PC6, 0);

 if(!gpio_read(GPIO_PC6)){ // check if PC6 input is low level

 }

3) Configure PA0 pin as PWM function

gpio_set_func(GPIO_PA0, AS_PWM) ;

2.3.3 GPIO Initialization

The “gpio_init” function is called in main.c file to initialize states of all GPIOs. Each IO will
be initialized to its default state by “gpio_init” function, unless related GPIO parameters
are pre-configured in the app_config.h. The default states of 23 GPIOs are as below.

1) func

Except SWS, other GPIOs are generic GPIO function.

2) ie

For SWS, default ie is 1; for other GPIOs, default ie is 0.

3) oe

For all GPIOs, default oe is 0.

4) dataO

For all GPIOs, default dataO is 0.

5) Internal pull up/down resistor

For all GPIOs, default internal pull up/down resistor is float.

Please see “drivers/5316/gpio.c” and “drivers/5316/gpio_default.h” for details.

If one or multiple GPIOs are configured in app_config.h, the “gpio_init” will use the values
specified in app_config.h instead of default values. The reason is that GPIO default
states are all defined by macros.

Macro example:

#ifndef PA7_INPUT_ENABLE

#define PA7_INPUT_ENABLE 0

#endif

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 43 Ver.1.0.0

If these macros are pre-defined in app_config.h, they will not use the default values
above. PA7 is taken as an example to illustrate GPIO state configuration in app_config.h.

1) Configure func: #define PA7_FUNC AS_GPIO

2) Configure ie： #define PA7_INPUT_ENABLE 1

3) Configure oe: #define PA7_OUTPUT_ENABLE 0

4) Configure dataO：#define PA7_DATA_OUT 0

5) Configure internal pull up/ down resistor:

#define PULL_WAKEUP_SRC_PA7 PM_PIN_UP_DOWN_FLOAT

Conclusions for GPIO initialization:

1) Users can pre-define GPIO initial state in app_config.h, and initialize corresponding

GPIO to the configured value by gpio_init;

2) Users can set the GPIO states by GPIO state control functions (gpio_set_input_en,

etc.) in user_init;

3) Users can combine the two methods to configure the GPIO states.

Please note that if the state of one GPIO is configured to different values in

app_config.h and user_init, the configuration in user_init will take effect finally

according to firmware timing sequence.

2.3.4 Configure SWS Pull-up to Avoid MCU Errors

Telink MCU uses the SWS (Single Wire Slave) pin for debugging and firmware burning.
In final application code, the state of SWS is shown as below:

1. Set as SWS function rather than general GPIO.

2. Set ie to 1 to enable input so as to receive commands from EVK to operate MCU.

3. Both “oe” and “dataO” are set to 0.

The settings above may bring a risk: since SWS is in float state, large jitter of system
power (e.g. transient current may approach 100mA when IR command is sent) may lead
to incorrect command reception and firmware malfunction.

This problem can be solved by enabling internal 1M pull-up resistor for SWS to change
its float state.

For 5316, SWS is multiplexed with GPIO_PC7. Enable the 1M pull-up resistor for PC7 in
the “drivers/5316/gpio_default.h”.

#ifndef PULL_WAKEUP_SRC_PC7

#define PULL_WAKEUP_SRC_PC7 PM_PIN_PULLUP_1M // SWS pullup

#endif

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 44 Ver.1.0.0

3. BLE Module

3.1 BLE SDK Software Architecture

3.1.1 Standard BLE SDK Architecture

Figure 3-1 shows a standard BLE SDK software architecture compliant with BLE Spec.

Profile 1

Generic Attribute Profile

Security Manager

Profile n

Logical Link Control and Adaption Protocol

Generic Access Profile

HCI

Attribute Protocol

Profile 2

Link Layer

Physical Layer

Controller

Host

...

Application

App

Figure 3-1 BLE SDK Standard Architecture

As shown above, BLE protocol stack includes two parts Host and Controller.

As BLE bottom-layer protocol, the “Controller” contains Physical Layer (PHY) and Link
Layer (LL). Host Controller Inter (HCI) is the sole communication interface for all data
transfer between Controller and Host.

As BLE upper-layer protocol, the “Host” contains protocols including Logic Link Control
and Adaption Protocol (L2CAP), Attribute Protocol (ATT), Security Manager Protocol
(SMP), as well as Profiles including Generic Access Profile (GAP) and Generic Attribute
Profile (GATT).

The “Application” (APP) layer contains user application code and Profiles of various
Services. User controls and accesses Host via “GAP”.

Host transfers data with Controller via “HCI”. See below.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 45 Ver.1.0.0

BLE Host

HCI

BLE Controller

HCI
cmd

HCI
data

HCI
data

HCI
event

Figure 3-2 HCI Data Transfer Between Host and Controller

1) BLE Host will use HCI cmd to operate and set Controller. Controller API

corresponding to each HCI cmd will be introduced in section 3.2.8.

2) Controller will report various HCI events to Host via HCI.

3) Host will send target data to Controller via HCI, while Controller will directly load data

to Physical Layer for transfer.

4) When Controller receives RF data in Physical Layer, it will first check whether the

data belong to Link Layer or Host, and then process correspondingly: If the data

belong to LL, the data will be processed directly; if the data belong to Host, the data

will be sent to Host via HCI.

3.1.2 Telink BLE SDK Architecture

3.1.2.1 Telink BLE Controller

Telink BLE SDK supports standard BLE Controller, including HCI, PHY (Physical Layer)
and LL (Link Layer).

Telink BLE SDK contains five standard states of Link Layer (standby, advertising,
scanning, initiating, and connection), and supports slave role only in connection state.

In SDK, 5316 hci is a Controller of BLE Slave, to form a standard BLE Slave system,
another MCU running BLE Host is needed.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 46 Ver.1.0.0

HCI

Link Layer

Physical Layer

BLE
Controller

Other MCU

UART

BLE
Host

Figure 3-3 5316 hci Architecture

3.1.2.2 5316 BLE Slave

5316 BLE SDK in BLE Host fully supports stack of Slave.

When users only need to use standard BLE Slave, and 5316 BLE SDK runs Host (Slave
part) + standard Controller, the actual stack architecture will be simplified based on the
standard architecture, so as to minimize system resource consumption of the whole SDK
(including SRAM, running time, power consumption, and etc.). Following shows Telink
BLE Slave architecture. In SDK, 5316 ble remote and 5316 module are both based on
this architecture.

826x
BLE

Stack

HIDS

Security Manager

OTA

Logical Link Control and Adaption Protocol

HCI

Attribute Protocol

BAS

Link Layer

Physical Layer

Controller

Host

…

Application

App
GAP

Generic Attribute Profile

Power

 Management

Profile

Figure 3-4 Telink BLE Slave Architecture

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 47 Ver.1.0.0

Figure 3-4, solid arrows indicate data transfer controllable via user APIs, while hollow
arrows indicate data transfer within the protocol stack which users are unable to involve
in.

Controller can still communicate with Host (L2CAP layer) via HCI; however, the HCI is no
longer the sole interface, and the APP layer can directly transfer data with Link Layer of
the Controller. Power Manager (PM) is embedded in the Link Layer, and the APP layer
can invoke related PM interfaces to set power management.

The implementation of Generic Access Profile is deleted from the Host layer, only the
service declaration of the GAP profile is retained in the APP layer. Data transfer between
the APP layer and the Host is no longer controlled via GAP; the ATT, SMP and L2CAP
can directly communicate with the APP layer via corresponding interfaces.

Generic Attribute Profile (GATT) is implemented in the Host layer based on Attribute
Protocol. Various Profiles and Services can be defined in the APP layer based on GATT.
Basic Profiles including HIDS, BAS, and OTA are provided in 5316 BLE SDK demo code.

Based on this architecture the following provides a basic introduction of 5316 BLE
protocol stack and user APIs of each layer.

Physical Layer is totally controlled by Link Layer, and it does not involve any other layers.

Though HCI still implements part of data transfer between Host and Controller, it is
basically implemented by the protocol stack of Host and Controller with few involvement
of the APP layer. Users only need to register HCI data callback processing function in the
L2CAP layer.

3.2 BLE Controller

3.2.1 BLE Controller Introduction

BLE Controller contains Physical Layer, Link Layer, HCI and Power Management.

Telink BLE SDK fully assembles Physical Layer in the library (the rf_drv.c file in
corresponding driver file), while user does not need to learn about it. Power Management
will be introduced in detail in section 4.

This section will focus on Link Layer, and also introduce HCI related interfaces to operate
Link Layer and obtain data of Link Layer.

3.2.2 Link Layer State Machine

The figure below shows Link Layer state machine in BLE Spec. Please refer to
Core_v5.0 (Vol 6/Part B/1.1 “LINK LAYER STATES”) for more information.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 48 Ver.1.0.0

Figure 3-5 State Diagram of Link Layer State Machine in BLE Spec

Telink BLE SDK Link Layer state machine is shown as below.

Power
Management

Slave
role

Advertising Idle

Scanning

initiating

Master
role

connection

Figure 3-6 Telink Link Layer State Machine

Telink BLE SDK Link Layer state machine is consistent with BLE Spec, and it contains
five basic states: Idle (Standby), Scanning, Advertising, Initiating, and Connection.
Connection state contains Slave Role only, no Master Role.

Slave Role is single connection by default.

In this document, Slave Role will be called as “Conn state Slave role” or
“ConnSlaveRole/Connection Slave Role”, or “ConnSlaveRole” for short.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 49 Ver.1.0.0

“Power Management” in Figure 3-6 is not a state of LL, but a functional module which
indicates SDK only implements low power processing for Advertising and Connection
Slave Role. If Idle state needs low power, user can invoke related APIs in the APP layer.
For the other states, SDK does not manage low power, while user cannot implement low
power in the APP layer.

Based on the five states above, corresponding state machine names are defined in
“stack/ble/ll/ll.h”. The state name “ConnSlaveRole” is “BLS_LINK_STATE_CONN”.

//ble link layer state

#define BLS_LINK_STATE_IDLE 0

#define BLS_LINK_STATE_ADV BIT(0)

#define BLS_LINK_STATE_SCAN BIT(1)

#define BLS_LINK_STATE_INIT BIT(2)

#define BLS_LINK_STATE_CONN BIT(3)

Link Layer state machine switch is automatically implemented in BLE stack bottom layer.
Therefore, users cannot modify state in APP layer, but can obtain current state by
invoking the API below. The return value will be one of the five states.

u8 blc_ll_getCurrentState(void);

3.2.3 Link Layer State Machine Combined Application

3.2.3.1 Link Layer State Machine Initialization

Telink BLE SDK Link Layer fully supports all states, however, it’s flexible in design. Each
state can be assembled as a module; be default there’s only the basic Idle module, and
user needs to add modules and establish state machine combination for his application.
For example, for BLE Slave application, users need to add Advertising module and
ConnSlaveRole, while the remaining Scanning/Initiating modules are not included so as
to save code size and ramcode. The code of unused states won’t be compiled.

The API adding to the basic Idle module is as follows. This API is necessary, since all
BLE applications need initialization.

void blc_ll_initBasicMCU (u8 *public_adr);

Initialization APIs of modules corresponding to the other states (Advertising, Initiating,
Slave Role) are as follows.

void blc_ll_initAdvertising_module(u8 *public_adr);

void blc_ll_initSlaveRole_module(void);

The actual parameter “public_adr” is the pointer of BLE public mac address.

Users can flexibly establish Link Layer state machine combination by using the APIs
above. The following shows some common combination methods and corresponding
application scenes.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 50 Ver.1.0.0

3.2.3.2 Idle + Advertising

Advertising Idle
bls_ll_setAdvEnable(0)

bls_ll_setAdvEnable(1)

Figure 3-7 Idle + Advertising

As shown above, only Idle module and Advertising module are initialized, and it applies
to applications which use basic advertising function to advertise product information in
single direction, e.g. beacon.

The module initialization code of Link Layer state machine is:

u8 tbl_mac [6] = {……};

blc_ll_initBasicMCU(tbl_mac);

 blc_ll_initAdvertising_module(tbl_mac);

State switch of Idle and Advertising is implemented via “bls_ll_setAdvEnable”.

3.2.3.3 Idle + Advertising + ConnSlaveRole

Advertising Idle
bls_ll_setAdvEnable(0)

bls_ll_setAdvEnable(1)

Connection
Slave role

accept master’
s conn_req

terminate/connection timeout te
rm
in
at
e/
co
nn
ec
ti
on
 t
im
eo
ut

Figure 3-8 BLE Slave LL State

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 51 Ver.1.0.0

The figure above shows a Link Layer state machine combination for a basic BLE Slave
application. In SDK, 5316 hci/5316 remote/5316 module/5316 sample/5316 dual mode
are all based on this combination.

The module initialization code of Link Layer state machine is:

u8 tbl_mac [6] = {……};

blc_ll_initBasicMCU(tbl_mac);

 blc_ll_initAdvertising_module(tbl_mac);

blc_ll_initSlaveRole_module();

State switch in this combination is shown as below:

1) After power on, 5316 MCU enters Idle state. In Idle state, Adv is enabled, and Link

Layer switches to Advertising state; when Adv is disabled, it will return to Idle state.

The API “bls_ll_setAdvEnable” serves to enable/disable Adv.

After power on, Link Layer is in Idle state by default. Generally Adv needs to be

enabled in “user_init” so as to enter Advertising state.

2) When Link Layer is in Idle state, Physical Layer won’t take any RF operation

including packet transmission and reception.

3) When Link Layer is in Advertising state, advertising packets are transmitted in adv

channels. Master will send connection request if it receives adv packet. After Link

Layer receives this connection request, it will respond, establish connection and

enter ConnSlaveRole.

4) When Link Layer is in ConnSlaveRole, it will return to Idle State or Advertising state

in any of the following cases:

a) Master sends “terminate” command to Slave and requests disconnection. Slave

will exit ConnSlaveRole after it receives this command.

b) By sending “terminate” command to Master, Slave actively terminates the

connection and exits ConnSlaveRole.

c) If Slave fails to receive any packet due to Slave RF Rx abnormity or Master Tx

abnormity until BLE connection supervision timeout is triggered, Slave will exit

ConnSlaveRole.

When Link Layer exits ConnSlaveRole state, it will switch to Adv/Idle state according

to whether Adv is enabled or disabled which depends on the value configured during

last calling of “bls_ll_setAdvEnable” in APP layer. If Adv is enabled, Link Layer

returns to Advertising state; if Adv is disabled, Link Layer returns to Idle state.

3.2.4 Link Layer Timing Sequence

In this section, Link Layer timing sequence in various states will be illustrated combining
with irq_handler and mainloop of 5316 BLE SDK.

_attribute_ram_code_ void irq_handler(void)

{

 ……

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 52 Ver.1.0.0

 irq_blt_sdk_handler ();

 ……

}

void main_loop (void)

{

///////////////////// BLE entry ////////////////////////////

 blt_sdk_main_loop();

////////////////////// UI entry ////////////////////////////

 ……

}

Function “blt_sdk_main_loop” at BLE entry serves to process data and events related to
BLE protocol stack. UI entry is for user application code.

3.2.4.1 Timing Sequence in Idle State

When Link Layer is in Idle state, no task is processed in Link Layer and Physical Layer,
function “blt_sdk_main_loop” doesn’t work and won’t generate any interrupt, i.e. the
whole timing sequence of mainloop is occupied by UI entry.

3.2.4.2 Timing Sequence in Advertising State

Adv event Adv event

Adv interval

chn 37 chn 38 chn 39

TX RX TX TXRX RX

UI task/suspend UI task/suspend

Figure 3-9 Timing Sequence in Advertising State

As shown in Figure 3-9, an Adv event is triggered by Link Layer during each adv interval.
A typical Adv event with three active adv channels will send an advertising packet in
channel 37, 38 and 39, respectively. After an adv packet is sent, Slave enters Rx state,
and waits for response from Master: If Slave receives a scan request from Master, it will
send a scan response to Master; if Slave receives a connect request from Master, it will
establish BLE connection with Master and enter Connection state Slave Role.

It should be noted that the code of adv event is executed in function “blt_sdk_main_loop”
of mainloop. Therefore, adv event will not occupy irq time and lead to failure in real-time
irq response.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 53 Ver.1.0.0

Code of UI entry in mainloop is executed during UI task/suspend part in Figure 3-9. This
duration can be used for UI task only, or MCU can enter suspend for the redundant time
so as to reduce power consumption.

In Advertising state, function “blt_sdk_main_loop” does not have much tasks to process,
only needs to trigger some callback events related to Adv, including
BLT_EV_FLAG_ADV_DURATION_TIMEOUT, BLT_EV_FLAG_CONNECT, etc.

3.2.4.3 Timing Sequence in Conn state Slave Role

Conn interval

UI task/suspend UI task/suspendUI task UI task

brx
event

brx
event

brx
post

brx
start

brx
working

Figure 3-10 Timing Sequence in Conn state Slave Role

As shown in Figure 3-10, each conn interval starts with a brx event, i.e. transfer process
of BLE RF packets by Link Layer: PHY enters Rx state, and an ack packet will be sent to
respond to each received data packet from Master.

In 5316 BLE SDK, each brx process has three phases.

1) brx start phase

When Master needs to send packet, an interrupt is triggered by Timer0 tick irq to

enter brx start phase. During this interrupt, MCU sets BLE state machine of PHY to

enter brx state, hardware in bottom layer prepares for packet transfer, and then MCU

exits from the interrupt irq.

2) brx working phase

After brx start phase ends and MCU exits from irq, hardware in bottom layer enters

Rx state first and waits for packet from Master. An ack packet will be sent to respond

to each received data packet from Master. During the brx working phase, all packet

reception and transmission are implemented automatically without involvement of

software.

3) brx post phase

After packet transfer is finished, the brx working phase is finished. Timer0 tick irq

triggeres an interrupt to switch to the brx post phase. During this phase, protocol

stack will process BLE data and timing sequence according to packet transfer in the

brx working phase.

During the three phases, brx start and brx post are implemented in interrupt, while brx
working phase does not need the involvement of software, and UI task can be executed
normally. During the brx working phase, MCU can’t enter suspend since hardware needs
to transfer packets.

Within each conn interval, the duration except for brx event can be used for UI task only,
or MCU can enter suspend for the redundant time so as to reduce power consumption.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 54 Ver.1.0.0

In ConnSlaveRole, “blt_sdk_main_loop” needs to process the data received during the
brx process. During the brx working phase, the data packet received from Master will be
copied out during RX interrupt irq handler; these data won’t be processed immediately,
but buffered in software RX FIFO (corresponding to my_fifo_t blt_rxfifo in code).
Function “blt_sdk_main_loop” will check if there are data in software RX fifo, and process
the detected data packets correspondingly. The processing includes:

1) Decrypt data packet

2) Analyze data packet

If the analyzed data belongs to the control command sent by Master to Link Layer,

this command will be executed immediately; if it’s the data sent by Master to Host

layer, the data will be transferred to L2CAP layer via HCI interface.

3.2.4.4 Conn State Slave Role Timing Protection

In ConnSlaveRole state, each interval contains a Brx Event to transfer BLE RF packets.
In 5316 SDK, since Brx Event is triggered by interrupt, it’s needed to enable MCU system
interrupt all the time. If user needs to process some time-consuming tasks and must
disable system interrupt in Conn state (e.g. erase Flash), Brx Event will be stopped, BLE
timing sequence will be disturbed, thus connection is terminated.

A timing sequence protection mechanism is provided in 5316 SDK. Users should strictly
follow this mechanism, so that BLE timing sequence won’t be disturbed when Brx Event
is stopped. Corresponding APIs are shown as below:

 int bls_ll_requestConnBrxEventDisable(void);

 void bls_ll_disableConnBrxEvent(void);

 void bls_ll_restoreConnBrxEvent(void);

API “bls_ll_requestConnBrxEventDisable” serves to send a request to disable Brx Event.

1) If the return value is 0, it indicates the request to disable Brx Event is rejected.

During Brx working phase in Conn state, the return value must be 0; this request

won’t be accepted until a whole Brx Event is finished, i.e. it can be accepted only

during the remaining UI task/suspend duration.

2) If the return value is not zero, it indicates this request can be accepted, and the

returned non-zero value indicates the time (unit: ms) allowed to stop Brx Event.

a) If Link Layer is in Advertising state or Idle state without Brx Event, the return

value is “0xffff”. In this case, user can disable system interrupt at will.

b) If Link Layer is in Conn state, and Slave receives “update map” or “update

connection parameter” request from Master but does not start updating yet, the

return value should be the difference value of the time to start updating and

current time, i.e. it’s only allowed to stop Brx Event before the time to start

updating, otherwise all following packets won' be received and it will result in

disconnection.

c) If Link Layer is in Conn state, and no update request is received from Master,

the return value should be half of the current connection supervision timeout

value. For example, suppose current timeout is 1s, the return value should be

500ms.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 55 Ver.1.0.0

After the API “bls_ll_requestConnBrxEventDisable” is called and the request is accepted,
if the time (ms) corresponding to the return value is enough to process user task, the task
will be executed. Before the task starts, the API “bls_ll_disableConnBrxEvent” should be
called to disable Brx Event. After the task is finished, the API
“bls_ll_restoreConnBrxEvent” should be called to enable Brx Event and restore BLE
timing sequence.

The reference code is shown as below. Time values in the code depend on actual task.

3.2.5 Link Layer TX FIFO & RX FIFO

All RF data of APP layer and BLE Host should be transmitted via Link Layer of Controller.
A BLE TX FIFO is designed in Link Layer, which can be used to buffer the received data
and send data after brx/btx starts.

All data received from peer device during Link Layer brx/btx will be buffered in a BLE RX
FIFO, and then transmitted to BLE Host or APP layer for processing.

Both BLE TX FIFO and BLE RX FIFO in Slave role are defined in APP layer:

MYFIFO_INIT(blt_rxfifo, 64, 8);

MYFIFO_INIT(blt_txfifo, 40, 16);

By default, RX FIFO size is 64, and TX FIFO size is 40. It’s not allowed to modify the two
size values unless it’s needed to use “data length extension” in core 4.2.

Both TX FIFO number and RX FIFO number must be configured as a power of 2, i.e. 2,
4, 8, 16, and etc. Users can modify as needed.

Default RX FIFO number is 8, which is a reasonable value to ensure up to 8 data packets
can be buffered in Link Layer bottom layer. If it’s set as large value, it will occupy large
SRAM area. If it’s set as small value, it may bring the risk of data coverage. During brx
event, Link Layer is likely to be in more data mode in an interval and continuously receive
multiple packets; if RX FIFO number is set as 4, there may be five or six packets in an
interval (e.g. OTA,), however, due to long decryption time, response to these data by
upper layer cannot be processed in real time, then some data may be overflowed.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 56 Ver.1.0.0

Take RX overflow for example, if:

1) The number RX FIFOs is 8;

2) The read pointer and write pointer is 0 and 2 respectively before brx_event(n) is

enabled;

3) main_loop is blocked by task in brx_event(n) and brx_event(n+1) and does not

process RX FIFOs in time;

4) Multiple packets in two brx_event.

As per the description in section 3.2.4.3, BLE packets received during brx_working phase
will only be copied into RX FIFO (RX FIFO write pointer ++), and the operations to fetch
and process data from RX FIFO are implemented in main_loop (RX FIFO read pointer
++). As shown below, the sixth packet will cover the area of rptr (read pointer) 0. It should
be noted that during brx working phase, UI task occupies time slots other than interrupt
handler time for RX, TX, Timer0, etc.

UI task/sleep

UI task

Brx event(n)

brx
post

brx
start brx working

RX1 TX1 RX2 TX2

Brx event(n+1)

RX3 TX3 RX6 TX6

UI task

brx
post

brx
start brx working

UI task/sleep

wptr:2

0

1

2

34

5

6

7

rptr:0

RX4 TX4 RX5 TX5

wptr(2+6)&(8-1)=0

0(6)

1

2

3(1)4(2)

5(3)

6(4)

7(5)

rptr:0

If the RX fifo rptr is 0 before the
pkt is received, assuming that
there are multiple pkts in one brx
event and main_loop does not
process RX fifo(means rptr not ++),
then after receiving the 6th RX
data, the RX fifo wptr will cross
the rptr area, causing 1st pkt to
be covered.

Figure 3-11 RX Overflow Case 1

Compared with the extreme case above with long task blockade duration due to one
connection interval, the case below is more likely to occur.

During one brx_event, since master writes multiple packets into slave, like 7 or 8 packets,
slave fails to process these packets in time. As shown below, the rptr (read pointer) is
increased by two, but the wptr (write pointer) is also increased by eight, which thus
causes data overflow.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 57 Ver.1.0.0

UI task

Brx event(n)

brx
post

brx
start brx working

RX8 TX8RX1 TX1 RX2 TX2 RX5 TX5 UI task/sleep

wptr:2

0

1

2

34

5

6

7

RX3 TX3 RX4 TX4

wptr(2+8)&(8-1)=2

0(6)

1(7)

2(8)

3(1)4(2)

5(3)

6(4)

7(5)

rptr:0

If the RX fifo rptr is 0 before the
pkt is received, assuming that
there is multiple pkts in one brx
event and main_loop does process 2
RX pkts(means rptr point to 2),
then after receiving the 8th RX
data, the RX fifo wptr will cross
the rptr area, causing 2nd pkt to
be covered.

RX6 TX6 RX7 TX7

rptr:2

Figure 3-12 RX Overflow Case 2

Data loss due to overflow will bring MIC failure and disconnection for the encryption
system.

In the old SDK, during brx event Rx IRQ, since data are filled into Rx FIFO without
overflow check, if main_loop fails to process data in time, it will bring the risk of data
overflow. Therefore, Master should not send too many data in a connection interval, and
the time to process UI tasks should be as short as possible, so as to avoid blockade.

Considering this, Rx overflow check is added in the new SDK: During the brx/btx event
Rx IRQ, check whether the difference of current RX FIFO wptr and rptr exceeds Rx FIFO
number. If the check result shows current Rx FIFO is fully occupied, the RF won’t send
ACK to the peer and BLE protocol ensures data will be re-transmitted.

Similarly, if there are more than 8 valid packets in an interval, the default number 8 is not
enough.

Default TX FIFO number is 16, which is enough to process common audio remote control
function with large data volume. User can modify this number as 8 to save FIFO space.

If it’s set as large value (e.g. 32), it will occupy large SRAM area.

In TX FIFO, stack in SDK bottom layer needs two FIFOs, while APP layer can use the
remaing FIFOs. If TX FIFO number is 16, APP layer can use 14 FIFOs; if TX FIFO
number is 8, APP layer can use 6 FIFOs.

To send data in APP layer (e.g. call “bls_att_pushNotifyData”), users should check
current number of TX FIFOs available for Link Layer.

The API below serves to check current occupied number of TX FIFOs (note that it’s not
the remaining available FIFO number).

 u8 bls_ll_getTxFifoNumber (void);

For example, TX FIFO number is the default value 16, among which 14 FIFOs are
available for users. Therefore, as long as the return value is less than 14, there are still
FIFOs available: if the return value is 13, there is 1 FIFO remaining; if the return value is
0, there are 14 FIFOs available.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 58 Ver.1.0.0

3.2.6 Controller HCI Event

Considering users may need to record and process some key actions of BLE stack
bottom layer in APP layer, 5316 BLE SDK provides two types of events: standard HCI
event defined by BLE Controller; Telink defined event.

HCI event is designed as BLE Spec standard, while Telink defined event only applies to
BLE slave (5316 ble remote/5316 module/5316 sample/5316 dual mode, etc.), which
means for BLE slaves HCI event and Telink defined event both works.

Basically the two sets of events are independent of each other, except the connect event
and disconnect event of Link Layer.

Users can select one set or use both at the same time as needed. In 5316 BLE SDK,
5316 ble remote, 5316 module, etc. use Telink defined event, while 5316 hci uses
Controller HCI event.

As the “Host + Controller” architecture shown below, Controller HCI event reports all
events of Controller to Host via HCI.

BLE Host

HCI

BLE Controller

HCI
cmd

Host
data

Controller
data

HCI
event

Figure 3-13 HCI Event

For the definition of Controller HCI event, please refer to Core_v5.0 (Vol 2/Part E/7.7
“Events”). “LE Meta Event” in 7.7.65 refers to HCI LE (low energy) Event, while others
are common HCI events. As defined in the Spec, 5316 BLE SDK also divides Controller
HCI event into two types: HCI Event and HCI LE event. Since 5316 BLE SDK focuses on
BLE, it supports most HCI LE events and only a few basic HCI events.

For the definition of macros and interfaces related to Controller HCI event, please refer to
head files under “proj_lib/ble/hci”.

To receive Controller HCI event in Host or APP layer, users should register callback
function of Controller HCI event, and then enable mask of corresponding event.

Following are callback function prototype and register interface of Controller HCI event:

 typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);

void blc_hci_registerControllerEventHandler(

hci_event_handler_t handler);

In the callback function prototype, “u32 h” is a mark which is used frequently in bottom-
layer stack, and users only need to know the following:

#define HCI_FLAG_EVENT_TLK_MODULE (1<<24)

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 59 Ver.1.0.0

#define HCI_FLAG_EVENT_BT_STD (1<<25)

“HCI_FLAG_EVENT_TLK_MODULE” will be introduced in “Telink defined event”, while
“HCI_FLAG_EVENT_BT_STD” indicates the current event is Controller HCI event.

In the callback function prototype, “para” and “n” indicate data and data length of event.
The data is consistent with the definition in BLE Spec. Users can refer to usage in 5316
module as well as the implementation of “controller_event_handler” function.

 blc_hci_registerControllerEventHandler(controller_event_handler);

3.2.6.1 HCI Event

T5316 BLE SDK supports a few HCI events. The following lists some events users
would like to know.

#define HCI_EVT_DISCONNECTION_COMPLETE 0x05

#define HCI_EVT_ENCRYPTION_CHANGE 0x08

#define HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE 0x0C

#define HCI_EVT_ENCRYPTION_KEY_REFRESH 0x30

#define HCI_EVT_LE_META 0x3E

1) HCI_EVT_DISCONNECTION_COMPLETE

Please refer to Core_v5.0 (Vol 2/Part E/7.7.5 “Disconnection Complete Event”).

Total data length of this event is 7, and 1-byte “param len” is 4, as shown below.

Please refer to BLE Spec for data definition.

hci
event

0x04

event
code

0x05

param
len

status
connection

handle
reason

4 0x00

Figure 3-14 Disconnection Complete Event

2) HCI_EVT_ENCRYPTION_CHANGE and CI_EVT_ENCRYPTION_KEY_REFRESH

Please refer to Core_v5.0 (Vol 2/Part E/7.7.8 & 7.7.39).

The two events are related to Controller encryption, and the processing is

assembled in library.

3) HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE

Please refer to Core_v5.0 (Vol 2/Part E/7.7.12).

When Host uses “HCI_CMD_READ_REMOTE_VER_INFO” command to exchange

version information between Controller and BLE peer device, and version of peer

device is received, this event will be reported to Host.

Total data length of this event is 11, and 1-byte “param len” is 8, as shown below.

Please refer to BLE Spec for data definition.

hci
event

0x04

event
code

0x0c

param
len

status
connection

handle
version

0x00

manufacture
name

subversion

8

Figure 3-15 Read Remote Version Information Complete Event

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 60 Ver.1.0.0

4) HCI_EVT_LE_META

It indicates the current event is HCI LE event, and event types can be checked

according to sub event code.

Except for HCI_EVT_LE_META, other HCI events should use the API below to enable
corresponding event masks.

ble_sts_t blc_hci_setEventMask_cmd(u32 evtMask); //eventMask:

BT/EDR

The definitions of event masks are as follows:

#define HCI_EVT_MASK_DISCONNECTION_COMPLETE 0x0000000010

#define HCI_EVT_MASK_ENCRYPTION_CHANGE 0x0000000080

#define HCI_EVT_MASK_READ_REMOTE_VERSION_INFORMATION_COMPLETE

 0x0000000800

If users do not set HCI event masks via this API, only the mask corresponding to
“HCI_CMD_DISCONNECTION_COMPLETE” will be enabled in SDK by default, which
means SDK only ensures the report of Controller disconnect event by default.

3.2.6.2 HCI LE Event

When the event code in HCI event is “HCI_EVT_LE_META”, it indicates it’s a HCI LE
event, common subevent code are shown as below:

#define HCI_SUB_EVT_LE_CONNECTION_COMPLETE 0x01

#define HCI_SUB_EVT_LE_ADVERTISING_REPORT 0x02

#define HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

0x03

1) HCI_SUB_EVT_LE_CONNECTION_COMPLETE

Please refer to Core_v5.0 (Vol 2/Part E/7.7.65.1 “LE Connection Complete Event”).

When Controller Link Layer establishes connection with peer device, this event will

be reported.

Total data length of this event is 22, and 1-byte “param len” is 19, as shown below.

Please refer to BLE Spec for data definition.

hci
event

event
code

param
len

subevent
code

connection
handle

Role
peerAddr
type

peer addr

supervision
timeout

conn interval

conn latecncy

0x04 0x3e 19 0x01

status

master
clock

accuracy

Figure 3-16 LE Connection Complete Event

2) HCI_SUB_EVT_LE_ADVERTISING_REPORT

Please refer to Core_v5.0 (Vol 2/Part E/7.7.65.2 “LE Advertising Report Event”).

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 61 Ver.1.0.0

When Controller Link Layer scans the right adv packet, the packet will be reported to

Host via “HCI_SUB_EVT_LE_ADVERTISING_REPORT”.

Data length of this event is not fixed and it depends on payload of the adv packet, as

shown below. Please refer to BLE Spec for data definition.

hci
event

event
code

param
len

subevent
code

event
type

address[1...i]

0x04 0x3e 0x02

num
report

address type[1...i]

length[1..i]

data[1...i] rssi[1..i]

Figure 3-17 LE Advertising Report Event

Note: In Telink BLE SDK, each “LE Advertising Report Event” only reports an adv

packet, i.e. “i” in Figure 3-16 is 1.

3) HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

Please refer to Core_v5.0 (Vol 2/Part E/7.7.65.3 “LE Connection Update Complete

Event”).

When “connection update” in Controller takes effect,

“HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE” will be reported to

Host.

Total data length of this event is 13, and 1-byte “param len” is 10, as shown below.

Please refer to BLE Spec for data definition.

hci
event

event
code

param
len

subevent
code

connection
handle

conn interval conn latency

0x04 0x3e 10 0x03

status

supervision
timeout

Figure 3-18 LE Connection Update Complete Event

“HCI LE event” needs the interface below to enable mask.

ble_sts_t blc_hci_le_setEventMask_cmd(u32 evtMask);

//eventMask: LE

The following lists some evtMask definitions. Users can view other events in
“hci_const.h”.

#define HCI_LE_EVT_MASK_CONNECTION_COMPLETE 0x00000001

#define HCI_LE_EVT_MASK_ADVERTISING_REPORT 0x00000002

#define HCI_LE_EVT_MASK_CONNECTION_UPDATE_COMPLETE 0x00000004

If users do not set HCI LE event masks via this API, masks of all HCI LE events in SDK
are disabled by default.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 62 Ver.1.0.0

3.2.7 Telink Defined Event

Besides the standard Controller HCI event, SDK also provides Telink defined event, the
architecture is shown below.

In terms of user application, events are from Host and Controller (equivalent to the whole
BLE stack). Most events are from Controller, and will be introduced in this section. The
Host part will introduce a few events from Host.

Application

BLE Host +
BLE Controller

cmd

data data
Telink
defined
event

Figure 3-19 Architecture of Telink Defined Event

Up to 20 Telink defined events are supported, which are defined by using macros in
“stack/ble//ll/ll.h”.

