S

a
§1'é
7’ §

v
T\

"
=

Telink B91 BLE Single

Connection SDK Developer Handbook

AN-20111000-E3

Verl.2.0
2022.09.19

Keyword
BLES.O

Brief
This document is the development guide for Telink's B91 BLE Single Connection SDK, applicable for the B91

SSSSSSS

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Published by
Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,
Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor
All Rights Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without
further notice to this document or any products herein. This document may contain technical inaccuracies
or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or
incompleteness contained herein.

Copyright © 2022 Telink Semiconductor (Shanghai) Co., Ltd.

Information

For further information on the technology, product and business term, please contact Telink Semiconductor
Company www.telink-semi.com

For sales or technical support, please send email to the address of:
telinksales@telink-semi.com

telinksupport@telink-semi.com

AN-20111000-E3 2 Ver1.2.0

http://www.telink-semi.com/
telinksales@telink-semi.com
telinksupport@telink-semi.com

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Revision History

Version Change Description

V1.0.0 Initial release.

V1.1.0 Chapter 1 SDK introduction, section 1.1 restructuring of of the feature_test part of the
project directory;
Chapter 2 MCU basic module, section 2.1.3 modified part description of SDK flash space
allocation;
Chapter 3 BLE module, removed part introduction at master end, section 3.3.3 removed the
introduction of ATT-related interface functions and added the introduction of API interface
blc_att_setPrepareWriteBuffer, section 3.2.5.1 added APl interface
bls_Il_continue_adv_after_scan_req, section 3.2.6 modified TxfifoNum description, section
3.2.8 modified the MTU size setting related introduction;
Chapter 4 PM, section 4.1.1 modified the 7 register names in sdk deepsleep without power
down, section 4.1.4 modified the description of the running hardware bootloader, section
4.2.7 added the API interface cpu_long_sleep_wakeup_32k_rc function introduction;
Chapter 5 added low battery dection chapter;
Chapter 6 Audio, added the description of Audio different modes data processing flow;
Chapter 7 OTA, added a description of the new architecture of OTA;
Chapter 11 IR, section 11.3 and 11.4 added descriptions related to IR Learn;
Chapter 12 Feature Demo, added the introduction of connection power consumption test;
Chapter 13 Other modules, section 13.3 added software PA introduction, section 13.4 added
PhyTest introduction, section 13.5 added EMI test introduction.

V1.2.0 Chapter 3 BLE module, section 3.2.5 added Link Layer state machine extension description;
section 3.3.2.1 removed API description about Master; section 3.3.5 added API
blc_smp_setDefaultPinCode description;

Chapter 4 PM, section 4.1.2 added cpu_sleep_wakeup related description; section 4.2.7
added API cpu_long_sleep_wakeup_32k_rc related description;

Chapter 7 OTA, added API blc_ota_setOtaProcessTimeout and
blc_ota_setOtaDataPacketTimeout descriptions;

Chapter 13 Other modules, section 13.6 added JTAG usage description; section 13.7 added
version information function description.

AN-20111000-E3 3 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Contents
Revision History 3
T SDKOVerview o s e et e e e e e e e e e e e e e e e e e e 16
1.1 Software architecture 16
L1 MAIN.C . o e e e e 17
1.1.2 app_config.h . . . o o e 17
1.1.3 application file 18
1.1.4 BLE stackentry e 18
1.2 Software Bootloader e 19
1.3 Demo COdeS o o e e 20
1.3.1 BLESlave Demo o e 20
1.3.2 Feature Demo e e e 21
1.4 Project Configuration L e 21
1.4.1 Tool Setting e 21
1.4.2 Build Steps o 24
1.4.3 Build Artifact 25
2 MCUBasicModules o o o e e e e e e e e e e e e e e e e 26
2.1 MCU AQAress SPACE v v v e e e e e e e e e 26
2.1.1 MCU Address Space Allocation e 26
2.1.2 SRAM Space Allocation 26
2.1.2.1 SRAM and Firmware SPacet i i it e e e e 27
2.1.2.2 objdump File Analysis Demo e 34
2.1.3 MCU Address SPace ACCESS . . o v v v v v e e e e e e e e e e e 38
2.1.3.1 Peripheral Space R/W Operation. 38
2.1.3.2 Flash Space Operation. i 39
2.1.4 SDK Flash Space Allocation 40
2.2 Clock Module L 43
2.2.1 Clock OVerVIEW o e 43
2.2.2 System TimerUsage o o i e e e e 44
2.3 Interrupt Nesting o e 46
2.3.17 Interrupt Nesting Overview 46
2.3.2 Interrupt Nesting Application 48
2.3.2.1 App Normal Interrupt 48
2.3.2.2 App High-priority Interrupt 48
3 BLEModule e e e e e e e e e e e e e e e e e e e 49
3.1 BLE SDK Software Architecture e 49
3.1.1 Standard BLE SDK Architecture 49
3.1.2 Telink BLE SDK Architecture 50
3.1.2.1 Telink BLE Slave 50
3.2 BLE Controller e 52
3.2.1 BLE Controller Introduction 52
3.2.2 Link Layer State Machine 52
3.2.3 Link Layer State Machine Combined Application 55
3.2.3.1 Link Layer State Machine Initialization 55
3.2.3.2 Idle + Advertising 56

AN-20111000-E3 4 Ver1.2.0

T

Telink

Telink B91 BLE Single Connection SDK Developer Handbook

3.24

3.2.5

3.2.6

3.2.7

3.2.8
3.2.9

3.2.10

3.2.1
3.2.12

3.2.3.3 Idle + Advertising + ConnSlaveRole 57
Link Layer Timing SeqQUENCE o o it e e e e e 58
3.2.4.1 Timing SequenceinlidleState 59
3.2.4.2 Timing Sequence in AdvertisingState o o oo 59
3.2.4.3 Timing Sequence in Scanning State oL 60
3.2.4.4 Timing Sequence in Initiating State oo oo 60
3.2.4.5 Timing Sequence in Conn State SlaveRole 61
Link Layer State Machine Extension 62
3.2.5.1 ADVERTISING_IN_CONN_SLAVE_ROLE 62
3.2.5.2 ADVERTISING_IN_CONN_SLAVE_ROLE 63
3.2.5.3 SCAN_IN_CONN_SLAVE_ROLE 64
Link Layer TX fifo & RX fifo e 64
3.2.6.1 Link Layer RX fifo Introduction 65
3.2.6.2 Link Layer TX fifo Introduction 67
Controller Event e 68
3.2.7.1 Controller HCI Event 69
3.2.7.2 HClevent e 71
3.2.7.3 HCILE event e e e e e 72
3.2.7.4 Telink Defined Event 74
Data Length Extension L 83
Controller APL . . . L . e 85
3.2.9.1 Controller APl Introduction 85
3.2.9.2 APIReturnTypeble_sts_t. 86
3.2.9.3 MAC address initialization 86
3.2.9.4 Link Layer state machine initialization, 86
3.2.9.5 bls_ll_setAdvData 86
3.2.9.6 bls_ll_setScanRspData. 87
3.2.9.7 bls_ll_continue_adv_after_scan_req 88
3.2.9.8 bls_ll_setAdvParam e 88
3.2.9.9 bls_ll_setAdvEnable 92
3.2.9.10 bis_ll_setAdvDuration 92
3.2.9.11 blc_ll_setAdvCustomedChannel 94
3.2.9.12 rf_set_power_level_index 94
3.2.9.13 bis_ll_terminateConnection 94
3.2.9.14 Get Connection Parameters 95
3.2.9.15 blc_ll_getCurrentState 96
3.2.9.16 blc_ll_getLatestAvgRSSI L 96
3.2.9.17 Whitelist & Resolvinglist 96
Coded PHY/2ZM PHY e e 98
3.2.10.1 Coded PHY/2M PHY Introduction 98
3.2.10.2 Coded PHY/2M PHY Demo Introduction 98
3.2.10.3 Coded PHY/2M PHY API Introduction 98
Channel Selection Algorithm #2 e 99
Extended Advertising e e e 99
3.2.12.1 Extended Advertising Introduction oo 99
3.2.12.2 Extended Advertising Demo Setup oL oo 99
3.2.12.3 Extended Advertising Related API Lo 100

AN-20111000-E3 5 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

3.3 BLEHOSt . . . 103
3.3.1 BLE HostIntroduction e 103
3.3.2 L2CAP . 103
3.3.2.1 Slave Requests for Connection Parameter Update 105

3.3.3 ATT & GATT . o o o e e e e e e e e e e 106
3.3.3.1 GATT basic unit “Attribute” 106

3.3.3.2 Attributeand ATT Table 108

3.3.3.3 Attribute PDU and GATT APl o e 17

3.3.3.4 GATT Service Security o o i e 128

3.3.4 SMP L L 131
3.3.4.1 SMP Security Level e 131

3.3.4.2 SMP Parameter Configuration 132

3.3.4.3 SMP Security Request Configuration 138

3.3.4.4 SMPBondinginfo e 141

3.3.5 GAP . 148
3.3.5.1 GAP Initialization 148

3.3.5.2 GAPEVeNt. 148

4 Low Power Management (PM) i i e e e e e e 155
4.1 Low Power Driver e 155
411 Low Power Mode e e 155
4.1.2 Low Power Wake-up SOUICe o o i i e 157
4.1.3 Sleep and Wake-up from Low PowerMode 159
4.1.4 Low Power Wake-up Procedure e 161
4.1.5 APl pm_is_MCU_deepRetentionWakeup oo 164

4.2 BLE Low Power Management e e e 164
4.2.1 BLE PMInitialization e 164
4.2.2 BLEPMforLink Layer e e 165
4.2.3 BLEPMVariables e 167
4.2.4 APIbls_pm_setSuspendMask 167
4.2.5 APIbls_pm_setWakeupSource e 169
4.2.6 API blc_pm_setDeepsleepRetentionType 169
4.2.7 APl cpu_long_sleep_wakeup_32k_rc. 170
4.2.8 PMsoftware processing flow 171
4.2.8.1 blt_sdk_main_loop e 171

4.2.8.2 blt_brx_sleep e 172

4.2.9 Analysis of deepsleepretention. L 174
4.2.9.1 API blc_pm_setDeepsleepRetentionThreshold 174

4.2.9.2 blc_pm_setDeepsleepRetentionEarlyWakeupTiming 178

4.2.9.3 Optimization and measurement of T_init 178

4.2.10 Connection Latency L e e 183
4.2.10.1 Sleep timing with non-zero connection latency 183

4.2.10.2 latency_use calculation oL 184

4.2.11 APl bls_pm_getSystemWakeupTick 185

4.3 Issues in GPIO Wake-uUp e e e 186
4.4 BLE System Low Power Management 187
4.5 Timer Wake-up by Application Layer 188
5 LowBatteryDetect L L e e e e e e e e e e e e e e e 190

AN-20111000-E3 6 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

5.1 The importance of low battery detect 190
5.2 The implementation of low battery detect. 190
5.2.1 Notesonlow batterydetect. 191
5.2.1.1 GPIO input channel recommended, 191

5.2.1.2 Differential modeonly 192

5.2.1.3 Need to switch different ADC tasks 192

5.2.2 Stand-alone use of low batterydetect. 192
5.2.2.1 Low battery detect initialization 192

5.2.2.2 Low battery detect processing 194

5.2.2.3 Low voltage alarm L 195

5.2.3 Low battery detect and Amic Audio 196

6 AUdIO e 197
6.1 Initialization e e 197
6.1.1 AMIC and Low Power Detect 197
6.1.2 AMIC Initialization e 197
6.1.3 DMIC Initialization 198

6.2 Audio Data ProCessing v i i i i e e e e e e e 199
6.2.1 Audio Data Volume and RF Transfer it 199
6.2.2 Audio Data COmPression i e e e e e e 201

6.3 Compression and Decompression Algorithm o 203
6.4 Audio data processing flow 204
6.4.1 TL_AUDIO_RCU_ADPCM_GATT_GOOGLE e e 206
6.4.1.1 Initialization L 207

6.4.1.2 Voice data transmission L 208

6.4.1.3 TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB 209

6.4.2 TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB e 21

728 17 - N 214
7.1 Flash Architecture and OTA Procedure i i i e 214
7.1.1 FLASH Storage Architecture 214
7.1.2 OTA Update Procedure e e e 215
7.1.3 Modify FW Size and Booting Address 217

7.2 RF Data Processing for OTAMode e e 217
7.2.1 OTA Processing in Attribute Table 217
7.2.2 OTAProtocol. o o 218
7.2.3 RF Transfer Processing on Master Side, 224