Current new SDK supports the following callback events.
“BLT_EV_FLAG_CONNECT/BLT_EV_FLAG_TERMINATE” has the same function as
“HCI_SUB_EVT_LE_CONNECTION_COMPLETE” and
“HCI_EVT_DISCONNECTION_COMPLETE” in HCI event, but data definition of these
events are different.

#define BLT_EV_FLAG_ADV 0

#define BLT_EV_FLAG_ADV_DURATION_TIMEOUT 1

#define BLT_EV_FLAG_SCAN_RSP 2

#define BLT_EV_FLAG_CONNECT 3

#define BLT_EV_FLAG_TERMINATE 4

#define BLT_EV_FLAG_PAIRING_BEGIN 5

#define BLT_EV_FLAG_PAIRING_END 6

#define BLT_EV_FLAG_ENCRYPTION_CONN_DONE 7

#define BLT_EV_FLAG_DATA_LENGTH_EXCHANGE 8

#define BLT_EV_FLAG_GPIO_EARLY_WAKEUP 9

#define BLT_EV_FLAG_CHN_MAP_REQ 10

#define BLT_EV_FLAG_CONN_PARA_REQ 11

#define BLT_EV_FLAG_CHN_MAP_UPDATE 12

#define BLT_EV_FLAG_CONN_PARA_UPDATE 13

#define BLT_EV_FLAG_SUSPEND_ENTER 14

#define BLT_EV_FLAG_SUSPEND_EXIT 15

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 63 Ver.1.0.0

#define BLT_EV_FLAG_RX_DATA_ABANDOM 16

#define BLT_EV_FLAG_SMP_PINCODE_PROCESS 17

#define BLT_EV_FLAG_SMP_KEY_MISSING 18

#define BLT_EV_FLAG_PHY_UPDATE 19

Telink defined event is only used in BLE Slave applications (remote/module). There are
two methods to call back Telink defined events in BLE slave applications.

1) The first: Registering the callback function of each event independently, which we

call “independent registration.” The prototype of callback function is:

 typedef void (*blt_event_callback_t)(u8 e, u8 *p, int n);

“e”: event number.

“p”: It’s the pointer of the data transmitted from the bottom layer when callback

function is executed, and it varies with the callback functions.

“n”: length of valid data pointed by pointer.

The API for registering callback functions is:

void bls_app_registerEventCallback (u8 e,

blt_event_callback_t p);

2) The second: Callback functions of all the events share one entry. Whether the event

responds depends on if the corresponding event mask is enabled. This we call

“shared event entry”.

Registering event callback via “shared event entry” use the same API of HCI event:

typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);

void blc_hci_registerControllerEventHandler (

hci_event_handler_t handler);

Even the same register callback function of HCI event is used, the implementation of

the function is slightly different.

HCI event callback function:

h = HCI_FLAG_EVENT_BT_STD | hci_event_code;

Telink defined event “shared event entry”:

H = HCI_FLAG_EVENT_TLK_MODULE | e;

“e” is the event number of Telink defined event.

“shared event entry” of Telink defined event is similar to the mask of HCI event.

Whether each event repsonds depends on the mask set by the API below:

ble_sts_t bls_hci_mod_setEventMask_cmd(u32 evtMask)；

The relationship between evtMask and event number is:

evtMask = BIT(e);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 64 Ver.1.0.0

The two methods to implement Telink defined event is mutually exclusive. It is
recommended to use the first one “independent registration” as most SDKs use this one.
Only 5316 module uses the second one “shared event entry”.

For the usage of Telink defined event, please see the demo code of project
“5316_ble_remote” for method 1 “independent registration”; please see the demo code of
project “5316_module” for method 2 “shared event entry”.

The implementation of the two methods are shown below by taking connect event
callback and terminate event callback for example.

1) Method 1 “independent registration”

void task_connect (u8 e, u8 *p, int n)

{

 //add connect callback code here.

}

void task_terminate (u8 e, u8 *p, int n)

{

 //add terminate callback code here.

}

bls_app_registerEventCallback (BLT_EV_FLAG_CONNECT,

&task_connect);

bls_app_registerEventCallback(BLT_EV_FLAG_TERMINATE,

&ble_remote_terminate);

2) Method 2 “shared event entry”

int controller_event_handler(u32 h, u8 *para, int n)

{

 if((h&HCI_FLAG_EVENT_TLK_MODULE)!= 0) //module event

 {

 switch(event)

 {

 case BLT_EV_FLAG_CONNECT:

 {

 bls_l2cap_requestConnParamUpdate (8, 12, 99, 400);

 spp_send_data(HCI_FLAG_EVENT_TLK_MODULE, pEvt);

 }

 break;

 case BLT_EV_FLAG_TERMINATE:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 65 Ver.1.0.0

 {

 spp_send_data(HCI_FLAG_EVENT_TLK_MODULE, pEvt);

 }

 break;

 }

 }

}

 blc_hci_registerControllerEventHandler(controller_event_handler);

 bls_hci_mod_setEventMask_cmd(0xfffff);

In the following sub-sections, all events, event trigger conditions and parameters of
corresponding callback functions for Controller will be introduced in details. Events
“BLT_EV_FLAG_PAIRING_BEGIN” and “BLT_EV_FLAG_PAIRING_END”, which do not
belong to Controller, will be introduced in Host SMP.

3.2.7.1 BLT_EV_FLAG_ADV

This event is not used in current SDK.

3.2.7.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT

Event trigger condition: If the API “bls_ll_setAdvDuration” is called to set advertising
duration, a timer will be started in BLE stack bottom layer. When the timer reaches the
specified duration, advertising is stopped, and this event is triggered. In the callback
function of this event, users can implement operations such as modifying adv event type,
re-enabling advertising, re-configuring advertising duration and etc.

Pointer “p”: null pointer.

Data length “n”: 0.

Note: This event won’t be triggered in “advertising in ConnSlaveRole” which is an
extended state of Link Layer.

3.2.7.3 BLT_EV_FLAG_SCAN_RSP

Event trigger condition: When Slave is in advertising state, this event will be triggered if
Slave responds with scan response to the scan request from Master.

Pointer “p”: null pointer.

Data length “n”: 0.

3.2.7.4 BLT_EV_FLAG_CONNECT

Event trigger condition: When Link Layer is in advertising state, this event will be
triggered if it responds to connect request from Master and enters Conn state Slave role.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 66 Ver.1.0.0

Data length “n”: 34.

Pointer “p”: p points to one 34-byte RAM area, corresponding to the “connect request
PDU” below.

Figure 3-20 Connect Request PDU

Please refer to “rf_packet_connect_t” defined in “ble_common.h”. In the structure below,
the connect request PDU is from scanA[6] (corresponding to InitA in Figure 3-20) to hop.

 typedef struct{

 u32 dma_len;

 u8 type;

 u8 rf_len;

 u8 scanA[6];

 u8 advA[6];

 u8 accessCode[4];

 u8 crcinit[3];

 u8 winSize;

 u16 winOffset;

 u16 interval;

 u16 latency;

 u16 timeout;

 u8 chm[5];

 u8 hop;

 }rf_packet_connect_t;

3.2.7.5 BLT_EV_FLAG_TERMINATE

Event trigger condition: This event will be triggered when Link Layer state machine exits
Conn state Slave role in any of the three specific cases.

Pointer “p”: p points to an u8-type variable “terminate_reason”. This variable indicates the
reason for disconnection of Link Layer.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 67 Ver.1.0.0

Data length “n”: 1.

Three cases to exit Conn state Slave role and corresponding reasons are listed as below:

1) If Slave fails to receive packet from Master for a duration due to RF communication

problem (e.g. bad RF or Master is powered off), and “connection supervision

timeout” expires, this event will be triggered to terminate connection and return to

None Conn state. The terminate reason is HCI_ERR_CONN_TIMEOUT (0x08).

2) If Master sends “terminate” command to actively terminate connection, after Slave

responds to the command with an ack, this event will be triggered to terminate

connection and return to None Conn state. The terminate reason is the Error Code in

the “LL_TERMINATE_IND” control packet received in Slave Link Layer. The Error

Code is determined by Master. Common Error Code includes

HCI_ERR_REMOTE_USER_TERM_CONN (0x13),

HCI_ERR_CONN_TERM_MIC_FAILURE (0x3D), and etc.

3) If Slave calls the API “bls_ll_terminateConnection (u8 reason)” to actively terminate

connection, this event will be triggered. The terminate reason is the actual parameter

“reason” of this API.

3.2.7.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE

Event trigger condition: This event will be triggered when encryption of Link Layer is
finished (i.e. Link Layer receives “start encryption response” from Master).

Pointer “p”: p points to an u8-type variable “smp_flag”, which indicates current encryption
of Link Layer is triggered during first pairing or auto re-connection. If “smp_flag” is 0, it
indicates first pairing; if “smp_flag” is 1, it indicates auto re-connection.

#define SMP_STANDARD_PAIR 0

#define SMP_FAST_CONNECT 1

Data length “n”: 1.

3.2.7.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

Event trigger condition: This event will be triggered when Slave and Master exchange
max data length of Link Layer, i.e. one side sends “ll_length_req”, while the other side
responds with “ll_length_rsp”. If Slave actively sends “ll_length_req”, this event won’t be
triggered until “ll_length_rsp” is received. If Master initiates “ll_length_req”, this event will
be triggered immediately after Slave responds with “ll_length_rsp”.

Data length “n”: 12.

Pointer “p”: p points to data of a memory area, corresponding to the beginning six u16-
type variables in the structure below.

typedef struct {

 u16 connEffectiveMaxRxOctets;

 u16 connEffectiveMaxTxOctets;

 u16 connMaxRxOctets;

 u16 connMaxTxOctets;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 68 Ver.1.0.0

 u16 connRemoteMaxRxOctets;

 u16 connRemoteMaxTxOctets;

 u16 supportedMaxRxOctets;

 u16 supportedMaxTxOctets;

 u16 connInitialMaxTxOctets;

 u8 connMaxTxRxOctets_req;

}ll_data_extension_t;

“connEffectiveMaxRxOctets” and “connEffectiveMaxTxOctets” are max RX and TX data
length finally allowed in current connection; “connMaxRxOctets” and “connMaxTxOctets”
are max RX and TX data length of the device; “connRemoteMaxRxOctets” and
“connRemoteMaxTxOctets” are max RX and TX data length of peer device.

connEffectiveMaxRxOctets = min(supportedMaxRxOctets,connRemoteMaxTxOctets);

connEffectiveMaxTxOctets = min(supportedMaxTxOctets, connRemoteMaxRxOctets);

3.2.7.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP

Event trigger condition: Slave will calculate wakeup time before it enters suspend, so that
it can wake up when the wakeup time is due (It’s realized via timer in suspend state).
Since user tasks won’t be processed until wakeup from suspend, long suspend time may
bring problem for real-time demanding applications. Take keyboard scanning as an
example, if user presses keys fast, to avoid key press loss and process debouncing, it’s
recommended to set the scan interval as 10~20ms; longer suspend time (e.g. 400ms or
1s, which may be reached when latency is enabled) will lead to key press loss. So it’s
needed to judge current suspend time before MCU enters suspend; if it’s too long, the
wakeup method of user key press should be enabled, so that MCU can wake up from
suspend in advance (i.e. before timer timeout) if any key press is detected. This will be
introduced in details in following PM module section.

The event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP” will be triggered if MCU is woke
up from suspend by GPIO in advance before wakeup timer expires.

Data length “n”: 1.

Pointer “p”: p points to an u8-type variable “wakeup_status”. This variable indicates valid
wakeup source status for current suspend. Following types of wakeup status are defined
in “drivers/5316/pm.h” (“WAKEUP_STATUS_COMP” is not used in SDK).

 enum {

 WAKEUP_STATUS_COMP = BIT(0),

 WAKEUP_STATUS_TIMER = BIT(1),

 WAKEUP_STATUS_CORE = BIT(2),

 WAKEUP_STATUS_PAD = BIT(3),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),

STATUS_ENTER_SUSPEND = BIT(30),

 } PM_WakeupStatusTypeDef;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 69 Ver.1.0.0

For definitions of the parameters above, please refer to the return value “int” of the API in
“Power Management”:

int cpu_sleep_wakeup (int deepsleep, int wakeup_src, u32 wakeup_tick);

3.2.7.9 BLT_EV_FLAG_CHN_MAP_REQ

Event trigger condition: When Slave is in Conn state, if Master needs to update current
connection channel list, it will send a “LL_CHANNEL_MAP_REQ” command to Slave;
this event will be triggered after Slave receives this request from Master and has not
processed the request yet.

Data length “n”: 5.

Pointer “p”: p points to the starting address of the following channel list array.

 unsigned char type/ bltc.conn_chn_map[5]

Please note that when the callback function is executed, p points to the old channel map
which is not updated.

Five bytes are used in “conn_chn_map” to represent current channel list by mapping.
Each bit represents a channel:

conn_chn_map[0] bit0-bit7 represent channel0-channel7 respectively.

conn_chn_map[1] bit0-bit7 represent channel8-channel15 respectively.

conn_chn_map[2] bit0-bit7 represent channel16-channel23 respectively.

conn_chn_map[3] bit0-bit7 represent channel24-channel31 respectively.

conn_chn_map[4] bit0-bit4 represent channel32-channel36 respectively.

3.2.7.10 BLT_EV_FLAG_CHN_MAP_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if
Slave has updated channel map after it receives the “LL_CHANNEL_MAP_REQ”
command from Master.

Pointer “p”: p points to the starting address of the new channel map conn_chn_map[5]
after update.

Data length “n”: 5.

3.2.7.11 BLT_EV_FLAG_CONN_PARA_REQ

Event trigger condition: When Slave is in connection state (Conn state Slave role), if
Master needs to update current connection parameters, it will send a
“LL_CONNECTION_UPDATE_REQ” command to Slave; this event will be triggered after
Slave receives this request from Master and has not processed the request yet.

Data length “n”: 11.

Pointer “p”: p points to the 11-byte PDU of the LL_CONNECTION_UPDATE_REQ, as
shown below.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 70 Ver.1.0.0

Figure 3-21 LL_CONNECTION_UPDATE_REQ Format in BLE Stack

3.2.7.12 BLT_EV_FLAG_CONN_PARA_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if
Slave has updated connection parameters after it receives the
“LL_CONNECTION_UPDATE_REQ” from Master.

Data length “n”: 6.

Pointer “p”: p points to the new connection parameters after update, as shown below:

p[0] | p[1]<<8: new connection interval in unit of 1.25ms

p[2] | p[3]<<8: new connection latency

p[4] | p[5]<<8: new connection timeout in unit of 10ms

3.2.7.13 BLT_EV_FLAG_SUSPEND_ENETR

Event trigger condition: When Slave executes function “blt_sdk_main_loop”, this event
will be triggered before Slave enters suspend.

Pointer “p”: Null pointer.

Data length “n”: 0.

3.2.7.14 BLT_EV_FLAG_SUSPEND_EXIT

Event trigger condition: When Slave executes function “blt_sdk_main_loop”, this event
will be triggered after Slave is woken up from suspend.

Pointer “p”: Null pointer.

Data length “n”: 0.

Note: This callback is executed after SDK bottom layer executes “cpu_sleep_wakeup”
and Slave is woke up, and this event will be triggered no matter whether the actual
wakeup source is gpio or timer. If the event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP”
occurs at the same time, for the sequence to execute the two events, please refer to
pseudo code in “Power Management – PM Working Mechanism”.

3.2.7.15 BLT_EV_FLAG_PHY_UPDATE

Event trigger condition: when Salve receives LL_PHY_UPDATE_IND PDU sent by
master and PHY is updated successfully, this event will be triggered.

Pointer “p”: p points to the updated Tx and Rx PHY. PHY could be the enum values
below:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 71 Ver.1.0.0

 BLE_PHY_1M = BIT(0),

BLE_PHY_2M = BIT(1),

Note: TLSR8232 could only use symmetric PHY, that is, Rx and Tx use the same PHY.
Please see section 2M PHY Supported for usage.

3.2.8 Controller API

3.2.8.1 Controller API Brief

In standard BLE stack architecture (see Figure 3-1), APP layer cannot directly
communicate with Link Layer of Controller, i.e. data of APP layer must be first transferred
to Host, and then Host can transfer control command to Link Layer via HCI. All control
commands from Host to LL via HCI follow the definition in BLE Spec Core_v5.0, please
refer to Core_v5.0 (Vol 2/Part E/ Host Controller Interface Functional Specification).

5316 BLE SDK based on standard BLE architecture can serve as a Controller and work
together with Host system. Therefore, all APIs to operate Link Layer strictly follow the
data format of Host commands in the spec.

Although the architecture in

Figure 3-4 is used in 5316 BLE SDK, APP layer can directly operate Link Layer, it still
uses the standard APIs of HCI part. Corresponding Host commands in Spec are provided
in the API introduction below. Users can refer to the detailed descriptions in Spec.

In BLE Spec, all HCI commands to operate Controller have corresponding “HCI
command complete event” or “HCI command status event” as response to Host layer.
However, in Telink BLE SDK, there are different situations:

1) For applications such as 5316_hci, Telink IC only serves as BLE controller, and

needs to work together with BLE Host MCU. Each HCI command will generate

corresponding “HCI command complete event” or “HCI command status event”.

2) The processing is different for master. As 5316 does not support master we do not

provide detailed information here.

Controller API declaration is available in head files under “stack/ble/ll” and “stack/ble/hci”.
Corresponding to Link Layer state machine functions, the “ll” directory contains ll.h,
ll_adv.h, and ll_slave.h, e.g. APIs related to advertising function should be in ll_adv.h.

3.2.8.2 API Return Type ble_sts_t

An enum type “ble_sts_t” defined in “stack/ble/ble_common.h” is used as return value
type for most APIs in SDK. When API calling with right parameter setting is accepted by
the protocol stack, it will return BLE_SUCCESS, value being“0”; if any non-zero value is
returned, it indicates a unique error type. All possible return values and corresponding
error reason will be listed in the subsections below for each API.

The “ble_sts_t” applies to APIs of all layers, including APIs of Link Layer.

3.2.8.3 MAC Address Initialization

In this document, “BLE MAC address” refers to “public address” and “random static
address” by default.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 72 Ver.1.0.0

In 5316 BLE SDK, by calling the interface below “public address” and “random static
address” will be obtained.

void blc_initMacAddress(int flash_addr, u8 *mac_public,

u8 *mac_random_static)；

Fill “flash_addr” with the address for storing MAC address in Flash. From the content
above, the address of 5316 512K Flash should be 0x76000. If “random static address” is
not needed, fill “mac_random_static” with “NULL”.

The Link Layer initialization API can be called to load the obtained BLE public MAC
address into BLE protocol stack.

blc_ll_initBasicMCU(mac_public);

In order to use advertising state in Link Layer state machine, MAC address needs to be
loaded.

blc_ll_initAdvertising_module(mac_public);

As introduced above, the 6-byte BLE MAC address will be downloaded into specific
Flash area of the actual products by Telink jig system. Users need to obtain the MAC
address from Bluetooth SIG.

3.2.8.4 Link Layer State Machine Initialization

The APIs below are used to configure initialization of each module when BLE state
machine is established. Please see the previous section for introduction of Link Layer
state machine.

 void blc_ll_initBasicMCU (u8 *public_adr)

void blc_ll_initAdvertising_module(u8 *public_adr);

void blc_ll_initSlaveRole_module(void);

3.2.8.5 bls_ll_setAdvData

Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.7 “LE Set Advertising Data Command”) for
details.

Figure 3-22 Adv Packet Format in BLE Stack

As shown above, an Adv packet in BLE stack contains 2-byte header, and Payload. The
maximum length of Payload is 31 bytes.

The API below is used to set AdvData data in Payload:

 ble_sts_t bls_ll_setAdvData(u8 *data, u8 len);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 73 Ver.1.0.0

The “data” pointer points to the starting address of AdvData, while the “len” indicates data
length. The table below lists possible results for the return type “ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12
Len exceeds the
maximum length 31

This API can be called in initialization to set adv data, or called in mainloop to modify adv
data when the firmware is running.

In “5316 ble remote” project of 5316 BLE SDK, the definition of AdvData is shown as
below. Please refer to “Data Type Specification” in BLE Spec CSS v6 (Core Specification
Supplement v6.0) for meanings of fields.

u8 tbl_advData[] = {

 0x05, 0x09, 'G', 'h', 'i', 'd',

 0x02, 0x01, 0x05,

 0x03, 0x19, 0x80, 0x01,

 0x05, 0x02, 0x12, 0x18, 0x0F, 0x18,

};

The adv device name is set as " Ghid " in the adv data shown above.

3.2.8.6 bls_ll_setScanRspData

Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.8 “LE Set Scan response Data Command”).

Similar to the setting of Adv packet Payload, an API is used to set Scan response
Payload:

 ble_sts_t bls_ll_setScanRspData(u8 *data, u8 len);

The “data” pointer points to the starting address of scanRspData in Payload, while the
“len” indicates data length. The table below lists possible results for the return type
“ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12
Len exceeds the
maximum length 31

This API can be called in initialization to set Scan response data, or called in mainloop to
modify scan response data when the firmware is running.

In project “5316 ble remote” of 5316 BLE SDK, the definition of Scan response data is
shown as below. The name of scan device is "GRemote". Please refer to “Data Type
Specification” in BLE Spec CSS v6 (Core Specification Supplement v6.0) for meanings of
fields.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 74 Ver.1.0.0

u8 tbl_scanRsp [] = {

 0x08, 0x09, 'G', 'R', 'e', 'm', 'o', 't', 'e',

 };

Since device names configured in advertising data and scan response data are different,
the device names scanned by a mobile phone or IOS system may be different:

1) If some devices only listen for Adv packets, the scanned device name is " Ghid ".

2) If some devices send scan request after Adv packet is received, and read the scan

response, the scanned device name may be " GRemote ".

Users can configure device name in the two packets (Adv packet & scan response
packet) as the same one, so that the scanned device name is consistent. Actually when
Master reads device’s Attribute Table after connection is established, the obtained “gap
device name” of device will be shown according to the configuration in Attribute Table.
Please refer to Attribute Table section for details.

3.2.8.7 bls_ll_setAdvParam

Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.5 “LE Set Advertising Parameters
Command”).

Figure 3-23 Advertising Event in BLE Stack

The figure above shows Advertising Event (Adv Event in brief) in BLE stack. It indicates
during each T_advEvent, Slave implements one advertising process, and sends one
packet in three advertising channels (channel 37, channel 38, and channel 39)
respectively. The API below is used to set parameters related to Adv Event.

 ble_sts_t bls_ll_setAdvParam(u16 intervalMin, u16 intervalMax,

 u8 advType, u8 ownAddrType,

 u8 peerAddrType, u8 *peerAddr,

 u8 adv_channelMap, u8

advFilterPolicy);

1) intervalMin and intervalMax：

The two parameters serve to set the range of advertising interval in unit of 0.625ms.

The valid range is from 20ms to 10.24s, and intervalMin should not exceed

intervalMax.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 75 Ver.1.0.0

As required by BLE Spec, it’s not recommended to set adv interval as fixed value; in

Telink BLE SDK, the eventual adv interval is random variable within the range of

intervalMin ~ intervalMax. If intervalMin and intervalMax are set as same value, adv

interval will be fixed as the intervalMin.

Adv packet type has limits to the setting of intervalMin and intervalMax. Please refer

to Core_v5.0 (Vol 6/Part B/ 4.4.2.2 “Advertising Events”) for details.

2) advType

As specified in BLE Spec, the following four basic advertising event types are

supported.

Figure 3-24 Four Adv Events in BLE Stack

In the “Allowable response PDUs for advertising event” column, “YES” and “NO”

indicate whether corresponding adv event type can respond to “Scan request” and

“Connect Request” from other device. For example, “Connectable Undirected Event”

can respond to both “Scan request” and “Connect Request”, while “Non-connectable

Undirected Event” will respond to neither “Scan request” nor “Connect Request”.

For “Connectable Directed Event”, “YES” marked with an asterisk indicates the

matched “Connect Request” received won’t be filtered by whitelist and this event will

surely respond to it. Other “YES” not marked with asterisk indicate corresponding

request can be responded depending on the setting of whitelist filter.

Among the four advertising events “Connectable Directed Event” supports two sub-

types including “Low Duty Cycle Directed Advertising” and “High Duty Cycle Directed

Advertising”. Therefore, five types of adv events are supported in all, as defined in

“stack/ble/ble_common.h”:

/* Advertisement Type */

typedef enum{

ADV_TYPE_CONNECTABLE_UNDIRECTED = 0x00, // ADV_IND

ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY = 0x01,

//ADV_INDIRECT_IND (high duty cycle)

ADV_TYPE_SCANNABLE_UNDIRECTED = 0x02 //ADV_SCAN_IND

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 76 Ver.1.0.0

ADV_TYPE_NONCONNECTABLE_UNDIRECTED = 0x03,

//ADV_NONCONN_IND

ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY = 0x04,

//ADV_INDIRECT_IND (low duty cycle)

}advertising_type;

By default, the most common adv event type is

ADV_TYPE_CONNECTABLE_UNDIRECTED.

3) ownAddrType

It is used to specify MAC address type in adv packets.

There are two basic address types: public and random.

 /* Device Address Type */

 #define BLE_ADDR_PUBLIC 0

 #define BLE_ADDR_RANDOM 1

There are four optional values for “ownAddrType 4” to specify adv address type.

 typedef enum{

 OWN_ADDRESS_PUBLIC = 0,

 OWN_ADDRESS_RANDOM = 1,

 OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,

 OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

}own_addr_type_t;

Only two parameters are introduced herein.

OWN_ADDRESS_PUBLIC means using public MAC address for advertising. The

actual address is the set by API “API blc_ll_initAdvertising_module(u8 *public_adr)”

in MAC address initialization.

OWN_ADDRESS_RANDOM means using random static MAC address for

advertising. The address is set by the API below.

blc_ll_setRandomAddr(mac_random_static);

4) peerAddrType and *peerAddr

When advType is set as directed adv type

(ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY or

ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY), the “peerAddrType” and

“*peerAddr” serve to specify the type and address of peer device MAC Address.

When advType is set as type other than directed adv, the two parameters are invalid,

and they can be set as “0” and “NULL”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 77 Ver.1.0.0

5) adv_channelMap

The “adv_channelMap” is used to set advertising channel. It can choose any one or

more of channel 37, 38, 39. The value “adv_channelMap” can be the following three

or any combination of the three.

 #define BLT_ENABLE_ADV_37 BIT(0)

 #define BLT_ENABLE_ADV_38 BIT(1)

 #define BLT_ENABLE_ADV_39 BIT(2)

 #define BLT_ENABLE_ADV_ALL

 (BLT_ENABLE_ADV_37 | BLT_ENABLE_ADV_38 |

BLT_ENABLE_ADV_39)

6) advFilterPolicy

The “advFilterPolicy” serves to set filtering policy for scan request/connect request

from other device when adv packet is transmitted. Address to be filtered needs to be

pre-loaded in whitelist.

Filtering type options are shown as below. The “ADV_FP_NONE” can be selected if

whitelist filter is not needed.

 #define ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY 0x00

 #define ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_ANY 0x01

 #define ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_WL 0x02

 #define ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_WL 0x03

 #define ADV_FP_NONE ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY

The table below lists possible values and reasons for the return value “ble_sts_t”.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_INVALID_HCI_CMD_PARA
MS

0x12
The value of intervalMin or
intervalMax does not meet the
requirement of BLE Spec.

According to Host command design in HCI part of BLE Spec, eight parameters are
configured simultaneously by the API “bls_ll_setAdvParam”. This setting also takes some
coupling parameters into consideration. For example, the “advType” has limits to the
setting of intervalMin and intervalMax, and range check depends on the advType; if
advType and advInterval are set in two APIs, the range check is uncontrollable.

Considering users may often modify some common parameters, three independent APIs
are provided, so that users can directly call one API to modify corresponding
parameter(s), rather than calling the “bls_ll_setAdvParam” to set eight parameters
simultaneously.

 ble_sts_t bls_ll_setAdvInterval(u16 intervalMin, u16

intervalMax);

 ble_sts_t bls_ll_setAdvChannelMap(u8 adv_channelMap);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 78 Ver.1.0.0

ble_sts_t bls_ll_setAdvFilterPolicy(u8 advFilterPolicy);

The parameters of the three APIs are the same as “bls_ll_setAdvParam”.

Return value ble_sts_t：

1) “bls_ll_setAdvChannelMap” and “bls_ll_setAdvFilterPolicy” will always return

“BLE_SUCCESS”.

2) “bls_ll_setAdvInterval” will return “BLE_SUCCESS” or

“HCI_ERR_INVALID_HCI_CMD_PARAMS”.

3.2.8.8 bls_ll_setAdvEnable

Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.9 “LE Set Advertising Enable Command”).

 ble_sts_t bls_ll_setAdvEnable(u8 en);

en”: 1 - Enable Advertising; 0 - Disable Advertising.

1) In Idle state, by enabling Advertising, Link Layer will enter Advertising state.

2) In Advertising state, by disabling Advertising, Link Layer will enter Idle state.

3) In other states, neither enabling or disabling Advertising does not affect Link Layer

state.

4) ble_sts_t will always return “BLE_SUCCESS”.

3.2.8.9 bls_ll_setAdvDuration

ble_sts_t bls_ll_setAdvDuration (u32 duration_us, u8

duration_en);

After “bls_ll_setAdvParam” sets all adv parameters successfully, and the
“bls_ll_setAdvEnable(1)” is called to start advertising, the API “bls_ll_setAdvDuration”
can be called to set duration of adv event, so that advertising will be automatically
disabled after this duration.

“duration_en”: 1 - enable timing function; 0 - disable timing function. “duration_us”(unit:
us): The “duration_us” is valid only when the “duration_en” is set to 1.

The firmware starts timing from the set timing. When this duration expires, “AdvEnable”
becomes invalid, and advertising will stop. None Conn state will switch to Idle State. The
Link Layer event “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered.

As specified in BLE Spec, the duration time of adv type
“ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY” should equal or less than
1.28s. The duration time in telink SDK is fixed as 1.28s, i.e. advertising will stop after the
1.28s duration. Therefore, for this adv type, calling “bls_ll_setAdvDuration” will be invalid.

The return value “ble_sts_t” is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 79 Ver.1.0.0

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12
Duration Time can’t be configured for
“ADV_TYPE_CONNECTABLE_DIR
ECTED_HIGH_DUTY”.

When Adv Duratrion Time expires, advertising is stopped, if users want to re-configure
adv parameters (such as AdvType, AdvInterval, AdvChannelMap), first the parameters
should be set in the callback function of the event
“BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, then the “bls_ll_setAdvEnable(1)”
should be called to start new advertising.

To trigger the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, a special case should be
noted:

Suppose the “duration_us” is set as “2000000” (i.e. 2s).

 If Slave stays in advertising state, when adv time reaches the preset 2s timeout, the

“BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered to execute

corresponding callback function.

 If Slave is connected with Master when adv time is less than the 2s timeout

(suppose adv time is 0.5s), the timeout timing is not cleared but cached in bottom

layer. When Slave stays in connection state for 1.5s (i.e. the preset 2s timeout

moment is reached), since Slave won’t check adv event timeout in connection state,

the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” won’t be triggered.

When Slave stays in connection state for certain duration (e.g. 10s), then terminates

connection and returns to adv state, before it sends out the first adv packet, the

Stack will regard current time exceeds the preset 2s timeout and trigger the callback

of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”. In this case, the callback

triggering time largely exceeds the preset timeout moment.

3.2.8.10 blc_ll_setAdvCustomedChannel

The API below is used to customize special advertising channel/scanning channel, and it
only applies to some special applications such as BLE mesh. It’s not recommended to
use this API for other conventional BLE applications.

void blc_ll_setAdvCustomedChannel (u8 chn0, u8 chn1, u8 chn2);

chn0/chn1/chn2: customized channel. Default standard channel is 37/38/39. For
example, to set three advertising channels as 2420MHz, 2430MHz and 2450MHz, the
API below should be called:

blc_ll_setAdvCustomedChannel (8, 12, 22);

3.2.8.11 rf_set_power_level_index

5316 BLE SDK provides the API to set output power for BLE RF packet:

void rf_set_power_level_index (int level);

For the setting of “level” values, the enum variable RF_TxPowerTypeDef in
“drivers/5316/rf_drv.h” can be referred to.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 80 Ver.1.0.0

The Tx power configured by this API is valid for both adv packets and conn packets, and
it can be set anywhere in the firmware. The actual Tx power is subject to the latest
setting.

3.2.8.12 bls_ll_terminateConnection

 ble_sts_t bls_ll_terminateConnection (u8 reason);

This API applies to BLE Slave device.

In order to actively terminate connection, this API can be invoked by APP Layer to send a
“Terminate” to Master in Link Layer. “reason” indicates the specified reason for
disconnection and it corresponds to the “ble_sts_t” defined in “ble_common.h”. Please
refer to Core_v5.0 (Vol 2/Part D/2 “Error Code Descriptions”).

If connection is not terminated due to system operation abnormity, generally APP layer
specifies the “reason” as:

HCI_ERR_REMOTE_USER_TERM_CONN = 0x13

 bls_ll_terminateConnection(HCI_ERR_REMOTE_USER_TERM_CONN);

In bottom-layer stack of Telink BLE SDK, this API is invoked only in one case to actively
terminate connection: When data packets from peer device are decrypted, if an
authentication data MIC error is detected, the
“bls_ll_terminateConnection(HCI_ERR_CONN_TERM_MIC_FAILURE)” will be called to
inform the peer device of the decryption error, and connection is terminated.

After Slave invokes this API to actively initiate disconnection, the event
“BLT_EV_FLAG_TERMINATE” will be triggered. The terminate reason in the callback
function of this event will be consistent with the reason manually configured in this API.

In Connection state Slave role, generally connection will be terminated successfully by
invoking this API; however, in some special cases, the API may fail to terminate

connection, and the error reason will be indicated by the return value “ble_sts_t”. It’s
recommended to check whether the return value is “BLE_SUCCESS” when this API is
invoked by APP layer.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

HCI_ERR_CONN_NOT_ESTAB
LISH

0x3E

Link Layer 处于非 Connection state Slave

role

Link Layer is not in Connection state Slave
role.

HCI_ERR_CONTROLLER_BUS
Y

0x3A
Controller busy (mass data are being
transferred), this command cannot be
accepted for the moment.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 81 Ver.1.0.0

3.2.8.13 Get Connection Parameters

The following APIs are used to obtain current connection parameters including
Connection Interval, Connection Latency and Connection Timeout (only apply to Slave
role).

u16 bls_ll_getConnectionInterval(void);

u16 bls_ll_getConnectionLatency(void);

u16 bls_ll_getConnectionTimeout(void);

1) If return value is 0, it indicates current Link Layer state is None Conn state without

connection parameters available.

2) The returned non-zero value indicates the corresponding parameter value.

 API “bls_ll_getConnectionInterval” returns the current conn interval, unit being

1.25ms. Suppose current conn interval is 10ms, the return value should be

10ms/1.25ms=8.

 API “bls_ll_getConnectionLatency” returns the actual Latency value.

 API “bls_ll_getConnectionTimeout” returns the current conn timeout, unit being

10ms. Suppose current conn timeout is 1000ms, the return value would be

1000ms/10ms=100.

3.2.8.14 blc_ll_getCurrentState

The API below is used to obtain current Link Layer state.

u8 blc_ll_getCurrentState(void);

The return values of this function are as below (5316 SDK does not support
BLS_LINK_STATE_SCAN and BLS_LINK_STATE_INIT)

#define BLS_LINK_STATE_IDLE 0

#define BLS_LINK_STATE_ADV BIT(0)

#define BLS_LINK_STATE_SCAN BIT(1)

#define BLS_LINK_STATE_INIT BIT(2)

#define BLS_LINK_STATE_CONN BIT(3)

3.2.8.15 blc_ll_getLatestAvgRSSI

The API serves to obtain latest average RSSI of connected peer device after Link Layer
enters Slave role or Master role.

u8 blc_ll_getLatestAvgRSSI(void)

The return value is u8-type rssi_raw, and the real RSSI should be: rssi_real = rssi_raw-
110. Suppose the return value is 50, rssi = -60 db.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 82 Ver.1.0.0

3.2.8.16 Whitelist & Resolvinglist

As introduced above, “filter_policy” of Advertising involves Whitelist, and actual
operations depend on devices in Whitelist. Actually Whitelist contains two parts: Whitelist
and Resolvinglist.

Users can check whether address type of peer device is RPA (Resolvable Private
Address) via “peer_addr_type” and “peer_addr”. The API below can be called directly.

#define IS_NON_RESOLVABLE_PRIVATE_ADDR(type, addr)

((type)==BLE_ADDR_RANDOM && (addr[5] & 0xC0) == 0x00)

Only non-RPA address can be stored in whitelist. In current SDK, whitelist can store up
to four devices.

#define MAX_WHITE_LIST_SIZE 4

The API below is for whitelist reset:

ble_sts_t ll_whiteList_reset(void);

The return value is “BLE_SUCCESS”.

ble_sts_t ll_whiteList_add(u8 type, u8 *addr);

Add a device to whitelist and the return values are shown below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

HCI_ERR_MEM_CAP_EXCEE
DED

0x07 Whitelist is full, add failure

ble_sts_t ll_whiteList_delete(u8 type, u8 *addr);

Delete a device from whitelist and the return value is “BLE_SUCCESS”.

RPA (Resolvable Private Address) device needs to use Resolvinglist. To save RAM
space, “Resolvinglist” can store up to two devices only in current SDK.

 #define MAX_WHITE_IRK_LIST_SIZE 2

The API below is for Resolvinglist reset:

ble_sts_t ll_resolvingList_reset(void);

Reset Resolvinglist, the return value is “BLE_SUCCESS”.

ble_sts_t ll_resolvingList_setAddrResolutionEnable (u8

resolutionEn);

The API above is for address resolution. Resolvinglist must be enabled for address
resolution. It can be disabled if there is no need for address resolution.

ble_sts_t ll_resolvingList_add(u8 peerIdAddrType, u8 *peerIdAddr,

u8 *peer_irk, u8 *local_irk);

peerIdAddrType/ peerIdAddr and peer-irk indicate identity address and irk declared by
peer device. These information will be stored into Flash during pairing encryption

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 83 Ver.1.0.0

process, and corresponding interfaces to obtain the info are available in SMP part.
“local_irk” is not processed in current SDK, and it can be set as “NULL”.

ble_sts_t ll_resolvingList_delete(u8 peerIdAddrType, u8

*peerIdAddr);

This API is used to delete a RPA device from Resolvinglist.

For usage of address filter based on Whitelist/Resolvinglist, please refer to
“feature_whitelist demo” in 5316 feature test. (In order to enable this demo set
“FEATURE_TEST_MODE” to TEST_WHITELIST in “appconfig.h”)

3.2.9 2M PHY Supported

2M PHY is new Link layer feature available from BLE Core 5.0. Please refer to BLE Spec
Core_v5.0 (Vol 6/Part B/ Link Layer Specification) for details.

2M PHY interacts between the master controller and slave controller via three PDUs
(LL_PHY_REQ/LL_PHY_RSP/LL_PHY_UPDATE_IND) so as to set the transmission
rate of RF receiver finally. 2M PHY is only available after the connection is established, it
can not be used in disconnection. Both master and slave can start this process. If it is
started by master, master will send “LL_PHY_REQ PDU” and slave will send
“LL_PHY_RSP PDU” to respond master. During this process master and slave actually
exchange the PHYs they each support and prefer, then master will send
“LL_PHY_UPDATE_IND” and after “instance” reaches, master and slave will use their
new PHYs to transmit and receive data. If it is started by slave, slave will send
LL_PHY_REQ PDU, master will directly send “LL_PHY_UPDATE_IND to respond slave”
and after “instance” reaches, master and slave will use their new PHYs to transmit and
receive data after.

5316 BLE SDK supports 2M PHY. This function is enabled by default. APIs are provided
by 5316 BLE SDK for using 2M PHY. The following provides detailed descriptions of
each API. Please note that 5316 SDK only supports symmetric PHY which means the
settings of Rx PHY and Tx PHY must be the same.

To use 2M PHY, users must initialize 2M PHY feature. The initialization function must be
called to initialize 2M PHY. The prototype of the function is:

void blc_ll_init2MPhy_feature(void)

This function initializes all the parameters for 2M PHY operation.

If it is master to start PHY Update, users only need to call the initialization function above
and BLE stack will do other work. If it is slave to start PHY Update, users need to call the
PHY set function to set PHY. The prototype of the PHY set function is:

ble_sts_t blc_ll_setPhy(u16 connHandle,

le_phy_prefer_mask_t all_phys,

le_phy_prefer_type_t tx_phys,

le_phy_prefer_type_t rx_phys)

Descriptions of function parameters are as below:

Parameter Description

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 84 Ver.1.0.0

connHandle Connect handle. Use BLS_CONN_HANDLE by default.

all_phys Set if there are preferred Tx PHY and Rx PHY. An enum
variable.

PHY_TRX_PREFER is the common value. See the definitions
of le_phy_prefer_mask_t for other values.

tx_phys Preferred Tx PHY. An enum. Two optional values:
PHY_PREFER_1M and PHY_PREFER_2M. Whether this
parameter will be used depends on if there is preferred Tx PHY
in all_phys.

rx_phys Preferred Rx PHY. An enum. Two optional values:
PHY_PREFER_1M and PHY_PREFER_2M. Whether this
parameter will be used depends on if there is preferred Rx
PHY in all_phys.

If users want to do some custom operations after PHY Update is finished, users can
register callback function. The function below is used for the registration of the callback
function:

void bls_app_registerEventCallback(u8 e, blt_event_callback_t p)

Please see section 3.2.7 “Telink Defined Event” for the usage of this function.

3.2.10 Data Length Extension

Data Length Extension(DLE for short) is available from BLE core 4.2. For BLE versions
before BLE 4.2, a BLE packet can transmit 27Byte (ATT_MTU = 23) at most, and long
packets only can be transmitted in fragmented packets, thus the transmission efficiency
is low and it cannot meet actual demands. With DLE data of 251B can be transmitted at
once, which greatly improves the transmission efficiency and is very favorable for
applications of big data transmission, such as Audio and OTA.

DLE is a feature of link layer, please refer to Core_v5.0 (Vol 6/Part B/ Link Layer
Specification) for details.

DLEs use LL_LENGTH_REQ and LL_LENGTH_RSP to exchange the largest byte
numbers of transmitting and receiving they each support and finally the smallest byte
numbers among them are used as the the numbers of bytes for Tx and Rx. DLE is only
available in connection and unavailable in disconnection. DLE can be started by master
or slave.

5316 BLE SDK supports DLE and provides interfaces for users. If DLE is started by
master, users do not need to do any configuration, BLE stack will process automatically;
if it is started by slave, users need to call the function below after the connection is
established.

ble_sts_t blc_ll_exchangeDataLength(u8 opcode, u16 maxTxOct)

After DLE is finished, BLT_EV_FLAG_DATA_LENGTH_EXCHANGE will be reported.
Users can register callback to complete custom operations.

The appropriate sizes of Tx FIFO and Rx FIFO must be configured when using DLE.
A large size takes too much RAM space, while a small size cannot meet demands.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 85 Ver.1.0.0

Users should balance on it. There are requirements for configurations of Tx FIFO and
Rx FIFO. Misconfigurations will lead to unexpected errors. The following provides the
configurations and examples.

If users want to set the maximum transmission data length to 251 Bytes, Tx FIFO
should be set as 251 + 12 = 263 Bytes, considering 4-byte alignment, Tx FIFO
should be set to 264 Bytes finally.

If users want to set the maximum receiving data length to 251 Bytes, Rx FIFO should

be set as 251 + 28 = 279 Bytes，considering 16-byte alignment, Tx FIFO should be

set to 288 Bytes finally.

Conclusion:

Tx FIFO size = actual maximum Payload size of transmission + 12 (4-byte aligned)

Rx FIFO size = actual maximum payload size of receiving + 28 (16-byte aligned)

3.3 L2CAP

Logical Link Control and Adaptation Protocol, L2CAP for short, connects the upper APP
layer and the lower Controller layer. By acting as an adaptor between the Host and the
Controller, the L2CAP makes data processing details of the Controller become negligible
to the upper-layer application operations.

The L2CAP layer of BLE is a simplified version of classical Bluetooth. In basic mode, it
does not implement segmentation and re-assembly, has no involvement of flow control
and re-transmission, and only uses fixed channels for communication.

The figure below shows simple L2CAP structure: Data of the APP layer are sent in
packets to the BLE Controller. The BLE Controller assembles the received data into
different CID data and report them to the Host layer.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 86 Ver.1.0.0

As specified in BLE Spec, L2CAP is mainly used for data transfer between Controller and
Host. Most work is finished in stack bottom layer with little involvement of the user. Users
only need to call the following APIs to set correspondingly.

3.3.1 Register L2CAP Data Processing Function

In BLE SDK architecture, Controller transfers data with Host via HCI. Data from HCI to
Host will be processed in L2CAP layer first. The API below serves to register this
processing function.

 void blc_l2cap_register_handler (void *p);

In BLE Slave applications such as 5316 remote/5316 module, the function to process
data of Controller in L2CAP layer of SDK is shown as below:

 int blc_l2cap_packet_receive (u16 connHandle, u8 * p);

This function is already implemented in stack, which it will analyze the received data and
transfer the data to ATT or SMP.

Initialization:

blc_l2cap_register_handler (blc_l2cap_packet_receive);

In 5316 hci, only Slave controller is implemented. Function “blc_hci_sendACLData2Host”
serves to transmit data of controller to BLE Host device via hardware interface such as
UART.

 int blc_hci_sendACLData2Host (u16 handle, u8 *p)

Initialization:

blc_l2cap_register_handler (blc_hci_sendACLData2Host);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 87 Ver.1.0.0

3.3.2 Update Connection Parameters

3.3.2.1 Slave Requests for Connection Parameter Update

In BLE stack, Slave can actively apply for a new set of connection parameters by sending
command “CONNECTION PARAMETER UPDATE REQUEST” to Master in L2CAP
layer. The figure below shows the command format. Please refer to Core_v5.0 (Vol
3/Part A/ 4.20 “CONNECTION PARAMETER UPDATE REQUEST”).

Figure 3-25 Connection Para Update Req Format in BLE Stack

5316 BLE SDK provides an API in L2CAP layer for Slave to send command
“CONNECTION PARAMETER UPDATE REQUEST” to Master and actively apply for a
new set of connection parameters.

 void bls_l2cap_requestConnParamUpdate (u16 min_interval,

 u16 max_interval,

 u16 latency, u16 timeout);

The four parameters of this API correspond to the parameters in the “data” field of the
“CONNECTION PARAMETER UPDATE REQUEST”. The “min_interval” and
“max_interval” are in a unit of 1.25ms (e.g. for 9ms connection interval, the value should
be 10ms); the “timeout” is in a unit of 10ms (e.g. for 100s timeout, the value should be
1000ms).

Application example: Slave requests for new connection parameters when connection is
established.

 void task_connect (u8 e, u8 *p)

 {

//interval=7.5ms latency=99 timeout=4s

bls_l2cap_requestConnParamUpdate (6, 6, 99, 400);

 }

Figure 3-26 BLE Sniffer Packet Sample: conn para Update Request & Response

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 88 Ver.1.0.0

3.3.2.2 Master Responds to Connection Parameter Update Request

After Master receives the “CONNECTION PARAMETER UPDATE REQUEST” command
from Slave, it will respond with command “CONNECTION PARAMETER UPDATE
RESPONSE”. Please refer to Core_v5.0 (Vol 3/Part A/ 4.20 “CONNECTION
PARAMETER UPDATE RESPONSE”).

The figure below shows the command format: if “result” is “0x0000”, it indicates the
request command is accepted; if “result” is “0x0001”, it indicates the request command is
rejected. Whether actual Android/iOS device will accept or reject the connection
parameter update request is determined by corresponding BLE Master. User can refer to
Master compatibility test.

As shown in Figure 3-26, Master accepts the request.

Figure 3-27 conn para update rsp Format in BLE Stack

The following shows demo code to process connection parameter update request of
Slave in Telink 826x master kma dongle.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 89 Ver.1.0.0

After “L2CAP_CMD_CONN_UPD_PARA_REQ” is received in
“L2CAP_CID_SIG_CHANNEL”, it will read interval_min (used as eventual interval),
supervision timeout and long suspend time (interval * (latency +1)), and check the
rationality of these data. If interval < 200ms, long suspend time<20s and supervision
timeout >= 2* long suspend time, this request will be accepted; otherwise this request will
be rejected. User can modify as needed based on this simple demo design.

No matter whether parameter request of Slave is accepted, the API below can be called
to respond to this request.

void blc_l2cap_SendConnParamUpdateResponse(u16 connHandle,

int result);

“connHandle” indicates current connection ID. “result” has two options, “accept” and
“reject”.

 typedef enum{

 CONN_PARAM_UPDATE_ACCEPT = 0x0000,

 CONN_PARAM_UPDATE_REJECT = 0x0001,

}conn_para_up_rsp;

If 826x Master accepts request of Slave, it must send an update cmd to Controller via the
API “blm_ll_updateConnection” within certain duration. In demo code,
“host_update_conn_param_req” is used as mark, and a 50ms delay is set in mainloop to
initiate this update.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 90 Ver.1.0.0

3.3.2.3 Master Updates Connection Parameters in Link Layer

After Master responds with “conn para update rsp” to accept the “conn para update req”
from Slave, Master will send a “LL_CONNECTION_UPDATE_REQ” command in Link
Layer.

Figure 3-28 BLE Sniffer Packet Sample: ll conn update req

Slave will mark the final parameter as the instant value of Master after it receives the
update request. When the instant value of Slave reaches this value, connection
parameters are updated, and the callback of the event
“BLT_EV_FLAG_CONN_PARA_UPDATE” is triggered.

The “instant” indicates connection event count value maintained by Master and Slave,
and it ranges from 0x0000 to 0xffff. During a connection, Master and Slave should always
have consistent “instant” value. When Master sends “conn_req” and establishes
connection with Slave, Master switches state from scanning to connection, and clears the
“instant” of Master to “0”. When Slave receives the “conn_req”, it switches state from
advertising to connection, and clears the instant of Slave to “0”. Each connection packet
of Master and Slave is a connection event. For the first connection event after the
“conn_req”, the instant value is “1”; for the second connection event, the instant value is
2, and so on.

When Master sends a “LL_CONNECTION_UPDATE_REQ”, the final parameter “instant”
indicates during the connection event marked with “instant”, Master will use the values
corresponding to the former connection parameters of the
“LL_CONNECTION_UPDATE_REQ” packet. After the
“LL_CONNECTION_UPDATE_REQ” is received, the new connection parameters will be
used during the connection event when the instant of Slave equals the declared instant of
Master, thus Slave and Master can finish switch of connection parameters
synchronously.

3.4 ATT & GATT

3.4.1 GATT Basic Unit “Attribute”

GATT defines two roles: Server and Client. In 826x BLE SDK, Slave is Server, and
corresponding Android/iOS device is Client. Server needs to supply multiple Services for
Client to access.

Each Service of GATT consists of multiple Attributes, and each Attribute contains certain
information.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 91 Ver.1.0.0

Figure 3-29 GATT Service Containing Attribute Group

The basic contents and properties of an Attribute are shown as below:

1) Attribute Type: UUID

The UUID is used to identify Attribute type, and its total length is 16 bytes. In BLE

standard protocol, the UUID length is defined as two bytes, since Master devices

follow the same method to transform 2-byte UUID into 16 bytes.

When standard 2-byte UUID is directly used, Master should know device types

indicated by various UUIDs. 5316 BLE stack defines some standard UUIDs in

“stack/ble/service/hids.h” and “stack/ble/uuid.h”.

Telink proprietary profiles (OTA, etc.) are not supported in standard Bluetooth. The

16-byte proprietary device UUIDs are defined in “stack/ble/uuid.h”.

2) Attribute Handle

Slave supports multiple Attributes which compose an Attribute Table. In Attribute

Table, each Attribute is identified by an Attribute Handle value. After connection is

established, Master will analyze and obtain the Attribute Table of Slave via “Service

Discovery” process, then it can identify Attribute data via the Attribute Handle during

data transfer.

3) Attribute Value

Attribute Value corresponding to each Attribute is used as data of request, response,

notification indication and confirm. In 5316 BLE stack, Attribute Value is indicated by

one pointer and the length of the area pointed by the pointer.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 92 Ver.1.0.0

3.4.2 Attribute and ATT Table

To implement GATT Service on Slave, an Attribute Table is defined in 5316 BLE SDK
and it consists of multiple basic Attributes. Attribute definition is shown as below.

 typedef struct attribute

 {

 u16 attNum;

 u8 perm;

 u8 uuidLen;

 u32 attrLen; //4 bytes aligned

 u8* uuid;

 u8* pAttrValue;

 att_readwrite_callback_t w;

 att_readwrite_callback_t r;

 } attribute_t;

Attribute Table code is available in “app_att.c”, as shown below:

Figure 3-30 5316 BLE SDK Attribute Table

Please note that the key word “const” is added to Attribute Table definition:

const attribute_t my_Attributes[] = { ... };

By adding the “const”, the compiler will store the array data to Flash rather than RAM,
while all contents of the Attribute Table defined in Flash are read only and not modifiable.

3.4.2.1 attNum

The “attNum” supports two functions.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 93 Ver.1.0.0

1) The “attNum” can be used to indicate the number of valid Attributes in current

Attribute Table, i.e. the maximum Attribute Handle value. This number is only used in

the invalid Attribute item 0 of Attribute Table array.

{49,0,0,0,0,0},//ATT_END_H – 1 = 49 in “5316_ble_remote”

“attNum = 49” indicates there are 49 valid Attributes in current Attribute Table.

In BLE, Attribute Handle value starts from 0x0001 with increment step of 1, while the

array index starts from 0. When this virtual Attribute is added to the Attribute Table,

each Attribute index equals its Attribute Handle value. After the Attribute Table is

defined, Attribute Handle value of an Attribute can be obtained by counting its index

in current Attribute Table array.

The final index is the number of valid Attributes (i.e. attNum) in current Attribute

Table. In current SDK, the attNum is set as 49; if user adds or deletes any Attribute,

the attNum needs to be modified correspondingly.

2) The “attNum” can also be used to specify Attributes constituting current Service.

The UUID of the first Attribute for each Service must be

“GATT_UUID_PRIMARY_SERVICE (0x2800)”; the first Attribute of a Service sets

“attNum” and it indicates following “attNum” Attributes constitute current Service.

As shown in Figure 3-30, for the gap service, the Attribute with UUID of

“GATT_UUID_PRIMARY_SERVICE” sets the “attNum” as 7, it indicates the seven

Attributes from Attribute Handle 1 to Attribute Handle 7 constitute the gap service.

Similarly, for the HID service, the “attNum” of the first Attribute is set as 27, and it

indicates the following 27 Attributes constitute the HID service.

Except for Attribute item 0 and the first Attribute of each Service, attNum values of all

Attributes must be set as 0.

3.4.2.2 perm

The “perm” is short for “permission” and it serves to specify access permission of current
Attribute by Client.

The “perm” of each Attribute is configurable as one or combination of following values.

 #define ATT_PERMISSIONS_READ 0x01

 #define ATT_PERMISSIONS_WRITE 0x02

 #define ATT_PERMISSIONS_AUTHEN_READ 0x04

 #define ATT_PERMISSIONS_AUTHEN_WRITE 0x08

 #define ATT_PERMISSIONS_AUTHOR_READ 0x10

 #define ATT_PERMISSIONS_AUTHOR_WRITE 0x20

 #define ATT_PERMISSIONS_ENCRYPT_READ 0x40

 #define ATT_PERMISSIONS_ENCRYPT_WRITE 0x80

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 94 Ver.1.0.0

3.4.2.3 uuid, uuidLen

As introduced above, UUID supports two types: BLE standard 2-byte UUID, and Telink
proprietary 16-byte UUID. The “uuid” and “uuidLen” can be used to describe the two
UUID types simultaneously.

The “uuid” is an u8-type pointer, and “uuidLen” specifies current UUID length, i.e. the
uuidLen bytes starting from the pointer are current UUID. Since Attribute Table and all
UUIDs are stored in Flash, the “uuid” is a pointer pointing to Flash.

1) BLE standard 2-byte UUID:

For example, for Attribute “devNameCharacter” with Attribute Handle of 2, related

code is shown as below:

#define GATT_UUID_CHARACTER 0x2803

static const u16 my_characterUUID = GATT_UUID_CHARACTER;

{0, 1, 2, sizeof(my_devNameCharacter),(u8*)(&my_characterUUID),

 (u8*)(&my_devNameCharacter), 0,0},

“UUID=0x2803” indicates “character” in BLE and the “uuid” points to the address of

“my_characterUUID” in Flash. The “uuidLen” is 2. When Master reads this Attribute,

the UUID would be “0x2803”.

2) Telink proprietary 16-byte UUID :

For example, for Attribute of OTA, related code is shown as below:

#define TELINK_SPP_DATA_OTA

{0x12,0x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,

0x01,0x00}

const u8 my_OtaUUID[16] = TELINK_SPP_DATA_OTA;

{0,ATT_PERMISSIONS_RDWR,16,sizeof(my_OtaData),(u8*)(&my_OtaUUID),

 (&my_OtaData), &otaWrite, &otaRead},

The “uuid” points to the address of “my_OtaUUID” in Flash, and the “uuidLen” is 16.

When Master reads this Attribute, the UUID would be

“0x000102030405060708090a0b0c0d2b12”.

3.4.2.4 pAttrValue, attrLen

Each Attribute corresponds to an Attribute Value. The “pAttrValue” is an u8-type pointer
which points to starting address of Attribute Value in RAM/Flash, while the “attrLen”
specifies the data length. When Master reads the Attribute Value of certain Attribute from
Slave, the “attrLen” bytes of data starting from the area (RAM/Flash) pointed by the
“pAttrValue” will be read by 5316 BLE SDK to Master.

Since UUID is read only, the “uuid” is a pointer pointing to Flash; while Attribute Value
may involve write operation into RAM, so the “pAttrValue” may points to RAM or Flash.

For Attribute hid Information with Attribute Handle being 35, related code is as shown
below

 const u8 hidInformation[] =

 {

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 95 Ver.1.0.0

 U16_LO(0x0111), U16_HI(0x0111), // bcdHID (USB HID version)，
0x11,0x01

 0x00, // bCountryCode

 0x01 // Flags

};

{0, 2, sizeof(hidInformation), sizeof(hidInformation), (u8*)(&hidinformationUUID),
 (u8*)(hidInformation), 0,0},

In practical application, the key word “const” can be used to store the read-only 4-byte
hid information “0x01 0x00 0x01 0x11” into Flash. The “pAttrValue” points to the starting
address of hidInformation in Flash, while the “attrLen” is the actual length of
hidInformation. When Master reads this Attribute, “0x01000111” will be returned to
Master correspondingly.

Figure 3-31 shows a packet example captured by BLE sniffer when Master reads this
Attribute. Master uses the “ATT_Read_Req” command to set the target AttHandle as
0x23 (35), corresponding to the hid information in Attribute Table of SDK.

Figure 3-31 BLE Sniffer Packet Sample When Master Reads hidInformation

For Attribute “battery value” with Attribute Handle being 40, related code is as shown
below:

 u8 my_batVal[1] = {99};

 {0,1,2,1,(u8*)(&my_batCharUUID), (u8*)(my_batVal), 0},

In practical application, the “my_batVal” indicates current battery level and it will be
updated according to ADC sampling result; then Slave will actively notify or Master will
actively read to transfer the “my_batVal” to Master. The starting address of the
“my_batVal” stored in RAM will be pointed by the “pAttrValue”.

3.4.2.5 Callback Function w

The callback function w is a write function, its prototype is:

 typedef int (*att_readwrite_callback_t)(void* p);

User must follow the format above to define callback write function. The callback function
w is optional, i.e. for an Attribute, user can select whether to set the callback write
function as needed (null pointer 0 indicates not setting callback write function).

The trigger condition for callback function w is: When Slave receives any Attribute PDU
with Attribute Opcode as shown below, Slave will check whether the callback function w
is set.

1) opcode = 0x12, Write Request, see Core_v5.0.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 96 Ver.1.0.0

2) opcode = 0x52, Write Command, see Core_v5.0.

After Slave receives a write command above, if the callback function w is not set, Slave
will automatically write the area pointed by the “pAttrValue” with the value sent from
Master, and the data length equals the “l2capLen” in Master packet format minus 3; if the
callback function w is set, Slave will execute user-defined callback function w after it
receives the write command, rather than writing data into the area pointed by the
“pAttrValue”. Note: Only one of the two write operations is allowed to take effect.

By setting the callback function w, user can process Write Request and Write Command
in ATT layer of Master. If the callback function w is not set, user needs to evaluate
whether the area pointed by “pAttrValue” can process the command (e.g. If the
“pAttrValue” points to Flash, write operation is not allowed; or if the “attrLen” is not long
enough for Master write operation, some data will be modified unexpectedly.).

Figure 3-32 Write Request in BLE Stack

Figure 3-33 Write Command in BLE Stack

The void-type pointer “p” of the callback function w points to the value of Master write
command. Actually “p” points to a memory area, the value of which is shown as the
following structure.

typedef struct{

 u32 dma_len;

 u8 type;

 u8 rf_len;

 u16 l2cap; //l2cap_length

 u16 chanid;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 97 Ver.1.0.0

 u8 att; //opcode

 u8 hl; //low byte of Atthandle

 u8 hh; //high byte of Atthandle

 u8 dat[20];

}rf_packet_att_data_t;

“p” points to “dma_len”, valid length of data is l2cap minus 3, and the first valid data is
pw->dat[0].

 int my_WriteCallback (void *p)

 {

 rf_packet_att_data_t *pw = (rf_packet_att_data_t *)p;

 int len = pw->l2cap - 3;

 //add your code

 //valid data is pw->dat[0] ~ pw->dat[len-1]

 return 1;

 }

The structure “rf_packet_att_data_t” above is available in “stack/ble/ble_common.h”.

3.4.2.6 Callback Function r

The callback function r is a read function, its prototype is:

typedef int (*att_readwrite_callback_t)(void* p);

Users must follow the format above to define callback read function. The callback
function r is also optional, i.e. for an Attribute, user can select whether to set the callback
read function as needed (null pointer 0 indicates not setting callback read function).

The trigger condition for callback function r is: When Slave receives any Attribute PDU
with Attribute Opcode as shown below, Slave will check whether the callback function r is
set.

1) opcode = 0x0A, Read Request, see Core_v5.0.

2) opcode = 0x0C, Read Blob Request, see Core_v5.0.

After Slave receives a read command above,

1) If the callback read function is set, Slave will execute this function, and determine

whether to respond with “Read Response/Read Blob Response” according to the

return value of this function.

a) If the return value is 1, Slave won’t respond with “Read Response/Read Blob

Response” to Master.

b) If the return value is not 1, Slave will automatically read “attrLen” bytes of data

from the area pointed by the “pAttrValue”, and the data will be responded to

Master via “Read Response/Read Blob Response”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 98 Ver.1.0.0

2) If the callback read function is not set, Slave will automatically read “attrLen” bytes of

data from the area pointed by the “pAttrValue”, and the data will be responded to

Master via “Read Response/Read Blob Response”.

Therefore, after a Read Request/Read Blob Request is received from Master, if it’s

needed to modify the content of Read Response/Read Blob Response, user can

register corresponding callback function r, modify contents in RAM pointed by the

“pAttrValue” in this callback function, and the return value must be 0.

3.4.2.7 Attribute Table Layout

Figure 3-34 shows Service/Attribute layout based on Attribute Table. The “attnum” of the
first Attribute indicates the number of valid Attributes in current ATT Table; the remaining
Attributes are assigned to different Services, the first Attribute of each Service is the
“declaration”, and the following “attnum” Attributes constitute current Service. Actually the
first item of each Service is a Primary Service.

const u16 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

#define GATT_UUID_PRIMARY_SERVICE 0x2800 //!< Primary Service

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 99 Ver.1.0.0

Figure 3-34 Service/Attribute Layout

3.4.2.8 ATT Table Initialization

GATT & ATT initialization only needs to transfer the pointer of Attribute Table in APP
layer to protocol stack, and the API is:

 void bls_att_setAttributeTable (u8 *p);

“p” is the pointer of Attribute Table.

3.4.3 Attribute PDU & GATT API

As required by BLE Spec, 5316 BLE SDK currently supports the following Attribute PDU
types.

1) Requests：Data request sent from Client to Server.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 100 Ver.1.0.0

2) Responses：Data response sent by Server after it receives request from Client.

3) Commands：Command sent from Client to Server.

4) Notifications: Data sent from Server to Client.

5) Indications: Data sent from Server to Client.

6) Confirmations: Confirmation sent from Client after it receives data from Server.

The subsections below will introduce all ATT PDUs in ATT layer. Please refer to structure
of Attribute and Attribute Table to help understanding.

3.4.3.1 Read by Group Type Request, Read by Group Type Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.9 and 3.4.4.10) for details of Read by
Group Type Request and Read by Group Type Response.

The “Read by Group Type Request” command sent by Master specifies starting and
ending attHandle, as well as attGroupType. After the request is received, Slave will check
through current Attribute Table according to the specified starting and ending attHandle,
and find the Attribute Group that matches the specified attGroupType. Then Slave will
respond to Master with Attribute Group information via the “Read by Group Type
Response” command.

Figure 3-35 Read by Group Type Request/Read by Group Type Response

As shown above, Master requests from Slave for Attribute Group information of the
“primaryServiceUUID” with UUID being 0x2800.

#define GATT_UUID_PRIMARY_SERVICE 0x2800

const u16 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 101 Ver.1.0.0

The following groups in Slave Attribute Table meet the requirement according to current
demo code.

1) Attribute Group with attHandle from 0x0001 to 0x0007, Attribute Value is

SERVICE_UUID_GENERIC_ACCESS (0x1800).

2) Attribute Group with attHandle from 0x0008 to 0x000a, Attribute Value is

SERVICE_UUID_DEVICE_INFORMATION (0x180A).

3) Attribute Group with attHandle from 0x000B to 0x0025, Attribute Value is

SERVICE_UUID_HUMAN_INTERFACE_DEVICE (0x1812).

4) Attribute Group with attHandle from 0x0026 to 0x0028, Attribute Value is

SERVICE_UUID_BATTERY (0x180F).

5) Attribute Group with attHandle from 0x0029 to 0x0032, Attribute Value is

TELINK_AUDIO_UUID_SERVICE (0x11, 0x19, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,

0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00).

Slave responds to Master with the attHandle and attValue information of the five Groups
above via the “Read by Group Type Response” command. The final
ATT_Error_Response indicates end of response. When Master receives this packet, it
will stop sending “Read by Group Type Request”. Please refer to Core_v5.0 for details of
“Read by Group Type Request” and “Read by Group Type Response” commands.

3.4.3.2 Find by Type Value Request, Find by Type Value Response

Please see Core_v5.0 (Vol 3/Part F/3.4.3.3 and 3.4.3.4) for details of “Find by Type
Value Request” and “Find by Type Value Response”.

The “Find by Type Value Request” command sent by Master specifies starting and
ending attHandle, as well as AttributeType and Attribute Value. After the request is
received, Slave will check through current Attribute Table according to the specified
starting and ending attHandle, and find the Attribute that matches the specified
AttributeType and Attribute Value. Then Slave will respond to Master with the Attribute
via the “Find by Type Value Response” command.

Figure 3-36 Find by Type Value Request/Find by Type Value Response

3.4.3.3 Read by Type Request, Read by Type Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.1 and 3.4.4.2) for details about “Read by
Type Request” and “Read by Type Response”.

The “Read by Type Request” command sent by Master specifies starting and ending
attHandle, as well as AttributeType. After the request is received, Slave will check
through current Attribute Table according to the specified starting and ending attHandle,
and find the Attribute that matches the specified AttributeType. Then Slave will respond
to Master with the Attribute via the “Read by Type Response”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 102 Ver.1.0.0

Figure 3-37 Read by Type Request/Read by Type Response

As shown above, Master reads the Attribute with attType of 0x2A00, i.e. the Attribute with
Attribute Handle of 00 03 in Slave.

const u8 my_devName [] = {'t', 'S', 'e', 'l', 'f', 'i'};

#define GATT_UUID_DEVICE_NAME 0x2a00

const u16 my_devNameUUID = GATT_UUID_DEVICE_NAME;

{0,2,sizeof (my_devName), sizeof (my_devName),(u8*)(&my_devNameUUID),
 (u8*)(my_devName),
0},

In the “Read by Type response”, attData length is 8, the first two bytes are current
attHandle “0003”, followed by 6-byte Attribute Value.

3.4.3.4 Find Information Request, Find Information Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.3.1 and 3.4.3.2) for details about “Find
information request” and “Find information response”.

The “Find information request” command sent by Master specifies starting and ending
attHandle. After the request is received, Slave will respond to Master with Attribute
UUIDs according to the specified starting and ending attHandle via the “Find information
response”. As shown below, Master requests for information of three Attributes with
attHandle of 0x0016~0x0018, and Slave responds with corresponding UUIDs.

Figure 3-38 Find Information Request/Find Information Response

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 103 Ver.1.0.0

3.4.3.5 Read Request, Read Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.3 and 3.4.4.4) for details about “Read
Request” and “Read Response”.

The “Read Request” command sent by Master specifies certain attHandle. After the
request is received, Slave will respond to Master with the Attribute Value of the specified
Attribute via the “Read Response” command (If the callback function r is set, this function
will be executed), as shown below.

Figure 3-39 Read Request/Read Response

3.4.3.6 Read Blob Request, Read Blob Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.5 and 3.4.4.6) for details about “Read Blob
Request” and “Read Blob Response”.

If some Slave Attribute corresponds to Attribute Value with length exceeding MTU_SIZE
(It’s set as 23 in current SDK), Master needs to read the Attribute Value via the “Read
Blob Request” command, so that the Attribute Value can be sent in packets. This
command specifies the attHandle and ValueOffset. After the request is received, Slave
will find corresponding Attribute, and respond to Master with the Attribute Value via the
“Read Blob Response” command according to the specified ValueOffset. (If the callback
function r is set, this function will be executed.)

As shown below, when Master needs the HID report map of Slave (report map length
largely exceeds 23), first Master sends “Read Request”, then Slave responds to Master
with part of the report map data via “Read response”; Master sends “Read Blob
Request”, and then Slave responds to Master with data via “Read Blob Response”.

Figure 3-40 Read Blob Request/Read Blob Response

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 104 Ver.1.0.0

3.4.3.7 Exchange MTU Request, Exchange MTU Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.2.1 and 3.4.2.2) for details about “Exchange
MTU Request” and “Exchange MTU Response”.

As shown below, Master and Slave obtain MTU size of the other via the “Exchange MTU
Request” and “Exchange MTU Response” commands.

Figure 3-41 Exchange MTU Request/Exchange MTU Response

During data access process of Telink BLE Slave GATT layer, if there’s data exceeding a
RF packet length, which involves packet assembly and disassembly in GATT layer, Slave
and Master need to exchange RX MTU size of each other in advance. Transfer of long
packet data in GATT layer can be implemented via MTU size exchange.

1) Callback function of MTU size exchange

Function prototype:

typedef void (*attRxMtuSizeExchangeCommpleteCb)(

u16 connHandle,

u16 remoteMtuSize,

u16 effectMtuSize);

The first u16 is current connection handle, and it should be “BLS_CONN_HANDLE”

in Slave applications. The second u16 is ClientRxMTU of Master. The third is the Rx

MTU size finally used.