8 KeyScan e 235
8.1 Key MatriX e e 235
8.2 Keyscanand KeYMap o o e e e 237
8.2.1 KeysCan o e e e e e 237
8.2.2 Keymap & kb_event 238

8.3 Keyscan FIOW e e e 239
8.4 Repeat Key Processing o e e 241
8.5 Stuck Key Processing o o i i e e e e e 242
9 LEDManagement o L e e e e e e e e e e e e e e e e e e e 245
9.1 LED task related functions L 245
9.2 LED Task Configuration and Managemento 245
9.2.1 LED Event Definition e 245

AN-20111000-E3 7 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

9.2.2 LED Event Priority e 246
10 Software Timer Lt e e e e e e e e e e e e e e e e e e e 248
10.1 Timer Initialization o L e 248
10.2 Timer InQuiry ProCessing o o o e e e e 248
10.3 Add Timer Task o o e e 250
10.4 Delete Timer Task o e e 251
10.5 DeMO . . o o o e 251
0 | 254
1.1 PWMDIIVEN . . o e e e e e e e e e e e e 254
11.1.1 PWMID and Pin o o e e 254
11.1.2 PWMCIock o e e 255
11.1.3 PWMCycleand DUty o o e e e e e e 257
11.1.4 PWMReVert e e 258
11.1.5 PWMStart and Stop o o o 259
11.1.6 PWMMOde e 259
11.1.7 PWM Pulse Number 259
11.1.8 PWM Interrupt o o e e 259
11.1.9 IRDMA FIFO Mode e e e e e e e e e 260
11.1.9.1 Configuration for DMAFIFO 260

11.1.9.2 Set DMAFIFO Buffer 261

11.1.9.3 Start and Stop for IRDMAFIFOMode 261

11.2 IRDEMO . . o o e e e e e e 262
11.2.17 PWM mode selection e e 262
11.2.2 Demo IR Protocol o e 262
11.2.3 IRTIimMIing Design e e e e 263
11.2.4 IR Initialization e 266
11.2.4.7 relirinit . o L . o e e e 266

11.2.4.2 IR Hardware Configuration, 266

11.2.4.3 IR Variable Initialization 267

11.2.5 FifoTask Configuration e 267
11.2.5.1 FifoTask_data e 267

11.2.5.2 FifoTask_idle e 268

11.2.5.3 FifoTask_repeat e 269

11.2.5.4 FifoTask_repeat™n and FifoTask_idle_repeat™n 269

11.2.6 Check IR Busy Status in APP Layer i e e e e e e e e 269

113 IRLearn . . . o e e e 270
11.3.17 IR Learnintroduction L 270
11.3.2 IR Learn hardware principle 270
11.3.3 IR Learn software principle 271
11.3.4 IR Learn software description 272
11.3.4.1 IR_Learn initialization 272

11.3.4.2 IR_Learninterrupthandling. 273

11.3.4.3 IR_Learn result processing function L. 273

11.3.4.4 IR_Learn macro definition. L 273

11.3.4.5 IR_Learn start function 274

11.3.4.6 IR_Learn state query 274

11.3.4.7 IR_Learn_Send initialization o 275

AN-20111000-E3 8 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

11.3.4.8 IR_Learnresult copy function 275

11.3.4.9 IR_Learnsend function 275

11.3.5 IR Learn algorithm details e 276
11.3.6 IR Learn learning parameter adjustment L 277
11.3.7 IR Learn COMMON ISSUBS v i it e i e e et e e e e e e e e e 279

11.4 Demo description o e e e e e 280
12 Feature Demo Introduction L L L Lo e e e e e e 281
12.1 Broadcast Power Consumption Test 281
12.1.1 Connectable Broadcast Power Consumption Test 282
12.1.2 Un-connectable Broadcast Power Consumption Test 282

12.2 Connection Power Consumption Test 283
12.3 SMP Test . . . o e 283
12.3.1 LE_Security_Mode_1_Level_1 e 284
12.3.2 LE_Security_Mode_1_Level_2 e 284
12.3.2.1 SMP_TEST_LEGACY_PARING_JUST_WORKS 284

12.3.2.2 SMP_TEST_SC_PAIRING_JUST_WORKS o oo 285

12.3.3 LE_Security_Mode_1_Level_3 e e 286
12.3.3.1 SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI. 286

12.3.3.2 SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI 288

12.3.4 LE_Security_Mode_1_Level_4 289
12.3.4.1 SMP_TEST_SC_NUMERIC_COMPARISON oo 290

12.3.4.2 SMP_TEST_SC_PASSKEY_ENTRY_SDMI 291

12.4 GATT Security Test e 293
125 DLE Test o o 295
12.6 Soft Timer Test 297
12.7 WhiteList Test 297
12.8 1M Extended Advertising Test 298
12.9 2M/Coded PHY Used on Extended Advertising Test 299
12.102M/Coded PHY used on Legacy advertising and Connection Test 300
12TTCSA #2 Test . . o o e e 301
13 Other Modules L e 303
13.1 24MHz Crystal External Capacitor. 303
13.2 32KHz Clock Source Selection o e 304
13.3 Software PA e 304
13.4 PhyTest o 305
13.4.1 PhyTest APl e 305
13.4.2 PhyTest demo 306
13.4.2.1 Demo: B91_feature_test 306

13.4.2.2 PhyTest parameter adjustment 307

13,5 EMI o e e e e e e 307
13.5.1 EMITest o 307
13.5.1.1 EMlinitialization setting Lo 308

13.5.1.2 Powerlevel and Channel 308

13.5.1.3 EMICarrier Only o e e e e 309

13.5.1.4 emi_con_prbs9 309

13.5.1.5 EMITXBUrSt o e 309

13.5.1.6 EMIRX . . . L 310

AN-20111000-E3 9 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

13.5.1.7 Master computer configuration parameter settings

13.5.2 EMITest ToOl o o e 31

13.6 JTAG Usage
13.6.1 Diagnostic Report
13.6.2 Target Configuration 314
13.6.3 Flash Programming

.. 315
13.6.4 Application Debug L 316

13.7 Version FUNCLION o o 317

14 GPIO Simulate UART_TX PrintingMethod 319
15 AppendiX L L L e 320
15.1 crc16 Algorithm L o 320

AN-20111000-E3 10 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22

SDK File Stucture 16
Bootloader and Bootloaderlink 19
Link File Location 0 e 19
BLE SDKDemo Code o o i e 20
Symbol Define Config e e 21
Directiories Config. e e e e 22
Optimization Config o e e 22
Libraries Set e 23
Objcopy Config o o o e e 24
Build Steps Config L 25
Build Artifact Config 25
MCU Address Space Allocation e e 26
SRAM Firmware Space Allocation 27
Evaluate Retention Size 29
Retention Size Exceed e 29
My Attributes 31
MCU Address Space Allocation only ISRAM L 33
objdump File Section Analysis 35
objdump File Section Address 36
TMB Flash Address Allocation e 41
Clock Tree . . . o o e e 43
BLE SDK Interrupt Nesting 47
BLE SDK Standard Architecture L 49
HCI Data Transfer between Host and Controller 50
Telink BLE Slave Architecture 51
State Diagram of Link Layer State Machinein BLE Spec 53
Telink Link Layer State Machine 54
Idle + Advertising e 56
BLE Slave LL State 57
Timing Sequence Chart in Advertising State, 59
Timing Sequence Chart in Scanning State 60
Timing Sequence Chart in Initiating State L. 60
Timing Sequence Chart in Conn State SlaveRole 61
Timing of advertising in ConnSlaveRole 63
Timing of scanning in Advertisingstate 63
Timing of scanning in ConnSlaveRole 64
RX Overflow Case T o o i i e e e 66
RX Overflow Case 2 67
BLE SDK Event Architecture 69
HCILEVeNt . . . e 70
Disconnection Complete Event 71
Read Remote Version Information Complete Event 71
LE Connection Complete Event L 72
LE Advertising Report Event L 73

AN-20111000-

E3 1 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook
Figure 3.23 LE Connection Update Complete Event 73
Figure 3.24 Connect Request PDU e 78
Figure 3.25 LL_CONNECTION_UPDATE REQ Format in BLE Stack 82
Figure 3.26 Adv Packet Formatin BLE Stack 86
Figure 3.27 Advertising Event in BLE Stack 89
Figure 3.28 Four Adv Eventsin BLE Stack 90
Figure 3.29 Extended Advertising Initialize Memory Allocation 101
Figure 3.30 BLE L2CAP Structure and ATT Packet Assembly Model 104
Figure 3.31 Connection Para Update Req Formatin BLE Stack 105
Figure 3.32 BLE Sniffer Packet Sample Conn Para Update Request and Response 105
Figure 3.33 GATT Service Containing Attribute Group, 107
Figure 3.34 BLE Sniffer Packet Sample when Master Reads hidinformation 1M
Figure 3.35 Write Request in BLE Stack 113
Figure 3.36 Write Command in BLE Stack 113
Figure 3.37 Execute Write Request in BLE Stack 114
Figure 3.38 Service Attribute Layout 16
Figure 3.39 Read by Group Type Request Read by Group Type Response 118
Figure 3.40 Find by Type Value Request Find by Type Value Response 119
Figure 3.41 Read by Type Value Request Find by Type Value Response 120
Figure 3.42 Find Information Request Find Information Response 121
Figure 3.43 Read Request Read ReSpPONSe i i i i i i i e e e e 121
Figure 3.44 Read Blob Request Read Blob Response 122
Figure 3.45 Exchange MTU Request Exchange MTU Response 122
Figure 3.46 Write Request Write Response 124
Figure 3.47 Example for Write Long Characteristic Values 125
Figure 3.48 Handle Value Notificationin BLE Spec i 126
Figure 3.49 Handle Value Indication in BLE Spec 126
Figure 3.50 Handle Value Confirmationin BLE Spec 127
Figure 3.51 Mapping Diagram for Service Request and Response 129
Figure 3.52 ATT Permission Definition . e 130
Figure 3.53 Local Device Pairing Status e 131
Figure 3.54 Packet Example for Pairing Disable 132
Figure 3.55 Usage Rule for MITM OOB Flag in Legacy PairingMode 135
Figure 3.56 Mapping Relationship for KEY Generation Method and 10 Capability 135
Figure 3.57 Packet Example for Pairing Peer Trigger o ittt 140
Figure 3.58 Packet Example for Pairing Conn Trigger o i v i ittt e e 140
Figure 3.59 Master Initiates PairingReq. 150
Figure 4.1 B91 MCU HW Wakeup SOUICE i i it e e e e e e e e e e e 158
Figure 4.2 Sleep Mode Wakeup Work Flow o o 162
Figure 4.3 Sleep Timing for Advertising State and Conn State SlaveRole 166
Figure 4.4 Suspend Deep sleep Retention TimingPower. 176
Figure 4.5 T_init TiMiNg o e e e 179
Figure 4.6 Sleep Timing for Valid Conn_latency 184
Figure 4.7 Low Power Code i e e e 187
Figure 4.8 EarlyWake_upatapp_wakup_tick 189
Figure 6.1 Audio Data Sample 200
Figure 6.2 MIC Service in Attribute Table 200

AN-20111000-E3

Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22
Figure 6.23
Figure 6.24
Figure 6.25
Figure 6.26
Figure 6.27
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.1
Figure 7.12
Figure 8.1
Figure 8.2
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Data Compression Processing o o i i i it e e e 202
Data Corresponding to Compression Algorithm 203
Corresponding library files 205
SBC mode settingmethod 206
Google Service UUID setting 207
Google Voice initialization flow 207
Packet Interaction Information 208
Audio Data Transmission o o o i i e e e 208
Search_KEY packet 209
Search packet 209
MIC_Open packet 209
Start packet L 209
134-byte Audio frame e 209
Audio data interaction in ADPCM_HID_DONGLE_TO_STB mode 210
Start_request packet 210
Ack packet . . . L e 210
Audio packet L e 21
End request packet L 21
Ack packet . . . e 21
Audio data interaction in SBC_HID_DONGLE_TO_STB mode 212
Start_request packet 212
Ack packet 212
Audio packet L 212
End request packet 213
Ack packet . . . e 213
Flash Storage Structure e e 214
OTA packet in L2CAP PDU e 222
OTA Legacy protocol ProCess o i i i et e e e e e 225
OTA Extend protocol proCess o v i i i i e e e 226
OTA Version COomMPpare ProCess o v v i i i e e e e e e e e e e e e 227
Master Obtains OTA Attribute Handle via Read by Type Request 229
Firmware Sample Starting Part 229
Firmware Sample Ending Part. 230
OTA Start Sent From Master e 230
Master OTA Datal e 231
Master OTA Data2 e 231
Slave Sends OTA Succuss Resultto Master, 233
Row Column Key Matrix e 235
Repeat Key Application Example 242
PWM CloCk SOUICE o e e e e e e e 256
PWM Signal Frame e e 257
Demo IR Protocol e 263
IRTIMING T . . e e 263
IRTIMING 2 . . . e e e e e 264
IR Learn hardware circuit e 270
IR_IN waveform of NEC protocol 271
IR_IN waveform of NEC carrier ittt e e 271

AN-20111000-E3 13 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 13.9
Figure 13.10
Figure 13.11
Figure 13.12
Figure 13.13
Figure 13.14

Carrier and NON-CAMMIEM o i i e e e e e e e e e e 272
Aframeof IRcode e 276
Carrierand no carrierin IRLearn o o i i 276
IRlearn algorithm e 277
IRIearn error e e 279

Feature Test DemoO o o e 281
Legacy Just Work Process o o i i e e e e 285
SCJust WOrk Process o e e e e e 286
Legacy Just Work SDMI Process o i i e e e 288
Legacy Just Work SIMD Process o o i i i i e e e 289
Numeric Comparison Paring 291
SC SDMI Paring Processing o o i i e e e e e e e e 293
GattSecurity e e e e 295
DLE Test Process o i e e e 296
Whitelist Test Process e 298

24MCrystalSchematics L e 303
JTAG connection instructionso 312

Target Manager e e 312
Diagnostic report option L 313
Diagnostic report 313

Target Configuration Option e 314

Target Configuration 314
Flash Burner Option o o 315
Flash Programming oo 315
Verify SUCESS o e e e 316
Debug Configurations option 316
New Debug Configurations option 316
Debug Configurations Startup L 317
Debug perspective 317

AN-20111000-E3 14 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

List of Tables

Table 1.1 BLE slave demMo o o o e e 20
Table 3.9 Input parameter combination 139
Table 7.10 All possible return results of OTA e 221
Table 11.1 IC pins corresponding to 12-channel PWM 254
Table 11.2 Interrupt settings supported by PWM 260

AN-20111000-E3 15 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

1 SDK Overview

This BLE SDK supplies demo code for BLE Slave single connection development, based on which user can

develop his own application program.

1.1 Software architecture

Software architecture for this BLE SDK includes application (APP) layer and BLE protocol stack.
Figure below shows the file structure after the SDK project is imported in IDE, which mainly contains 8 top-

layer folders below: “algorithm”, “application”

”

dor”.

C/C++ - eagle_ble_sdk/vendor/B91_feature/feature_ota/main.c - Telink RDS Version
File Edit Source Refactor Navigate Search Project Run Window Help

B | R ~idhvii ! Bi% v O v Qv L FEE YD
[t Project Explorer 52 =% ~ = O ([mainc &
~ E eagle ble sdk Al ol e : X :
caglebes 94- attribute ram code int main (void)
¥ Binaries o5 T -
& Includes DBG_CHNO_LOW;
& algorithm blc_pm_select_internal 32k crystal();

& application
& B91_ble_sample

, "boot”, “common”, “drivers”, “proj_lib”, “stack” and “ven-

- x

Sy
= B8

i

~

must on ramcode

sys_init (DCDC_1P4_DCDC_1P8, VBAT MAX VALUE GREATER THAN 3V6) ;

& boot N
* detect if MCU is wake up from deep retention mode *
E:’_m"“’” int deepRetWakeUp = pm is MCU deepRetentionWakeup () ; MCU deep retention wakeUp
& drivers -
& proj_lib 104 CCLK_16M HCLE_16€M_PCLK_16M;
(= stack 5
~ & vendor rf drv ble init();

~ (= B91_ble sample o

2 app_attc gpio_init (!deepRetWakeUp) ;

app_atth
[@ app_buffer.c
app_bufferh

if (!deepRetWakeUp) {//read flash size

i
app_configh

load custo

blc_readFlashSize_autoConfigCustomFlashSector ()

freq offset cap value

ntion mode]

B app_uic 14 blc_app_loadCustomizedParameters () ;
app_uih 1 .
B appe 16 if(deepRetWakeUp){ //MCU wake up from dee
5 PP 17 user_init _deepRetn () ;
apph N N
[9) battery_check.c 19 else{ //MCU power_on or wake_up from deepSleep mode
battery_checkh 20 user_init_normal();
[2 main.c 21 }

& common 22 i

£ B91 feature 23 irg enable();
o 124

2 B91_module

configh

B Console # [Properties| (£ Problems
CDT Build Console [eagle_ble sdk]

drivers.h
tl_common.h
= boot.link

[sdk_version.txt

text code rodata data bss dec
= tl_check_fw.bat v 46672 44320 2352 3894 192 50758
#Target Manager: © 8 Outline| = O | Finished building: output/.PHONY.size
alem s
 Running Target "

2 Taraets <

& Terminal| il Function Code Size il Static Stack Analysis

%x|ME-0-=0

hex filename
<646 BY91 ble_sample.elf

Writable Smart Insert | 116: 69 2 A

Figure 1.1: SDK File Stucture

« Algorithm: This folder contains functions related to encryption algorithms.

« Application: This folder contains general application program, e.g. print, keyboard, and etc.

« boot: This folder contains software bootloader for chip, i.e., assembly code after MCU power on or
deepsleep wakeup, so as to establish environment for C program running.

« common:This folder contains generic handling functions across platforms, e.g. SRAM handling func-

tion, string handling function, and etc.

- drivers: This folder contains hardware configuration and peripheral drivers closely related to MCU,

e.g. clock, flash, i2c, usb, gpio, uart.

« proj_lib: This folder contains library files necessary for SDK running, e.g. BLE stack, RF driver, PM
driver. Since this folder is supplied in the form of library files (e.g. libB91_ble_lib.a), the source files are

not open to users.

AN-20111000-E3

16 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« stack: This folder contains header files for BLE stack. Source files supplied in the form of library files
are not open to users.

« vendor: This folder contains user application-layer code.

1.1.1 main.c

The “main.c” file includes main function entry, system initialization functions and endless loop “while(1)”.
It’s not recommended to make any modification to this file.

_attribute_ram_code_ int main (void) //must on ramcode

{

DBG_CHNO_LOW;

blc_pm_select_internal_32k_crystal();

sys_init(DCDC_1P4_DCDC_1P8,VBAT_MAX_VALUE_GREATER_THAN_3V6);

/* detect if MCU is wake_up from deep retention mode */

int deepRetWakeUp = pm_is_MCU_deepRetentionWakeup(); //MCU deep retention wakeUp

CCLK_16M_HCLK_16M_PCLK_16M;

rf_drv_ble_init();

gpilo_init(!deepRetWakeUp);

if(!deepRetWakeUp){//read flash size
blc_readFlashSize_autoConfigCustomFlashSector();

}

blc_app_loadCustomizedParameters(); //load customized freq offset cap value

i1f(deepRetWakeUp){ //MCU wake_up from deepSleep retention mode
user_init_deepRetn ();

}

else{ //MCU power_on or wake_up from deepSleep mode
user_init_normal();

}

irqg_enable();

while (1) {
main_loop ();

}

return 0;

}

1.1.2 app_config.h

The user configuration file “app_config.h” serves to configure parameters of the whole system, including
parameters related to BLE, GPIO, PM (low-power management), and etc. Parameter details of each module
will be illustrated in following sections.

AN-20111000-E3 17 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

1.1.3 application file

+ “app.c”: User file for BLE protocol stack initialization, data processing and low power management.

+ “app_att.c” of BLE sample project: configuration files for services and profiles. Based on Telink At-
tribute structure, as well as Attributes such as GATT, standard HID, proprietary OTA and MIC, user can
add his own services and profiles as needed.

« Ul task files: IR (Infrared Radiation), battery detect, and other user tasks.

1.1.4 BLE stack entry

There are three entry functions in BLE stack code of Telink BLE SDK.

"

(1) BLE related interrupt handling entry in “irq_handler” function “irq_blt_sdk_handler”.

_attribute_ram_code_ void rf_irq_handler (void)

(2) BLE related interrupt handling entry in “stimer_irq_handler” function “irq_blt_sdk_handler”.

_attribute_ram_code_ void stimer_1irqg_handler (void)

(3) BLE logic and data processing function entry in application file mainloop “blt_sdk_main_loop”.

voild main_loop (void)
{

//1//7//77//////////// BLE entry [///////////////////////////
blt_sdk_main_loop();

/117777777777777777/// VI entry [////////////77//////7//////

AN-20111000-E3 18 Ver1.2.0

T Telink

Telink B91 BLE Single Connection SDK Developer Handbook

1.2 Software Bootloader

The software bootloader file is stored in the SDK/boot/directory, as shown below:

v = boot

v = B9
cstartup_B91_DLM.S
cstartup BO1.5
boot DLM.link

boot_general.link

|'|||' |'|||' E i,

Figure 1.2: Bootloader and Bootloaderlink

The cstartup_B91.S and boot_general.link files are run by default. At this time, the SDK will occupy the I-
SRAM and D-SRAM space. |-SRAM includes retention_reset, aes_data, retention_data, ramcode, and unused

[-SRAM area. D-SRAM includes data, sbss, bss, heap, unused D-SRAM area and stack.

If you want to leave all the 128K D-SRAM space for users, you need to make the following changes.

(1) Change the #if 1 at the beginning of the cstartup_B91.S file to #if O.
(2) Change #if O at the beginning of the cstartup_B91_DLM.S file to #if 1.

(3) Copy the content of boot_DLM.link to the boot.link file of the project.

v = boot
v = B9
cstartup B91_DLM.S
cstartup BO1.5
I = boot DLM.link I

|Z| boot generallink
= commaon

iz drivers

= proj_lib

4= stack

= vendor

config.h
drivers.h

tl common.h
boot.link I
sdk version.txt
tl check fw.bat
tl check fw2.exe

M= & &

Figure 1.3: Link File Location

For more information about I-SRAM and D-SRAM, please refer to “2.1.2 SRAM Space Allocation”.

AN-20111000-E3 19

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The SDK runs deepsleep retention 32K by default. If you want to switch to deepsleep retention 64K, you
need to add the following code to the user_init_normal() function Power Management initialization:

blc_pm_setDeepsleepRetentionType(DEEPSLEEP_MODE_RET_SRAM_LOW64K);

1.3 Demo Codes

Telink BLE SDK provides users with multiple BLE demos.

Users can observe intuitive effects by running the software and hardware demo. Users can also modify the
demo code to complete their own application development. Demo codes path is shown as below.

v (= vendor
= B91 ble sample
= common
% B91 feature
@ B91 _module

Figure 1.4: BLE SDK Demo Code

1.3.1 BLE Slave Demo
BLE slave demos and their differences are shown in the table below.

Table 1.1: BLE slave demo

Demo Stack Application MCU Funciton

B91 BLE controller + Application is on the master MCU BLE transparent

module host transmission module (UART)
B91 ble BLE controller + The simplest slave demo, broadcast Master MCU

sample host and connection functions

B91 module is a complete BLE slave stack provided by Telink. The B91 module is only used as a BLE transpar-
ent transmission module, and communicates with the master MCU through the UART interface. Generally,
the application code is written in the master MCU of the other party.

The B91 ble sample is also a complete BLE slave stack provided by Telink. It can be paired and connected
with standard 10S/android devices.

AN-20111000-E3 20 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

1.3.2 Feature Demo

B91_feature provides demo codes for some commonly used BLE-related features. Users can refer to these
demos to complete their own function implementation. See code for details. The BLE section of this docu-
ment will introduce all the features.

Select the macro “FEATURE_TEST_MODE" in feature_config.h in the B91_feature project to switch to the
demo of different features.

The “Feature Demo Introduction” chapter of this document will introduce the simple use of each demo.

1.4 Project Configuration

Under most circumstances, the default configured BLE_SDK is used and user does not need to modify it. If
users want to build a new project of their own, the following configuration is recommended.

1.4.1 Tool Setting

(1) Symbols Define
This is to deifine macros in SDK, by adding the following configuration:
CHIP_TYPE=CHIP_TYPE_9518
_ PROJECT_B91_BLE_SAMPLE__=1

The detailed configuration is as following:

ype filter text Settings
> Resource
Builders 7

4 CjC++ Build Configuration; ’Bgl_ble_sample I
Build Variables
Environment
Logging & Tool Settings |.ﬁ' Build Stepsl Build Artifactl Binary Parsers | @ Error Parsers
1 . .