The API is for registerring this callback function:

void blc_att_registerMtuSizeExchangeCb(

attRxMtuSizeExchangeCommpleteCb cb);

2) Processing of long Rx packet data in 5316 Slave GATT layer

5316 Slave Server Rx MTU is set as 23 by default. Actually maximum Server Rx

MTU can reach 247, i.e. 247-byte packet data on Master can be correctly re-

assembled on Slave. When it’s needed to use packet re-assembly of Master in an

application, the API below should be called to modify RX size of Slave first.

ble_sts_t blc_att_setRxMtuSize(u16 mtu_size);

The return values are shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 105 Ver.1.0.0

ATT_ERR_INVALID_PARAMETE
R

0x85
mtu_size exceeds the max value
247.

When Master GATT layer needs to send long packet data to Slave, Master will

actively initiate “ATT_Exchange_MTU_req”, and Slave will respond with

“ATT_Exchange_MTU_rsp”. “ServerRxMTU” is the configured value of the API

“blc_att_setRxMtuSize”. The callback function registered via

“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second parameter of

the callback is “ClientRxMTU” of Master.

3) Processing of long Tx packet data in 5316 Slave GATT layer

When 5316 Slave needs to send long packet data in GATT layer, it should obtain

Client RxMTU of Master first, and the eventual data length should not exceed

ClientRxMTU.

First Slave should call the API “blc_att_setRxMtuSize” to set its ServerRxMTU.

Suppose it is set to 158.

blc_att_setRxMtuSize (158);

Then the API below should be called to actively initiate an

“ATT_Exchange_MTU_req”.

ble_sts_t blc_att_requestMtuSizeExchange (

u16 connHandle, u16 mtu_size);

“connHandle” is ID of Slave conection, i.e. “BLS_CONN_HANDLE”, while “mtu_size”

is ServerRxMTU.

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 158);

After the “ATT_Exchange_MTU_req” is received, Master will respond with

“ATT_Exchange_MTU_rsp”. Then the callback function registered via

“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second parameter of

the callback function is ClientRxMTU of Master.

3.4.3.8 Write Request, Write Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.5.1 and 3.4.5.2) for details about “Write
Request” and “Write Response”.

The “Write Request” command sent by Master specifies certain attHandle and attaches
related data. After the request is received, Slave will find the specified Attribute,
determine whether to process the data by using the callback function w or directly write
the data into corresponding Attribute Value depending on whether the callback function w
is set by user. Finally Slave will respond to Master via “Write Response”.

As shown below, by sending “Write Request”, Master writes Attribute Value of 0x0001 to
the Slave Attribute with the attHandle of 0x0016. Then Slave will execute the write
operation and respond to Master via “Write Response”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 106 Ver.1.0.0

Figure 3-42 Write Request/Write Response

3.4.3.9 Write Command

Please refer to Core_v5.0 (Vol 3/Part F/3.4.5.3) for details about “Write Command”.

The “Write Command” sent by Master specifies certain attHandle and attaches related
data. After the command is received, Slave will find the specified Attribute, determine
whether to process the data by using the callback function w or directly write the data into
corresponding Attribute Value depending on whether the callback function w is set by
user. Slave won’t respond to Master with any information.

3.4.3.10 Handle Value Notification

Please refer to Core_v5.0 (Vol 3/Part F/3.4.7.1) for details about “Handle Value
Notification”.

Figure 3-43 Handle Value Notification in BLE Spec

The figure above shows the format of “Handle Value Notification” in BLE Spec.

5316 BLE SDK supplies an API for Handle Value Notification of an Attribute. By invoking
this API, user can push the notify data into bottom-layer BLE software FIFO. Stack will
push the data of software FIFO into hardware FIFO during the latest packet transfer
interval, and finally send the data out via RF.

 ble_sts_t bls_att_pushNotifyData (u16 handle, u8 *p, int len);

“handle” is attHandle of Attribute, “p” is the head pointer of successive memory data to be
sent, while “len” specifies byte number of data to be sent. Since this API supports auto
packet disassembly, long notify data to be sent can be disassembled into multiple BLE
RF packets, large “len” is supported.

When Link Layer is in Conn state, generally data can be successfully pushed into
bottom-layer software FIFO by invoking this API. However, some special cases may

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 107 Ver.1.0.0

result in invoking failure, and the return value “ble_sts_t” will indicate the corresponding
error reason.

When this API is called in APP layer, it’s recommended to check whether the return value
is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is needed to re-
push the data.

The return values are shown as below:

ble_sts_t Value ERR reason

BLE_SUCCESS 0

HCI_ERR_CONN_NOT_ESTABLISH 0x3E
Link Layer is in None
Conn state.

SMP_EER_PAIRING_IS_GOING_ON 0x8F
Data cannot be sent
during pairing phase.

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUG
H

0x3A

Tasks with mass data are
being executed, software
Tx FIFO is not enough.

3.4.3.11 Handle Value Indication

Please refer to Core_v5.0 (Vol 3/Part F/3.4.7.2) for details about “Handle Value
Indication”.

Figure 3-44 Handle Value Indication in BLE Spec

The figure above shows the format of “Handle Value Indication” in BLE Spec.

5316 BLE SDK supplies an API for Handle Value Indication of an Attribute. By invoking
this API, user can push the indicate data into bottom-layer BLE software FIFO. Stack will
push the data of software FIFO into hardware FIFO during the latest packet transfer
interval, and finally send the data out via RF.

 ble_sts_t bls_att_pushIndicateData (u16 handle, u8 *p, int len);

“handle” is attHandle corresponding to Attribute, “p” is the head pointer of successive
memory data to be sent, while “len” specifies byte number of data to be sent. Since this
API supports auto packet disassembly, long indicate data to be sent can be
disassembled into multiple BLE RF packets, large “len” is supported.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 108 Ver.1.0.0

As specified in BLE Spec, Slave won’t regard data indication as success until Master
confirms the data, and the next indicate data won’t be sent until the previous data
indication is successful.

When Link Layer is in Conn state, generally data will be successfully pushed into bottom-
layer software FIFO by invoking this API; however, some special cases may result in
invoking failure, and the return value “ble_sts_t” will indicate the corresponding error
reason.

When this API is invoked in APP layer, it’s recommended to check whether the return
value is “BLE_SUCCESS”. If the return value is not “BLE_SUCCESS”, a delay is needed
to re-push the data.

The return values are shown as below:

ble_sts_t Value ERR reason

BLE_SUCCESS 0

HCI_ERR_CONN_NOT_ESTABLISH 0x3E
Link Layer is in None
Conn state.

SMP_EER_PAIRING_IS_GOING_ON 0x8F
Data cannot be sent
during pairing phase.

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUG
H

0x3A

Tasks with mass data
are being executed,
software Tx FIFO is not
enough.

ATT_ERR_PREVIOUS_INDICATE_DATA_HAS_NO
T_CONFIRMED

0x6B

The previous indicate
data has not been
confirmed by Master.

3.4.3.12 Handle Value Confirmation

Please refer to Core_v5.0 (Vol 3/Part F/3.4.7.3) for details about “Handle Value
Confirmation”.

Whenever the API “bls_att_pushIndicateData” is called by APP layer to send an indicate
data to Master, Master will respond with “Confirmation” to confirm the data, then Slave
can continue to send the next indicate data.

 Figure 3-45 Handle Value Confirmation in BLE Spec

As shown above, “Confirmation” is not specific to indicate data of certain handle, and the
same “Confirmation” will be responded irrespective of handle.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 109 Ver.1.0.0

A callback function is supplied in SDK for the APP layer to check whether the indicate
data has already been confirmed by Master. The registered callback function will be
executed once when a Handle Value Confirmation is received.

Definition of type of the callback function is:

 typede fint (*att_handleValueConfirm_callback_t)(void);

The API below serves to register the callback function:

 void bls_att_registerHandleValueConfirmCb

 (att_handleValueConfirm_callback_t cb);

3.5 SMP

Security Manager (SM) in BLE is mainly used to provide various encryption keys for LE
device to ensure data security. Encrypted link can protect the original contents of data in
the air from being intercepted, decoded or read by any attacker. Please refer to
Core_v5.0 (Vol 3/Part H/ Security Manager Specification) for details of SMP.

3.5.1 SMP Parameter Configuration

Parameter configuration related to SMP initialization includes device bonding, OOB (Out-
Of-Band) data verification and Secure Connection (SC).

3.5.1.1 Device Bonding

When it’s needed to bond peer device information after pairing, the function below should
be called to enable current device bonding request.

 int blc_smp_enableBonding (int en);

en = 0, disable current device bonding;

en = 1 (default), enable current device bonding.

3.5.1.2 Device OOB data verification

The function below is used for OOB data verification:

void blc_smp_enableOobFlag (int en, u8 *oobData);

en: enable or disable OOB data verification;

en = 0, disable (default) OOB data verification;

en = 1, enable OOB data verification;

oobData: OOB data verification value, pointer to a group of 16-byte data.

3.5.1.3 Secure Connection Pairing (SC)

Secure Connection Pairing method is available from BLE 4.2. To distinguish it from
former pairings, the old ones are called Legacy Pairing. Compared with Legacy Pairing,
SC Pairing method is more secure.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 110 Ver.1.0.0

5316 BLE SDK supports both Legacy Pairing and Secure Connection Pairing, SDK uses
Legacy Pairing by default. If users want to use SC, call the function below:

void blc_smp_enableScFlag(int en);

en = 1, enable SC;

en = 0 (default), disable SC.

Please note that this function should be called in initialization.

3.5.2 Enable SMP

 int bls_smp_enableParing (smp_paringTrriger_t encrypt_en);

The following introduces the definition of the enum type “smp_paringTrriger_t” and
meanings of each parameter.

 typedef enum{

 SMP_PARING_DISABLE_TRRIGER = 0,

 SMP_PARING_CONN_TRRIGER ,

 SMP_PARING_PEER_TRRIGER,

 }smp_paringTrriger_t;

1) encrypt_en = SMP_PARING_DISABLE_TRRIGER;

It indicates pairing encryption is disabled for current device connection. Even if peer

device requests for pairing encryption, the device will reject this request.

It applies to the case when current device does not support encrypted pairing.

As shown below, Master sends pairing request, and then Slave responds with

“SM_Pairing_Failed”.

Figure 3-46 Pairing Disable

2) encrypt_en = SMP_PARING_CONN_TRRIGER;

It indicates current device will actively initiate pairing encryption request once it’s

connected with peer device. If peer device initiates pairing request first, current

device will still send pairing request and also respond to the request from peer

device.

As shown below, Slave actively sends the “SM_Security_Req”:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 111 Ver.1.0.0

Figure 3-47 Pairing Conn Trigger

3) encrypt_en = SMP_PARING_PEER_TRRIGER;

It indicates current device won’t actively intiate pairing request, and it will only

respond to the pairing request from peer device. If peer device does not send pairing

request, current device won’t implement encrypted pairing.

As shown below, Slave will respond to the “SM_Pairing_Req” from Master, but won’t

actively initiate pairing request.

Figure 3-48 Pairing Peer Trigger

Note: This function can only be called before connection. It’s recommended to call this
function in initialization.

3.5.3 SMP Event

As introduced in Controller part, except for Telink defined events, there are some SMP
events, e.g. “BLT_EV_FLAG_PAIRING_BEGIN”, “BLT_EV_FLAG_PAIRING_END”.

3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN

Event trigger condition: When Slave just establishes connection with Master and enters
connection state, Slave sends “SM_Security_Req” command, and then Master sends
“SM_Pairing_Req” to request for pairing. After Slave receives this pairing request, this
event will be triggered to indicate pairing starts.

Figure 3-49 Pairing_Req Sent From Master

Pointer “p”: Null pointer.

Data length “n”: 0.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 112 Ver.1.0.0

3.5.3.2 BLT_EV_FLAG_PAIRING_END

Event trigger condition: This event will be triggered when pairing is finished in success or
failure. If Slave or Master fails to follow standard pairing procedure, or communication
abnormity occurs (e.g. report error), pairing will fail.

Data length “n”: 1.

Pointer “p”: It points to a flag variable, which should be either 0 (pairing success) or non-
zero value (pairing failure).

3.5.4 SMP Bonding Information

SMP bonding information herein is discussed relative to Slave device. Please refer to the
code of “direct adv” setting in initialization in “5316 remote” project.

Slave can store pairing information of up to four Master devices at the same time. All of
the four devices can be re-connected successfully. The API below serves to set the
maximum device number for current storage, which should not exceed 4
(SMP_BONDING_DEVICE_MAX_NUM). The default value is 4.

#define SMP_BONDING_DEVICE_MAX_NUM 4

ble_sts_t blc_smp_param_setBondingDeviceMaxNumber(int

device_num);

Suppose it’s set as “blc_smp_param_setBondingDeviceMaxNumber (4)”: When pairing
information of four paired devices are stored, if the 5th device is paired, the pairing info of
the oldest device will be deleted automatically, so that the pairing info of the 5th device
can be stored.

Suppose it’s set as “blc_smp_param_setBondingDeviceMaxNumber (2)”: When pairing
information of two paired devices are stored, if the 3rd device is paired, the pairing info of
the oldest device will be deleted automatically, so that the pairing info of the 3rd device
can be stored.

The API below is used to obtain the number of successfully paired Master devices with
pairing info stored in Slave Flash.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 113 Ver.1.0.0

u8 blc_smp_param_getCurrentBondingDeviceNumber(void);

If the return value is 3, it indicates three paired devices are stored in Flash currently, and
all of the three devices can be re-connected successfully.

“index” is related to “BondingDeviceNumber”: If “BondingDeviceNumber” is 1, there is
only one bonding device, and its index is 0. If “BondingDeviceNumber” is 2, there are two
bonding devices, and the index of the two devices are 0 and 1, respectively. The index
sequence is determined by the latest successful connection rather than the latest pairing:
Suppose Slave is successfully paired with MasterA and MasterB, successively, since
MasterB is the latest device at this moment, in Slave Flash storage, MasterA is index 0,
while MasterB is index 1. Then Slave is re-connected with MasterA successfully, since
the latest device is MasterA at this moment, MasterB is index 0, while MasterA is index 1.

If “BondingDeviceNumber” is 3, the index of the three devices are 0 (the first connected
device), 1, 2 (the latest connected device).

If “BondingDeviceNumber” is 4, the index of the four devices are 0 (the first connected
device), 1, 2, 3 (the latest connected device). As introduced above, if Slave is
successively paired with MasterA, B, C and D, since MasterD is the latest device at this
moment, MasterD is index 3. Then Slave is re-connected with MaserB, since the latest
device at this moment, MasterB is index 3.

Please pay attention to the case when more than four Master devices are paired: When
Slave is successively paired with MasterA, B, C and D, if it’s paired with a new device
MasterE, the first paired device MasterA will be deleted automatically. When Slave is
successively paired with MasterA, B, C and D, if Slave is re-connected with MasterA (the
index sequence is B, C, D, A) and then paired with MasterE, pairing info of MasterB will
be deleted.

Master device bonding information are stored in Flash with format below:

Bonding info contains 64 bytes.

 “peer_addr_type” and “peer_addr” indicate connection address of Master in Link

Layer, which will be used during device direct adv.

 “peer_id_adrType”/“peer_id_addr” and “peer_irk” indicate identity address and irk

declared by Master during “key distribution” phase. Related info won’t be added to

resolving list, unless “peer_addr_type” and “peer_addr” are PRA (Resolvable Private

Addr) and user needs to use adderess filter (see “TEST_WHITELIST” in 5316

feature test).

 Other parameters are negligible to users.

The API below obtains device information from Flash via “index”.

u32 blc_smp_param_loadByIndex(u8 index,

smp_param_save_t* smp_param_load);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 114 Ver.1.0.0

If the return value is 0, it indicates info obtaining failure; if the return value is non-zero
value, it indicates the starting address of the info in Flash. For example, if there are three
bonding devices currently, to obtain info of the latest connected device, “index” should be
set to “2”.

blc_smp_param_loadByIndex(2， …)

The API below obtains information of bonding device from Flash via Master address
(connection addr in Link Layer).

u32 blc_smp_param_loadByAddr(u8 addr_type,

u8* addr, smp_param_save_t* smp_param_load);

If the return value is 0, it indicates info obtaining failure; if the return value is non-zero
value, it indicates the starting address of the info in Flash.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 115 Ver.1.0.0

4. Power Management (PM)
Power Management hereinafter is referred to as “PM”.

4.1 PM Driver

Driver files related to PM are available in drivers/5316/pm_5316.c, drivers/5316/pm.h,
drivers/5316/pm_5316_32krc.c, drivers/5316/pm_5316_32kpad.c.

4.1.1 Low Power Modes

 TLSR8232 supports three basic modes.

1) Working mode: In this mode, program runs normally, hardware digital modules work

normally, related analog modules and BLE RF transceiver can be enabled

depending on firmware. The current in this mode is about 8~30mA.

2) Suspend mode: Low power mode 1. In this mode, program execution pauses, most

hardware modules in IC are powered off, and the PM module still works normally. All

digital registers, analog registers and memory are non-volatile in this mode, i.e. all

data and states are held and won’t be lost. The pure IC current in this mode is about

8uA. After wakeup from suspend, program continues running from the break point.

3) Deepsleep mode: Low power mode 2. In this mode, program stops running, the vast

majority of hardware modules in IC are powered down, while the PM module still

works. Only a few retention analog registers are non-volatile in this mode; other

(digital and analog) registers and memory are volatile, i.e. all data won’t be held. The

retention analog registers (DEEP_ANA_REG in pm.h) can be used to store some

necessary information. After wakeup from deepsleep, MCU is rebooted, and it’s

equivalent to power cycle (power cycle will reset all registers); firmware restarts

running and enters initialization. User can store some information in

DEEP_ANA_REG before MCU enters deepsleep. Then user can judge whether it’s

pure power cycle or wakeup from deepsleep, by reading retention analog registers

during initialization and checking whether there’re pre-configured information. The

pure IC current in this mode is about 0.7uA; if internal Flash current (~1uA) is added,

the total current is about 1.7uA.

As introduced in Link Layer timing sequence, during each Adv Interval / Connection
Interval, MCU works with low duty cycle and enters suspend after tasks are processed.
Since MCU stays in suspend state at most time and current in suspend is very low, the
average current is decreased largely to enable low power.

When MCU does not need to work, it can be configured to enter deepsleep to minimize
power, and certain sources can be configured to wake up MCU.

4.1.2 Hardware Wakeup Sources

Figure 4-1 shows wakeup sources available for TLSR8232: In suspend mode, it can be
woken up by PAD, CORE and timer sources; while in deepsleep mode, it can be woken

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 116 Ver.1.0.0

up by PAD and timer sources. In 5316 BLE SDK, the following three types of wakeup
sources are available.

 enum {

 PM_WAKEUP_PAD = BIT(4),

 PM_WAKEUP_CORE = BIT(5),

 PM_WAKEUP_TIMER = BIT(6),

};

CORE

32k timer

PAD

Suspend
Mode

Deepsleep
Mode

PA0

wakeup

wakeupPA1

PC6
PC7

GPIO
WAKEUP
MODULE

.

.

.

.

.

.

.

.

.

wakeup

wakeup

wakeup

Figure 4-1 Hardware Wakeup Sources for 5316 MCU

As shown above, MCU can be woke up from low-power mode (suspend or deepsleep) by
hardware wakeup source TIMER, CORE or PAD.

The wakeup source “PM_WAKEUP_TIMER” is derived from hardware 32kHz RC timer.
This timer is correctly initialized in SDK, and user only needs to set this wakeup source in
“cpu_sleep_wakeup()”.

The two wakeup sources including “PM_WAKEUP_CORE” and “PM_WAKEUP_PAD”
are derived from GPIO. High/Low level of all GPIOs can be configured to wakeup MCU
from suspend/deepsleep via the CORE/PAD module. The CORE module can only
wakeup MCU from suspend, while the PAD module can wakeup MCU from both suspend
and deepsleep. However, 5316 BLE SDK, GPIO CORE works as wakeup source for
suspend, while GPIO PAD works as wakeup source for deepsleep.

As all the GPIO levels can wake up corresponding low power modes by CORE and PAD,
if users want to specify a level of certain GPIOs as the wakeup source, use the API

below：

1) Configure GPIO CORE as wakeup source for suspend:

 void gpio_set_wakeup(u32 pin, u32 level, int en);

“pin” indicates GPIO pin; “level” indicates wakeup trigger level, 1-high level wakeup,

0-low level wakeup; “en”: 1-enable, 0-disable.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 117 Ver.1.0.0

Examples:

gpio_set_wakeup(GPIO_PC2, 1, 1); // Enable GPIO_PC2 CORE high level

wakeup

gpio_set_wakeup(GPIO_PC2, 1, 0); // Disable GPIO_PC2 CORE wakeup

gpio_set_wakeup(GPIO_PB5, 0, 1); // Enable GPIO_PB5 CORE low level

wakeup

gpio_set_wakeup(GPIO_PB5, 0, 0); // Disable GPIO_PB5 CORE wakeup

2) Configure GPIO PAD as wakeup source for deepsleep:

void cpu_set_gpio_wakeup (int pin, int pol, int en);

“pin” indicates GPIO pin; “pol” indicates wakeup trigger polarity, 1-high level wakeup,

0-low level wakeup; en: 1-enable, 0-disable.

Examples:

cpu_set_gpio_wakeup (GPIO_PC2, 1, 1); // Enable GPIO_PC2 PAD high level

wakeup

cpu_set_gpio_wakeup (GPIO_PC2, 1, 0); // Disable GPIO_PC2 PAD wakeup

cpu_set_gpio_wakeup (GPIO_PB5, 0, 1); // Enable GPIO_PB5 PAD low level

wakeup

cpu_set_gpio_wakeup (GPIO_PB5, 0, 0); // Disable GPIO_PB5 PAD wakeup

4.1.3 Low Power Mode Entry and Wakeup

The API “cpu_sleep_wakeup” can be called to configure MCU to enter low power mode
and set wakeup source(s).

 int cpu_sleep_wakeup (SleepMode_TypeDef, SleepWakeupSrc_TypeDef,

unsigned int wakeup_tick);

1) Parameter “deepsleep”: 0-enter suspend, 1-enter deepsleep.

2) Parameter “wakeup_src”: It’s used to configure wakeup source(s) for current

suspend/deepsleep, and PM_WAKEUP_PAD, PM_WAKEUP_CORE and

PM_WAKEUP_TIMER can be selected. Note that PM_WAKEUP_TIMER and

PM_WAKEUP_CORE can be used as wakeup source for suspend, while

PM_WAKEUP_TIMER and PM_WAKEUP_PAD can be used as wakeup source for

deepsleep. If wakeup_src is set as 0, MCU can’t be woke up after it enters low

power mode.

3) Parameter “wakeup_tick”: If the PM_WAKEUP_TIMER is not configured, this

parameter is invalid. Only when the PM_WAKEUP_TIMER is configured in the

wakeup_src, the wakeup_tick (absolute value) needs to be configured as current

system timer tick plus sleep time tick, and it determines when MCU will be woke up

by 32k timer. When system timer tick value matches the configured wakeup_tick,

MCU is woken up from low power mode. If the wakeup_tick is directly configured

without considering system timer tick, wakeup time can’t be effectively controlled.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 118 Ver.1.0.0

The absolute wakeup_tick value must be within the range 32 bits can represent, the

maximum sleep time configured by this API is limited. In current design, maximum

sleep time is set as 3/4 of the maximum scope 32 bits can represent. For 16MHz

clock, 32 bits can represent about 268s, the maximum suspend/deepsleep should be

268s*3/4=201s.

The int return value is one or “logic or” result of the five values below.

 enum {

 WAKEUP_STATUS_COMP = BIT(0),

 WAKEUP_STATUS_TIMER = BIT(1),

 WAKEUP_STATUS_CORE = BIT(2),

 WAKEUP_STATUS_PAD = BIT(3),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),

STATUS_ENTER_SUSPEND = BIT(30),

 };

1) WAKEUP_STATUS_COMP is never used in BLE SDK, users do not need to know it.

2) WAKEUP_STATUS_TIMER/ WAKEUP_STATUS_CORE/ WAKEUP_STATUS_PAD

correspond to PM_WAKEUP_TIMER/ PM_WAKEUP_CORE/ PM_WAKEUP_PAD,

which represents the current low power mode is woken up by the wakeup sources.

3) STATUS_GPIO_ERR_NO_ENTER_PM is a special state, and indicates a GPIO wakeup

error occurs currently. E.g. When a GPIO CORE high level wakeup is configured,

when this GPIO is high level, it tries to invoke “cpu_sleep_wakeup” to enter suspend

and wakeup source is set as “PM_WAKEUP_CORE”. In this case, MCU cannot

enter suspend, but will exit “cpu_sleep_wakeup” immediately and return the value

STATUS_GPIO_ERR_NO_ENTER_PM.

4) STATUS_ENTER_SUSPEND represents the status enters suspend successfully.

5) The return value may be (WAKEUP_STATUS_TIMER | WAKEUP_STATUS_CORE) and

it means two wakeup sources take effect simultaneously.

Generally the following method is used to control sleep time:

cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() + delta_Tick);

“delta_Tick” is a relative time (e.g. 100*CLOCK_SYS_CLOCK_1MS). The result of
“clock_time()” plus “delta_Tick” is absolute time.

Examples for cpu_sleep_wakeup usage:

1) cpu_sleep_wakeup (0, PM_WAKEUP_CORE, 0);

MCU enters suspend mode when this function is executed, and it can be woken up

by GPIO CORE only.

2) cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() +

10*CLOCK_SYS_CLOCK_1MS);

MCU enters suspend mode when this function is executed, and it can be woken up

by TIMER only; suspend time is 10ms, i.e. wakeup time is function execution

moment plus 10ms.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 119 Ver.1.0.0

3) cpu_sleep_wakeup (0, PM_WAKEUP_CORE | PM_WAKEUP_TIMER,clock_time() +

50*CLOCK_SYS_CLOCK_1MS);

MCU enters suspend mode when this function is executed, and it can be woke up by

GPIO CORE and TIMER. Timer wakeup time is set as 50ms relative to function

execution moment; if GPIO CORE wakeup is triggered before 50ms expires, MCU

will be woke up by GPIO, otherwise MCU will be woken up by Timer.

4) cpu_sleep_wakeup (1, PM_WAKEUP_PAD, 0);

MCU enters deepsleep mode when this function is executed, and it can be woken up

by GPIO PAD.

5) cpu_sleep_wakeup (1, PM_WAKEUP_TIMER, clock_time() + 8*

CLOCK_SYS_CLOCK_1S);

MCU enters deepsleep mode when this function is executed, and it can be woken up

by Timer. Deep sleep time is 8s.

6) cpu_sleep_wakeup (1, PM_WAKEUP_PAD | PM_WAKEUP_TIMER,clock_time() +

10*CLOCK_SYS_CLOCK_1S);

MCU enters deepsleep mode when this function is executed, and it can be woken up

by GPIO PAD and Timer. Timer wakeup time is 10s relative to function execution

moment. If GPIO PAD wakeup is triggered before 10s expires, MCU will be woke up

by GPIO, otherwise MCU will be woken up by Timer.

4.2 BLE Low Power Management

In 5316 BLE SDK, low power management is implemented via power management of
Link Layer.

In current Telink BLE SDK, stack bottom layer only implements low power management
for Advertising state and Connection state Slave role, and a set of APIs are supplied for
user. As for other states, low power management is not directly supplied, or it’s needed
to invoke PM driver to implement PM, e.g. PM in Idle state.

4.2.1 PM In Idle State

When Link Layer is in Idle state, the “blt_sdk_main_loop” does not execute any
operation. In this state SDK does not provide any low power management and users
need to configure it themselves. Users may call “cpu_sleep_wakeup()” to implement low
power management to configure MCU to enter suspend or deepsleep mode, and set
wakeup sources correspondingly.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 120 Ver.1.0.0

Figure 4-2 PM in Link Layer Idle state

The figure above shows simple reference code: When Link Layer is in Idle state, there’s
10ms suspend during each mainloop.

In Idle state, MCU can also enter deepsleep mode directly.

4.2.2 PM in BLE Adv State & Conn State

When Link Layer is in Advertising state or Conn state Slave role:

1) In Advertising state, during each Adv Interval, the remaining time except for Adv

Event can be used to process UI task or enter suspend.

2) In Conn state Slave role, during each Conn interval, the remaining time except for

Brx Event (brx start + brx working + brx post) can be used to process UI task or

enter suspend.

Actually BLE PM includes the management of the UI task/suspend duration. User can
manage this duration, and determine whether to run UI task or enter suspend to save
power.

BLE PM does not include the management of deepsleep. User can directly invoke
“cpu_sleep_wakeup” in UI layer to enter deepsleep.

BLE PM does not need user to directly invoke the API “cpu_sleep_wakeup” in PM driver
layer. In BLE stack part of 826x BLE SDK, according to states and low power modes of
Link Layer, a PM mechanism is supplied (code is in “blt_sdk_main_loop”). Users only
need to call corresponding API to configure and manage low power.

4.3 BLE PM Configuration

4.3.1 PM Module Initialization

Similar to the design of Link Layer state machine, PM module needs to be enabled in
initialization by calling the API below. For applications with no need of PM this API does

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 121 Ver.1.0.0

not need to be called, thus PM related code and variables won’t be compiled to the
firmeware, and resources can be saved.

void blc_ll_initPowerManagement_module(void);

4.3.2 Set Low Power Modes via “bls_pm_setSuspendMask”

The API used to configure PM for Link Layer Advertising state and Conn state in 5316
BLE SDK is:

 void bls_pm_setSuspendMask (u8 mask);

 u8 bls_pm_getSuspendMask (void);

By using “bls_pm_setSuspendMask”, a bottom-layer variable “SuspendMask” is set to
configure low power mode. Actually the variable in code is “bls_pm.suspend_mask”, and
its default value is “SUSPEND_DISABLE”.

“bls_pm_getSuspendMask” is used to obtain current SuspendMask value, which equals
the value configured by previous invoked “bls_pm_setSuspendMask”. If the variable is
not configured, the value equals the default “SUSPEND_DISABLE”.

Values for SuspendMask include:

////////////////// Power Management ///////////////////////

#define SUSPEND_DISABLE 0

#define SUSPEND_ADV BIT(0)

#define SUSPEND_CONN BIT(1)

#define MCU_STALL BIT(6)

MCU_STALL is a special mode and it will be introduced later.

Please refer to Link Layer timing sequence (section 3.2.4) and working mechanism of low
power management (section 4.3.4) to help understand the configuration of
“bls_pm_setSuspendMask”.

SuspendMask can be selectable as any one of the values above, or combination value
(“or” operation) of Advertising state and Conn state, as shown below:

bls_pm_setSuspendMask(SUSPEND_ADV);

bls_pm_setSuspendMask(SUSPEND_CONN);

bls_pm_setSuspendMask(MCU_STALL);

bls_pm_setSuspendMask(SUSPEND_DISABLE);

bls_pm_setSuspendMask(SUSPEND_ADV | SUSPEND_CONN);

4.3.3 bls_pm_setWakeupSource

Users can enable or disable PM in different states by calling “bls_pm_setSuspendMask”.
The API below is used to set corresponding wakeup sources.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 122 Ver.1.0.0

 void bls_pm_setWakeupSource(u8 source);

This API sets a bottom-layer variable “WakeupSource”. The actual variable in code is
“bls_pm.wakeup_src”.

The WakeupSource includes PM_WAKEUP_PAD, PM_WAKEUP_CORE,
PM_WAKEUP_TIMER, and their “or” combinations.

If MCU enters suspend mode from Advertising state or Conn state Slave role, actual
system wakeup source should be:

WakeupSource | PM_WAKEUP_TIMER

The “PM_WAKEUP_TIMER” is necessary and it does not depend on user configuration,
which ensures MCU can be woke up to process Adv Event or Brx Event.

The wakeup source configured by “bls_pm_setWakeupSource” only applies to current
low power mode; once MCU is woken up from suspend or deepsleep, the
WakeupSource will be cleared in bottom layer and become invalid. The wakeup source
for suspend or deepsleep needs to be re-configured.

4.3.4 Working Mechanism of Low Power Managment

To better understand the configurations of “SuspendMask” and “WakeupSource”, this
section introduces the principle of low power management mechanism.

In SDK, mainloop is a structure of while(1):

 while(1)

 {

 blt_sdk_main_loop();

 //UI task

 }

“blt_sdk_main_loop” is being executed in while(1) all the time. As the code of BLE low
power management mechanism is in “blt_sdk_main_loop”, it is also being executed all
the time.

Corresponding to BLE Link Layer timing sequence (section 3.2.4), two time parameters
are defined: “T_advertising” indicates the start time of Link Layer Adv Event in
Advertising state; “T_brx” indicates the start time of Link Layer Brx Event in Conn state
Slave role.

In blt_sdk_main_loop, the pseudo code of low power management is shown as below:

int blt_sdk_main_loop (void)

{

 ……

 if(SuspendMask == SUSPEND_DISABLE) // SUSPEND_DISABLE, not enter low
power mode

 {

 return 0;

 }

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 123 Ver.1.0.0

 if(Link Layer State is in Advertising state orConn state Slave role)

{

 if(Link Layer in Adv Event or Brx Event) // BLE packet transfer is ongoing, not
enter low power mode

 {

 return 0;

 }

 else

 {

 blt_brx_sleep (); //suspend & wakeup processing function

}

}

 return 1;

}

1) When “bltPm.suspend_mask” is set to “SUSPEND_DISALE”, “blt_brx_sleep” will not

be executed. When users use “bls_pm_setSuspendMask (SUSPEND_DISABLE)”,

the logic of BLE low power management mechanism will become totally invalid,

MCU will not enter low power mode and loop of while(1) is being executed nonstop.

2) If Adv Event of Advertising State or Brx Event of Conn state Slave role is being

executed, “blt_brx_sleep” will not be executed as RF task is in operation, SDK only

enter sleep mode after Adv Event or Brx Event is completed.

 “blt_brx_sleep” will be executed only if it is not under the two conditions above.

void blt_brx_sleep (void)

{

if((Link Layer state == Adv state)&& (SuspendMask&SUSPEND_ADV))

{ //enter suspend from current Adv state

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_ENTER”

 cpu_sleep_wakeup (0, PM_WAKEUP_TIMER | WakeupSource,

 T_advertising + advInterval); //suspend

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_EXIT”

 if(current suspend is woken up by GPIO CORE in advance)

 {

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 124 Ver.1.0.0

 Execute callback function of event

“BLT_EV_FLAG_GPIO_EARLY_WAKEUP”

 Re-enter suspend, until wakeup at “T_advertising +

advInterval”

 }

 }

 else if((Link Layer state == Conn state Slave role)&&

 (SuspendMask&SUSPEND_CONN)) //enter suspend from current Conn state

{

 u32 wakeup_tick;

 if(conn_latency is not 0) // conn_latency != 0

 {

 // refer to section 4.4 for latency_use

 u16 latency_use = bls_calculateLatency();

 wakeup_tick = T_brx + (latency_use+1) * conn_interval;

 }

 else // conn_latency == 0

 {

 wakeup_tick = T_brx + conn_interval;

 }

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_ENTER”

 cpu_sleep_wakeup(0,PM_WAKEUP_TIMER|WakeupSource, wakeup_tick);

 Execute callback function of event “BLT_EV_FLAG_SUSPEND_EXIT”

 if(current suspend is woken up by GPIO CORE in advance)

 {

 Execute callback function of event

“BLT_EV_FLAG_GPIO_EARLY_WAKEUP”

 BLE timing sequence adjustment related processing

 }

 }

 //clear low power configuration parameters related to user

 WakeupSource= 0; //clear wakeup source configuration

 user_latecny = 0xffff;

}

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 125 Ver.1.0.0

4.4 “latency_use” Configuration and Calculation

As introduced in working mechanism of low power management (section 4.3.4), if the
“suspendMask” is set as “SUSPEND_CONN” in Conn state Slave role, the actual
wakeup time should be:

wakeup_tick = T_brx + (latency_use+1) * conn_interval;

“T_brx”: Brx Event Rx time during current interval.