(# nds32le-elf-mculib-v5f Configurations Defined symbols (-D)

Target Configuration

o .
Tool Chain Editar 4 B Andes C Compiler

CHIP_TYPE=CHIP_TYPE 9518

. C/C++ General Preprocessor _PROJECT B91 BLE SAMPLE_=1 | 4
3

Project References - -
@ Directories

(# Optimization
(2 Debugging
(2 Warnings

Refactoring History
Run/Debug Settings

(& Miscellaneous

Figure 1.5: Symbol Define Config

Please be noted, select the corresponding project when configuring, as in step 2 in the above figure, or
select all projects at the same time, by selecting [All configurations].

(2) Directories

To add directories:

AN-20111000-E3 21 Ver1.2.0

‘.t Telink
Telink B91 BLE Single Connection SDK Developer Handbook

"${workspace_loc:/${ProjName}}"

As shown below.

type filter text Settings
> Resource
Builders
4 C/C++ Build Conﬁguration:l ’BS‘l_ble_sampIe I

Build Variables
Environment

Lagaing i Tool Settings |.ﬁ' Build Stepsl Build Arlifactl Binary Parsers | @ Error Parsers
ﬂ-Seﬂings
arget Configuration

(# nds32le-elf-meulib-v5f Configurations
4 [Andes C Compiler
(# Preprocessor
Symbols
Optimization
(# Debugging
2 Warnings

Tool Chain Editor
> C/C++ General

"${workspace_loc/${ProjName}}”

Project References

Refactoring History
Run/Diebug Settings

Miscellaneous

Figure 1.6: Directiories Config

(3) Optimization Config

For compiler optimization options, users need to tick the three options as shown below.

Appe e s

ELLNY> -
> Resource
Builders .
4 C/C++ Build Configuration: ’BS‘l_ble_sampIe

Build Variables

Environment

Loaaing & Tool Settings |.ﬁ' Build Steps Build Arlifacll Binary Parsersl @ Error Parsers

nds32le-elf-meulib-v5f Configurations | Optimization Level ’-02 : Optimize more for speed
4 %3 Andes C Compiler

Target Configuration

Tool Chain Editor ¢ Preprocessor Code Model lsmall
» C/C++ General & Symbols Qther pptimization flags
Project References

(2 Directories

Link Time Optimization (-flto)
Debugging
(2 Warnings
(2 Miscellaneous
4 13y Andes C Linker
(2 General
2 Libraries

Refactoring History
Run/Debug Settings

bye unused function sections (-ffunction-sections)

Remdve unused data sections (-fdata-sections)

Figure 1.7: Optimization Config

(4) Miscellaneous config

Add

-c -fmessage-length=0 -fno-builtin -fomit-frame-pointer -fno-strict-aliasing -fshort-wchar -
< fuse-1d=bfd -fpack-struct

in other flags.

(5) Libraries set

AN-20111000-E3 22 Ver1.2.0

vl Telink

Telink B91 BLE Single Connection SDK Developer Handbook

To use BLE_SDK, we need to add our stack library file. The configuration method of the link library file is as
following, Add B91_ble_lib in Libraries.

Library search path:

"${workspace_loc:/${ProjName}/proj_Llib}"

Detailed configuration is shown as below:

type filter text

Resource
Builders
~ C/C++ Build
Build Variables
Environment
Logging
Target Configura
Tool Chain Editor
C/C++ General
Project References
Run/Debug Setting:

Settings

Configuration: | B91_ble_sample

& Tool Settings # Build Steps

Build Artifact Binary Parsers @ Error Parsers

~ & Andes C Compiler
(2 Preprocessor
(# Symbols
 Directories
(# Optimization
2 Debugging
2 Warnings
& Miscellaneous
~ & Andes C Linker
& General
2 Libraries
& Miscellaneous
(# Loaded Address
~ & Andes Assembler
General
~ & NM (symbol listing)
& General
v & Readelf (ELF info listing)
& General
~ & Objdump (disassembly)

nds32le-elf-mculib-v5f Configurations Libraries (-1)

Irmware_encrypt
m

dsp

Library search path (-L)

"${workspace loc:/${ProjName}/proj lib}"

Figure 1.8: Libraries Set

(6) Objcopy General

This item is to cancel the automatic generation of the bin file, the configuration is as follows:

AN-20111000-E3

23

Ver1.2.0

ri Telink

Telink B91 BLE Single Connection SDK Developer Handbook

» Resource
Builders
4 C/C++ Build
Build Variables
Environment

Logging

Target Configuration
Tool Chain Editor

> CfC++ General
Project References

Refactoring History

Run/Debug Settings

1.4.2 Build Steps

Configuration: IBQl_ble_sample I

B Tool Settings |.ﬁ- Build Stepsl

Build Artifactl Binary Parsers | @ Error Parsers|

(# Preprocessor
& Symbols

(# Directories
Optimization
Debugging
Warnings

Miscellaneous

4 %) Andes C Linker

General

2 Libraries

Miscellaneous
2 Loaded Address

4 (53 Andes Assembler

2 General

4 [NM (symbol listing)

2 General

4 %) Readelf (ELF info listing)

2 General

4 %) Objdump (disassembly)

2 General

@ nds32le-elf-meulib-v5f Configurations I
4 %) Andes C Compiler

4 %) Objcopy (object content copy)

[¥] Disable. (Do not auto-generate output file)) I

[¥]Remave all syrmbol and relocation information. (-5)
[[]Remave all debugging symbals _sections. [-g)
[Remove all non-global symbols. {-x)

[Remaove any compiler-generated symbols. (-X)

Create an output file in format | binary (Raw binary form)

Other flags

Figure 1.9: Objcopy Config

In this step, you need to add the following command to the Command of Post-build steps:

"${workspace_Tloc:/${ProjName}}/tl_check_fw.bat" ${ConfigName}

In the previous section, we introduced how to cancel the automatic bin file generation. The purpose of this
step is to call the tl_check_fw.bat script in the post build phase to generate the bin file and add the CRC

field at the end.

AN-20111000-E3

24

Ver1.2.0

(vl Telink

Telink B91 BLE Single Connection SDK Developer Handbook

type filter text

Settings

> Resource
Builders
4 CfC++ Build
Build Variables
Environment
Logging
Target Configuration
Tool Chain Editor
s CfC++ General
Project References
Refactoring History
Run/Debug Settings

Configuration: ’ B91 ble_sample

B Tool Settings 4 Build Steps

Pre-build steps

Command:

Description:

Post-build steps

Command:

Build Artifact | Binary Parsers | @ Error Parsers

"${workspace_locy/${ProjName}i/tl_check_fw.bat”

${ConfigName}

Description:

Figure 1.10: Build Steps Config

1.4.3 Build Artifact

Select the elf option in the Artifact extension of Build Artifact, as shown below.

> Resource
Builders
4 CfC++ Build
Build Variables
Environment
Logging
Target Configuration
Tool Chain Editor
- CfC++ General
Project References
Refactoring History
Run/Debug Settings

onfiguration: l B91_ble_sample

| % Tool Settings | # Build Steps

Build Artifact | Binary Parsers | @ Error Parsers

Artifact Type:

’Andes Executable

Artifact name:

Output prefix:

${ConfigName}

Artifact extension:

Figure 1.11: Build Artifact Config

AN-20111000-E3

25 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

2 MCU Basic Modules

2.1 MCU Address Space

2.1.1 MCU Address Space Allocation

The default flash program storage is 1 MB.

The chip supports 256 KB SRAM, including 128 KB ILM (instruction local memory) and 128 KB DLM (data
local memory).

In this document, ILM will be called as [-SRAM, and DLM as D-SRAM.

The address space allocation is shown in the figure below.

Y

BUS
» ILM (128 KB)
ILM_BASE
Flash (OxC0000000~0xC0020000) CPU_ILM_BASE
(0x00000000~0x00020000)
FLASH_BASE
(0x20000000~0x21000000) CPU
CPU_DLM_BASE
) (0x00080000~0x000A0000)
Register
» DLM (128 KB)
REGISTER_BASE DLM_BASE
(0x80100000~0x82000000) (0xC0200000~0xC0220000)

Figure 2.1: MCU Address Space Allocation

« Program space address range: 0x20000000~0x21000000

» Register accessing address range: 0x80100000-~0x820000004
* ILM bus accessing address range: OxCO000000~0xC0O020000

« DLM bus accessing address range: 0xC0200000~0xC0220000
» ILM CPU accessing address range: 0x0O0000000-~0x00020000
* DLM CPU accessing address range: 0x00080000~0x000A0000

2.1.2 SRAM Space Allocation

The B91 chip embeds 2 kind of SRAMs, one is I-SRAM (128 KB), the other is D-SRAM (128 KB), I-SRAM stores
instructions and data, and D-SRAM stores only data.

The SRAM space allocation is defined by the deep-sleep retention function of the low-power management
part. Please first get familiar with deep-sleep retention function.

AN-20111000-E3 26 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

2.1.2.1 SRAM and Firmware Space

The allocation of SRAM space in MCU address space will be explained in detail.

128KB I-SRAM CPU access address range is 0xO0000000-~0x00020000, 128KB D-SRAM CPU access ad-
dress range is 0xO0080000~0x000A0000.

The figure below shows the corresponding SRAM and Firmware space allocation instructions when both
[-SRAM and D-SRAM are used at the same time in the deep-sleep retention 32K mode.

[-SRAM Flash D-SRAM
0x00000000 0x20000000 0x00080000
/ / retention_reset T vectors \
/ / - - \ data
/ / aes_data retention_reset \
/ L
| _retention_size_ retention_data]) \\ sbss
deepsleep/ \ [retention_data \
retention| \ \ Power o~ \
\ — %N logy \ bss
\ \) T——/ \
area(SZKB)\ \ ram_code \/ .y \
\ \ ram_code \ heap
\ \
\\ > T \\ \
\ | — \
0x00008000 \ \" unused
| AR | D-SRAM area
/ _ \ /
/ Firmware) /
unused / / /
I-SRAM area \\ //’
\ text /
\ [
\ /
\ // stack
\ /
\\ /
\ // STACK_TOP
0x00020000(128KB) //‘ 0x000A0000(128KB)
/
[
rodata /J/
//
data initial value /

0x20100000(1MB)

Figure 2.2: SRAM Firmware Space Allocation

The files related to the SRAM space allocation in the above figure are cstartup_B91.S and boot.link (from the
*1.2 software bootloader introduction” section, we can see that the content of boot.link here is the same
as the boot_general.link file). (If you use the deep-sleep retention 64K mode, the range of the deep-sleep
retention area at the top left of the figure above is OXx00000000-~0x00010000.)

Firmware in Flash includes vectors, retention_reset, retention_data, ram_code, text, rodata, and data initial
value.

[-SRAM includes retention_reset, aes_data, retention_data, ram_code, and unused |I-SRAM area.

AN-20111000-E3 27 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The retention_reset / retention_data / ram_code in I-SRAM is a copy of retention_reset / retention_data /
ram_code in Flash.

D-SRAM includes data, sbss, bss, heap, unused D-SRAM area and stack.
The initial value of data in D-SRAM is the initial value of data in Flash.

Detailed introduction of each segment in figure above is shown as below.
(1) vectors and retention_reset

“Vectors” and “retention_reset” are the programs corresponding to the assembly file cstartup_B91.S, which
are the software bootloader. The vectors section is at the starting address of Flash, and the retention_reset
section is at the starting address of I-SRAM. After the chip is powered on or wakes up from normal deep
sleep, it jumps to the starting address of Flash (Ox20000000) to start execution. If it is deep sleep retention
wakes up, it will start execution from the starting address of I-SRAM (Ox00000000).

(2) aes_data

The cache data of the hardware AES module is stored in the aes_data section, which is on I-SRAM, and the
length is fixed to 32Bytes, which cannot be changed by the user. When running the bootloader, it will be
set to O directly on the I-SRAM.

(3) retention_data

The deep sleep retention mode of B91 supports that after MCU enters retention, the first 32K/64K of I-SRAM
can keep the power, thus keep the data.

If the global variables in the program are compiled directly, they will be allocated in the “data” section, “sbss”
section or “bss” section. The contents of these three sections are all stored in D-SRAM and will be lost when
power down after entering deep sleep retention.

If you want some specific variables to be stored in spite of power down during the deep sleep retention
mode, just assign them to the “retention_data” section, by adding the keyword “attribute_data_retention”
when defining the variables. Here are a few examples:

_attribute_data_retention_ 1int AA;
_attribute_data_retention_ unsigned int BB = 0x05;
_attribute_data_retention_ 1int CC[4];
_attribute_data_retention_ unsigned int DD[4] = {0,1,2,3};

Regardless of whether the initial value of the global variables in the “retention_data” section is O, their initial
value will be prepared unconditionally and stored in the retention_data area of the flash. The MCU will copy
from the Flash to the retention_data area of the I-SRAM after power-on or normal deep sleep wake up.

[-SRAM's “retention_reset + aes_data + retention_data + ram_code” are arranged in sequence in front of
the I-SRAM, and their total size is *_retention_size_". After the MCU is powered on or wakes up from normal
deep sleep, as long as the program does not enter normal deep sleep (only suspend/deep sleep retention)
during execution, the content of “retention_size” is always kept on the I-SRAM, and the MCU does not need
to read it from the Flash.

The method of evaluating *_retention_size_" is based on the “Sections” at the beginning of the objdump file,
using the “Size” of the “ram_code” segment and the addition of "VMA” to get the actual “_retention_size_"
size. For example, the size of “_retention_size_" in the figure below is 0x5b02 + Oxf0O0, about 26.5KB.

AN-20111000-E3 28 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

24Sections:

25 Idx Name Size VMA LMA File off Algn
26 @ .vectors POORO166 20000000 20000000 00OO100D 2**2
27 CONTENTS, ALLOC, LOAD, READONLY, CODE

22 1 .retention reset 00000126 000DOEOY 20000168 0©OVO200O 2%**2
29 CONTENTS, ALLOC, LOAD, READONLY, CODE

30 2 .aes data 0000020 000128 20000290 000V2126 2%*2
31 ALLOC

32 3 .retention data 00000da@ 00000148 20000290 00VV2148 2**2
33 CONTENTS, ALLOC, LOAD, DATA

34 4 .ram_code | 00005b02| | 0000OTO0| 20001030 00002TEO 2**3
35 CONTENTS, ALLOC, LOAD, READONLY, CODE

Figure 2.3: Evaluate Retention Size

If users do not want to waste too much *_retention_size_”, they can switch to retention_data/ram_code
by adding corresponding keywords to the variable/function (function) that was not previously in reten-
tion_data/ram_code. The variable placed in retention_data can also save initialization time to reduce power
consumption (for specific reasons, please refer to the introduction in the low power management section).

If the configuration selected by the user uses the deep sleep retention 32K mode, but the defined “_reten-
tion_size_" exceeds the defined 32K, for example, the size of the “_retention_size_" in the figure below is
0Ox5b02 + 0x3700, which is about 36.5KB. The ram_code beyond 32K will enter Deep sleep retention mode
and lost content.

245ections:

25 Idx Name Size VMA LMA File off Algn
26 @ .vectors PORRO166 20000000 20000000 00001000 2%**2
27 CONTENTS, ALLOC, LOAD, READONLY, CODE

28 1 .retention reset 00000126 00PPOORE 20000168 00VO2000 2%*2
29 CONTENTS, ALLOC, LOAD, READONLY, CODE

30 2 .aes data 00PRRO20 0PPPO128 20000290 0OEV2126 2%*2
31 ALLOC

32 3 .retention data 00003530 00ORV148 20000290 0BOO2148 2%*2
33 CONTENTS, ALLOC, LOAD, DATA

34 4 .ram_code |BBBBSbBE||BBBB3?@B| 20003830 00OO5700 2%*8
35 CONTENTS, ALLOC, LOAD, READONLY, CODE

Figure 2.4: Retention Size Exceed

Users can modify with one of the following ways: One is to reduce the attribute content of the defined
“_attribute_data_retention_" section or “_attribute_ram_code_" section. The second is to switch to the
deep sleep retention 64K mode. For detailed configuration methods, refer to the section “1.2 Software
bootloader introduction”.

(4) ram_code

AN-20111000-E3 29 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The “ram_code” section is the code that requires permanent memory in the Flash Firmware, corresponding
to all functions in the SDK with the keyword *_attribute_ram_code_", such as the rf_irq_handler function:

_attribute_ram_code_ void rf_irq_handler(void);

There are three reasons why functions stays in memory:

First, because some functions involve timing multiplexing with the four pins of Flash MSPI, they must stay
in memory. If they are placed in Flash, timing conflicts will occur and cause crashes, such as all Flash
operations functions;

The second is that the functions stay in ram do not need to be re-read from Flash each time they are called,
which can save time, so some functions that require execution time can be placed in resident memory
to improve execution efficiency. In the SDK, some frequently executed functions related to BLE timing are
stored in the memory, which greatly reduces the execution time and ultimately saves power consumption.

The third is that B91 is based on the Risc-V Platform and supports the function of interrupt nesting. For
details, please refer to the chapter “2.3 Interrupt Nesting”. If the user adds a LEV3 priority interrupt entry
function, it must be placed in “ram_code” “segment. Because the current SDK supports LEV2 (BLE interrupt)
and LEV3 priority interrupt response when reading and writing Flash, if the newly added LEV3 priority
interrupt entry function is not in the”ram_code” section, it will cause timing conflict between Flash pre-
fetch operation and the Flash read/write operations, causing a crash.

If the user needs to store a certain function in memory, he can imitate the rf_irq_handler above and add
the keyword "_attribute_ram_code_" to the function. After compilation, the function can be seen in the
ram_code section in the objdump file.

After power on, the MCU copy from the Flash to the ram_code area of the I-SRAM.
(5) Cache

Cache is a high-speed cache, divided into I-Cache and D-Cache, each with a fixed size of 8KB, and the access
address is not visible to users. The Cache is enabled by default, which is configured in the cstartup_B91.S
file.

/* Enable I/D-Cache */
csrr t0, mcache_ctl
ori t0, t0, 1 #/I-Cache
ori t0, t0, 2 #/D-Cache
csrw mcache_ctl, to0
fence. 1

The permanent code in the memory can be read and executed directly from the SRAM, but only part of the
code in the firmware can stay in the SRAM, and most of the codes are still in the Flash. According to the
locality principle of the program, part of the Flash code can be stored in the Cache. If the code currently
needs to be executed is in the Cache, it is directly read and executed from the Cache; if it is not in the Cache,
the code will be read from the Flash and moved to the Cache, then read and execute from the Cache.

The “text” and “rodata” segments of the Firmware are not placed in the SRAM. This part of the code conforms
to the principle of program locality and needs to be loaded into the Cache to be executed.

AN-20111000-E3 30 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Because the Cache is relatively large, users are not allowed to read Flash in pointer format, because the
data read from Flash in pointer format is cached in Cache. If the data in Cache is not overwritten by other
content, even the Flash data at that location has been overwritten , when a new request to access the data
occurs, the MCU will directly use the content cached in the Cache as the result.

(6) text

The “text” section is a collection of all non-ram_code functions in Flash Firmware. If *_attribute_ram_code_"
is added to the function in the program, it will be compiled into the ram_code section, and all other functions
without this keyword will be compiled into the “text” section. The code access in the “text” section needs to
pass the caching function of the I-Cache, and the code that needs to be executed can be executed before
being loaded into the I-Cache.

(7) rodata

The “rodata” segment in Flash Firmware is the readable and non-re-writeable data defined in the program,
and is a variable defined with the keyword “const”. For example, the ATT table in Slave:

static const attribute_t my_Attributes[] = -----

Users can see that “my_Attributes” is in the “rodata” section in the corresponding objdump file.

459 2000c958 1 0 .rodata PePRRA36 led cfg
460 2000c990 1 0 |.rodata POO0A588 my Attributes
461 0008011c 1 0 .data 00000002 my primaryServiceUUID

Figure 2.5: My Attributes

(8) data and data initial value

The “data” section is the global variable that has been initialized by the program stored in the D-SRAM, that
is, the global variable whose initial value is not O. The initial value needs to be stored in the “data initial
value” section of the Flash Firmware in advance.

For example, define global variables as follows:

int testValue = 0x1234;

Then the compiler will put the variable testValue in the “data” section of D-SRAM, and store the initial value
0x1234 in the “data initial value” section of the Flash Firmware. When the bootloader is running, the initial
value will be copied to the testValue corresponding D-SRAM memory address.

(9) sbss and bss

The “sbss” section and the “bss” section store global variables that are not initialized by the program in the
D-SRAM, that is, the global variables whose initial value is O. sbss is short for small bss. The two parts are
connected together, and the initial value does not need to be prepared in advance. When the bootloader is
running, it will be set to O directly on the D-SRAM.

(10) heap

AN-20111000-E3 31 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The “heap” area is allocated to the heap, and the heap grows upward. Generally, we set the unused space
behind the bss. If functions such as sprintf/malloc/free are called, these functions will call the _sbrk function
to allocate heap memory, _Sbrk will use the _end symbol to determine where to start allocating heap space.
The definition in the link file is as follows.

PROVIDE (_BSS_VMA_END = .);
. = ALIGN(8);
/* end is the starting address of the heap, the heap grows upward */
_end = .;
PROVIDE (end = .);

(11) stack

For 128K D-SRAM, “stack” starts from the highest address OxOOOAQQQO, and its direction extends from
bottom to top, that is, the stack pointer SP is decremented when data is put on the stack, and incremented
when data is popped out of the stack.

By default, the SDK library uses a stack size of no more than 384 bytes, but since the stack size depends
on the address of the deepest position of the stack, the final stack usage is related to the user’s upper-level
program design. If the user uses a troublesome recursive function call, or uses a relatively large local array
variable in the function, or other situations that may cause the stack to be deeper, the final stack size will
increase.

The stack top position _STACK_TOP is defined in the boot_general.link file.

PROVIDE (_STACK_TOP = 0x00a0000);/*Need to prevent stack overflow*/

The stack pointer sp register is initialized in the cstartup_B91.S file.

/* Initialize stack pointer */
la t0, _STACK_TOP
mv sp, tO

If the user wants all the 128K of D-SRAM space to be reserved for the user, he can put all the data and
instructions occupied by the SDK into the I-SRAM. For the modification method, see “1.2 software bootloader
introduction.”

The figure below shows the corresponding SRAM and Firmware space allocation instructions when the SDK
uses only I-SRAM in the deep sleep retention 32K mode.

AN-20111000-E3 32 Ver1.2.0

i Telink _ _ _
Telink B91 BLE Single Connection SDK Developer Handbook
[I-SRAM Flash D-SRAM
0x00000000 0x20000000 0x00080000
/‘ //’ retention_reset T vectors \
// / aes_data retention_reset \\
/ \
/ retention_size tenti dat 7 \
deepsleep / - (. retention_data /p'/[/\\\ retention_data \\\ dim_data
retention { \ \ Obl'iejgn loag ™ \
area(32kB) \ \ ram code \ T/ \
\ \ — \
\ \ ram_code \ \
RN \ o \\ \
// \ — \ \\
| S;z:/lsed ({‘ ox00008000 | \ |\ unused
- area\ \\ | D-SRAM area
\ 0x0001C000 \
. \
data F|rmware’)
[P
sbss /
/
hbss text /
ea /
unused ———————— " . / |
I-SRAM area /
/
stack /
STACK_TOP /
0x00020000(128KB) / 0x000A0000(128KB)
/
//
rodata /
/
/
dim_data initial value /
/
/
data initial value /

0x20100000(1MB)

Figure 2.6: MCU Address Space Allocation only ISRAM

The files related to the SRAM space allocation in the above figure are cstartup_B91_DLM.S and boot.link
(from the “1.2 software bootloader introduction” section, we can see that the contents of boot.link here are
the same as the boot_DLM.link file). (If you use the deep sleep retention 64K mode, the range of the deep
sleep retention area in the above figure is Ox00000000-~0x00010000.)

Firmware in Flash includes vectors, retention_reset, retention_data, ram_code, text, rodata, dim_data initial

value, and data initial value.
I-SRAM includes retention_reset, aes_data, retention_data, ram_code, unused I-SRAM area, data, sbss, bss,

heap and stack.
The retention_reset / retention_data / ram_code in I-SRAM is a copy of retention_reset / retention_data /
ram_code in Flash. The initial value of data in I-SRAM is the initial value of data in Flash. Only dim_data is
stored in D-SRAM. The initial value of dim_data in D-SRAM is the initial value of dim_data in Flash.
Please refer to above description for the definition of each segments, here only dim_data, dim_data initial
value and ram_code are introduced separately. The “dlm_data” section is a global variable stored in the
D-SRAM that has been initialized by the program, that is, a global variable with an initial value other than O.
Its initial value needs to be stored in the “dlm_data initial value” section of the Flash Firmware in advance.