If “latency_use” is 0, MCU must be woke up during next interval to listen for packets; if
“latency_use” is not 0, MCU can skip “latency_use” intervals to save power.

latency_use = bls_calculateLatency();

The calculation of “latency_use” involves “user_latency” which users can configure. The
API and source code are as below:

 void bls_pm_setManualLatency(u16 latency)

 {

 user_latency = latency;

 }

The following shows how to calculate “latency_use”:

First calculate system latency:

1) If connection latency in current connection parameters is 0, system latency would be

0.

2) If connection latency in current connection parameters is not 0:

a) If current system has unfinished task (e.g. there are data to be sent, or there are

data received from Master to be processed), MCU must be woke up during next

interval to continue the task, so system latency should be 0.

b) If current system has no task to process, system latency should equal

connection latency except in the case below: If “update map request” or “update

connection parameter request” is received from Master, and the actual update

moment is earlier than (connection latency+1) intervals, the actual system

latency would ensure MCU is woke up during the interval before the actual

update moment, so as not to disturb BLE timing sequence.

Actually the eventual latency_use equals min(system latency, user_latency), i.e. the
minimum value of system latency and user_latency.

If the latency manually configured by invoking “bls_pm_setManualLatency” during UI
entry is smaller than system latency, it can be used as the eventual latency_use. It only
applies to non-zero system latency.

Note that the final sentence of each “blt_sdk_main_loop” will set “user_latency” as
“0xffff”. Therefore, the user latency configured by calling “bls_pm_setManualLatency”
only applies to the current suspend.

4.5 Other APIs

This section provides descriptions of other APIs except the APIs introduced above.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 126 Ver.1.0.0

4.5.1 bls_pm_getSystemWakeupTick

The API below is used to obtain suspend wakeup time (system tick value) calculated by
PM module.

u32 bls_pm_getSystemWakeupTick(void);

According to section 4.3.4, this API can be invoked only in the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event.

When the “blt_brx_sleep” function is executed by PM module, the suspend wakeup time
is calculated according to current Link Layer state and the “SuspendMask” set in APP
layer. APP layer can read this value only via the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event. For example, MCU needs to enter suspend
from Conn state, and conn latency is not 0:

 u16 latency_use = bls_calculateLatency();

 wakeup_tick = T_brx + (latency_use+1) * conn_interval;

 cpu_sleep_wakeup(0,PM_WAKEUP_TIMER|WakeupSource, wakeup_tick);

APP layer can’t predict in advance the latency_use calculated by “bls_calculateLatency”
and thus does not know the actual wakeup_tick; the wakeup time can be obtained only
by invoking “bls_pm_getSystemWakeupTick” in the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event.

Following is a key scan application example to illustrate the usage of
“BLT_EV_FLAG_SUSPEND_ENTER” callback function and
“bls_pm_getSystemWakeupTick”.

 bls_app_registerEventCallback(BLT_EV_FLAG_SUSPEND_ENTER,
 &ble_remote_set_sleep_wakeup);

void ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{

 if(bls_ll_getCurrentState() == BLS_LINK_STATE_CONN &&

 ((u32)(bls_pm_getSystemWakeupTick() - clock_time())) >

 80 * CLOCK_SYS_CLOCK_1MS)

 {

 //gpio CORE wakeup suspend

 bls_pm_setWakeupSource(PM_WAKEUP_CORE);

 }

}

The callback function is used to avoid key press loss. Generally, a key press lasts for
hundreds of milliseconds~100ms. When “bls_pm_setSuspendMask” configures MCU to
enter suspend from both Advertising state and Conn state, if “Conn Latency” is not
enabled (0), as long as Adv interval and Conn interval is not especially large (generally
set as a value not exceeding 100ms), suspend time won’t exceed Adv interval and Conn
interval; since it can ensure key scan frequency, key press loss can be avoided. In this
case, GPIO wakeup is not configured, so that key press won’t wakeup MCU.

However, if latency is enabled, (e.g. conn_interval is 10ms, latency is 99), suspend may
last for 1s in Conn state. During this process, there may be key press lost. Check in the

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 127 Ver.1.0.0

“BLT_EV_FLAG_SUSPEND_ENTER” callback, if current state is Conn state, and
wakeup time for the following suspend is more than 80ms from current time, GPIO CORE
wakeup will be added. If timer wakeup is not triggered yet, and GPIO level changes due
to key press, MCU wakeup is triggered in advance, so that key press won’t be lost and
key scan task can be processed.

4.5.2 bls_pm_enableAdvMcuStall

The API below is used to decrease peak current during advertising.

void bls_pm_enableAdvMcuStall(u8 en);

en: 1 - Enable MCU stall; 0 - Disable MCU stall.

Please note that Timer1 is used in stack bottom layer to implement MCU stall during
advertising. If this power optimization is added, APP layer should not use Timer1.

4.6 Notes about GPIO Wakeup

4.6.1 Fail to Enter Suspend/Deepsleep When Wakeup Level is
Valid

Since TLSR8232 CORE/PAD wakeup is triggered by high/low level rather than
positive/negative edge, after GPIO CORE or PAD source is configured, e.g. MCU is
configured to wake up from suspend by high level of certain GPIO CORE, the GPIO input
must be low level when MCU invokes “cpu_wakeup_sleep” to enter suspend. If the GPIO
is already high level input currently, the configuration won’t take effect, and Slave doesn’t
enter suspend. This also applies to GPIO PAD wakeup.

The situation above may lead to unexpected problems. For example, MCU is expected to
enter deepsleep and execute firmware after wakeup; however, MCU can’t enter
deepsleep and continues to execute the code unexpectedly, thus firmware running flow
may be messed.

In code of 5316 ble remote, a solution is given to solve the problem.

Via configuration in “BLT_EV_FLAG_SUSPEND_ENTER”, GPIO CORE wakeup won’t
be enabled unless suspend time exceeds the specified time.

void ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{

 if(bls_ll_getCurrentState() == BLS_LINK_STATE_CONN &&

 ((u32)(bls_pm_getSystemWakeupTick() - clock_time())) >

 80 * CLOCK_SYS_CLOCK_1MS)

 {

 bls_pm_setWakeupSource(PM_WAKEUP_CORE);

 }

}

When there is key not released, users can ensure suspend time won’t exceed 80ms by
manually setting latency as 0 or a small value, thus GPIO CORE high-level wakeup won’t
be enabled with key held (high level in drive pin). The sample code is shown as below:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 128 Ver.1.0.0

MCU will enter deepsleep in following cases:

1) There is no task (including key press task) for successive 60s duration. In this case,

the problem MCU can’t enter deepsleep due to high level from drive pin can be

avoided.

2) Some button is stuck for 60s. In this case, though high level is input in drive pin, by

inverting the polarity of the stuck drive pin to low-level wakeup, MCU is allowed to

enter deepsleep (refer to section 7.7).

User should note this problem when using Telink GPIO CORE/PAD wakeup.

4.7 BLE System PM Reference

Based on the understanding of the principle of BLE SDK low power management, users
can flexibly configure low power management. See the reference code of low power
management of SDK demo “5316 ble remote” for reference.

Function “blt_pm_proc()” is included in UI entry of main_loop. Please note that if UI entry
needs to process multiple tasks, the “blt_pm_proc()” should be close to the
“blt_sdk_main_loop”, since its setting depends on processing result of other tasks in UI
entry.

Conclusions of low power management are:

1) If suspend needs to be disabled for task such as IR, the “SuspendMask” should be

set as “SUSPEND_DISABLE”.

2) In Advertising state, if Slave continuous adv time reaches 60s, it should be

configured to enter deepsleep in current main_loop, and wakeup source should be

set as “GPIO PAD” (enable key press wakeup in advance). Software timer is used to

check whether adv time exceeds 60s, and the variable “advertise_begin_tick” serves

to record the system tick when adv starts.

Slave is configured to enter deepsleep after 60s of no advertising, so as to save

power and avoid Slave from advertising when Master fails to respond. Actually user

needs to evaluate power consumption and then determine how to process time for

Adv state.

3) In Conn state, if Slave has no LED task, etc., and all keys are released, Slave is

configured to enter deepsleep in current main_loop when it exceeds 60s away from

the latest valid task, and wakeup source is set as “GPIO PAD” (enable key press

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 129 Ver.1.0.0

wakeup in advance). It will be recorded in the retention register DEEP_ANA_REG0

it’s the Conn state from which MCU enters current deepsleep. After wakeup, Slave

can configure fast adv packet to establish connection with Master as soon as

possible.

Slave is configured to enter deepsleep after 60s of no valid task, so as to save

power. Actually MCU can be configured not to enter deepsleep, as long as its power

consumption is very low to maintain connection. User needs to determine the

implementation considering actual requirement and power consumption.

When MCU enters deepsleep from Conn state, first Slave should invoke the

“bls_ll_terminateConnection” to send a “TERMINATE” command to Master, and

enter deepsleep after this command is acked or the “BLT_EV_FLAG_TERMINATE”

is triggered by timeout.

4) User needs to manually set latency as 0, if long time sleep (long suspend duration)

is not allowed for task processing, such as key_not_released, DEVICE_LED_BUSY

(LONG_PRESS_KEY_POWER_OPTIMIZE is 0).

5) Based on step 4), after latency is disabled manually, MCU will wake up in each

conn_interval, thus power consumption is increased; since it’s not needed to detect

key press and process LED task in every conn_interval, user can manually set

latency as other value and further optimize power consumption.

When the” LONG_PRESS_KEY_POWER_OPTIMIZE” is 1, after key press is

stabilized (key_matrix_same_as_last_cnt > 5), user can set latency value manually.

If it’s configured as “bls_pm_setManualLatency (4)”, suspend will last for 5

conn_intervals. When conn_interval is 10 ms, MCU will wake up for every 50 ms

(10*(4+1) = 50ms) to process LED task and detect key press. Actually user needs to

consider the conn_interval value and task response time, and optimize power

consumption without influencing function correspondingly.

4.8 Timer Wakeup of APP Layer

In Advertising state or Conn state Slave role, once MCU enters suspend, it can be woke
up by stack only in specific moment, and users can hardly wake up MCU in advance. To
add flexibility of PM, a timer wakeup API in APP layer and corresponding callback
function are supplied in SDK. Below is the timer wakeup API in APP layer:

void bls_pm_setAppWakeupLowPower(u32 wakeup_tick, u8 enable);

“wakeup_tick” indicates absolute system tick value for timer wakeup.

enable: 1 - enable this wakeup function; 0 - disable this wakeup function.

When timer wakeup in APP layer is triggered, the callback function registerd by
“bls_pm_registerAppWakeupLowPowerCb” is executed. It’s prototype and API are as
follows:

typedef void (*pm_appWakeupLowPower_callback_t)(int);

void bls_pm_registerAppWakeupLowPowerCb(

pm_appWakeupLowPower_callback_t cb);

When “bls_pm_setAppWakeupLowPower” is used to set app wakeup_tick for timer
wakeup in APP layer, before SDK bottom enters suspend, it will check whether this app

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 130 Ver.1.0.0

wakeup tick is within current suspend time. If yes, suspend will be triggered to wake up in
advance at app wakeup_tick (as shown in Figure 4-3). If not, this wakeup_tick is
negligible to bottom layer, and wakeup time depends on BLE timing sequence.

Conn interval

UI task

brx
event

sleep

app_wakeup_tick

T_brx T_wakeup

Figure 4-3 Trigger APP Wakup Tick in Advance

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 131 Ver.1.0.0

5. Low Battery Detect
Telink BLE SDK and related documents may refer to this subject with different names
such as “battery power detect/check”, “battery power detect/check”, “low battery
detect/check”, “low power detect/check”, “battery detect/check”. In SDK code, there are
file and function names such as “battery_check”, “battery_detect”,
“battery_power_check”. In this document, we use “low battery detect”.

5.1 Significance of Low Battery Detect

Since battery voltage would gradually drop with time, for battery-powered products,
problems would occur once battery voltage drops below a certain level.

1) For TLSR8232, operation voltage range is 1.9V~3.6V. Below 1.8V, normal operation

is not guaranteed.

2) At low battery voltage, unstable voltage may result in error for Flash “write” or

“erase” operation, so that unexpected disruption of program FW or user data would

lead to product function failure. Based on our MP experience, the threshold is set at

2.0V.

It is necessary to declare a “secure voltage”. Once battery drops below this voltage level,
MCU should shutdown to stop working, or enter deepsleep as implemented in the SDK.

Before MCU shutdown, certain UI behavior, e.g. quick LED blinking in the
“5316_ble_remote”), can be used as low battery alarm, so as to remind user that it’s
time to recharge or replace the low battery.

“Secure voltage”, or “alarm voltage”, is set at 2.0V in current SDK. For certain extreme
condition of power instability caused by HW design, secure voltage can be set at higher
value, e.g. 2.1 or 2.2V.

For battery-powered products supported by Telink BLE SDK, Low Battery Detect must be
implemented to ensure product stability across its lifetime.

5.2 Implementation of Low Battery Detect

For Low Battery Detect, ADC should be used to measure supply voltage. It’s
recommended to read TLSR8232 datasheet or ADC driver related document and get
familiar with ADC module.

In the SDK, Low Battery Detect is implemented in the “battery_check.h” and
“battery_check.c”.

Please ensure the macro “BATT_CHECK_ENABLE” is enabled in the "app_config.h”. DO
NOT change the macro since it’s enabled by default.

#define BATT_CHECK_ENABLE 1 //must enable

5.2.1 Cautions of Low Battery Detect

Low Battery Detect is a basic ADC task to sample and measure supply voltage. Please
pay attention to the following items.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 132 Ver.1.0.0

5.2.1.1 MUST Use GPIO Input Channel

For Telink 826x family, ADC module supports “VCC/VBAT” input channel to sample
supply voltage.

For TLSR8232, though this design is reserved (corresponding to “VBAT” in the enum
type “ADC_InputPchTypeDef”), based on certain reasons, it’s not allowed to use the
“VBAT” channel. Therefore, user must adopt GPIO input channel of ADC instead, which
includes PA6, PA7, and PB0~PB7.

/*ADC analog positive input channel selection enum*/

typedef enum {

 NOINPUTP,

 A6P,

 A7P,

 B0P,

 B1P,

 B2P,

 B3P,

 B4P,

 B5P,

 B6P,

 B7P,

 PGA0P,

 PGA1P,

 TEMSENSORP,

 RSSI_P,

 VBAT,

}ADC_InputPchTypeDef;

There are two ways to implement ADC sampling of supply voltage via GPIO input
channel.

1) Directly connect power supply to GPIO input channel of ADC

At ADC initialization, by setting specific GPIO to high impedance, voltage at the

GPIO equals supply voltage, so ADC can directly sample supply voltage.

2) Use GPIO high-level output to sample supply voltage without connection between

supply and GPIO input channel.

As per the design of TLSR8232 internal circuit, voltage of GPIO high-level output

always equals supply voltage and thus can be sampled by ADC.

In the project “5316_ble_remote” of the SDK, the second method is employed with GPIO
input channel selected as PA7.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 133 Ver.1.0.0

To use PA7 as GPIO input channel, PA7 should act as general GPIO, and at initialization
user should follow its default configurations (ie, oe, output) without the need of special
modification.

 #define GPIO_VBAT_DETECT GPIO_PA7

 #define PA7_FUNC AS_GPIO

PA7 should output high level at ADC sampling.

gpio_set_input_en(GPIO_VBAT_DETECT, 0); //disable input function

 gpio_set_output_en(GPIO_VBAT_DETECT, 1);//enable output function

 gpio_write(GPIO_VBAT_DETECT, 1); //output 1

Generally, after ADC sampling, PA7 output can be disabled. However, for the
“5316_ble_remote”, PA7 on the corresponding HW is floating (NC), high-level output
won’t bring any current leakage, PA7 output is not disabled actually.

5.2.1.2 MUST Use ADC Differential Mode

Though in theory TLSR8232 ADC input supports both Single Ended Mode and
Differential Mode, in the SDK as well as actual applications, only Differential Mode is
allowed, and Single Ended Mode is forbidden.

Differential mode supports positive and negative input channel, thus voltage to be
measured equals the voltage difference of positive end and negative end.

If only one GPIO input channel is available for ADC, this GPIO should be set as positive
input channel, while GND should be set as negative input channel. By this setting,
voltage difference equals voltage of positive end.

The code for Low Battery Detect in the SDK is as below. API
“adc_set_all_differential_p_n_ain” selects PA7 as positive input channel, and GND as
negative input channel.

For “adc_set_all_differential_p_n_ain(ADC_MISC_CHN, gpio_no, GND)”, please see
SDK for code.

5.2.1.3 MUST Use DFIFO for ADC Sampling Valu

For Telink 826x family, ADC result is readable via related register. For TLSR8232, DFIFO
mode is used instead to get ADC result. Please refer to the following function in driver.

unsigned int adc_set_sample_and_get_result(void)；

5.2.2 Dedicated Low Battery Detect Demo

In the project “5316_ble_remote” of the “app_config.h” file, set the macro
“BATT_CHECK_ENABLE” to 1, ADC is dedicated for Low Battery Detect. Users can also
refer to the project “5316_ble_remote” for Low Battery Detect demo.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 134 Ver.1.0.0

5.2.2.1 Initialization of Low Battery Detect

Refer to function “adc_vbat_init”.

ADC initialization must always follow the flow: power off SAR ADC; configure ADC
parameters; power on SAR ADC. TLSR8232 sets SAR ADC as power down by default,
so “adc_vbat_init” does not set power down of “adc_power_on(0)”. TLSR8232 enables
ADC power Every time before reading ADC data and disables ADC power after reading
is completed.

It’s not recommended to modify the initialization setting of ADC, users can use the default
setting. However, users can select other GPIO input channel via the macro
“BATTERY_CHECK_PIN”.

If on HW design, supply is directly connected to GPIO input channel, high level output
needs to be removed from the “BATTERY_CHECK_PIN”.

Below is code of “adc_vbat_init” in “battery_power_check”.

 if(!adc_hw_initialized){

 adc_hw_initialized = 1;

 adc_init();

 adc_vbat_init(BATTERY_CHECK_PIN);

 }

Herein a variable “adc_hw_initialized” is used to call one initialization. When the variable
is set to 0, one initialization is called, and then the variable should be set to 1 to disable
further initialization.

By using the “adc_hw_initialized” ADC tasks can switch between Low Battery Detect and
other ADC tasks (“ADC other task”).

Due to dynamic ADC task switch, the “adc_vbat_init” may be executed multiple times, so
it must be implemented in the main_loop rather than user_init().

On first calling of “battery_power_check”, “adc_vbat_init” is executed and will not be
executed repeatedly.

To switch to “ADC other task”, for proper initialization in new task, the
“adc_hw_initialized” will be set to 0.

After completion of “ADC other task”, the “battery_power_check” will be executed again.
Since current adc_hw_initialized is 0, the “adc_vbat_init” must be executed again, so as
to guarantee re-initialization on every switch back.

5.2.2.2 Low Battery Detect Processing

In main_loop, the function “battery_power_check” is called to process Low Battery
Detect. Related code is shown as below:

 if(clock_time_exceed(lowBattDet_tick, 500*1000)){

 lowBattDet_tick = clock_time();

 battery_power_check(BATTERY_VOL_MIN);

 }

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 135 Ver.1.0.0

The “lowBattDet_tick” can be used to set frequency of battery detect. In the demo, the
period is set as 500ms by default, and it can be modified as needed.

Implementation of the “battery_power_check” involves details of battery detect
initialization, DFIFO setup, data acquisition and processing, as well as low voltage
alarming.

Complicated ADC usage and special HW limits may bring user difficulty in understanding.
It is highly recommended to follow the demo code as much as possible. Except a few
settings which is illustrated as modifiable in this document, DO NOT make any change.

DFIFO mode is used to acquire ADC result by sampling 8 times (default), removing the
maximum and minimum and calculating the average of 6 values. As shown in the
“adc_vbat_init”, period for each sampling is 10.4us, so it takes 83us or so to get the
result.

In demo code, the macro “ADC_SAMPLE_NUM” can be changed to 4, so as to reduce
total ADC time to 41us. Sampling 8 times is recommended to get more accurate result. If
users modify the marco definition, the calculation of ADC should be modified accordingly.
The source code is:

u32 adcValueAvg = (adc_sample[2] + adc_sample[3] + adc_sample[4] +
adc_sample[5]) >> 2;

5.2.2.3 Low Battery Voltage Alarm

The parameter “minVol_mV” of the “battery_power_check” specifies secure or alarm
voltage in unit of mV. As explained earlier, default in the SDK is 2000 mV. In low battery
detect of main_loop, once supply voltage drops below 2000mV, MCU enters low voltage
range.

The following shows demo code to process low battery alarm. MCU must be shut down
once it enters low voltage range.

In “5316_ble_remote”, MCU can be shut down by entering deepsleep, and wake up by
key press.

Except mandatory MCU shutdown operation, users can modify other alarm behaviors.

In the code below, alarm indication is set as fast blinking for three times, reminding users
to recharge or replace battery.

if(vol < minVol_mV){

 #if (1 && BLT_APP_LED_ENABLE) //led indicate

 gpio_set_output_en(GPIO_LED, 1); //output enable

 for(int k=0;k<3;k++){

 gpio_write(GPIO_LED, 1);

 sleep_us(200000);

 gpio_write(GPIO_LED, 0);

 sleep_us(200000);

 }

 gpio_set_output_en(GPIO_LED, 0);

 #endif

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 136 Ver.1.0.0

 analog_write(DEEP_ANA_REG2, BATTERY_VOL_LOW);

 cpu_sleep_wakeup(PM_SLeepMode_Deep, PM_WAKEUP_PAD, 0);

 }

For “5316_ble_remote”, after shutdown at low battery, MCU enters deepsleep which
supports key press wakeup.

At the moment of wakeup by key press, SDK will perform one fast battery detect in user
initialization (function user_init) rather than in main_loop, so as to avoid errors as shown
below.

Given that LED blinking has been issued for low battery, MCU entered deepsleep, but
wakes up from deepsleep by key press. If processed in main_loop, battery detect needs
to wait 500ms at least to be executed ; during this duration Slave could have sent many
advertising packets, and may even connect with master, which will lead to a bug that
device resumes working after low battery alarm.

For this reason, battery detect is performed at user initialization instead. So battery detect
is added in user initialization:

 if(analog_read(DEEP_ANA_REG2) == BATTERY_VOL_LOW){

 battery_power_check(BATTERY_VOL_MIN + 200);//2.2V

 }

 else{

 battery_power_check(BATTERY_VOL_MIN);//2.0 V

 }

Please note that the initialization of GPIO wakeup must be placed before the code above
or it may lead to GPIO wakeup failure.

Value of the analog register “DEEP_ANA_REG2” can tell whether it’s wakeup from low
battery shutdown. Battery detect after this wakeup will raise 2000mV alarm voltage to
2200mV recover voltage, based on the reason below:

Tolerance in battery detect makes it difficult to ensure consistent result on every
measurement. Given 20mV error, for first time, 1990mV might trigger MCU to shutdown;
however, after wakeup, at user initialization it could be measured at 2005mV, so 2000mV
alarm voltage would lead to the bug above.

Considering this, at battery detect after wakeup from shutdown, alarm voltage is raised
by a value slightly higher than maximum tolerance of low battery detect.

Since the example 2200mV recover voltage only occurs after voltage lower than 2000mV
is detected to shutdown MCU, user does not need to worry that applications would give
low voltage alarm when actual voltage is 2.0~2.2V. End user should recharge or replace
battery at low battery alarm to ensure normal product performance.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 137 Ver.1.0.0

6. OTA
TLSR8232 supports Flash multi-address booting, addresses including 0, 0x10000,
0x20000, and 0x40000.

To implement OTA for TLSR8232 slave, a device is needed to act as BLE OTA Master,
which can be the Bluetooth device (supporting OTA in APP) combined with Slave, or
simply Telink BLE Master Dongle. In this section, Telink kma dongle is taken as an
example of OTA Master to illustrate how TLSR8232 BLE OTA is realized.

6.1 Flash Architecture and OTA Procedure

6.1.1 Flash Storage Architecture

When boot from 0x20000, in SDK the default firmware size should not exceed 128K, i.e.
the Flash area 0~0x20000 is for storing firmware.

0x00000

0x20000

Firmware_1.bin

0x40000

0x80000

slave ota_master

0x00000

Ota_master.bin

0x20000

0x40000

Firmware_2.bin

RF
transform

New_firmware
storage area

0x00000

0x20000

Firmware_2.bin

0x40000

slave ota_master

0x00000

0x20000

Ota_master.bin

0x40000

Firmware_3.bin

RF
 t
ra
ns
fo
rm

New_firmware
storage area

OTA of the (2n+1)-th time OTA of the (2n+2)-th time

0x80000

Figure 6-1 5316F512K Flash Storage Structure

1) OTA Master burns new firmware2 into the Master Flash area starting from 0x20000.

2) OTA for the first time:

a) When power on, Slave starts booting and executing firmware1 from Flash

0~0x20000.

b) When firmware1 is running, the area of Slave Flash starting from 0x20000 (i.e.

Flash 0x20000~0x40000) is cleared during initialization and will be used as

storage area for new firmware.

c) OTA process starts, Master transfers firmware2 into Slave Flash area starting

from 0x20000 via RF. Then Slave sets bootloader to boot from the new firmware

offset and reboots (similar to power cycle).

3) For subsequent OTA updates, OTA Master first burns new firmware2 into the Master

Flash area starting from 0x20000.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 138 Ver.1.0.0

4) OTA for the second time:

a) When power on, Slave starts booting and executing firmware2 from Flash

0x20000~0x40000.

b) When firmware2 is running, the area of Slave Flash starting from 0x0 (i.e. Flash

0~0x20000) is cleared during initialization and will be used as storage area for

new firmware.

c) OTA process starts, Master transfers firmware3 into Slave Flash area starting

from 0x0 via RF. Then Slave sets bootloader to boot from the new firmware

offset and reboots.

5) Subsequent OTA process repeats steps (1)~(4): (1)~(2) represents OTA of the

(2n+1)-th time, while (3)~(4) represents OTA of the (2n+2)-th time.

6.1.2 OTA Update Procedure

Based on the Flash storage structure introduced in section 6.1.1, the OTA update
procedure is illustrated as below:

8232 multi-address booting mechanism: OTA only uses two addresses booting (boot
from 0 or 0x20000). After MCU is powered on, Slave boots from Flash address 0 by
default. First Flash address 0x8 is read, if its value is 0x4b, the code starting from 0 are
transferred to RAM, and the following instruction fetch address equals 0 plus PC pointer
value; if the value of Flash 0x8 is not 0x4b, MCU directly reads Flash address 0x20008, if
its value is 0x4b, the code starting from 0x20000 are transferred to RAM, and the
following instruction fetch address equals 0x20000 plus PC pointer value.

By modifying flag bit value of Flash 0x8 and 0x20008, the part of Flash code to be
executed will be determined.

In TLSR8232 SDK with OTA function support, the OTA upgrade process of the (2n+1)-th
or (2n+2)-th time is shown as below:

1) After MCU is powered on, read Flash address 0x8 and 0x20008, and compare the

value with 0x4b to determine the booting address; then Slave boots from

corresponding address (0 or 0x20000) and starts executing the code. This function is

automatically completed by MCU hardware.

2) During firmware initialization, read MCU hardware register to judge the booting

address.

a) If booting address is 0, the ota_program_offset is set as 0x20000, and the area

of Slave Flash starting from 0x20000 (i.e. 0x20000~0x40000) will be all erased

to “0xff”, which indicates the new firmware will be transferred into this area by

Master during the following OTA process.

b) If booting address is 0x20000, the ota_program_offset is set as 0x0, and the

area of Slave Flash starting from 0x0 (i.e. 0~0x20000) will be all erased to 0xff,

which indicates the new firmware will be transferred into this area by Master

during the following OTA process.

3) Slave MCU executes the firmware after booting; OTA Master is powered on and

establishes BLE connection with Slave.

4) Trigger OTA Master to enter OTA mode by UI (e.g. button press, write memory by PC

tool, etc.). After entering OTA mode, OTA Master needs to obtain Handle value of

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 139 Ver.1.0.0

Slave OTA Service Data Attribute (The handle value can be pre-appointed by Slave

and Master, or obtained via “read_by_type”.)

5) After the Atrribute Handle value is obtained, OTA Master may need to obtain version

number of current Slave Flash firmware, and compare it with the version number of

local stored new firmware. This step is determined by user.

6) To enable OTA upgrade, OTA Master will send an OTA_start command to inform

Slave to enter OTA mode.

7) After the OTA_start command is received, Slave enters OTA mode and waits for OTA

data to be sent from Master.

8) Master reads the firmware stored in the Flash area starting from 0x20000, and

continuously sends OTA data to Slave until the whole firmware is sent.

9) After the OTA data are received, Slave stores the data into the area starting from

ota_program_offset.

10) After the OTA data are sent, Master will check if all data are correctly received by

Slave (invoke related BLE function in bottom layer to judge whether Link Layer data

are all correctly acked).

11) After Master confirms all OTA data are correctly received by Slave, it will send an

OTA_END command.

12) After Slave receives the OTA_END command, offset address 8 based on the new

firmware starting address (i.e. ota_program_offset+8) is written with “0x4b”, and

offset address 8 based on the old firmware starting address is written with “0x00”.

This indicates Slave will execute the firmware from the new area after the next

booting.

13) Slave reboots, and the new firmware will take effect.

14) During the whole OTA upgrade process, Slave will continuously check whether

there’s packet error, packet loss or timeout (A timer is started when OTA starts).

Once packet error, packet loss or timeout is detected, Slave will determine the OTA

process fails. Then Slave reboots, and executes the old firmware.

The OTA related operations on Slave side described above have been realized in 5316
BLE SDK and can be used by user directly. On Master side, extra firmware design is
needed and it will be introduced later.

6.1.3 Modify Firmware Size and Boot Address

The API “bls_ota_setFirmwareSizeAndOffset” supports two functions: modifying
maximum firmware size and booting address in the OTA design. Herein booting address
means the adderss except 0 to store New_firmware, so it should be 0x10000 or 0x20000
or 0x40000.

In SDK, by default, the default maximum firmware size is 128kB, and the booting address
is 0x20000.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k, u32 boot_addr);

“firmware_size_k” must be 4kB aligned, i.e. it must be integral multiples of 4kB. For
example, for 97kB size, the “firmware_size_k” must be set as 100kB.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 140 Ver.1.0.0

In the main function, since “cpu_sleep_wakeup” contains settings related to
“firmware_size_k” and “boot_addr”, this API must be called before “cpu_wakeup_init”
takes effect.

If maximum firmware_size exceeds 128kB, booting address needs to be changed to
0x40000. For example, maximum firmware_size may reach 200kB; corresponding setting
should be:

bls_ota_setFirmwareSizeAndOffset (200, 0x40000);

By using this API, not only booting address can be modified, but also Flash area usage
can be optimized.

By default, maximum firmware size is 128kB, and the Flash space 0x00000 ~ 0x40000
can be used to store firmware only. If firmware does not need such a large area, e.g. FW
size does not exceed 60kB, only part of the two 128kB space (0x00000 ~ 0x20000,
0x20000 ~ 0x40000) are used.

To use the redundant space as data storage area, the setting below can be followed.

bls_ota_setFirmwareSizeAndOffset (60, 0x20000);

By the configuration above, the two 60kB Flash areas 0x00000 ~ 0x0F000 and 0x20000
~ 0x2F000 can be used as firmware storage space, while the two 68kB Flash areas
0x0F000 ~ 0x20000 and 0x2F000 ~ 0x40000 can be used as user data storage space.

The situation in TLSR8232F128 OTA is essentially the same as TLSR8232F512, just
change offset 0x20000 to 0x10000.

The following should be noted:

1) For TLSR8232F128, the default firmware size of SDK is 48kB.

2) For TLSR8232F128, by modifying the SDK configuration the maximum firmware size

can be up to 56kB but there will be no extra Flash space for storing user data.

See figure below:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 141 Ver.1.0.0

Case 1 is the default distribution, the maximum firmware size is 48kB with 16kB left for
User Data Area.

If 52K < firmware size <=56K, users can use Case 2 which has no extra Flash space for
user data.

If 48K < firmware size <=52K, users can use Case 3 which has extra Flash area for user
data.

For Case 2 and Case 3, the API below should be called to set actual firmware size
(firmware size should be 4kB aligned), and ota_offset should be set to 0x10000.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k, u32 ota_offset);

6.2 RF Data Proceesing in OTA Mode

6.2.1 OTA Processing in Attribute Table on Slave Side

First, OTA reference needs to be added to app_att.c which includes the Attribute Table:

#include <stack/ble/ble.h> //includes the reference of ble_ll_ota.h.

Second, add OTA related contents in the Attribute Table. The “att_readwrite_callback_t r”
and “att_readwrite_callback_t w” of the OTA data Attribute should be set as otaRead and
otaWrite, respectively; the attribute should be set as Read and Write_without_Rsp
(Master sends data via Write Command, and does not need Slave to respond with ack to
enable faster speed).

static u8 my_OtaProp= CHAR_PROP_READ | CHAR_PROP_WRITE_WITHOUT_RSP;

{0,2,1,1,(u8*)(&my_characterUUID), (u8*)(&my_OtaProp), 0},

{0,2,1,1,(u8*)(&my_OtaUUID), (&my_OtaData), &otaWrite, &otaRead},

{0,2,sizeof (my_OtaName), sizeof (my_OtaName),(u8*)(&userdesc_UUID),
 (u8*)(my_OtaName), 0},

When Master sends OTA data to Slave, it actually writes data to the second Attribute as
shown above, so Master needs to know the Attribute Handle of this Attribute in the
Attribute Table. To use the Attribute Handle value pre-appointed by Master and Slave,
user needs to count the Attribute Handle value, and then define it on Master side.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 142 Ver.1.0.0

6.2.2 OTA Data Packet Format

Master sends command and data to Slave via “Write Command” in L2CAP layer.

Figure 6-2 Write Command Format in BLE Stack

The Attribute Handle value is the handle_value of OTA data on Slave side. The Attribute
Value length is set as 20, and the format is shown as below.

CRC

10

OTA_CMD invalid data

19
OTA_cmd

10 2 191817OTA_data

adr_index firmware data:adr_index*16 - adr_index*16+15

Figure 6-3 Format of OTA Command and Data

When the first two bytes are 0xff00 ~0xff10, it indicates it’s an OTA command, and the
command type is determined by the two bytes:

1) 0xff00: OTA_FW_VERSION, request to obtain current Slave firmware version

number. This command is reserved and optional. To use this command,

corresponding callback function is available on Slave side for user to transfer

firmware version number.

2) 0xff01: OTA_Start command. To start OTA upgrade process, Master needs to send

this command to Slave.

3) 0xff02: OTA_end command. When Master confirms all OTA data are correctly

received by Slave, it will send this command, which can be followed by four valid

bytes to double check Slave has received all data from Master.

4) 0xff03 ~ 0xff0f: reserved for future use.

When the first two bytes are 0~0x1000, it indicates it’s an OTA data. Each OTA data
packet transfers 16-byte firmware data, and the adr_index is the actual firmware address
divided by 16. “adr_index=0” indicates OTA data are values of firmware addresses
0x0~0xf; “adr_index=1” indicates OTA data are values of firmware addresses 0x10~0x1f.
The last two bytes are the CRC value calculated by CRC_16 operation to the former 18
bytes. After Slave receives the OTA data, it will also carry out CRC calculation, the data

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 143 Ver.1.0.0

will be regarded as valid only when the result matches the CRC (19th~20th byte) of the
data.