Ver1.2.0

AN-20111000-E3 33

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

If the user defines variables to D-SRAM, just assign them to the “dim_data” section, by adding the keyword
*_attribute_data_dIlm_" when defining the variable

For example, define global variables as follows:

_attribute_data_dlm_ int dlm_testValue = 0x12345;

Then the compiler will put the variable dim_testValue in the “dim_data” section of D-SRAM, and store the
initial value 0x12345 in the “dlm_data initial value” section of the Flash Firmware. When the bootloader is
running, the initial value will be copied to the dim_testValue corresponding D-SRAM memory address.

For the 128K I-SRAM, “stack” starts from the highest address Ox00020000, and its direction extends from
bottom to top, that is, the stack pointer SP is decremented when data is pushed into the stack, and incre-
mented when data is popped out of the stack.

The stack top position _STACK_TOP is defined in the boot_DLM.link file.

PROVIDE (_STACK_TOP = 0x0020000);/*Need to prevent stack overflow*/

2.1.2.2 objdump File Analysis Demo

Here is the simplest demo B91_ble_sample of BLE slave as an example, combined with "SRAM space alloca-
tion & Firmware space allocation (SDK uses I-SRAM and D-SRAM)” to analyze.

The bin file and objdump file of B91_ble_sample can be found in the directory "SDK” -> “B91_ble_sample”
-> “output” -> "B91_ble_sample.bin” and “objdump.txt”.

In the following analysis, there will be multiple screenshots, all from boot_general.link, cstartup_B91.S,
B91_ble_sample.bin, and objdump.txt. Please check the files to find the corresponding location of the
screenshot.

The distribution of each section in the objdump file is shown in the following figure (note the Algn byte
alignment):

AN-20111000-E3 34 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

‘Sections:
Idx Name Size VMA LMA File off Algn
@ .vectors PP0VR166 20000000 20000000 00ROl 2%*2

CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .retention_reset 00000126 00POOEYY 20000168 0VVO2000 2%*2
CONTENTS, ALLOC, LOAD, READONLY, CODE

2 .aes_data P00VRR20 00PR128 20000290 ©OVV2126 2%*2
ALLOC

3 .retention_data 00000da® 00000148 20000290 0002148 2%*2
CONTENTS, ALLOC, LOAD, DATA

4 .ram_code PP0O5b02 00OREfE0 20001030 0ORO2fO0 2%*8
CONTENTS, ALLOC, LOAD, READONLY, CODE

5 .text P00V4cbe 20006b38 20006b38 ©0VO8b38 2¥*2
CONTENTS, ALLOC, LOAD, READONLY, CODE

6 .rodata P00VR881 2000b7a8 2000b7a8 ©OVOd7a8 2¥*2
CONTENTS, ALLOC, LOAD, READONLY, DATA

7 .data PPPPR11c 000SPRRY 2000c040 0VOVOTORD 2%*2
CONTENTS, ALLOC, LOAD, DATA

8 .sbss P00VVR80 0008P120 2000cl60 ©OVOfllc 2%*2
ALLOC

9 .bss P00VRR20 0008P1a® 2000cle® VOOOfllc 2%*2
ALLOC

Figure 2.7: objdump File Section Analysis

According to the section analysis, below lists the information you need to know, detailed introduction will
be introduced later.

(1) vectors:
starting from Flash 0x20000000, size is 0x166, and the end address is calculated as 0x166;
(2) retention_reset:

starting from Flash 0x20000168, size is Ox126, and the end address is calculated as Ox2000028E;

starting from I-SRAM 0x00000000, size is Ox126, and the end address is calculated as 0x00000126;
(3) aes_data:

starting from I-SRAM 0x00000128, size is 0x20, and the end address is calculated as 0x00000148
(4) retention_data:

starting from Flash Ox20000290, size is 0xda0, and the end address is calculated as 0x20001030;

starting from I-SRAM 0x00000148, size is 0xda0, and the end address is calculated as OxXOOOOOEES;

(5) ram_code:

AN-20111000-E3 35 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

start fromm Flash 0x20001030, size is 0x5b02, and the end address is calculated asOx20006B32;

start from [-SRAM Ox00000f00, size is Ox5b02, and the end address is calculated as OxOO006A02;
(6) text:

start from Flash O0x20006b38, size is Ox4c6e, and the end address is calculated as Ox2000B7A6;
(7) rodata:

start from Flash Ox2000b7a8, size is 0x881, and the end address is calculated as Ox2000C029;
(8) data:

start from Flash 0x2000c040, size is Ox11c, and the end address is calculated as 0x2000C15C;

start from D-SRAM 0xO0080000, size is Ox11c, and the end address is calculated as 0xO008011C;
(9) sbss:

start from Flash Ox2000c160, size is Ox80, and the end address is calculated as Ox2000C1EOQ;

start from D-SRAM 0x00080120, size is Ox80, and the end address is calculated as OxO00801AOQ;
(10) bss:

start from Flash Ox2000c1e0, size is O0x20, and the end address is calculated as 0x2000C200;

start from D-SRAM 0x000801a0, size is 0x20, and the end address is calculated as 0x0O00801CO;

Disassembly of section .vectors:

20000000 < RESET_ENTRY>:

Disassembly of section .retention reset:

000000080 < IRESET _ENTRY>:

Disassembly of section .ram code:

POBRTEe <rf set power level index.constprop.51>:

Disassembly of section .text:

20006b38 <flash read page>:

Figure 2.8: objdump File Section Address

The above picture is the start address of the partial section searching result of “section” in the objdump file.
together with the above figure “objdump file section statistics”, the analysis is as follows:

(1) vector:

AN-20111000-E3 36 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

the start address of “vectors” section in the Flash Firmware is Ox20000000, end address is 0x20000168
(the last data address is 0x20000162~0x20000165), and the size is 0x166.

The “vectors” section will not be copied to SRAM.
(2) retention_reset:

the “retention_reset” segment starts at 0x20000168 in Flash, ends at 0x20000290 (the last data address
is 0x2000028A~0x2000028D), and the size is 0x126. It will be copied to I-SRAM when power on.

The “retention_reset” segment has a starts at 0xO0O000000 in I-SRAM, end at 0xO00000128 (the last data
address is 0x00000122~0x00000125), and the size is Ox126.

(3) aes_data:

“aes_data” will not be copied to Flash.

“ges_data” starts at Ox00000128 and ends at Ox00000148 in I-SRAM (the last data address is
0x00000144~0x00000147), the size is 0x20.

(4) retention_data:

“retention_data” segment starts at Ox20000290 in Flash, ends at 0x20001030 (the last data address is
0x2000102D~0x2000102F), and the size is OxdaO. It will be copied to I-SRAM when power on.

“Retention_data” segment starts at 0x0O0000148 in I-SRAM, and ends at 0xO0O000f00 (the last data address
is OXOOOOOEE4~0x0O0000EE7), and the size is Oxda0. OxOOO0O0EE8~0OxO0000EFF is invalid I-SRAM area.

(5) ram_code:

“ram_code” segment start at 0x20001030 in Flash, and ends at address 0x20006b38 (the last data address
is Ox20006B2E~0x20006B31), the size is Ox5b02. It will be copied to [-SRAM when power on.

The “ram_code” segment in [-SRAM starts at 0xO0O000f0O0, the last data address is OXOOO069FE~OxO0006A0T1,
and the size is Ox5b02. The end address can be used up to 0x00020000 theoretically.

(6) Cache:
[-Cache and D-Cache related information will not show in objdump files.
(7) text:

the start address of “text” segment in Flash is Ox20006b38, the end address is 0Ox2000b7a8 (the last data
address is Ox2000B7A2~0x2000B7A5), and the size is Ox4c6e.

(8) rodata:

the start address of “rodata” segment in Flash is Ox2000b7a8, the end address is 0x2000c040 (the last
data address is 0x2000C025~0x2000C028), and the size is 0x881.

(9) data:

the start address of “data” segment in Flash is 0x2000c040, the end address is 0x2000c160 (the last data
address is Ox2000C158~0x2000C15B), and the size is 0x11c.

The start address of “data” segment in D-SRAM is 0x00080000, the end address is 0x00080120 (the last
data address is Ox00080118~0x0008011B), and the size is Ox11c.

AN-20111000-E3 37 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(10) sbss:

“sbss” segment starts at Ox2000c160 in Flash, ends at 0x2000c1e0 (the last data address is
0x2000C1DC~0x2000C1DF), and the size is 0x80.

The “sbss” segment in D-SRAM has a start address of 0x00080120, an end address of 0x000801a0 (the
last data address is 0x0O008019C~0x0008019F), and the size is 0x80.

(11) bss:

the start address of “bss” segment in Flash is Ox2000c1e0, the last data address is 0x2000C1FC~0x2000C1FF,
and the size is 0x20.

The “bss” segment starts at Ox00080130 in D-SRAM, the last data address is 0xO00801BC~0x000801BF,
and the size is 0x20.

2.1.3 MCU Address Space Access

The access to the address space in the program is divided into two situations: peripheral space and Flash
space.

2.1.3.1 Peripheral Space R/W Operation

The program uses the functions write_reg8(addr,v), write_reg16(addr,v), write_reg32(addr,v), read_reg8(addr),
read_req16(addr), read_reg32(addr) to read and write the registers in the peripheral space. It is pointer
operation. For more information, please refer to drivers/B91/sys.h.

#define REG_RW_BASE_ADDR 0x80000000

#define write_reg8(addr,v) (*(volatile unsigned char*)(REG_RW_BASE_ADDR | (addr)) = (unsigned
« char)(v))

#define write_regl6(addr,v) (*(volatile unsigned short*)(REG_RW_BASE_ADDR | (addr)) = (unsigned
< short)(v))

#define write_reg32(addr,v) (*(volatile unsigned long*)(REG_RW_BASE_ADDR | (addr)) = (unsigned
- long)(v))

#define read_reg8(addr) (*(volatile unsigned char*)(REG_RW_BASE_ADDR | (addr)))

#define read_regl6(addr) (*(volatile unsigned short*)(REG_RW_BASE_ADDR | (addr)))

#define read_reg32(addr) (*(volatile unsigned long*)(REG_RW_BASE_ADDR | (addr)))

Note: operations write_reg32(0x140824)/read_reg16(0x140300) and alike are defined as shown above,
as can be seen that the offset of 0x80000000 is automatically added, so the MCU can ensure that it is
accessing the Register space, but not the Flash space.

The program uses functions write_sram8(addr,v), write_sram16(addr,v), write_sram32(addr,v), read_sram8(addr),
read_sram16(addr), read_sram32(addr) to read/write the I-SRAM and D-SRAM of the peripheral space, it

is also a pointer operation, without automatically adding an offset, so pay attention to the address, it is
different when operating I-SRAM and D-SRAM. For more information, please refer to drivers/B91/sys.h.

AN-20111000-E3 38 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define write_sram8(addr,v) (*(volatile unsigned char*)((addr)) = (unsigned char)(v))
#define write_sramil6(addr,v) (*(volatile unsigned short*)((addr)) = (unsigned short)(v))
#define write_sram32(addr,v) (*(volatile unsigned long*)((addr)) = (unsigned long)(v))
#define read_sram8(addr) (*(volatile unsigned char*)((addr)))

#define read_sramil6(addr) (*(volatile unsigned short*)((addr)))

#define read_sram32(addr) (*(volatile unsigned long*)((addr)))

Note:

The functions to read and write to [-SRAM and D-SRAM in peripheral space are generally only used in
a few debug modes and must use the free sram space to ensure that normal program execution is not
disrupted.

2.1.3.2 Flash Space Operation

The flash_read_page and flash_write_page functions are used to read and write Flash space respectively,
and flash_erase_sector is to erase Flash.

Note:

The starting address of address parameter is OxO for Flash operation functions.

(1) Flash Erase Operation

Call function flash_erase_sector to erase Flash.

vold flash_erase_sector(unsigned long addr);

A sector is 4096 bytes, e.g. Ox13000~0x13FFF is a complete sector. addr must be the first address of a
sector, this function erases the entire sector each time. It takes a long time to erase a sector. When the
system clock is 16M, it takes about 10~20ms or even longer.