6.2.3 RF Transfer Processing on Master Side

Since BLE link-layer RF data will be automatically responded with ack to avoid packet
loss, during OTA data transfer Master won’t check if every OTA data is responded with
ack, that is, after sending an OTA data via write command, Master won’t check if there’s
ack response from Slave by software, and directly push the following data into TX buffer
as long as the number of data to be sent in TX buffer does not reach the threshold.

The OTA Master processes RF transfer by software as below:

1) Check if there’s any action to trigger entering OTA mode. If so, Master enters OTA

mode.

2) To send OTA commands and data to Slave, Master needs to know the Attribute

Handle value of current OTA data Attribute on Slave side. Users can decide to

directly use the pre-appointed value or obtain the Handle value via “Read By Type

Request”. UUID of OTA data in Telink BLE SDK is always 16-byte value as shown

below:

#define TELINK_SPP_DATA_OTA

 {0x12,0x2B,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,

0x03,0x02,0x01,0x00} //!< TELINK_SPP data for ota

In “Read By Type Request” from Master, the “Type” is set as the 16-byte UUID. The

Attribute Handle for the OTA UUID is available from “Read By Type Rsp” responded

by Slave. In the figure below, the Attribute Handle value is shown as “0x0031”.

 Figure 6-4 Master Obtains OTA Attribute Handle via “Read By Type Request”

3) (optional) Obtain current Slave firmware version number. User can check if it’s the

newest version and decide whether to start OTA upgrade correspondingly.

In 5316 BLE SDK, user needs to determine the method to obtain FW version

number.

An OTA version command is reserved, however, the transfer of version number is

not realized in current 5316 BLE SDK. An “OTA version cmd” can be sent to Slave in

the form of “write cmd”; Slave only supplies a callback function after it receives the

request, and user needs to decide in the callback function how to transfer Slave

firmware version number to Master (e.g. manually send a NOTIFY/INDICATE data).

4) Start a timer when OTA starts, and continuously check if the count value exceeds the

timeout duration (e.g. 15s, only for reference). If so, it’s regarded as OTA failure due

to timeout. Since Slave will check CRC after the OTA data are received, once there’s

CRC error or any other error (e.g. Flash burning error), OTA fails, and firmware is

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 144 Ver.1.0.0

directly rebooted; the link layer can’t respond to Master with ack, and Master fails to

send data until timeout.

5) Read four bytes of Master Flash 0x20018~0x2001b to determine firmware size

which is realized by compiler. Suppose firmware size is 20k (0x5000), the value of

firmware 0x18~0x1b is 0x00005000, so the firmware size can be read from

20018~0x2001b. As shown below, 0x18~0x1b of “5316_remote.bin” is

“0x00005a98”, so the firmware size is 0x5a98, i.e. 23192 bytes from 0 to 0x5a97.

Figure 6-5 Firmware: Starting Part

Figure 6-6 Firmware: Ending Part

6) Master sends an OTA start command “0xff01” to Slave, so as to inform it to enter

OTA mode and wait for OTA data from Master, as shown below.

Figure 6-7 Master Sends “OTA start”

7) Read 16-byte firmware each time starting from Master Flash 0x20000, assemble

them into OTA data packet, set corresponding adr_index, calculate CRC value, and

push the packet into TX FIFO, until all data of the firmware are sent to Slave. OTA

data format is used in data transfer: 20-byte valid data contains 2-byte adr_index,

16-byte firmware data and 2-byte CRC value to the former 18 bytes.

Note: If firmware data for the final transfer are less than 16 bytes, the remaining

bytes should be complemented with “0xff” and need to be considered for CRC

calculation.

The 5316_remote.bin as shown in Figure 6-5 and Figure 6-6 is taken as an example

to illustrate how to assemble OTA data.

Data for first transfer: “adr_index” is “0x00 00”, 16-byte data are values of addresses

0x0000 ~ 0x000f. Suppose CRC calculation result for the former 18 bytes is

“0xXYZW”, the 20-byte data should be:

0x00 0x00 0x0e 0x80 ... (12 bytes not listed)... 0x88 0x00 0xZW 0xXY

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 145 Ver.1.0.0

Data for second transfer:

0x01 0x00 0x5e 0x80 ... (12 bytes not listed)... 0x00 0x00 0xJK 0xHI

Data for third transfer:

0x02 0x00 0x25 0x08 ... (12 bytes not listed)... 0xfa 0x87 0xNO 0xLM

........

Data for penultimate transfer:

0xa8 0x05 0x02 0x04 ... (12 bytes not listed)... 0x00 0x00 0xST 0xPQ

Data for final transfer:

0xa9 0x05 0x44 0x58 0x00 0x00 0x01 0x00 0x00 0x00

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xWX 0xUV

Since the firmware data for final transfer are only 8 bytes, eight “0xff” are added to

complement 16 bytes. CRC calculation result for the former 18 bytes (0xa9 ~ 0xff) is

“0xUVWX”.

 Figure 6-8 Master OTA Data

8) After firmware data are sent, Master checks if BLE link-layer data are all sent out

(Only when link-layer data is acked by Slave, it’s considered the data is sent

successfully). If all data are sent, Master will send an ota_end command to inform

Slave.

“OTA end” packet is set as 6 valid bytes: first two bytes are “0xff02”, followed by

maximum adr_index value of new firmware (the two bytes are used to double check

if there’re OTA data lost on Slave side), the final two bytes are inverted value of the

maximum adr_index (equivalent to simple check). CRC check is not needed for

“OTA end”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 146 Ver.1.0.0

The maximal adr_index and inverted value of “5316_remote.bin” are “0x05a9” and

“0xfa56”, respectively. Figure 6-8 shows the final OTA end packet.

9) Check if link-layer TX FIFO on Master side is empty: If it’s empty, it indicates all data

and commands in above steps are sent successfully, i.e. OTA process on Master

succeeds.

Please refer to Appendix for CRC_16 calculation function.

6.2.4 RF Receive Processing on Slave Side

As introduced above, Slave can directly invoke the otaWrite and otaRead in OTA
Attribute. After Slave receives write command from Master, it will be parsed and
processed automatically in BLE stack by invoking the otaWrite function.

In the otaWrite function, the 20-byte packet data will be parsed: first judge whether it’s
OTA CMD or OTA data, then process correspondingly (respond to OTA cmd; check CRC
to OTA data and burn data into specific addresses of Flash).

The OTA related operations on Slave side are shown as below:

1) OTA_FIRMWARE_VERSION command is received (first two bytes are 0xff00):

Master requests to obtain Slave firmware version number.

In 5316 BLE SDK, after Slave receives this command, it will only check whether

related callback function is registered and determine whether to trigger the callback

function correspondingly.

The interface in ble_ll_ota.h to register this callback function is:

 typedef void (*ota_versionCb_t)(void);

 void bls_ota_registerVersionReqCb(ota_versionCb_t cb);

2) OTA start command is received (first two bytes are 0xff01): Slave enters OTA mode.

If the “bls_ota_registerStartCmdCb” function is used to register the callback function

of OTA start, then the callback function is executed to modify some parameter states

after entering OTA mode (e.g. disable PM to stabilize OTA data transfer).

Slave starts and maintains a slave_adr_index to record the adr_index of the latest

correct OTA data. The initial value of slave_adr_index is -1, and it’s used to judge

whether there’s packet loss in the whole OTA process; if so, OTA fails, Slave MCU

exits OTA and reboots, since Master can’t receive any ack packet from Slave, it will

discover OTA failure by software after timeout.

The following interface is used to register the callback function of OTA start:

 typedefvoid (*ota_startCb_t)(void);

 void bls_ota_registerStartCmdCb(ota_startCb_t cb);

User needs to register this callback function to carry out operations when OTA starts,

for example, configure LED blinking to indicate OTA process. After Slave receives

“OTA start”, it enters OTA and starts a timer (The timeout duration is set as 15s by

default in current SDK). If OTA process is not finished within the duration, it’s

regarded as OTA failure due to timeout. Users can evaluate firmware size (larger

size takes more time) and BLE data bandwidth on Master (narrow bandwidth will

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 147 Ver.1.0.0

influence OTA speed), and modify this timeout duration accordingly via the interface

as shown below.

 void bls_ota_setTimeout(u32 timeout_us);// unit: us

3) Valid OTA data are received (first two bytes are 0~0x1000):

Whenever Slave receives one 20-byte OTA data packet, it will first check if the

adr_index equals slave_adr_index plus 1. If not equal, it indicates packet loss and

OTA failure; if equal, the slave_adr_index value is updated.

Then carry out CRC_16 check to the former 18 bytes; if not match, OTA fails; if

match, the 16-byte valid data are written into corresponding addresses of Flash

(ota_program_offset+adr_index*16 ~ ota_program_offset+adr_index*16 + 15).

During Flash writing process, if there’s any error, OTA also fails.

4) “OTA end” command is received (first two bytes are 0xff02):

Check whether adr_max in OTA end packet and the inverted check value are

correct. If yes, the adr_max can be used to double check whether maximum index

value of data received by Slave from Master equals the adr_max in this packet. If

equal, OTA succeeds; if not equal, OTA fails due to packet loss.

After successful OTA, Slave will set the booting flag of the old firmware address in

Flash as 0, set the booting flag of the new firmware address in Flash as 0x4b, then

MCU reboots.

5) Slave provides OTA state callback function:

After Slave starts OTA, MCU will finally reboot regardless of OTA result. If OTA

succeeds, Slave will set flag before rebooting so that MCU executes the new

firmware; if OTA fails, the incorrect new firmware will be erased before rebooting, so

that MCU still executes the old firmare. Before rebooting, user can judge whether the

OTA state callback function is registered and determine whether to trigger it

correspondingly.

 typedef void (*ota_resIndicateCb_t)(int result);

 enum{

 OTA_SUCCESS = 0, //success

 OTA_PACKET_LOSS, //lost one or more OTA PDU

 OTA_DATA_CRC_ERR, //data CRC err

 OTA_WRITE_FLASH_ERR, //write OTA data to Flash ERR

 OTA_DATA_UNCOMPLETE, //lost last one or more OTA PDU

 OTA_TIMEOUT, //

 };

 void bls_ota_registerResultIndicateCb

 (ota_resIndicateCb_t cb);

The “enum” lists the 6 options for parameter “result”: the first value indicates OTA

success; the other five values indicate reasons for OTA failure. The “result” is mainly

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 148 Ver.1.0.0

used for debugging: When OTA fails, user can read the “result”, stop MCU by using

“while(1)”, and find the reason for current OTA failure.

LED indication can be added to indicate OTA success, as shown below:

 void LED_show_ota_result(int result)

 {

 irq_disable();

 WATCHDOG_DISABLE;

 gpio_set_output_en(GPIO_LED, 1);

 if(result == OTA_SUCCESS){ //OTA success

 gpio_write(GPIO_LED, 1);

 sleep_us(2000000); //led on for 2s

 gpio_write(GPIO_LED, 0);

 }

 else{ //OTA fail

 }

 gpio_set_output_en(GPIO_LED, 0);

}

bls_ota_registerResultIndicateCb (LED_show_ota_result);

The otaWrite function in Slave is assembled in lib, other related interfaces are available
in stack/ble/service/ble_ll_ota.h of SDK.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 149 Ver.1.0.0

7. Key Scan
Keyscan architecture based on row/column scan is used to detect and process key state
update (press/release). Users can directly use the sample code, or realize the function by
developing his own code.

7.1 Key Matrix

Take Telink 5316 BLE remote demo board as an example: It’s a 5*6 matrix and supports
up to 30 buttons. Five drive pins (Row0~Row4) are used to output drive level, while six
scan pins (CoL0~CoL5) serve to scan for button press in current column.

VCCVCC VCC VCC VCC VCC

Drive

Pin

Scan

Pin

Row0

Row1

Row2

Row3

CoL0

CoL1

CoL2

CoL3

CoL4

CoL5

Row4

Figure 7-1 Row/Column Key Matrix

Keyscan related configurations in app_config.h are shown as below:

On Telink demo board, Row0~Row4 pins are PA5, PA4, PA3, PA2, and PA1, while
CoL0~CoL5 pins are PC6, PC5, PC4, PC3, PC2, and PC1.

Define drive pin array and scan pin array:

#define KB_DRIVE_PINS {GPIO_PA5, GPIO_PA4, GPIO_PA3, GPIO_PA2, GPIO_PA1}

#define KB_SCAN_PINS {GPIO_PC6, GPIO_PC5, GPIO_PC4, GPIO_PC3, GPIO_PC2,
GPIO_PC1}

Keyscan adopts analog pull-up/pull-down resistor in TLSR8232 IC: drive pins use 100K
pull-down resistor, and scan pins use 10K pull-up resistor. When no button is pressed,
scan pins act as input GPIOs and read high level due to 10K pull-up resistor. When key
scan starts, drive pins output low level; if low level is detected on a scan pin, it indicates
there’s button pressed in current column (Note: Drive pins are not in float state, if output

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 150 Ver.1.0.0

is not enabled, scan pins still detect high level due to voltage division of 100K and 10K
resistor.)

Define valid voltage level detected on scan pins when drive pins output low level in
Row/Column scan:

#define KB_LINE_HIGH_VALID 0

Define pull-up resistor for scan pins and pull-down resistor for drive pins

#define MATRIX_ROW_PULL PM_PIN_PULLDOWN_100K

#define MATRIX_COL_PULL PM_PIN_PULLUP_10K

#define PULL_WAKEUP_SRC_PA5 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PA4 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PA3 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PA2 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PA1 MATRIX_ROW_PULL

#define PULL_WAKEUP_SRC_PC6 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PC5 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PC4 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PC3 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PC2 MATRIX_COL_PULL

#define PULL_WAKEUP_SRC_PC1 MATRIX_COL_PULL

Since “ie” of general GPIOs is set as 0 by default in gpio_init, to read level on scan pins,
corresponding “ie” should be enabled.

#define PC6_INPUT_ENABLE 1

#define PC5_INPUT_ENABLE 1

#define PC4_INPUT_ENABLE 1

#define PC3_INPUT_ENABLE 1

#define PC2_INPUT_ENABLE 1

#define PC1_INPUT_ENABLE 1

When MCU enters suspend or deepsleep, it’s needed to configure CORE/PAD GPIO
wakeup. Set drive pins as high level wakeup; when there’s button pressed, drive pin
reads high level, which is 10/11 VCC (i.e. VCC * 100K/(100K+10K)). To read level state
of drive pins, corresponding “ie” should be enabled.

#define PA5_INPUT_ENABLE 1

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 151 Ver.1.0.0

#define PA4_INPUT_ENABLE 1

#define PA3_INPUT_ENABLE 1

#define PA2_INPUT_ENABLE 1

#define PA1_INPUT_ENABLE 1

7.2 Keyscan, Keymap and Keycode

7.2.1 Keyscan

After configuration as shown in section 7.1, the function below is invoked in mainloop to
implement keyscan.

 u32 kb_scan_key (int numlock_status, int read_key)

 numlock_status: Generally set as 0 when invoked in mainloop. Set as

“KB_NUMLOCK_STATUS_POWERON” only for fast keyscan after wakeup from

deepsleep (refer to section 7.5, corresponding to

DEEPBACK_FAST_KEYSCAN_ENABLE).

 read_key: Buffer processing for key values, generally not used and set as 1 (if it’s set

as 0, key values will be pushed into buffer and not reported to upper layer).

 The return value is used to inform user whether matrix keyboard update is detected

by current scan: if yes, return 1; otherwise return 0.

The kb_scan_key function is invoked in mainloop. As introduced in section 3.2.4, each
main loop is an adv_interval or conn_interval. In advertising state (suppose adv_interval
is 30ms), key scan is processed once for each 30ms; in connection state (suppose
conn_interval is 10ms), key scan is processed once for each 10ms.

In theory, when button states in matrix are different during two adjacent key scans, it’s
considered as an update. In actual code, a debounce filtering processing is enabled: It
will be considered as a valid update, only when button states stay the same during two
adjacent key scans, but different with the latest stored matrix keyboard state. “1” will be
returned by the function to indicate valid update, matrix keyboard state will be indicated
by the structure “kb_event”, and current button state will be updated to the newest matrix
keyboard state. Corresponding code in keyboard.c is shown as below:

 unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

The newest button state means press or release state set of all (30) buttons in the matrix.
When power on, initial matrix keyboard state shows all buttons are “released” by default,
and debounce filtering processing is enabled; as long as valid update occurs to the
button state, “1” will be returned, otherwise “0” will be returned. For example: press a
button, a valid update is returned; release a button, a valid update is returned; press
another button with a button held, a valid update is returned; press the third button with
two buttons held, a valid update is returned; release a button of the two pressed buttons,
a valid update is returned……

7.2.2 Keymap &kb_event

If a valid button state update is detected by invoking the “kb_scan_key”, user can obtain
current button state via a global structure variable “kb_event”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 152 Ver.1.0.0

 #define KB_RETURN_KEY_MAX 6

 typedef struct{

 u8 cnt;

 u8 ctrl_key;

 u8 keycode[KB_RETURN_KEY_MAX];

 }kb_data_t;

 kb_data_t kb_event;

The “kb_event” consists of 8 bytes:

“cnt” is used to indicate valid count number of pressed buttons currently;

“ctrl_key” is not used generally, and it will be used only for standard USB HID keyboard
(user is not allowed to set keycode in keymap as 0xe0~0xe7).

keycode[6] indicates keycode of up to six pressed buttons can be stored (if more than six
buttons are pressed actually, only the former six can be reflected).

Keycode definition of 30 buttons in app_config.h is shown as below:

 #define KB_MAP_NORMAL {\

 {VK_NONE, VK_UP, VK_ENTER, VK_DOWN, VK_NONE}, \

 {KEY_MODE_SWITCH, VK_LEFT, CR_MENU, CR_VOL_MUTE, VK_RIGHT}, \

 {VK_POWER, CR_HOME, VK_7, VK_2, CR_BACK}, \

 {VK_NONE, CR_VOL_DN, VK_NONE, VK_5, CR_VOL_UP}, \

 {VK_NONE, VK_1, VK_0, VK_8, VK_3}, \
 {VK_NONE, VK_4, VK_NONE, VK_9, VK_6}, }

The keymap follows the format of 5*6 matrix structure. The keycode of pressed button
can be configured accordingly, for example, the keycode of the button between Row0
and CoL1 is “VK_UP”.

In the “kb_scan_key” function, the “kb_event.cnt” will be cleared before each scan, while
the array “kb_event.keycode[]” won’t be cleared automatically. Whenever “1” is returned
to indicate valid update, the “kb_event.cnt” will be used to check current valid count
number of pressed buttons.

1) If current kb_event.cnt = 0, previous valid matrix state “kb_event.cnt” must be

uncertain non-zero value; the update must be button release, but the released button

number is uncertain. Data in kb_event.keycode[] (if available) is invalid.

2) If kb_event.cnt = 1, the previous kb_event.cnt indicates button state update. If

previous kb_event.cnt is 0, it indicates the update is one button is pressed; if

previous kb_event.cnt is 2, it indicates the update is one of the two pressed buttons

is released; if previous kb_event.cnt is 3, it indicates the update is two of the three

pressed buttons are released……

kb_event.keycode[0] indicates the key value of currently pressed button. The

subsequent keycodes are negligible.

3) If kb_event.cnt = 2, the previous kb_event.cnt indicates button state update. If

previous kb_event.cnt is 0, it indicates the update is two buttons are pressed at the

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 153 Ver.1.0.0

same time; if previous kb_event.cnt is 1, it indicates the update is another button is

pressed with one button held; if previous kb_event.cnt is 3, it indicates the update is

one of the three pressed buttons is released……

kb_event.keycode[0] and kb_event.keycode[1] indicate key values of the two

pressed buttons currently. The subsequent keycodes are negligible.

User can manually clear the “kb_event.keycode” before each key scan, so that it can be
used to check whether valid update occurs, as shown in the example below.

In the sample code, when kb_event.keycode[0]is not zero, it’s considered a button is
pressed, but the code won’t check further whether two buttons are pressed at the same
time or one of the two pressed buttons is released.

 kb_event.keycode[0] = 0; //manually clear keycode[0]

 int det_key = kb_scan_key (0, 1);

 if (det_key)

 {

 key_not_released = 1;

 u8 key = kb_event.keycode[0];

 if (key) //key press

 {

 key_buf[2] = key;

 //send key press

 blt_push_notify_data (HID_HANDLE_KEYBOARD_REPORT, key_buf,

 8);

 }

 else

 {

 key_not_released = 0;

 key_buf[2] = 0;

 //send key release

 blt_push_notify_data (HID_HANDLE_KEYBOARD_REPORT, key_buf,

 8);

 }

 }

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 154 Ver.1.0.0

7.3 Keycode

The section above introduces keymap definition in app_config.h and keycode filling in
KB_MAP_NORMAL. To realize standard USB HID keyboard, some special keycodes
need to be processed, so user should pay attention to details for keycode definition.

The “kb_remap_key_row” function in keyboard.c serves to process keycode.

 void kb_remap_key_row(int drv_ind, u32 m, int key_max, kb_data_t

 *kb_data)

Figure 7-2 Keycode Processing Function

CTRL KEY will be obtained by kb_event.ctrl_key, and its keycode ranges from 0xe0 to
0xe7 which cannot be used by users.

In proj/drivers/usbkeycode.h:

 #define VK_CTRL 0xe0

 #define VK_SHIFT 0xe1

 #define VK_ALT 0xe2

 #define VK_WIN 0xe3

 #define VK_RCTRL 0xe4

 #define VK_RSHIFT 0xe5

 #define VK_RALT 0xe6

 #define VK_RWIN 0xe7

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 155 Ver.1.0.0

For the following key values, after they are transferred by Slave to Telink Master Dongle,
special processing will be realized by PC, and it depends on report descriptor
configuration of BLE HID in app_att.c.

enum{

VK_EXT_START = 0xa0,

VK_SYS_START = VK_EXT_START, //0xa0

VK_SLEEP = VK_SYS_START, //0xa0, sleep

VK_POWER, //0xa1, power

VK_WAKEUP, //0xa2, wake-up

VK_SYS_END, //0xa3

VK_SYS_CNT = (VK_SYS_END - VK_SYS_START),//0xa3-0xa0=0x03

VK_MEDIA_START = VK_SYS_END, //0xa3

VK_W_SRCH = VK_MEDIA_START, //0xa3

VK_WEB, //0xa4

VK_W_BACK,

VK_W_FORWRD,

VK_W_STOP,

VK_W_REFRESH,

VK_W_FAV, //0xa9

VK_MEDIA,

VK_MAIL,

VK_CAL,

VK_MY_COMP,

VK_NEXT_TRK,

VK_PREV_TRK,

VK_STOP, //b0

VK_PLAY_PAUSE,

VK_W_MUTE,

VK_VOL_UP,

VK_VOL_DN,

VK_MEDIA_END,

VK_EXT_END = VK_MEDIA_END,

 VK_MEDIA_CNT = (VK_MEDIA_END - VK_MEDIA_START),//0xb5-0xa3=0x12

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 156 Ver.1.0.0

 VK_ZOOM_IN = (VK_MEDIA_END + 1),//0xb6

VK_ZOOM_OUT , //0xb7

}

7.4 Keyscan Flow

7.4.1 Basic Keyscan Flow

When kb_scan_key is called, a basic keyscan flow is shown as below:

1) Initial full scan through the whole matrix.

All drive pins output drive level (0). Meanwhile read all scan pins, check for valid

level, and record the column on which valid level is read. (The scan_pin_need is

used to mark valid column number.)

If row-by-row scan is directly adopted without initial full scan through the whole

matrix, each time all rows (five rows in current demo firmware) should be scanned at

least, even if no button is pressed. To save scan time, initial full scan through the

whole matrix can be added, thus it will directly exit keyscan if no button press is

detected on any column.

 scan_pin_need = kb_key_pressed (gpio);

In the function kb_key_pressed, all rows output low level, and stabilized level of scan

pins will be read after 20us delay. A release_cnt is set as 6; if a detection shows all

pressed buttons in the matrix are released, it won’t consider no button is pressed

and stop row-by-row scan immediately, but buffers for six frames. If six successive

detections show buttons are all released, it will stop row-by-row scan. Thus key

debounce processing is realized.

2) Scan row by row according to full scan result through the whole matrix.

If button press is detected by full scan, row-by-row scan is started: Drive pins

(ROW0~ROW4) output valid drive level row by row; read level on columns, and find

the pressed button. Following is related code:

 u32 pressed_matrix[ARRAY_SIZE(drive_pins)] = {0};

 kb_scan_row (0, gpio);

 for (int i=0; i<=ARRAY_SIZE(drive_pins); i++) {

 u32 r = kb_scan_row (i < ARRAY_SIZE(drive_pins) ? i : 0,

gpio);

 if (i) {

 pressed_matrix[i - 1] = r;

 }

 }

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 157 Ver.1.0.0

The following methods are used to optimize code execution time for row-by-row

scan.

 When a row outputs drive level, it’s not needed to read level of all columns

(CoL0~CoL5). Since the scan_pin_need marks valid column number, user can read

the marked columns only.

 After a row outputs drive level, a 20us or so delay is needed to read stabilized level

of scan pins, and a buffer processing is used to utilize the waiting duration.

The array variable “u32 pressed_matrix[5]” (up to 32 columns are supported) is used

to store final matrix keyboard state: pressed_matrix[0] bit0~bit5 mark button state on

CoL0~CoL5 crossed with Row0……pressed_matrix[3] bit0~bit5 mark button state on

CoL0~CoL5 crossed with Row3.

3) Debounce filtering for pressed_matrix[]

 unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

 u32 key_changed = key_debounce_filter(pressed_matrix, \

 (numlock_status & KB_NUMLOCK_STATUS_POWERON) ? 0 : 1);

During fast keyscan after wakeup from deepsleep, “numlock_status” equals

“KB_NUMLOCK_STATUS_POWERON”, the “filt_en” is set as 0 to skip filtering and

fast obtain key values. In other cases, the “filt_en” is set as 1 to enable filtering. Only

when pressed_matrix[] stays the same during two adjacent key scans, but different

from the latest valid pressed_matrix[], the “key_changed” is set as 1 to indicate valid

update in matrix keyboard.

4) Buffer processing for pressed_matrix[]

Push pressed_matrix[] into buffer. When the “read_key” in “kb_scan_key (int

numlock_status, int read_key)” is set as 1, the data in the buffer will be read

out immediately. When the “read_key” is set as 0, the buffer stores the data without

notification to the upper layer; the buffered data won’t be read until the read_key is 1.

In current SDK, the “read_key” is fixed as 1, i.e. the buffer does not take effect

actually.

5) According to pressed_matrix[], look up the KB_MAP_NORMAL table and return key

values.

Corresponding functions are “kb_remap_key_code” and “kb_remap_key_row”.

7.4.2 Keyscan Flow Timing Optimization

As introduced above, even if no button is pressed, each mainloop takes about 100us to
execute initial full scan through the whole matrix at least.

GPIO IRQ status bit inquiry can be used to optimize the time for full scan with no button
pressed.

As shown in PM section, in “user_init” all drive GPIO pins are configured as high-level
CORE wakeup for suspend.

 u32 pin[] = KB_DRIVE_PINS;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 158 Ver.1.0.0

 for (int i=0; i<(sizeof (pin)/sizeof(*pin)); i++)

 {

 gpio_set_wakeup(pin[i],1,1); //drive pin core(gpio) high

 wakeup suspend

 }

The “gpio_set_wakeup(pin[i],1,1)” sets wakeup polarity of drive pins as high level and
enables wakeup.

Since GPIO interrupt enabling and polarity adopts the same configuration registers as
wakeup, the “gpio_set_wakeup(pin[i],1,1)” will also enable GPIO interrupt and set
interrupt polarity as high level.

High level on GPIO will set GPIO IRQ service flag bit (core_648 BIT(18)); this flag bit can
be used to check whether any button is pressed (when a button is pressed, 10/11 VCC
high level will be read on corresponding drive pin).

 #define reg_irq_mask REG_ADDR32(0x640)

 #define reg_irq_src REG_ADDR32(0x648)

 FLD_IRQ_GPIO_EN = BIT(18),

As long as GPIO interrupt mask bit (core_640 BIT(18)) is not enabled, the configuration
will only set the IRQ flag bit, but won’t trigger interrupt.

The “KEYSCAN_IRQ_TRIGGER_MODE” definition in app_config.h serves to enable
time optimization for the keyscan flow.

 #define KEYSCAN_IRQ_TRIGGER_MODE 1

Initialization:

 gpio_core_irq_enable_all(1);

 reg_irq_src = FLD_IRQ_GPIO_EN;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 159 Ver.1.0.0

Figure 7-3 Keyscan Time Optimization

As shown above, it will first check whether IRQ flag bit is set after previous keyscan is
finished. If yes, it indicates there’s button press action during this duration; since manual
button press lasts for 200ms at least, the pressed button is not released yet, and the
subsequent basic keyscan flow (including full scan and row-by-row scan) will be
executed.

After the pressed button is released, the debounce function in kb_key_pressed takes
effect. Only when six successive detections all show button release state, the keyscan
flow will be stopped.

7.5 Deepsleep Wakeup Fast Keyscan

After Slave enters deepsleep during connection state, it can be woke up by button press
action. After wakeup, firmware is rebooted; in mainloop following user_init, Slave will first
send adv packets, establishes connection, and then sends the key value to BLE Master.

Though 5316 BLE SDK adopts some processing to speed up the deepback (resumption
after wakeup from deepsleep), the duration may still reach several hundreds of
milliseconds (e.g. 300ms). To avoid action loss of the wakeup pin, fast keyscan and data
buffer are added. Fast keyscan is designed to avoid potential button action loss caused
by re-initialization time after MCU reboots and debounce filter processing time during

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 160 Ver.1.0.0

keyscan in mainloop. Data buffer is designed considering valid button data detected in
adv state and pushed into BLE TX FIFO will be cleared after entering connection state.

The macro “DEEPBACK_FAST_KEYSCAN_ENABLE” in app_config.h is used to control
fast keyscan and data buffer.

#define DEEPBACK_FAST_KEYSCAN_ENABLE 1

void deep_wakeup_proc(void)

{

 #if(DEEPBACK_FAST_KEYSCAN_ENABLE)

 if(analog_read(DEEP_ANA_REG0) == CONN_DEEP_FLG){

 if(kb_scan_key (KB_NUMLOCK_STATUS_POWERON,1) && kb_event.cnt){

 deepback_key_state = DEEPBACK_KEY_CACHE;

 key_not_released = 1;

 memcpy(&kb_event_cache,&kb_event,sizeof(kb_event));

 }

 }

 #endif

}

In initialization key scan is processed before user_init. After it’s detected by reading
retention analog register that MCU enters deep wakeup from connection state, the
“kb_scan_key” is invoked to directly obtain the whole matrix button state without enabling
the debounce filtering. If key scan process shows a button is pressed (button state
update is returned, and kb_event.cnt in non-zero value), the “kb_event” variable will be
copied to the cache variable “kb_event_cache”.

The “deepback_pre_proc” and “deepback_post_proc” processing are added in keyscan
during mainloop.

void proc_keyboard (u8 e, u8 *p)

{

 kb_event.keycode[0] = 0;

 int det_key = kb_scan_key (0, 1);

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

 if(deepback_key_state != DEEPBACK_KEY_IDLE){

 deepback_pre_proc(&det_key);

 }

#endif

 if (det_key){

 key_change_proc();

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 161 Ver.1.0.0

 }

#if(DEEPBACK_FAST_KEYSCAN_ENABLE)

 if(deepback_key_state != DEEPBACK_KEY_IDLE){

 deepback_post_proc();

 }

#endif

}

The “deepback_pre_proc” realizes buffer processing of fast keyscan value, as shown
below: After connection is established between Slave and Master, if no button state
update is detected in a kb_key_scan, the buffered kb_event_cache value will be used as
the current newest button state update.

For button release processing, it’s needed to check current matrix keyboard state: If
there’s button pressed, since actual button release generates a release action, it’s not
needed to add manual release; if current button is released, it’s needed to mark that a
manual release event should be added, otherwise button may fail to be released since
buffered button press event stays valid.

The “deepback_pre_proc” specifies whether manual release is needed. The
“deepback_post_proc” will determine whether to push a button release event into BLE TX
FIFO accordingly.

7.6 Repeat Key Processing

When a button is pressed and held, it’s needed to enable repeat key function to
repeatedly send the key value with a specific interval.

The “repeat key” function is masked by default. By configuring related macros in
app_config.h, this function can be controlled correspondingly.

//repeat key

#define KB_REPEAT_KEY_ENABLE 0

#defineKB_REPEAT_KEY_INTERVAL_MS 200

#define KB_REPEAT_KEY_NUM 1

#define KB_MAP_REPEAT {VK_1, }

1) KB_REPEAT_KEY_ENABLE

This macro serves to enable or mask the repeat key function. To use this function,

first set “KB_REPEAT_KEY_ENABLE” as 1.

2) KB_REPEAT_KEY_INTERVAL_MS

This macro serves to set the repeat interval time. For example, if it’s set as 200ms, it

indicates when a button is held, kb_key_scan will return an update with the interval

of 200ms. Current button state will be available in kb_event.

3) KB_REPEAT_KEY_NUM and KB_MAP_REPEAT

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 162 Ver.1.0.0

The two macros serve to define current repeat key values: KB_REPEAT_KEY_NUM

specifies the number of keycodes, while the KB_MAP_REPEAT defines a map to

specify all repeat keycodes. Note that the keycodes in the KB_MAP_REPEAT must

be the values in the KB_MAP_NORMAL.

Following example shows a 6*6 matrix keyboard: by configuring the four macros, eight
buttons including UP, DOWN, LEFT, RIGHT, V+, V-, CHN+ and CHN- are set as repeat
keys with repeat interval of 100ms, while other buttons are set as non-repeat keys.

Users can search for the four macros in the project to locate the code about repeat key.

7.7 Stuck Key Processing

Stuck key processing is used to save power when one or multiple buttons of a remote
control/keyboard is/are pressed and held for a long time unexpectedly, for example a RC
is pressed by a cup or ashtray. If keyscan detects some button is pressed and held,
without the stuck key processing, MCU won’t enter deepsleep or other low power state
since it always considers the button is not released.

Two related macros in app_config.h are:

 //stuck key

 #define STUCK_KEY_PROCESS_ENABLE 0

 #define STUCK_KEY_ENTERDEEP_TIME 60//in s

By default the stuck key processing function is masked. User can set the
“STUCK_KEY_PROCESS_ENABLE” as 1 to enable this function. The
“STUCK_KEY_ENTERDEEP_TIME” serves to set the stuck key time: if it’s set as 60s, it
indicates when button state stays fixed for more than 60s with some button held, it’s
considered as stuck key, and MCU will enter deepsleep.

Users can search for the macro “STUCK_KEY_PROCESS_ENABLE” to locate related
code in keyboard.c, as shown below:

 #if (STUCK_KEY_PROCESS_ENABLE)

 u8 stuckKeyPress[ARRAY_SIZE(drive_pins)];

 #endif

An u8-type array stuckKeyPress[5] is defined to record row(s) with stuck key in current
key matrix. The array value is obtained in the function “key_debounce_filter”.

Upper-layer processing is shown as below:

 kb_event.keycode[0] = 0;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 163 Ver.1.0.0

 int det_key = kb_scan_key (0, 1);

 if (det_key){

 #if (STUCK_KEY_PROCESS_ENABLE)

 if(kb_event.cnt){ //key press

 stuckKey_keyPressTime = clock_time();

 }

 #endif

 }

For each button state update, when button press is detected (i.e. kb_event.cnt is non-
zero value), the “stuckKey_keyPressTime” is used to record the time for the latest button
press state.

Processing in blt_pm_proc is shown as below:

 #if (STUCK_KEY_PROCESS_ENABLE)

 if(key_not_released &&

clock_time_exceed(stuckKey_keyPressTime,

STUCK_KEY_ENTERDEEP_TIME*1000000)){

 u32 pin[] = KB_DRIVE_PINS;

 for (int i=0; i<(sizeof (pin)/sizeof(*pin)); i++)

 {

 extern u8 stuckKeyPress[];

 if(stuckKeyPress[i]){

 cpu_set_gpio_wakeup (pin[i],0,1); //reverse stuck

 key pad wakeup level

 }

 }

cpu_sleep_wakeup(1, PM_WAKEUP_PAD, 0); //deepsleep

 }

 #endif

Check whether the latest pressed button is held for more than 60s: if yes, it’s considered
as stuck key, all row numbers with stuck key will be obtained via the bottom-layer
“stuckKeyPress[]”; then modify corresponding PAD wakeup polarity as low level from
high level, so that MCU can enter deepsleep and wake up by button release normally
(when button is pressed, corresponding drive pin reads high level of 10/11 VCC; after
release, the drive pin turns to low level).

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 164 Ver.1.0.0

7.8 Power Optimization for Long Key Press

Power optimization can be enabled for long pressed keys, by enabling the macro
“LONG_PRESS_KEY_POWER_OPTIMIZE”. Please refer to the PM section for details.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 165 Ver.1.0.0

8. LED Management

8.1 LED Task Related Functions

Source code about LED management is available in vendor/common/blt_led.c of 5316
BLE SDK for user reference. Users can directly include the “vendor/common/blt_led.h”
into their C files.

The following three functions need to be called:

 void device_led_init(u32 gpio,u8 polarity);

 int device_led_setup(led_cfg_t led_cfg);

 static inline void device_led_process(void);

In initialization, the “device_led_init(u32 gpio, u8 polarity)” is used to set current GPIO
and polarity corresponding to LED. If “polarity” is set as 1, it indicates LED will be turned
on when GPIO outputs high level; if “polarity” is set as 0, it indicates LED will be turned
on when GPIO outputs low level.

The “device_led_process” function is added in UI Entry of mainloop. It’s used to check
whether LED task is not finished (DEVICE_LED_BUSY). If yes, MCU will carry out
corresponding LED task operation.

8.2 LED Task Configuration and Management

8.2.1 LED Event Definition

The following structure is used to define a LED event.

 typedef struct{

 unsigned short onTime_ms;

 unsigned short offTime_ms;

 unsigned char repeatCount; //0xff special for long

 on(offTime_ms=0)/long off(onTime_ms=0)

 unsigned char priority; //0x00 < 0x01 < 0x02 < 0x04 < 0x08 <

 0x10 < 0x20 < 0x40 < 0x80

 } led_cfg_t;

The unsigned short int type “onTime_ms” and “offTime_ms” specify light on and off time
(unit: ms) for current LED event, respectively. The two variables can reach the maximum
value of 65535.

The unsigned char type “repeatCount” specifies blinking times (i.e. repeat times for light
on and off action specified by the “onTime_ms” and “offTime_ms”). The variable can
reach the maximum value of 255.

The “priority” specifies the priority level for current LED event.

To define a LED event when the LED light stays on/off, set the “repeatCount” as
255(0xff), set “onTime_ms”/“offTime_ms” as 0 or non-zero correspondingly.

LED event examples:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 166 Ver.1.0.0

1) Blink for 3s with the frequency of 1Hz: turn on for 500ms, turn off for 500ms, and

repeat for 3 times.

led_cfg_t led_event1 = {500, 500 , 3, 0x00, };

2) Blink for 50s with the frequency of 4Hz: turn on for 125ms, turn off for 125ms, and

repeat for 200 times.

led_cfg_t led_event2 = {125, 125 , 200, 0x00, };

3) Always on: onTime_ms is non-zero, offTime_ms is zero, and repeatCount is 0xff.

led_cfg_t led_event3 = {100, 0 , 0xff, 0x00, };

4) Always off: onTime_ms is zero, offTime_ms is non-zero, and repeatCount is 0xff.

led_cfg_t led_event4 = {0, 100, 0xff, 0x00, };

5) Turn on for 3s, and then turn off: onTime_ms is 1000, offTime_ms is 0, and

repeatCount is 0x3.

led_cfg_t led_event5 = {1000, 0, 3, 0x00, };

The “device_led_setup” can be invoked to deliver a led_event to LED task management.

device_led_setup(led_event1);

8.2.2 LED Event Priority

Users can define multiple LED events in SDK, however, only a LED event is allowed to
be executed at the same time. No task list is set for the simple LED management: When
LED is idle, LED will accept any LED event delivered by invoking the “device_led_setup”.
When LED is busy with a LED event (old LED event), if another event (new LED event)
comes, MCU will compare priority level of the two LED events; if the new LED event has
higher priority level, the old LED event will be discarded and MCU starts to execute the
new LED event; if the new LED event has the same or lower priority level, MCU
continues executing the old LED event, while the new LED event will be completely
discarded, rather than buffered.

By defining LED events with different priority levels, user can realize corresponding LED
indicating effect.

Since inquiry scheme is used for LED management, MCU should not enter long suspend
(e.g. 10ms * 50 = 500ms) with latency enabled and LED task ongoing
(DEVICE_LED_BUSY); otherwise LED event with small onTime_ms value (e.g. 250ms)
won’t be responded in time, thus LED blinking effect will be influenced.

#define DEVICE_LED_BUSY (device_led.repeatCount)

The corresponding processing needs to be added in blt_pm_proc, as shown below:

 user_task_flg = scan_pin_need || key_not_released || DEVICE_LED_BUSY;

 if(user_task_flg){

 bls_pm_setManualLatency(0); //Manually disable latency

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 167 Ver.1.0.0

 }

Users can refer to the code in current 5316 ble remote project for LED related
processing.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 168 Ver.1.0.0

9. blt Software Timer
Telink BLE SDK supplies source code of blt software timer demo for user reference on
timer task. Users can directly use this timer or modify it as needed.

Source code is available in “vendor/common/blt_soft_timer.c” and “blt_soft_timer.h”. To
use this timer, the macro below should be set as 1.

#define BLT_SOFTWARE_TIMER_ENABLE 0 //enable or disable

Since blt software timer is inquiry timer based on system tick, it cannot reach the
accuracy of hardware timer, and it should be continuously inquired during mainloop. The
blt soft timer applies to the use case with timing value more than 5ms and without high
requirement for time error.

Its key feature is: This timer will be inquired during mainloop, and it ensures MCU can
wake up in time from suspend and execute timer task. This design is implemented based
on “Timer wakeup of APP layer” (section 4.8).

Current design can run up to four timers, and maximum timer number is modifiable via
the macro below:

#define MAX_TIMER_NUM 4 //timer max number

9.1 Timer Initialization

Call the API below to initialize blt software timer:

void blt_soft_timer_init(void);

Timer initialization only registers “blt_soft_timer_process” as callback function of APP
layer wakeup in advance.

void blt_soft_timer_init(void)

{

 bls_pm_registerAppWakeupLowPowerCb(blt_soft_timer_process);

}

9.2 Timer Inquiry Processing

The function “blt_soft_timer_process” is used to implement inquiry processing of blt
software timer.

void blt_soft_timer_process(int type);

On one hand, mainloop should always invoke this function in the location as shown in the
figure below. On the other hand, this function must be registered as callback function of
APP layer wakeup in advance. Whenever MCU is woken up from suspend in advance by
timer, this function will be quickly executed to process timer task.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 169 Ver.1.0.0

The parameter “type” of the “blt_soft_timer_process” indicates two cases to enter this
function: If “type” is 0, it indicates entering this function via inquiry in mainloop; if “type” is
1, it indicates entering this function when MCU is woke up in advance by timer.

#define MAINLOOP_ENTRY 0

#define CALLBACK_ENTRY 1

The implementation of “blt_soft_timer_process” is rather complex, and its basic principle
is shown as below:

1) First check whether there is still user-defined timer in current timer table.If not,

directly exit the function and disable timing wakeup of APP layer; if there’s timer task,

continue the flow.

 if(!blt_timer.currentNum){

 bls_pm_setAppWakeupLowPower(0, 0); //disable

 return;

}

2) Check whether the nearest timer task reaches: if the task reaches, exit the function;

otherwise continue the flow. Since the design will ensure all timers are time-ordered,

only the nearest timer needs to be checked.

 if(!blt_is_timer_expired(blt_timer.timer[0].t, now)){

 return;

}

3) Inquire all current timer tasks, and execute corresponding task as long as timer

value reaches.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 170 Ver.1.0.0

The code above shows processing of timer task function: If the return value of this

function is less than 0, this timer task will be deleted and won’t be responded; if the

return value is 0, the previous timing value will be retained; if the return value is more

than 0, this return value will be used as the new timing cycle (unit: us).

4) In step 3), if tasks in timer task table change, the previous time sequence may be

disturbed, and re-ordering is needed.

if(change_flg){

 blt_soft_timer_sort();

}

5) If the nearest timer task will be responded within 3s (it can be modified as a value

larger than 3s as needed) from now, the response time will be set as wakeup time of

APP layer in advance; otherwise APP layer wakeup in advance will be disabled.

 if((u32)(blt_timer.timer[0].t - now) < 3000 *

CLOCK_SYS_CLOCK_1MS){

 bls_pm_setAppWakeupLowPower(blt_timer.timer[0].t, 1);

 }

 else{

 bls_pm_setAppWakeupLowPower(0, 0); //disable

}

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 171 Ver.1.0.0

9.3 Add Timer Task

The API below is used to add timer task.

typedef int (*blt_timer_callback_t)(void);

int blt_soft_timer_add(blt_timer_callback_t func, u32

interval_us);

“func”: timer task function;“interval_us”: timing value (unit: us). The int-type return value
corresponds to three processing methods:

1) If the return value is less than 0, this executed task will be automatically deleted.

2) If the return value is 0, the old interval_us will be used as timing cycle.

3) If the return value is more than 0, this return value will be used as the new timing

cycle (unit: us).

As shown in the implementation code, if timer number exceeds the maximum value, the
adding operation will fail. Whenever a new timer task is added, re-ordering must be
implemented to ensure timer tasks are time-ordered, while the index corresponding to the
nearest timer task should be 0.

9.4 Delete Timer Task

As introduced above, timer task will be automatically deleted when the return value is
less than 0. Except for this case, the API below can be called to specify the timer task to
be deleted.

int blt_soft_timer_delete(blt_timer_callback_t func);

9.5 Demo

For Demo code of blt soft timer, please refer to “TEST_USER_BLT_SOFT_TIMER” in
5316 feature.

 int gpio_test0(void)

 {

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 172 Ver.1.0.0

 DBG_CHN0_TOGGLE; //gpio 0 toggle to see the effect

 return 0;

 }

 int gpio_test1(void)

 {

 DBG_CHN1_TOGGLE; //gpio 1 toggle to see the effect

 static u8 flg = 0;

 flg = !flg;

 if(flg){

 return 7000;

 }

 else{

 return 17000;

 }

 }

 int gpio_test2(void)

 {

 DBG_CHN2_TOGGLE; //gpio 2 toggle to see the effect

 //timer last for 5 second

 if(clock_time_exceed(0, 5000000)){

 //return -1;

 blt_soft_timer_delete(&gpio_test2);

 }

 return 0;

 }

 int gpio_test3(void)

 {

 //gpio 3 toggle to see the effect

 DBG_CHN3_TOGGLE;

 return 0;

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 173 Ver.1.0.0

 }

Initialization:

blt_soft_timer_init();

blt_soft_timer_add(&gpio_test0, 23000);

blt_soft_timer_add(&gpio_test1, 7000);

blt_soft_timer_add(&gpio_test2, 13000);

blt_soft_timer_add(&gpio_test3, 27000);

Four tasks are defined with differenet features:

1) Toggle gpio_test0 once every 23ms.

2) gpio_test1 uses 7ms/17ms toggle timer.

3) Delete gpio_test2 after 5s, which can be implemented by invoking

“blt_soft_timer_delete(&gpio_test2)” or “return -1”.

4) Toggle gpio_test3 once every 27ms.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 174 Ver.1.0.0

10. IR

10.1 PWM Driver

Please refer to PWM section in TLSR8232 datasheet to better understand PWM driver.

PWM related hardware configurations are very simple and are basically implemented by
operating registers. APIs are all defined in “pwm.h” (c files not needed) and are
implemented by using “static inline function”, which improves efficiency and saves code
size.

10.1.1 PWM id and Pin

TLSR8232 supports up to 12-channel PWM: PWM0 ~ PWM5 and PWM0_N ~ PWM5_N.
Six-channel PWM is defined in driver:

typedef enum {

 PWM0_ID = 0,

 PWM1_ID,

 PWM2_ID,

 PWM3_ID,

 PWM4_ID,

 PWM5_ID,

}pwm_id;

Only six-channel PWM0~PWM5 are configured in software, while the other six-channel
PWM0_N~PWM5_N is inverted output of PWM0~PWM5 waveform. For example:
PWM0_N is inverted output of PWM0 waveform. When PWM0 is high level, PWM0_N is
low level; When PWM0 is low level, PWM0_N is high level. Therefore, as long as
PWM0~PWM5 are configured, PWM0_N~PWM5_N are configured.

IC pins of the 12-channel PWM are shown as below:

PWMx Pin

PWMx_n Pin

PWM0 PA0/PB3 PWM0_N PB6/PC2

PWM1 PB1/PB7 PWM1_N PA2/PB4

PWM2 PA4/PB2 PWM2_N PC1

PWM3 PB0/PC7 PWM3_N PA1

PWM4 PA3/PB5/PC6 PWM4_N PA6

PWM5 PA5/PA7 PWM5_N PC3

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 175 Ver.1.0.0

Use “void gpio_set_func(GPIO_PinTypeDef pin, GPIO_FuncTypeDef func)” to set PWM
function of pins.

Pin: actual output pins of PWM waveform. func must select from AS_PWM0 ~
AS_PWM5_N in the definition of GPIO_FuncTypeDef according to actual PWM functions
of GPIOs in the table above.

typedef enum{

……

 AS_PWM0 = 20,

 AS_PWM1 = 21,

 AS_PWM2 = 22,

 AS_PWM3 = 23,

 AS_PWM4 = 24,

 AS_PWM5 = 25,

 AS_PWM0_N = 26,

 AS_PWM1_N = 27,

 AS_PWM2_N = 28,

 AS_PWM3_N = 29,

 AS_PWM4_N = 30,

 AS_PWM5_N = 31,

}GPIO_FuncTypeDef;

For example, use PA0 as PWM0:

gpio_set_func(GPIO_PA0, AS_PWM0)

10.1.2 PWM Clock

The “pwm_set_clk(int system_clock_hz, int pwm_clk)” is used to set PWM clock.

 “system_clock_hz”: current system clock CLOCK_SYS_CLOCK_HZ. (The marco is

defined in app_config.h.)

 “pwm_clk”: PWM clock to be configured. “system_clock_hz” must be an integral

multiple of “pwm_clk” so as to get the right PWM clock via frequency division.

To increase accuracy of PWM waveform, PWM clock must be as large as possible but
smaller than system clock. It’s recommended to set “pwm_clk” as
“CLOCK_SYS_CLOCK_HZ”:

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, CLOCK_SYS_CLOCK_HZ);

Suppose the current system clock CLOCK_SYS_CLOCK_HZ is 16000000, the PWM
clock set above equals to the system clock, as 16M.

If PWM clock needs to be 8M, set as below. No matter how the system clock changes
(CLOCK_SYS_CLOCK_HZ is 16000000, 32000000 or 48000000), PWM clock will be
8M.

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, 8000000);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 176 Ver.1.0.0

10.1.3 PWM Cycle and Duty

PWM waveform consists of PWM Signal Frames. For a PWM Signal Frame, “cycle” and
“cmp” need to be configured via related APIs.

void pwm_set_cycle(pwm_id id, unsigned short cycle_tick)

This API is used to set PWM cycle, the unit is the number of PWM clocks.

void pwm_set_cmp(pwm_id id, unsigned short cmp_tick)

This API is used to set PWM cmp, the unit is the number of PWM clocks.

The API below combines the two APIs into one, which improves the configuration
efficiency.

void pwm_set_cycle_and_duty(pwm_id id, unsigned short cycle_tick,

unsigned short cmp_tick)

PWM duty of a PWM signal frame is calculated as below:

PWM duty = PWM cmp/PWM cycle

The figure below shows the result of pwm_set_cycle_and_duty(PWM0_ID, 5, 2). The
cycle of a Signal Frame is five PWM clocks, 2 PWM clocks in high level, PWM duty is
40%.

PWM
clock

PWM
waveform

1 2 3 4 5

cycle

cmp

Signal Frame Signal Frame

Figure 10-1 PWM Cycle & Duty

For PWM0 ~ PWM5, by default hardware will set PWM output high level followed by low
level during a frame cycle. To obtain PWM waveform with low level followed by high
level, use the following two methods:

1) Use corresponding PWM0_N ~ PWM5_N (inverted output of PWM0 ~ PWM5).

2) Use API “static inline void pwm_revert(pwm_id id)” to invert PWM0 ~

PWM5 waveform.

Suppose current PWM clock is 16MHz, to set PWM cycle to 1ms and duty cycle for
PWM0 to 50%:

pwm_set_cycle(PWM0_ID , 16000)

pwm_set_cmp (PWM0_ID , 8000)

or

pwm_set_cycle_and_duty(PWM0_ID, 16000, 8000);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 177 Ver.1.0.0

10.1.4 PWM Revert

“static inline void pwm_revert(pwm_id id)” is used to invert PWM0 ~ PWM5 waveform.

“static inline pwm_n_revert(pwm_id id)” is used to invert PWM0_N ~ PWM5_N waveform.

10.1.5 PWM Start and Stop

Use the two interfaces below to enable (start)/disable (stop) certain PWM.

void pwm_start(pwm_id id) ;

void pwm_stop(pwm_id id) ;

10.1.6 PWM Mode

PWM supports five modes: Normal mode(also Continuous mode), Counting mode, IR
mode, IR FIFO mode and IR DMA FIFO mode.

typedef enum{

 PWM_NORMAL_MODE = 0x00,

 PWM_COUNT_MODE = 0x01,

 PWM_IR_MODE = 0x03,

 PWM_IR_FIFO_MODE = 0x07,

 PWM_IR_DMA_FIFO_MODE = 0x0F,

}pwm_mode;

The API to set PWM mode is:

void pwm_set_mode(pwm_id id, pwm_mode mode)

PWM0 supports all five modes, Normal mode, Counting mode, IR mode, IR FIFO mode
and IR DMA FIFO mod, while PWM1 ~ PWM5 only support normal mode. In other words,
PWM0 supports other four special modes besides normal mode.

Please section 8.5 in TLSR8232 datasheet for details of PWM modes.

10.1.7 PWM Pulse Number

void pwm_set_pulse_num(pwm_id id, unsigned short pulse_num) is used to

set the number of Signal Frames of specified PWM waveforms. Here “pulse” means
Signal Frames.

For normal mode (Continuous mode), there is no limit to the number of Signal Frames,
therefore this API is meaningless to normal mode. This API is only useful to other four
special modes.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 178 Ver.1.0.0

10.1.8 PWM Phase

void pwm_set_phase(pwm_id id, unsigned short phase)is used to set delay

time before PWM is started. “phase” is the delay time, the unit is the number of PWM
clocks. Generally it can be set as 0 (no delay).

10.1.9 PWM Interrupt

Some basic concepts about Telink MCU interrupt are introduced here.

Interrupt “status” is state flag bit generated by hardware interrupt request of certain IRQ
source, and it does not depend on software setting. No matter whether “mask” is
enabled, interrupt request will always set corresponding IRQ “status” to 1. Generally,
“status” can be cleared to 0 by writing it with “1”.

Interrupt response: When CPU receives an interrupt request (IRQ) from certain IRQ
source, it will determine whether to respond to the IRQ. If yes, firmware pointer PC will
jump to interrupt handling part “irq_handler”.

To enable interrupt response, please make sure all “mask” bits corresponding to current
IRQ are enabled. One IRQ may correspond to multiple “mask” bits which are the relation
of logic “And”. IRQ request won’t trigger interrupt response unless all of its related “mask”
bits are enabled.

PWM driver in the “register.h” only involves the following IRQ sources.

#define reg_pwm_irq_mask REG_ADDR8(0x7b0)

#define reg_pwm_irq_sta REG_ADDR8(0x7b1)

enum{

 FLD_IRQ_PWM0_PNUM = BIT(0),

 FLD_IRQ_PWM0_IR_DMA_FIFO_DONE = BIT(1),

 FLD_IRQ_PWM0_FRAME = BIT(2),

 FLD_IRQ_PWM1_FRAME = BIT(3),

 FLD_IRQ_PWM2_FRAME = BIT(4),

 FLD_IRQ_PWM3_FRAME = BIT(5),

 FLD_IRQ_PWM4_FRAME = BIT(6),

 FLD_IRQ_PWM5_FRAME = BIT(7),

};

The eight IRQ sources listed in the enum correspond to core_7b0 BIT<0:7> (“mask”) /
core_7b1 BIT<0:7> (“status”).

In the figure below, PWM0 works in IR mode, duty cycle of Signal Frame is 50%, pulse
number (i.e. Signal Frame number) for each IR task is 3. This figure will help to illustrate
the three types for PWM IRQ “status”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 179 Ver.1.0.0

Signal Frame Signal Frame Signal Frame Signal Frame Signal Frame Signal Frame

IRQ_PWM0_FRAME

IRQ_PWM0_PNUM

IRQ_PWM0_FRAME

IRQ_PWM0_PNUM

IR task
(pulse number = 3)

IR task
(pulse number = 3)

Figure 10-2 PWM interrupt

1) IRQ_PWMn_FRAME(n=0,1,2,3,4,5) for PWM0~PWM5: After each signal frame,

PWM#n (n=0~5) will generate a frame-done IRQ (Interrupt Request) signal

“IRQ_PWMn_FRAME”.

As shown in the figure above, six frame-done IRQ signal are generated at the end of

each PWM0 Signal Frame.

2) IRQ_PWM0_PNUM: In Counting mode and IR mode, PWM0 will generate a Pnum

IRQ signal “IRQ_PWM0_PNUM” after completing a group of Signal Frames (pulse

number is determined by the API pwm_set_pulse_num).

As shown in the figure above, PWM0 will generate a Pnum IRQ signal at the end of

a pulse group containing three Signal Frames.

3) IRQ_PWM0_IR_DMA_FIFO_DONE

In IR DMA FIFO mode, PWM0 will generate an IR waveform send done IRQ signal

“IRQ_PWM0_IR_DMA_FIFO_DONE”, after all PWM waveforms configured in DMA

are sent.

As described above, IRQ request won’t trigger interrupt response unless all of its related
“mask” bits are enabled. Taking “FLD_IRQ_PWM0_PNUM” for an example, three “mask”
bits need to be enabled.

1) Enable “mask” of FLD_IRQ_PWM0_PNUM, i.e. core_7b0:

reg_pwm_irq_mask |= FLD_IRQ_PWM0_PNUM;

Generally, to avoid false triggering of interrupt response, previous “status” needs to

cleared before enabling “mask”.

reg_pwm_irq_sta = FLD_IRQ_PWM0_PNUM;

2) Enable PWM “mask” in MCU system interrupt, i.e. core_640 BIT<14>.

#define reg_irq_mask REG_ADDR32(0x640)

enum{

 ……

 FLD_IRQ_SW_PWM_EN = BIT(14), //irq_software | irq_pwm

 ……

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 180 Ver.1.0.0

}

The method to enable this “mask”:

Reg_irq_mask |= FLD_IRQ_SW_PWM_EN;

3) Enable MCU global interrupt “mask”, i.e. irq_enable().

10.1.10 API for IR DMA FIFO Mode

This section introduces the APIs dedicated for IR DMA FIFO mode. Please refer to PWM
demo code in the SDK.

DMA length
waveform

1

4 bytes

waveform
2

waveform
n

……

2 bytes 2 bytes 2 bytes

DMA FIFO buffer

FIFO 1 FIFO 2 FIFO n

Figure 10-3 DMA FIFO Buffer for IR DMA FIFO Mode

DMA FIFO buffer is a data block defined in SRAM, and the “DMA length” of the first 4
bytes indicates the number of bytes occupied by FIFO. As shown above, DMA length =
n*2.

There are n FIFOs, and each FIFO has two bytes to indicate one PWM waveform. For
TLSR8232, “n” can be up to 256.

After DMA data buffer takes effect, PWM HW module will send out waveform 1 ~
waveform n successively.

After all waveforms are sent, PWM is stopped automatically and
IRQ_PWM0_IR_DMA_FIFO_DONE is triggered.

10.1.10.1 Configuration of DMA FIFO

Each DMA FIFO uses 2 bytes (16 bits) to configure one PWM waveform. When the API
below is called, 2-byte DMA FIFO data will be returned.

Unsigned short pwm_config_dma_fifo_waveform(int carrier_en,

Pwm0Pulse_SelectDef pulse, unsigned short pulse_num);

By configuring the three parameters “carrier_en”, “pulse” and “pulse_num”, the PWM
output waveform contains “pulse_num” PWM pulses (Signal Frames).

As shown in the configuration format in the 8232 datasheet, BIT(15) specifies Signal
Frame format of PWM waveform, and corresponds to the “carrier_en” of this API.

 When “carrier_en” is 1, PWM will output carrier pulse.

 When “carrier_en” is 0, PWM will output Signal Frames with low level only.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 181 Ver.1.0.0

The “pulse_num” specifies the number of Signal Frames for current PWM waveform.

The “pulse” supports two definitions below:

Typedef enum{

 PWM0_PULSE_NORMAL = 0,

 PWM0_PULSE_SHADOW = BIT(14),

}Pwm0Pulse_SelectDef;

 When “pulse” is PWM0_PULSE_NORMAL, Signal Frame uses the configuration of

the API “pwm_set_cycle_and_duty”.

 When “pulse” is PWM0_PULSE_SHADOW, Signal Frame uses the configuration of

PWM shadow mode.

PWM shadow mode enables more flexibility for PWM waveform configuration in IR

DMA FIFO mode. Related API is shown as below, and its configuration is consistent

with pwm_set_cycle_and_duty.

Void pwm_set_pwm0_shadow_cycle_and_duty(unsigned short cycle_tick,

unsigned short cmp_tick);

10.1.10.2 Set DMA FIFO Buffer

After DMA FIFO buffer is configured, call the API below to set the starting address of the
buffer to DMA module.

Void pwm_set_dma_address(void * pdat);

10.1.10.3 Start and Stop of IR DMA FIFO Mode

After DMA FIFO buffer is prepared, call the API below to start sending PWM waveforms.

void pwm_start_dma_ir_sending(void);

After all PWM waveforms in DMA FIFO buffer are sent, the PWM module will be stopped
automatically. The API below can be called to manually stop the PWM module in
advance.

void pwm_stop_dma_ir_sending(void);

10.2 IR Demo

Please refer to the IR demo code in SDK demo “5316_ble_remote”. Set the macro
“REMOTE_IR_ENABLE” in “app_config.h” to 1.

10.2.1 PWM Mode Selection

As required by IR transmission, PWM output needs to switch at specific time with small
error tolerance of switch time accuracy to avoid incorrect IR.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 182 Ver.1.0.0

As described in Link Layer timing sequence (section 3.2.4), Link Layers uses system
interrupt to process brx event. (In the new SDK, adv event is processed in the main_loop
and does not occupy system interrupt time.) When IR is about to switch PWM output
soon, if brx event related interrupt comes first and occupies MCU time, the time to switch
PWM output may be delayed, thus to result in IR error.

Therefore IR cannot use PWM Normal mode.

For Telink 826x BLE SDK, PWM IR mode is used to implement IR. Please refer to “826x
BLE SDK handbook”.

Since 826x PWM IR mode only supports data pre-storage of two IR FIFOs, if PWM
Signal Frame takes very short time, even shorter than BLE interrupt handling time in
irq_handler, PWM waveform may be delayed, thus it brings a risk for IR mode.

5316 introduces an extra IR DMA FIFO mode which is not supported by 826x. In IR DMA
FIFO mode, since FIFO can be defined in SRAM, more FIFOs are available, which can
effectively solve the shortcoming of PWM IR mode above.

IR DMA FIFO mode supports pre-storage of multiple PWM waveforms into SRAM. Once
DMA is started, no software involvement is needed. This can save frequent SW
processing time, and avoid PWM waveform delay caused by simultaneous response to
multiple IRQs in interrupt system.

Only PWM0 with IR DMA FIFO mode can be used to implement IR. Therefore, in HW
design, IR control GPIO must be PWM0 pin or PWM0_n pin.

10.2.2 Demo IR protocol

The figure below shows demo IR protocol in SDK.

9ms

Start

Data

Repeat Repeat

Data format：Address + Addrss + Command + Command

Red : Start
Blue: Data

Green : Repeat

4.5ms

560uS

560uS

560uS

1690uS

Logical
“0”

Logical “1”
Start

Data

110 mS 110 mS

Repeat

9ms

2250uS

Figure 10-4 Demo IR protocol

10.2.3 IR Timing Design

The figure below shows basic IR timing abased demo IR protocol and feature of IR DMA
FIFO mode.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 183 Ver.1.0.0

In IR DMA FIFO mode, a complete task is defined as FifoTask. Herein the processing of
IR repeat signal adopts the method of “add repeat one by one”, i.e. the macro below is
defined as 1.

#define ADD_REPEAT_ONE_BY_ONE 1

data repeat repeat

FifoTask_data FifoTask_repeatFifoTask_idle FifoTask_repeat

repeat

IR dma fifo done
interrupt

IR dma fifo done
interrupt

IR dma fifo done
interrupt

IR dma fifo done
interrupt

IR start

110 mS

T_data 110mS–T_data

110 mS110 mS

Figure 10-5 IR Timing 1

When a button is pressed to trigger IR transmission, IR is disassembled to FifoTasks as
shown in Figure 10-5.

1) After IR is started, run FifoTask_data to send valid data. The duration of

FifoTask_data, marked as T_data, is not certain due to the uncertainty of data. After

FifoTask_data is finished, trigger IRQ_PWM0_IR_DMA_FIFO_DONE.

2) In interrupt function of IRQ_PWM0_IR_DMA_FIFO_DONE, start FifoTask_idle phase

to send signal without carrier and it lasts for a duration of (110ms – T_data). This

phase is designed to guarantee the time point the first FifoTask_repeat is 110ms

later after IR is started. After FifoTask_idle is finished, trigger

IRQ_PWM0_IR_DMA_FIFO_DONE.

3) In interrupt function of IRQ_PWM0_IR_DMA_FIFO_DONE, start the first

FifoTask_repeat. Each FifoTask_repeat lasts for 110ms. By adding FifoTask_repeat

in corresponding interrupt function, IR repeat signals can be sent continuously.

4) The time point to stop IR is not certain, and it depends on the time to release the

button. After the APP layer detects key release, as long as FifoTask_data is correctly

completed, IR transmission is finished by manually stoppng IR DMA FIFO mode.

Following shows some optimization steps for the IR timing design above.

1) Since FifoTask_repeat timing is fixed, and there are many DMA FIFOs in IR DMA

FIFO mode, multiple FifoTask_repeat of 110ms can be assembled into one

FifoTask_repeat*n, so as to reduce the number of times to process

IRQ_PWM0_IR_DMA_FIFO_DONE in SW.

Corresponding to the processing of “ADD_REPEAT_ONE_BY_ONE” macro defined

as 0, the Demo herein assembles five IR repeat signals into one FifoTask_repeat*5.

User can further optimize it according to the usage of DMA FIFOs.

2) Based on step 1), combine FifoTask_ilde and the first “FifoTask_repeat*n” to form

“FifoTask_idle_repeat*n”.

The figure below shows optimized IR timing.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 184 Ver.1.0.0

data

FifoTask_data FifoTask_idle_repeat*n FifoTask_repeat*n

re
pe

at

IR dma fifo done
interrupt

IR dma fifo done
interrupt

IR dma fifo done
interrupt

IR start

110 mS * n 110 mS * n

re
pe

at

re
pe

at

re
pe

at

re
pe

at

110mS

……
1 n

……
1 n2,3... 2,3...

…… ……

Figure 10-6 IR Timing 2

As per the IR timing design above, corresponding code in SW flow is shown as below:

At IR start, invoke the function “ir_nec_send”, enable FifoTask_data, and use interrupt to
control the following flow. In the interrupt when FifoTask_data is finished, enable
FifoTask_idle. In the interrupt when FifoTask_idle is finished, enable FifoTask_repeat.
Before manually stopping IR DMA FIFO mode, FifoTask_repeat is executed continually.

void ir_nec_send(u8 addr1, u8 addr2, u8 cmd)

{

 //Add FifoTask_data to Dma

 ir_send_ctrl.is_sending = IR_SENDING_DATA;

 ir_send_ctrl.sending_start_time = clock_time();

 pwm_start_dma_ir_sending();

}

void rc_ir_irq_prc(void)

{

 if(reg_pwm_irq_sta & FLD_IRQ_PWM0_IR_DMA_FIFO_DONE)

{

 reg_pwm_irq_sta = FLD_IRQ_PWM0_IR_DMA_FIFO_DONE;

 if(ir_send_ctrl.repeat_enable){

 if(ir_send_ctrl.is_sending == IR_SENDING_DATA){

 ir_send_ctrl.is_sending = IR_SENDING_REPEAT;

 //Add FifoTask_idle_repeat*n to Dma

 pwm_start_dma_ir_sending();

 }

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 185 Ver.1.0.0

 else if(ir_send_ctrl.is_sending == IR_SENDING_REPEAT){

 //Add FifoTask_repeat*n to Dma

 pwm_start_dma_ir_sending();

 }

 }

 else{

 ir_send_release();

 }

 }

}

10.2.4 IR Initialization

10.2.4.1 rc_ir_init

IR initialization function is shown as below. Please refer to demo code in SDK.

void rc_ir_init(void)

10.2.4.2 IR Hardware Configuration

The demo code is as below:

pwm_n_revert(PWM0_ID);

 gpio_set_func(GPIO_PA0, AS_PWM0);

 pwm_set_mode(PWM0_ID, PWM_IR_DMA_FIFO_MODE);

 pwm_set_phase(PWM0_ID, 0); //no phase at pwm beginning

 pwm_set_cycle_and_duty(PWM0_ID, PWM_CARRIER_CYCLE_TICK,

 PWM_CARRIER_HIGH_TICK);

 pwm_set_dma_address(&T_dmaData_buf);

reg_irq_mask |= FLD_IRQ_SW_PWM_EN;

 reg_pwm_irq_sta = FLD_IRQ_PWM0_IR_DMA_FIFO_DONE;

Since only PWM0 supports ID DMA FIFO mode, PA0 is selected to correspond to PWM0
herein.

In the demo, IR carrier frequency is 38K, cycle is 26.3us, and duty cycle is 1/3. The API
“pwm_set_cycle_and_duty” should be used to configure the cycle and duty cycle. Since
all FifoTasks share the same carrier frequency, the carrier of 38K can meet the
configuration requirement, and PWM shadow mode is not needed.

DMA FIFO buffer is “T_dmaData_buf”。

Enable system interrupt mask “FLD_IRQ_SW_PWM_EN”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 186 Ver.1.0.0

Clear system status “FLD_IRQ_PWM0_IR_DMA_FIFO_DONE”.

10.2.4.3 IR Variable Initialization

Related variables in the SDK demo includes waveform_start_bit_1st,
waveform_start_bit_2nd, and etc.