(2) Flash Read/Write Operation

Flash read and write operations can only be implemented by calling flash_read_page and flash_write_page
functions.

vold flash_read_page(unsigned long addr, unsigned long len, unsigned char *buf);
voild flash_write_page(unsigned long addr, unsigned long len, unsigned char *buf);

The flash_read_page function reads the content on Flash:

u8 data[6] = {0 };
flash_read_page(0x11000, 6, data); //read 6 bytes from Flash 0x20011000 into data array.

The flash_write_page function writes to Flash:

AN-20111000-E3 39 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

flash_write_page(u32 addr, u32 len, u8 *buf);

u8 data[6] = {0x11, 0x22, 0x33, Ox44, Ox55, Ox66 };

flash_write_page(0x12000, 6, data); //Write 0x665544332211 to 6 bytes start from 0x20012000 in
< Flash.

Note:

Flash must be erased before writing. A page in Flash is 256 bytes. The flash_write_page function
supports cross-page write operations.

(3) Impact of interrupt on Flash operation

The B91 series chips support interrupt nesting function, please refer to section “2.3 Interrupt Nest-
ing”. The three Flash operation functions described above, flash_read_page, flash_write_page, and
flash_erase_sector, will set the interrupt threshold to 1 when executed, allowing interrupts with an interrupt
priority higher than 1 to interrupt the Flash operation function, and continue to execute the Flash operation
after responding to the interrupt. The interrupt threshold will be set to O after executing the Flash operation
function.

2.1.4 SDK Flash Space Allocation

Flash takes the size of a sector (4K byte) as the basic unit, because Flash erase is based on sector (the
erase function is flash_erase_sector), theoretically the same type of information needs to be stored in a
sector, different types of information need to be in different sectors (to prevent other types of information
from being erased by mistake when erasing information). Therefore, it is recommended that users follow
the principle of “different types of information in different sectors” when using Flash to store customized
information.

The B91 chip supports 1TMB of Flash as program storage space by default. The SDK defines “FLASH_SIZE”
as 1MB at the end of the file boot.link, and makes a restriction judgment on "BIN_SIZE” <= "FLASH_SIZE". If
the user uses Flash larger than TMB, this description need to be modified.

PROVIDE (FLASH_SIZE = 0x0100000);
ASSERT((BIN_SIZE)<= FLASH_SIZE, "BIN FILE OVERFLOW");

AN-20111000-E3 40 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

0x100000
MAC address
OxFFOO0O0
Calibration Value
OxFEQOO
Pair&Sec info
OxFCO000
User Data Area
0x40000
OTA New bin
storage Area
0x20000
Old Firmware
bin
0x00000

Figure 2.9: 1MB Flash Address Allocation

B91's default Flash size is TMB. The above figure shows Flash address allocation. Users can plan address
allocation according to their needs. The following describes the default address allocation method and the

corresponding interface to modify the address.

AN-20111000-E3 41 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(1) The OxFFOOO~OXFFFFF sector stores the MAC address. In fact, the 6 bytes of MAC address are stored
in OXFFOOO ~ OXFFOO5, the high byte address is stored in OXFFOO5, and the low byte address is stored
in OxFFOOO. For example, the contents of FLASH OxFFOOO to OxFFOO5 are Ox11 Ox22 Ox33 0x44
0x55 0x66, then the MAC address is 0x665544332211.

Telink’s mass production jig will burn the actual product’s MAC address to the address OxFFOOQO, which
corresponds to the SDK. If the user needs to modify this address, please ensure that the address programmed
by the firmware is also modified accordingly. In the SDK, the user_init function will read the MAC address
from the CFG_ADR_MAC_1TM_FLASH address of the Flash. This macro can be modified in /vendor/common/
blt_common.h.

#ifndef CFG_ADR_MAC_1M_FLASH
#define CFG_ADR_MAC_1M_FLASH OXFFOO0O
#endif

(2) The OXFEOOO~OXFEFFF sector stores the information that Telink MCU needs to calibrate and customize.
Only this part of the information does not follow the principle of “different types of information are
placed in different sectors”. This sector’'s 4096 bytes is divided into different units in groups of 64
bytes, and each unit stores one type of calibration information. The calibration information can be
placed in the same sector, because the calibration information is burned to the corresponding address
during the firmware burning process. The actual firmware can only read the calibration information
when it is running, and it is not allowed to write or erase. . The specific allocation is:

« The first 64bytes stores frequency offset calibration information. The actual calibration value is only
one byte, which is stored in OXFEQQO.

« The second 64bytes stores TP calibration value: B91 series chips do not need.
« The third 64bytes stores the capacitance calibration value of the external 32k crystal in OxFEQ80.
» The fourth 64bytes stores the internal ADC calibration value in OXxFEOCO.

« The space behind is reserved for other calibration values that may be needed.

(3) The two sectors OxFCOOO-~OxFDFFF are occupied by the BLE protocol stack system to store pairing
and encryption information. The user can also modify the positions of these two sectors. The size
is fixed at two sectors 8K and cannot be modified. You can call the following function to modify the
starting address of the paired encryption information storage:

void bls_smp_configParingSecurityInfoStorageAddr (int addr);

(4) OxO0000~0Ox3FFFF 256KB space is used as program space by default. The 256KB 0xO0000~0x3FFFF
is the firmware storage space, 0x40000-~0x7FFFF 256KB is the space for storing new firmware during
OTA update, that is, the supported firmware space is theoretically 256KB, the space of the high address
0x40000~0x7FFFF is actually only used 254KB, the last 4KB cannot be used.

Note:

The last 4KB of all high address spaces cannot be used.

If the default 256K program space is too small for the user, and the user wants the firmware space to be
512KB, the protocol stack also provides the corresponding API, and the modification method is described in
the OTA chapter below.

AN-20111000-E3 42 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

(5) The remaining Flash space is all used as user data storage space.

2.2 Clock Module

2.2.1 Clock Overview

The Clock of B91 is relatively complicated. The following figure shows part of the clock tree. the following
clocks will be detailed in this part, pll_clk/cclk/hclk/pclk/clk_mspi/clk_stimer.

Pad_24M

001

011

MUX

[pLL]
PLL

ana_0x08[3:2]
ana_0x80[4:0]

0x801401e8[3:0]

010

0x801401e8[6:4]

2/3 clk_stimer
divider
sys_clk colk
0
x hclk
=2
1/2 T e
divider
0xB0140148[0] % alk
=
—
0x801401d8[1:01 (8571 401d8[1:0]
0
é clk_mspi
e 1
divider
0x801401e9[7:4]
0x801401e8[7]
| clk_i2s
divider |
0x801401ea,0xB01401eb
clk usb

Figure 2.10: Clock Tree

divider

0x801401fb[2:0]

« pli_clk: the PLL in the figure above, it is the source of many module clocks, including sys_clk, which

is generally used by frequency division from PLL.

« cclk: i.e., cpu clk, the speed of the program is determined by this clock, and it is also the only clock

source for hclk and pclk.

 hclk: all modules hanging on the AHB bus use hclk.

+ pclk: all modules hanging on the APB bus use pclk.

« mspi_clk: mspi connects to Flash, and performs Flash related operations (including fetching instruc-
tions, reading and writing Flash, etc.) are all controlled by this clock.

AN-20111000-E3

43

Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« clk_stimer: The system timer is a read-only timer that provides a time reference for the timing control
of BLE, and can also be provided to the user. The System Timer is obtained by an external 24M Crystal
Oscillator divided by 2/3 16MHz.

As you can see in the figure above, sys_clk (system clock) is obtained by frequency multiplication/division
of an external 24M crystal oscillator. Call API clock_init() during initialization to configure pll_clk/cclk/hclk/
pclk/clk_mspi. The SDK has defined some commonly used clocks.

//PCLK can't larger than 24MHz, HCLK can't larger than 48MHz
#define CCLK_16M_HCLK_16M_PCLK_16M clock_init(PLL_CLK_192M, PAD_PLL_DIV,
& PLL_DIV12 TO_CCLK, CCLK_DIV1_ TO_HCLK, HCLK DIV TO_PCLK, PLL_DIV4_TO MSPI CLK)
#define CCLK_24M_HCLK_24M_PCLK_24M clock_init(PLL_CLK_192M, PAD_PLL_DIV,
& PLL_DIV8 TO CCLK, CCLK_DIV1_TO HCLK, HCLK_DIV1_TO_PCLK, PLL_DIV4_TO_MSPI_CLK)
#define CCLK_32M_HCLK_32M_PCLK_16M clock_init(PLL_CLK_192M, PAD_PLL_DIV,
& PLL_DIV6_TO CCLK, CCLK_DIV1 TO HCLK, HCLK DIV2 TO_PCLK, PLL_DIV4_TO_MSPI_CLK)
#define CCLK_48M_HCLK_48M_PCLK_24M clock_init(PLL_CLK_192M, PAD_PLL_DIV,
& PLL_DIV4 TO CCLK, CCLK_DIV1_TO HCLK, HCLK_DIV2_TO_PCLK, PLL_DIV4_TO_MSPI_CLK)
#define CCLK_64M_HCLK_32M_PCLK_16M clock_init(PLL_CLK_192M, PAD_PLL_DIV,
o PLL_DIV3_TO CCLK, CCLK_DIV2_ TO HCLK, HCLK_DIV2_TO_PCLK, PLL_DIV4 TO_MSPI_CLK)
#define CCLK_96M_HCLK_48M_PCLK_24M clock_init(PLL_CLK_192M, PAD_PLL_DIV,
o PLL_DIV2_TO_CCLK, CCLK_DIV2 TO_HCLK, HCLK_DIV2_TO_PCLK, PLL_DIV4_TO_MSPI_CLK)

The system timer has a fixed frequency of 16MHz, so for this timer, the following values are used in the
SDK code to represent s, ms, and us. Since the System Timer is the benchmark for BLE timing, all BLE
time-related parameters and variables in the SDK use "SYSTEM_TIMER_TICK_xxx".

enum{
SYSTEM_TIMER_TICK_1US = 16,
SYSTEM_TIMER_TICK_1MS = 16000,
SYSTEM_TIMER_TICK_1S = 16000000,

SYSTEM_TIMER_TICK_625US
SYSTEM_TIMER_TICK_1250US

10000, //625*16
20000, //1250*16

}

The following APIs in the SDK are some operations related to the System Timer. These APIs have used the
above-mentioned similar “xxx_TIMER_TICK_xxx"“ method to indicate time. When users operate these APlIs,
they can enter us or ms according to the parameter prompt.

vold delay_us(u32 microsec);
voild delay_ms(u32 millisec);
clock_time_exceed(unsigned int ref, unsigned int us)

2.2.2 System Timer Usage

After the initialization of sys_init in the main function is completed, the System Timer starts to work, and
the user can read the value of the System Timer counter (referred to as System Timer tick).

AN-20111000-E3 44 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The System Timer tick is incremented by one every clock cycle, and its length is 32bit, that is, every 1/16 us
plus 1, the minimum value is OXxO0000000, and the maximum value is Oxffffffff. When the System Timer
starts, the tick value is O, and the time required to reach the maximum value of Oxffffffff is: (1/16) us *
(2°32) approximately equal to 268 seconds, and the System Timer tick makes one cycle every 268 seconds.
The system tick will not stop when the MCU is running the program.

The reading of System Timer tick can be obtained through the clock_time() function:

u32 current_tick = clock_time();

The entire BLE timing of the BLE SDK is designed based on the System Timer tick. This System Timer tick
is also used extensively in the program to complete various timing and timeout judgments. It is strongly
recommended that users use this System Timer tick to implement some simple timing and timeout judg-
ments.

For example, to implement a simple software timing. The realization of the software timer is based on the
query mechanism. Because it is implemented through query, it cannot guarantee real-time performance
and readiness. It is generally used for applications that are not particularly demanding on error. Implemen-
tation:

(1) Start timer: set a u32 variable, read and record the current System Timer tick.
u32 start_tick = clock_time(); // clock_time() returns System Timer tick value

(2) Constantly inquire whether the difference between the current System Timer tick and start_tick ex-
ceeds the time value required for timing in the program. If it exceeds, consider that the timer is trig-
gered, perform corresponding operations, and clear the timer or start a new round of timing according
to actual needs.

Assuming that the time to be timed is 100 ms, the way to query whether the time is reached is:

if((u32) (clock_time() - start_tick) > 100 * CLOCK_16M_SYS_TIMER_CLK_1MS)

Since the difference is converted to the u32 type, the limit of the system clock tick from Oxffffffff to O is
solved.