As introduced in IR timing design, FifoTask_data and FifoTask_repeat should be
configured.

Start signal = 9ms carrier signal + 4.5ms low level signal (no carrier). Call
“pwm_config_dma_fifo_waveform” to configure the two corresponding DMA FIFO data.

//start bit, 9000 us carrier, 4500 us low

 waveform_start_bit_1st = pwm_config_dma_fifo_waveform(1,

PWM0_PULSE_NORMAL, 9000 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

 waveform_start_bit_2nd = pwm_config_dma_fifo_waveform(0,

PWM0_PULSE_NORMAL, 4500 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

 u16 waveform_stop_bit_2nd;

The method also applies to configure stop signal, repeat signal, data logic “1” signal, and
data logic “0” signal.

10.2.5 FIFO Task Configuration

10.2.5.1 FIFO Task_data

As per demo IR protocol, to send a cmd (e.g. 7), first send start signal, i.e. 9ms carrier
signal + 4.5ms low level signal (no carrier); then send “address+ ~address+ cmd +
~cmd”. In the demo code, address is 0x88.

When sending the final bit of “~cmd”, logical “0” or logical “1” always contains some non-
carrier signals at the end. If “~cmd” is not followed by any data, there may be a problem
on Rx side: Since there’s no boundary to differentiate carrier, the FW does not know
whether the non-carrier signal duration of the final bit is 560us or 1690us, and fails to
recognize whether it’s logical “0” or logical “1”.

To solve this problem, the Data signal should be followed by a “stop” signal which is
defined as 560us carrier signal + 500us non-carrier signal.

Thus, the FifoTask_data mainly contains the three parts below:

1) start signal: 9ms carrier signal + 4.5ms low level signal (no carrier)

2) data signal: address+ ~address+ cmd + ~cmd

3) stop signal: 560us carrier signal + 500us non-carrier signal

The code below is used to configure DMA Fifo buffer and start IR transmission.

//// set waveform input in sequence //////

T_dmaData_buf.data_num = 0;

//waveform for start bit

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 187 Ver.1.0.0

T_dmaData_buf.data[T_dmaData_buf.data_num ++]=

waveform_start_bit_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++]=

waveform_start_bit_2nd;

//add data

u32 data = (~cmd)<<24 | cmd<<16 | addr2<<8 | addr1;

for(int i=0;i<32;i++){

 if(data & BIT(i)){

 //waveform for logic_1

 T_dmaData_buf.data[T_dmaData_buf.data_num ++] =

waveform_logic_1_1st;

 T_dmaData_buf.data[T_dmaData_buf.data_num ++] =

 waveform_logic_1_2nd;

 }

 else{

 //waveform for logic_0

 T_dmaData_buf.data[T_dmaData_buf.data_num ++] =

 waveform_logic_0_1st;

 T_dmaData_buf.data[T_dmaData_buf.data_num ++] =

 waveform_logic_0_2nd;

 }

 }

//waveform for stop bit

T_dmaData_buf.data[T_dmaData_buf.data_num ++] =

waveform_stop_bit_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] =

waveform_stop_bit_2nd;

T_dmaData_buf.dma_len = T_dmaData_buf.data_num * 2;

……

pwm_start_dma_ir_sending();

10.2.5.2 FifoTask_idle

As introduced in IR timing design, FifoTask_idle lasts for the duration “110mS – T_data”.

Record the time when FifoTask_data starts:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 188 Ver.1.0.0

ir_send_ctrl.sending_start_time = clock_time();

Then calculate FifoTask_idle time in the interrupt triggered by completion of
FifoTask_data:

110mS – (clock_time() - ir_send_ctrl.sending_start_time)

Demo code:

u32 tick_2_repeat_sysClockTimer16M = 110*CLOCK_16M_SYS_TIMER_CLK_1MS

–

(clock_time() - ir_send_ctrl.sending_start_time);

u32 tick_2_repeat_sysTimer =

 (tick_2_repeat_sysClockTimer16M*CLOCK_SYS_CLOCK_1US>>4);

Please pay attention to time unit switch. As introduced in Clock module, System Timer
frequency used in software timer is fixed as 16MHz. Since PWM clock is derived from
system clock, user needs to consider the case with system clock rather than 16MHz (e.g.
32MHz, 48MHz).

FifoTask_idle does not send PWM waveform, which can be considered to continually
send non-carrier signal. It can be implemented by setting the first parameter “carrier_en”
of the API “pwm_config_dma_fifo_waveform” to 0.

waveform_wait_to_repeat = pwm_config_dma_fifo_waveform(0,

PWM0_PULSE_NORMAL, tick_2_repeat_sysTimer/PWM_CARRIER_CYCLE_TICK);

10.2.5.3 FifoTask_repeat

As per Demo IR protocol, repeat signal is 9ms carrier signal + 2.25ms non-carrier signal.

Similar to the processing of FifoTask_data, the end of repeat signal should be followed
by 560us carrier signal as stop signal.

As introduced in IR timing design, repeat signal lasts for 110ms, so the duration of non-
carrier signal after the 560us carrier signal should be:

110mS – 9mS – 2.25mS – 560uS = 99190uS

The code below shows the configuration for a complete repeat signal:

//repeat signal first part, 9000 us carrier, 2250 us low

 waveform_repeat_1st = pwm_config_dma_fifo_waveform(1,

PWM0_PULSE_NORMAL, 9000 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

 waveform_repeat_2nd = pwm_config_dma_fifo_waveform(0,

PWM0_PULSE_NORMAL, 2250 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

//repeat signal second part, 560 us carrier, 99190 us low

 waveform_repeat_3rd = pwm_config_dma_fifo_waveform(1,

PWM0_PULSE_NORMAL, 560 * CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

 waveform_repeat_4th = pwm_config_dma_fifo_waveform(0,

PWM0_PULSE_NORMAL, 99190 *

CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 189 Ver.1.0.0

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_1st;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_2nd;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_3rd;

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_repeat_4th;

10.2.5.4 FifoTask_repeat*n&FifoTask_idle_repeat*n

By simple superposition in DMA Fifo buffer, “FifoTask_repeat*n” and
“FifoTask_idle_repeat*n” can be implemented on the basis of FifoTask_idle and
FifoTask_repeat.

10.2.6 Check IR Busy Status in APP Layer

In the Application layer, user can use the variable “ir_send_ctrl.is_sending” to check
whether IR is busy sending data or repeat signal.

ir_send_ctrl.is_sending

As shown in the demo code below, when IR is busy, MCU cannot enter suspend.

if(ir_send_ctrl.is_sending)

{

 bls_pm_setSuspendMask(SUSPEND_DISABLE);

 }

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 190 Ver.1.0.0

11. Drivers in BLE SDK

11.1 External Capacitor for 24 MHz Crystal

By default, SDK uses internal capacitor of TLSR8232 MCU (i.e. cap corresponding to
ana_81<4:0>) as matching capacitor of 24MHz crystal oscillator, which is measurable
and adjustable in Telink jig system to reach optimal frequency point value of final
application product.

If an external soldered capacitor needs to be use as the matching capacitor of 24MHz
crystal oscillator instead, the API below should be called at the beginning of main
function and before “cpu_wakeup_init” function.

static inline void blc_app_setExternalCrystalCapEnable(u8 en)

{

 blt_miscParam.ext_cap_en = en;

}

As long as this API is called before “cpu_wakeup_init”, SDK will automatically implement
all operations (e.g. disable internal matching capacitor and stop reading frequency offset
calibration value).

11.2 Select 32kHz Clock Sources

By default SDK uses internal 32kHz crystal, i.e. 32kHz RC. The error of this crystal is
large, so its accuracy will be influenced for applications with long suspend time. Currently
32kHz RC supports up to 3s suspend by default. Once the suspend time exceeds 3s,
inaccurate packet Rx time will be caused by BLE timing error; this case usually needs
packet Rx/Tx retry, thus to increase power consumption and result in disconnection.

To ensure time accuracy for long suspend applications, external 32kHz crystal (i.e.
32kHz pad) should be used instead. Currently SDK supports this mode.

Call either of the two APIs below at the beginning of main function (must before
“cpu_wakeup_init” function) to select 32kHz RC or 32kHz pad.

void blc_pm_select_internal_32k_crystal(void);

void blc_pm_select_external_32k_crystal(void);

SDK chooses 32k RC by default by calling “blc_pm_select_internal_32k_crystal”. For 32k
pad, call “blc_pm_select_external_32k_crystal”.

11.3 EMI

11.3.1 EMI Test

5316 SDK provides project “EMI Test”. Users can see “app_emi.c” in the project folder of
“5316_driver_test” , see “emi.c and emi.h” in driver/5316 files for related documents. To
use EMI, users need to set the marco “DRIVER_TEST_MODE” in “app_config.h to
“TEST_RF_EMI”.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 191 Ver.1.0.0

EMI Test supports four test mode: Carrire mode (send carrier only), CD mode (send
Carrirer with data), RX mode, TX mode. TX mode supports three sub-modes with
different packet types.

struct test_list_s ate_list[] = {

 {0x01,emicarrieronly},

 {0x02,emi_con_prbs9},

 {0x03,emirx},

 {0x04,emitxprbs9},

 {0x05,emitx55},

 {0x06,emitx0f},

};

11.3.1.1 Carrier Mode

Carrier mode is used to test the sending of carrier. The function is:

void emicarrieronly(RF_ModeTypeDef rf_mode,

RF_TxPowerTypeDef pwr,

signed char rf_chn);

Parameters:

rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional

pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.

rf_chn Set RF channel, the channel actually used is (2400+rf_chn).

11.3.1.2 CD Mode

CD mode is used to test the sending of carrirer with data. The function is:

void emi_con_prbs9(RF_ModeTypeDef rf_mode,

RF_TxPowerTypeDef pwr,

signed char rf_chn)

Parameters:

rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional

pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 192 Ver.1.0.0

rf_chn Set RF channel, the channel actually used is (2400+rf_chn).

11.3.1.3 TX Mode

Tx mode can send packets of three different types, PRBS9 packet payload, 00001111
packet payload, 10101010 packet payload. Users can choose different Tx modes by
cmd.

To send the three packets, the functions below should be called:

void emitxprbs9(RF_ModeTypeDef rf_mode,

RF_TxPowerTypeDef pwr,

signed char rf_chn);

void emitx0f(RF_ModeTypeDef rf_mode,

RF_TxPowerTypeDef pwr,

signed char rf_chn)

void emitx55(RF_ModeTypeDef rf_mode,

RF_TxPowerTypeDef pwr,

signed char rf_chn)

Parameters:

rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional.

pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.

rf_chn Set RF channel, the channel actually used is (2400+rf_chn).

11.3.1.4 RX Mode

Rx mode receives data and records the number of received data by poll. The function

is：

void emirx(RF_ModeTypeDef rf_mode,

RF_TxPowerTypeDef pwr,

signed char rf_chn);

signed char rf_chn)

Parameters:

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 193 Ver.1.0.0

rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional.

pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.

rf_chn Set RF channel, the channel actually used is 2400+rf_chn).

Note: EMI test is a demo project provided by Telink. Users can use this project to
complete their own testing, and customize their own testing methods by calling related
functions.

11.3.2 EMI Test Tool

Telink provides EMI Test Tool in order to facilitate testing. “EMI Test Tool” can be used
with “EMI test” in project “5316_driver_test” to implement EMI test easily. The tool
interface is shown as below.

Figure 11-1 EMI Test Tool

Step 1: User can select hardware connection method as needed. When “Swire” is
selected, if system clock is 16MHz or below, it’s needed to implement “SWB SPEED”
(click “SWB SP”) on Wtcdb tool to ensure normal communication.

Figure 11-2 Select Data Bus

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 194 Ver.1.0.0

Figure 11-3 Swire synchronization operation

Step 2: Set “chn”, i.e. input frequency (e.g. 2402) in the corresponding box and click
“Set_Channel”. The log window will show “Swire OK” to indicate normal communication,
as shown below.

Figure 11-4 Set Channel

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 195 Ver.1.0.0

Step 3: Select power level and BLE mode via the corresponding drop-down box, and
click “Set_Power”/”Set_RF_Mode”.

Figure 11-5 Select RF Mode

Figure 11-6 Interface After RF Mode Setting

Step 4: Click “Carrier”/“CarrierData”/“RXTest”/“PRBS9”/“0x55”/“0x0f” to enter
corresponding test mode.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 196 Ver.1.0.0

Figure 11-7 Select Test Mode

Step 5: In TX mode, user can select to send 1000 packets or unlimited packets.

Figure 11-8 Set TX Packet Number

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 197 Ver.1.0.0

Figure 11-9 TX Mode Interface

Step 6: In RX mode, number of received packets can be read by clicking “Read_Rx_Cnt”,
while current RSSI can be obtained by clicking “ReadRssi”, as shown below.

Figure 11-10 Read RX Packet Number and RSSI

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 198 Ver.1.0.0

11.4 PHY Test

To be added.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 199 Ver.1.0.0

12. BLE SPP Module
Telink’s BLE module provides SPP (Serial Port Profile) data transmission, therefore
users do not need to care about the implementation details of BLE and can focus on the
data.

12.1 Command and Data Packet Format

Telink BLE module use UART interface to communicate with Host. Telink provides
corresponding commands and events for BLE module for users.

Table 12-1 BLE SPP Command (From Host to Telink BLE module)

Field Bytes Description

cmdID 2 Command ID

ParaLen 2 Length of parameters

Parameters n Parameter payload

Table 12-2 BLE SPP Events (From Telink BLE Module to Host)

Field Bytes Description

Token 1 Always be 0xFF

ParaLen 1 Length of parameters

eventId 2 Event ID

Parameters n Parameter payload

BLE SPP command indicates a command sent from the Host to Telink BLE module,
while BLE SPP event indicates a synchronous event or an asynchronous event sent
from Telink BLE module to the Host.

A synchronous event is the acknowledgement event corresponding to a command, e.g.
“Command Complete event”.

An asynchronous event is the report event to indicate that something has happened to
Telink BLE module, e.g. data has been received (“Data Received event”).

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 200 Ver.1.0.0

Please refer to Table 12-3 and Table 12-4 for general commands and events.

Table 12-3 General AT Command Set

CmdFunction cmdID ParaLen Parameters Format
Corresponding

event

Set Advertising

Interval
0xFF01 0x0002

Interval:

e.g. 0x0050

Advertising interval = 80*

0.625ms = 50ms

e.g.

01 FF 02 00
50 00

Command

Complete event

Set Advertising

Data
0xFF02

<=0x0010

e.g.

0x0006

Data set:

e.g. 01 02 03 04 05 06

e.g.

02 FF 06 00
01 02 03 04
05 06

Command

Complete event

Enable/Disable

Advertising
0xFF0A 0x0001

Enable: 0x01

Disable: 0x00

e.g.

0A FF 01 00
01

Command

Complete event

Get Module

Available Data

Buffer

0xFF0C 0x0000 NA 0C FF 00 00
Command

Complete event

Set Advertising

Type
0xFF0D 0x0001

0x00: connectable undirected adv

0x01: connectable directed adv

0x02: scannable undirected adv

0x03: non-connectable adv

e.g.

0D FF 01 00

00

Command

Complete event

Set Advertising

Direct Address
0xFF0E 0x0007

Parameter 1: dirAddrType

0x00: Public Address

0x01: Random Address

Parameter 2: dirAddress

e.g. 01 02 03 04 05 06

e.g.

0E FF 07 00

00 01 02 03

04 05 06

Command

Complete event

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 201 Ver.1.0.0

CmdFunction cmdID ParaLen Parameters Format
Corresponding

event

Add White List

Entry
0xFF0F 0x0007

Parameter 1: addrType

0x00: Public Address

0x01: Random Address

Parameter 2: address

e,g, 01 02 03 04 05 06

0F FF 07 00

00 01 02 03

04 05 06

Command

Complete event

Delete White

List Entry
0xFF10 0x0007

Parameter 1: addrType

0x00: Public Address

0x01: Random Address

Parameter 2: address

e.g. 01 02 03 04 05 06

e.g.

10 FF 07 00

00 01 02 03

04 05 06

Command

Complete event

Reset White

List Entry
0xFF11 0x0000 NA 11 FF 00 00

Command

Complete event

Set Filter

Policy
0xFF12 0x0001

00: All device

01: connReq from all device,

scanReq from WL

02: scanReq from all device,

connReq from WL

03: scanReq and connReq from

WL

e.g.

12 FF 01 00

00

Command

Complete event

Set device

name
0xFF13

<=0x0012

e.g.

0x000A

Device name in hex format

e.g. 01 02 03 04 05 06 07 08 09

0A

13 FF 0A 00

01 02 03 04

05 06 07 08

09 0A

Command

Complete event

Get connection

parameters
0xFF14 0x0000 NA 14 FF 00 00

Command

Complete event

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 202 Ver.1.0.0

CmdFunction cmdID ParaLen Parameters Format
Corresponding

event

Set connection

parameters
0xFF15 0x0008

Parameters:

u16 intervalMin;

e.g. 0x00A0 means current

device accepts minimum

connection interval

0xA0*1.25ms=200ms

u16 intervalMax;

e.g. 0x00A2 means current

device accepts maximum

connection interval

0xA2*1.25ms=202.5ms

u16 connLatency;

e.g. 0x0000 means current

device expects new latency 0x00

u16 connTimeout;

e.g. 0x012C means current

device expects new timeout

0x12C*10ms=3000ms

15 FF 08 00

A0 00 A2 00

00 00 2C 01

Command

Complete event

Get module’s

current work

state

0xFF16 0x0000 NA 16 FF 00 00
Command

Complete Event

Terminate

connection
0xFF17 0x0000 NA 17 FF 00 00

Command

Complete Event

Restart Module 0xFF18 0x0000 NA 18 FF 00 00
No Command

Complete Event

Enable or

Disable MAC

Binding

Function

0xFF19 0x0001

fEnable

‘0x01’: enable MAC binding

function. After MAC binding is

enabled, only the devices with

MAC address in the MAC table

19 FF 01 00

01/00

Command

Complete Event

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 203 Ver.1.0.0

CmdFunction cmdID ParaLen Parameters Format
Corresponding

event

can be connected with this

module.

‘0x00’: disable MAC binding

function

Add device’s

MAC address

to MAC binding

table

0xFF1A 0x0006

MacAddr

MAC address to be added into

MAC binding table.

Note: MAC table supports public

MAC address only.

e.g. B4 CE BF 01 E7 60

e.g.

1A FF 06 00

B4 CE BF 01

E7 60

Command

Complete Event

Delete a MAC

item from MAC

binding table

0xFF1B 0x0006

MacAddr

MAC address to be deleted from

MAC binding table.

e.g. B4 CE BF 01 E7 60

e.g.

1B FF 06 00

B4 CE BF 01

E7 60

Command

Complete Event

 Send Data 0xFF1C

<=0x0016

e.g.

0x0007

Handle（2 bytes）of the

Attribute “Service to client”

E.g. 0x0011

Data payload（Max Len:

20bytes）

E.g. 01,02,03,04,05

e.g.

1C FF 07 00

11 00 01 02

03 04 05

Command

Complete Event

Table 12-4 General Events

Event name Type Token ParaLen EventID Parameters Format

Command

Complete

event

Synchronous 0xFF 0x03

corresponding to the

command

Rule:

eventID = (cmdID &

0x03FF) | 0x0400

Indicates status

information

Success: 0x00

Others: ble error

code, @ble_sts_t

e,g.

FF 03 01 07

00

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 204 Ver.1.0.0

Event name Type Token ParaLen EventID Parameters Format

e,g, 0x0701

(cmdID=0xFF01,

corresponding to the

“Set Advertising

Interval” command)

Data received

event
Asynchronous 0xFF

Variable:

n+2

Eg.If

n=6, Len

is 0x08

0x07A0

data (indicates

received data, n

bytes)

Eg. 01, 02, 03, 04,

05, 06

e.g.

FF 08 A0 07
01 02 03 04
05 06

Get Available

Buffer Num

Event

Asynchronous 0xFF 0x04 0x070C

State:

0x00: OK

 other: Fail

Buffer Size:

1Byte

Eg:

state = 0x00

Buffer Size = 0x04

e.g.

FF 03 0C 07
00 04

Connection

Event
Asynchronous 0xFF 0x02 0x0783 NA FF 02 83 07

Terminate

Event
Asynchronous 0xFF 0x02 0x0784 NA FF 02 84 07

Channel map

change Event
Asynchronous 0xFF 0x02 0x078a NA FF 02 8a 07

Connection

parameter

update Event

Asynchronous 0xFF 0x02 0x078b NA FF 02 8b 07

Get Module

Current Work

State

Asynchronous 0xFF 0x04 0x0716
No connected:

0x0100

e.g.

FF 04 0716
00 01

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 205 Ver.1.0.0

Event name Type Token ParaLen EventID Parameters Format

Connected:

0x0800

12.2 Function Description

To illustrate function of the module, conection between the module and a phone is taken
an example. The app in the phone is LightBlue, the software in PC is a serial port
assistant. The hardware connection is as below.

Figure 12-1 Module Hardware Connection

As Figure 12-1 shows, Telink module connects serial port tool via wires, serial port tool
connects PC via USB, the serial port assistant in PC establishes soft connection with
serial port tool, thus the working environment of the module is established. Before using
the module function, the Firmware should be burned to the module. 5316 BLE SDK
provides module project, users only need to compile the module project to obtain the bin

file (Note: the bin file in this documents sets BLE_MODULE_PM_ENABLE to 0 to
disable low power, then use EVK to burn the bin file to telink module. After the

Module powers on, it sends Adv packets by default, the phone enables Bluetooth and
enters LightBlue, starts scan. The phone scans the module device (see Figure 12-2) and
establishes connection with BLE (see Figure 12-3).

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 206 Ver.1.0.0

Figure 12-2 Scan Module Device

Figure 12-3 Connect Module Device

After Telink module establishes BLE connection with the phone, in the phone App, users
can see two “Telink SPP”, one is “Module->Phone” used for sending data to the phone
from the module, another “Phone->Module” used for sending data to the module from the
phone. From the descriptors the data transfer directions are easy to know.

12.2.1 Module Sends Commands and Data

Data interconnection between the PC and the module is via the serial port. Users can
modify the parameters of the serial port (baud rate, odd-even check, stop bit, etc.) in the
module project as needed. The PC can transfer commands and data to the module, while
the module can only report corresponding events to the PC. If it is commands that are
transferred by the PC, the module will process the commands and report an event to the
PC according to the processing result; if it is data that are transferred by the PC, the
module will transfer the data to a remote device via BLE and report an event. Please see
section 12.1 for formats of commands, data and events. Figure 12-4 and Figure 12-5
show the demo of the module sending data to the phone. The part marked by “1” in
Figure 12-4 is the data sent by the module to the phone via command “Send Data” (cmd
ID:0xFF1C); the part marked by “2” is the event reported by the module, which indicates
the success of data transmission. Figure 12-5 shows the data received by the phone are
the same as the data sent by the module.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 207 Ver.1.0.0

Figure 12-4 Module Sending Data

Figure 12-5 Phone Receiving Data

12.2.2 Module Receives Data

The phone can send data to the module, the module will report to the PC after it receives
the data, as Figure 12-6 and Figure 12-7 show. The part highlighted by the red rectangle

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 208 Ver.1.0.0

in Figure 12-6 is the data sent by the phone; the part highlighted by the red rectangle in
Figure 12-7 is the data received by the module.

Figure 12-6 Phone Sending Data

Figure 12-7 Module Receiving Data

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 209 Ver.1.0.0

12.3 Power Management of Module

The 5316 module project enables low power by default, as the sleep mode of Telink
MCU can only be woken up by GPIO, to implement the low power and the normal
interconnection of data and commands between the module and the Host, the module
project uses two GPIOs as wakeup sources which can be selected according to users’
requirements and hardware design. One GPIO is used to wake up the module so that the
module can receive the commands and data sent by the Host; another GPIO is used to
wake up the Host (if the Host enables low power) so that the Host can receive the events
reported by the module.

If the module enables low power mode, the connection of hardware should be the same
as below:

Figure 12-8 Connection of Hardware When Low Power is Enabled

If users do not use low power, the macro “BLE_MODULE_PM_ENABLE” in
“app_config.h” can be set to 0, the connection of hardware is the same as the demo in
section 12.2 Function Description.

 Telink TLSR8232 BLE SDK Developer Handbook

AN-19112700-E1 210 Ver.1.0.0

Appendix

Appendix 1: crc16 Algorithm
unsigned shortcrc16 (unsigned char *pD, int len)

{

static unsigned short poly[2]={0, 0xa001};

unsigned short crc = 0xffff;

unsigned char ds;

int i,j;

for(j=len; j>0; j--)

 {

unsigned char ds = *pD++;

for(i=0; i<8; i++)

 {

 crc = (crc >> 1) ^ poly[(crc ^ ds) & 1];

 ds = ds >> 1;

 }

 }

return crc;

}

	Revision History
	Contents
	Contents of Figures
	1. SDK Overview
	1.1 Software Architecture
	1.1.1 main.c
	1.1.2 app_config.h
	1.1.3 Application File
	1.1.4 BLE Stack Entry

	1.2 Applied ICs
	1.3 library
	1.4 Demo
	1.4.1 BLE Slave Demo
	1.4.2 Other Demos

	2. MCU Basic Modules
	2.1 MCU Address Space
	2.1.1 MCU Address Space Allocation
	2.1.2 SRAM Space Allocation
	2.1.2.1 SRAM and Firmware Space
	2.1.2.2 list File Analysis Demo

	2.1.3 MCU Address Space Access
	2.1.3.1 Peripheral Space Access
	2.1.3.2 Flash Space Operation

	2.1.4 SDK Flash Space Allocation
	2.1.4.1 Space Allocation of 512kB Flash
	2.1.4.2 Space Allocation of 128kB Flash

	2.2 Clock Module
	2.2.1 System Clock & System Timer
	2.2.2 System Timer Usage

	2.3 GPIO Module
	2.3.1 GPIO Definition
	2.3.2 GPIO State Control
	2.3.3 GPIO Initialization
	2.3.4 Configure SWS Pull-up to Avoid MCU Errors

	3. BLE Module
	3.1 BLE SDK Software Architecture
	3.1.1 Standard BLE SDK Architecture
	3.1.2 Telink BLE SDK Architecture
	3.1.2.1 Telink BLE Controller
	3.1.2.2 5316 BLE Slave

	3.2 BLE Controller
	3.2.1 BLE Controller Introduction
	3.2.2 Link Layer State Machine
	3.2.3 Link Layer State Machine Combined Application
	3.2.3.1 Link Layer State Machine Initialization
	3.2.3.2 Idle + Advertising
	3.2.3.3 Idle + Advertising + ConnSlaveRole

	3.2.4 Link Layer Timing Sequence
	3.2.4.1 Timing Sequence in Idle State
	3.2.4.2 Timing Sequence in Advertising State
	3.2.4.3 Timing Sequence in Conn state Slave Role
	3.2.4.4 Conn State Slave Role Timing Protection

	3.2.5 Link Layer TX FIFO & RX FIFO
	3.2.6 Controller HCI Event
	3.2.6.1 HCI Event
	3.2.6.2 HCI LE Event

	3.2.7 Telink Defined Event
	3.2.7.1 BLT_EV_FLAG_ADV
	3.2.7.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT
	3.2.7.3 BLT_EV_FLAG_SCAN_RSP
	3.2.7.4 BLT_EV_FLAG_CONNECT
	3.2.7.5 BLT_EV_FLAG_TERMINATE
	3.2.7.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE
	3.2.7.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE
	3.2.7.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP
	3.2.7.9 BLT_EV_FLAG_CHN_MAP_REQ
	3.2.7.10 BLT_EV_FLAG_CHN_MAP_UPDATE
	3.2.7.11 BLT_EV_FLAG_CONN_PARA_REQ
	3.2.7.12 BLT_EV_FLAG_CONN_PARA_UPDATE
	3.2.7.13 BLT_EV_FLAG_SUSPEND_ENETR
	3.2.7.14 BLT_EV_FLAG_SUSPEND_EXIT
	3.2.7.15 BLT_EV_FLAG_PHY_UPDATE

	3.2.8 Controller API
	3.2.8.1 Controller API Brief
	3.2.8.2 API Return Type ble_sts_t
	3.2.8.3 MAC Address Initialization
	3.2.8.4 Link Layer State Machine Initialization
	3.2.8.5 bls_ll_setAdvData
	3.2.8.6 bls_ll_setScanRspData
	3.2.8.7 bls_ll_setAdvParam
	3.2.8.8 bls_ll_setAdvEnable
	3.2.8.9 bls_ll_setAdvDuration
	3.2.8.10 blc_ll_setAdvCustomedChannel
	3.2.8.11 rf_set_power_level_index
	3.2.8.12 bls_ll_terminateConnection
	3.2.8.13 Get Connection Parameters
	3.2.8.14 blc_ll_getCurrentState
	3.2.8.15 blc_ll_getLatestAvgRSSI
	3.2.8.16 Whitelist & Resolvinglist

	3.2.9 2M PHY Supported
	3.2.10 Data Length Extension

	3.3 L2CAP
	3.3.1 Register L2CAP Data Processing Function
	3.3.2 Update Connection Parameters
	3.3.2.1 Slave Requests for Connection Parameter Update
	3.3.2.2 Master Responds to Connection Parameter Update Request
	3.3.2.3 Master Updates Connection Parameters in Link Layer

	3.4 ATT & GATT
	3.4.1 GATT Basic Unit “Attribute”
	3.4.2 Attribute and ATT Table
	3.4.2.1 attNum
	3.4.2.2 perm
	3.4.2.3 uuid, uuidLen
	3.4.2.4 pAttrValue, attrLen
	3.4.2.5 Callback Function w
	3.4.2.6 Callback Function r
	3.4.2.7 Attribute Table Layout
	3.4.2.8 ATT Table Initialization

	3.4.3 Attribute PDU & GATT API
	3.4.3.1 Read by Group Type Request, Read by Group Type Response
	3.4.3.2 Find by Type Value Request, Find by Type Value Response
	3.4.3.3 Read by Type Request, Read by Type Response
	3.4.3.4 Find Information Request, Find Information Response
	3.4.3.5 Read Request, Read Response
	3.4.3.6 Read Blob Request, Read Blob Response
	3.4.3.7 Exchange MTU Request, Exchange MTU Response
	3.4.3.8 Write Request, Write Response
	3.4.3.9 Write Command
	3.4.3.10 Handle Value Notification
	3.4.3.11 Handle Value Indication
	3.4.3.12 Handle Value Confirmation

	3.5 SMP
	3.5.1 SMP Parameter Configuration
	3.5.1.1 Device Bonding
	3.5.1.2 Device OOB data verification
	3.5.1.3 Secure Connection Pairing (SC)

	3.5.2 Enable SMP
	3.5.3 SMP Event
	3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN
	3.5.3.2 BLT_EV_FLAG_PAIRING_END

	3.5.4 SMP Bonding Information

	4. Power Management (PM)
	4.1 PM Driver
	4.1.1 Low Power Modes
	4.1.2 Hardware Wakeup Sources
	4.1.3 Low Power Mode Entry and Wakeup

	4.2 BLE Low Power Management
	4.2.1 PM In Idle State
	4.2.2 PM in BLE Adv State & Conn State

	4.3 BLE PM Configuration
	4.3.1 PM Module Initialization
	4.3.2 Set Low Power Modes via “bls_pm_setSuspendMask”
	4.3.3 bls_pm_setWakeupSource
	4.3.4 Working Mechanism of Low Power Managment

	4.4 “latency_use” Configuration and Calculation
	4.5 Other APIs
	4.5.1 bls_pm_getSystemWakeupTick
	4.5.2 bls_pm_enableAdvMcuStall

	4.6 Notes about GPIO Wakeup
	4.6.1 Fail to Enter Suspend/Deepsleep When Wakeup Level is Valid

	4.7 BLE System PM Reference
	4.8 Timer Wakeup of APP Layer

	5. Low Battery Detect
	5.1 Significance of Low Battery Detect
	5.2 Implementation of Low Battery Detect
	5.2.1 Cautions of Low Battery Detect
	5.2.1.1 MUST Use GPIO Input Channel
	5.2.1.2 MUST Use ADC Differential Mode
	5.2.1.3 MUST Use DFIFO for ADC Sampling Valu

	5.2.2 Dedicated Low Battery Detect Demo
	5.2.2.1 Initialization of Low Battery Detect
	5.2.2.2 Low Battery Detect Processing
	5.2.2.3 Low Battery Voltage Alarm

	6. OTA
	6.1 Flash Architecture and OTA Procedure
	6.1.1 Flash Storage Architecture
	6.1.2 OTA Update Procedure
	6.1.3 Modify Firmware Size and Boot Address

	6.2 RF Data Proceesing in OTA Mode
	6.2.1 OTA Processing in Attribute Table on Slave Side
	6.2.2 OTA Data Packet Format
	6.2.3 RF Transfer Processing on Master Side
	6.2.4 RF Receive Processing on Slave Side

	7. Key Scan
	7.1 Key Matrix
	7.2 Keyscan, Keymap and Keycode
	7.2.1 Keyscan
	7.2.2 Keymap &kb_event

	7.3 Keycode
	7.4 Keyscan Flow
	7.4.1 Basic Keyscan Flow
	7.4.2 Keyscan Flow Timing Optimization

	7.5 Deepsleep Wakeup Fast Keyscan
	7.6 Repeat Key Processing
	7.7 Stuck Key Processing
	7.8 Power Optimization for Long Key Press

	8. LED Management
	8.1 LED Task Related Functions
	8.2 LED Task Configuration and Management
	8.2.1 LED Event Definition
	8.2.2 LED Event Priority

	9. blt Software Timer
	9.1 Timer Initialization
	9.2 Timer Inquiry Processing
	9.3 Add Timer Task
	9.4 Delete Timer Task
	9.5 Demo

	10. IR
	10.1 PWM Driver
	10.1.1 PWM id and Pin
	10.1.2 PWM Clock
	10.1.3 PWM Cycle and Duty
	10.1.4 PWM Revert
	10.1.5 PWM Start and Stop
	10.1.6 PWM Mode
	10.1.7 PWM Pulse Number
	10.1.8 PWM Phase
	10.1.9 PWM Interrupt
	10.1.10 API for IR DMA FIFO Mode
	10.1.10.1 Configuration of DMA FIFO
	10.1.10.2 Set DMA FIFO Buffer
	10.1.10.3 Start and Stop of IR DMA FIFO Mode

	10.2 IR Demo
	10.2.1 PWM Mode Selection
	10.2.2 Demo IR protocol
	10.2.3 IR Timing Design
	10.2.4 IR Initialization
	10.2.4.1 rc_ir_init
	10.2.4.2 IR Hardware Configuration
	10.2.4.3 IR Variable Initialization

	10.2.5 FIFO Task Configuration
	10.2.5.1 FIFO Task_data
	10.2.5.2 FifoTask_idle
	10.2.5.3 FifoTask_repeat
	10.2.5.4 FifoTask_repeat*n&FifoTask_idle_repeat*n

	10.2.6 Check IR Busy Status in APP Layer

	11. Drivers in BLE SDK
	11.1 External Capacitor for 24 MHz Crystal
	11.2 Select 32kHz Clock Sources
	11.3 EMI
	11.3.1 EMI Test
	11.3.1.1 Carrier Mode
	11.3.1.2 CD Mode
	11.3.1.3 TX Mode
	11.3.1.4 RX Mode

	11.3.2 EMI Test Tool

	11.4 PHY Test

	12. BLE SPP Module
	12.1 Command and Data Packet Format
	12.2 Function Description
	12.2.1 Module Sends Commands and Data
	12.2.2 Module Receives Data

	12.3 Power Management of Module

	Appendix
	Appendix 1: crc16 Algorithm