In fact, in order to solve the problem of conversion to u32 caused by different system clocks, the SDK
provides a unified calling function. Regardless of the system clock, the following functions can be used to
query and judge:

1f(clock_time_exceed(start_tick, 100 * 1000)) //unit of the second parameter is us

Please be noted: since the 16MHz clock rotates for 268 seconds once, this query function is only applicable
to the timing within 268 seconds. If it exceeds 268 seconds, you need to add a counter to accumulate in
the software (not introduced here).

Application example: after 2 seconds when A condition is triggered (only once), the program performs B()
operation.

AN-20111000-E3 45 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

u32 a_trig_tick;
int a_trig_flg = 0;

while(1)
{
(A
a_trig_tick = clock_time();
a_trig_flg = 1;
}

if(a_trig_flg && clock_time_exceed(a_trig_tick,2 *1000 * 1000)){
a_trig_flg = 0;
BO);

2.3 Interrupt Nesting

2.3.1 Interrupt Nesting Overview

The B91 series supports interrupt nesting. First, explain the following three concepts: interrupt priority,
interrupt threshold, and interrupt preemption.

(1) The interrupt priority is the level of each interrupt, which needs to be configured when initializing the
interrupt;

(2) The interrupt threshold refers to the threshold for responding to interrupts. Only interrupts with an
interrupt priority higher than the interrupt threshold will be triggered;

(3) Interrupt preemption means that when the priority of two interrupts is higher than the interrupt thresh-
old, if the current lower priority interrupt is being responded, the higher priority interrupt can be trig-
gered to preempt the lower priority interrupt and execute. After finishing the higher-priority interrupt,
continue to execute the lower-priority interrupt.

Note:

The interrupt nesting function is enabled by default, and the interrupt threshold is O by default.

The interrupt priority can be set in the range of 1~3. The interrupt priority currently only supports the highest
setting to 3. The larger the number, the higher the priority. The priority enumeration is as follows:

typedef enum{
IRQ_PRI_LEV1 = 1,
IRQ_PRI_LEV2,
IRQ_PRI_LEV3,

}irq_priority_e;

AN-20111000-E3 46 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

LEV3 APP Advanced Interrupt

BLE Interrupt("rf_irg" and
"stimer irg

LEV2

LEV1 APP Normal Interrupt

0 s Interrupt Threshold

Figure 2.11: BLE SDK Interrupt Nesting

As shown in the figure above, the BLE SDK has three types of priority interrupts, and users must use them
according to this category. The interrupt priority level LEV1 has the lowest interrupt level and is assigned
to the user-defined normal APP interrupt. The interrupt priority level of LEV2 is in the middle. It is forcibly
assigned to BLE interrupts. User-defined interrupts cannot use LEV2. Interrupt priority LEV3 has the highest
interrupt level. It is generally not recommended to use it. It is only used when real-time response is required
in some special occasions. It is also assigned to user-defined APP advanced interrupts.

The BLE SDK has set the interrupt priority of the BLE interrupt (“rf_irq” and “stimer_irq”) to IRQ_PRI_LEV2
in the initialized blc_lI_initBasicMCU, and the interrupt threshold is set to O (the interrupts of LEV1~LEV3
priority can be triggered).

For user-defined normal APP interrupts, the interrupt priority needs to be set to IRQ_PRI_LEV1, without lim-
iting the execution time, BLE interrupts and APP advanced interrupts will preempt normal APP interrupts.

If the user has the need for advanced interrupts in the APP, the interrupt priority needs to be set to
IRQ_PRI_LEV3, and the code must be placed in the ram_code segment, it will preempt the BLE interrupt and
the APP ordinary interrupt, so the user must limit the execution time to less than 50us to avoid affecting
the BLE interrupt .

The reason why all the codes of the APP advanced interrupt must be placed in ram_code it that, when the
erase, read, and write operation functions of the Flash space are executed, the interrupt threshold is set to 1,
and the interrupt threshold is set to O after the Flash operation function is executed. In this case, during the
execution of the Flash operation function, the priority of the BLE interrupt and the APP advanced interrupt

AN-20111000-E3 47 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

are greater than the interrupt threshold 1. They may be triggered during the execution of the Flash operation
function. If the triggered interrupt function is not placed The ram_code segment will cause a timing conflict
between the Flash pre-fetch instruction operation and the read/write Flash operation, resulting in a crash.
The relevant codes of the BLE interrupt have been put into the ram_code section, so all the relevant codes
of the APP advanced interrupt must be put in the ram_code section.

2.3.2 Interrupt Nesting Application

2.3.2.1 App Normal Interrupt

For example, if the user wants to set a PWM APP general interrupt, when configuring the interrupt, define
the interrupt priority as IRQ_PRI_LEV1, the method is as follows.

plic_set_priority(IRQ16_PWM, IRQ_PRI_LEV1);

The type of interrupt response function is not limited.

vold pwm_irqg_handler(void)

2.3.2.2 App High-priority Interrupt

For example, the user wants to set a TimerO APP high-priority interrupt. When configuring the interrupt,
define the interrupt priority as IRQ_PRI_LEV3. Pay attention to controlling the interrupt execution time of
TimerO to be less than 50us. The method is as follows.

plic_set_priority(IRQ4_TIMERO, IRQ_PRI_LEV3);

The interrupt response function must be defined as the ram_code section, the method is as follows.

_attribute_ram_code_ void timer®_1irq_handler(void)

AN-20111000-E3 48 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3 BLE Module

3.1 BLE SDK Software Architecture

3.1.1 Standard BLE SDK Architecture

Figure below shows standard BLE SDK software architecture compliant with BLE spec.

Application

App
Profile 1 Profile 2 Profile n

i

Generic Access Profile

Generic Attribute Profile

Host

Attribute Protocol Security Manager

Logical Link Control and Adaption Protocol

HCI

Link Layer Controller

Physical Layer

Figure 3.1: BLE SDK Standard Architecture

As shown above, BLE protocol stack includes Host and Controller.

+ As BLE bottom-layer protocol, the “Controller” contains Physical Layer (PHY) and Link Layer (LL). Host
Controller Interface (HCI) is the sole communication interface for all data transfer between Controller
and Host.

« As BLE upper-layer protocol, the "Host” contains protocols including Logic Link Control and Adaption
Protocol (L2CAP), Attribute Protocol (ATT), Security Manager Protocol (SMP), as well as Profiles includ-
ing Generic Access Profile (GAP) and Generic Attribute Profile (GATT).

AN-20111000-E3 49 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« The “Application” (APP) layer contains user application codes and Profiles corresponding to various
Services. User controls and accesses Host via "GAP”, while Host transfers data with Controller via
“HCI”, as shown below.

BLE Host

HCI HCI
cmd data

HCI
HCI HCI
data event

BLE Controller

Figure 3.2: HCI Data Transfer between Host and Controller

(1) BLE Host will use HCl cmd to operate and set Controller. Controller API corresponding to each HCl cmd
will be introduced in this chapter.

(2) Controller will report various HCI events to Host via HCI.

(3) Host will send target data to Controller via HCI, while Controller will directly load data to Physical Layer
for transfer.

(4) When Controller receives RF data in Physical Layer, it will first check whether the data belong to Link
Layer or Host, and then process correspondingly: If the data belong to LL, the data will be processed
directly; if the data belong to Host, the data will be sent to Host via HCI.

3.1.2 Telink BLE SDK Architecture
B91 BLE Single Connection SDK only supports slave, the detailed content and realization method about

master and controller architecture refer to BLE Multi Connection SDK Handbook. Here describes Telink BLE
slave.

3.1.2.1 Telink BLE Slave

Telink BLE SDK in BLE Host fully supports stack of Slave.

AN-20111000-E3 50 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

When user only needs to use standard BLE Slave, and Telink BLE SDK runs Host (Slave part) + standard Con-
troller, the actual stack architecture will be simplified based on the standard architecture, so as to minimize
system resource consumption of the whole SDK (including SRAM, running time, power consumption, and
etc.). Following shows Telink BLE Slave architecture. In the SDK, B91 ble sample and B91 module are based
on this architecture.

Application
App
GAP ‘ HIDS BAS ‘AUDIO ‘ ‘ OTA ‘ Profile
] J L
T o i Fr——a
: Generic Access Profile :
’ Generic Attribute Profile ‘ Host
il BLE
Attribute Protocol ‘ Security Manager StaCk
Logical Link Control and Adaption Protocol ‘
| {
HCI ‘
@ Power
Link Layer k:“ Controller
jt Management
Physical Layer K:

Figure 3.3: Telink BLE Slave Architecture

In figure above, solid arrows indicate data transfer controllable via user APIs, while hollow arrows indicate
data transfer within the protocol stack not involved in user.

Controller can still communicate with Host (L2CAP layer) via HCI; however, the HCl is no longer the sole
interface, and the APP layer can directly exchange data with Link Layer of the Controller. Power Management
(PM) Module is embedded in the Link Layer, and the APP layer can invoke related PM interfaces to set power
management.

Considering efficiency, data transfer between the APP layer and the Host is not controlled via GAP; the ATT,
SMP and L2CAP can directly communicate with the APP layer via corresponding interface. However, the
event of the Host should be communicated with the APP layer via the GAP layer.

Generic Attribute Profile (GATT) is implemented in the Host layer based on Attribute Protocol. Various
Profiles and Services can be defined in the APP layer based on GATT. Basic Profiles including HIDS, BAS,
AUDIO and OTA are provided in demo code of this BLE SDK.

Following sections explain each layer of the B91 BLE stack according to the structure above, as well as user
APIs for each layer.

AN-20111000-E3 51 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Physical Layer is totally controlled by Link Layer, since it does not involve the APP layer, it will not be covered
in this document.

Though HCI still implements part of data transfer between Host and Controller, it is basically implemented
by the protocol stack of Host and Controller with little involvement of the APP layer. User only needs to
register HCI data callback handling function in the L2CAP layer.

3.2 BLE Controller

3.2.1 BLE Controller Introduction

BLE Controller contains Physical Layer, Link Layer, HClI and Power Management.

Telink BLE SDK fully assembles Physical Layer in the library (corresponding to c file of rf.h in driver file), and
user does not need to learn about it. Power Management will be introduced in detail in section 4 Low Power
Management (PM).

This section will focus on Link Layer, and also introduce HCI related interfaces to operate Link Layer and
obtain data of Link Layer.

3.2.2 Link Layer State Machine

Figure below shows Link Layer state machine in BLE spec. Please refer to "Core_v5.0” (Vol 6/Part B/1.1
“LINK LAYER STATES") for more information.

AN-20111000-E3 52 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

B
L

Scanning

/
2NN
:

"

| Connection & ——

2
=3

«—»| Initiating

N)
~

Figure 3.4: State Diagram of Link Layer State Machine in BLE Spec

Telink BLE SDK Link Layer state machine is shown as below.

AN-20111000-E3 53 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Idle

initiating

Y
F Y
Y

Advertising

Power
Management ‘

ave role

Figure 3.5: Telink Link Layer State Machine

Telink BLE SDK Link Layer state machine is consistent with BLE spec, and it contains five basic states:
Idle (Standby), Scanning, Advertising, Initiating, and Connection. Connection state contains Slave Role and
Master Role.

As introduced above, currently both Slave Role and Master Role design are based on single connection. Slave
Role is single connection by default; while Master Role is marked as “Master role single connection” due to
multi connection will be provided.

In this document, Slave Role will be marked as “Conn state Slave role” or “ConnSlaveRole/Connection Slave
Role”, or “ConnSlaveRole” in brief; while Master Role will be marked as “Conn state Master role” or “Conn-
MasterRole/Connection Master Role”, or "ConnMasterRole” in brief.

The "Power Management” in figure above is not a state of LL, but a functional module which indicates the
SDK only implements low power processing for Advertising and Connection Slave Role. If Idle state needs

AN-20111000-E3 54 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

low power, user can invoke related APIs in the APP layer. For the other states, the SDK does not contain low
power management, and user cannot implement low power in the APP layer.

Based on the five states above, corresponding state machine names are defined in the “stack/ble/Il/Il.h".
“ConnSlaveRole” and “"ConnMasterRole” correspond to state name "BLS_LINK_STATE_CONN".

#define BLS_LINK_STATE_IDLE 0

#define BLS_LINK_STATE_ADV BIT(0)
#define BLS_LINK_STATE_SCAN BIT(1)
#define BLS_LINK_STATE_INIT BIT(2)
#define BLS_LINK_STATE_CONN BIT(3)

Switch of Link Layer state machine is automatically implemented in BLE stack bottom layer. Therefore, user
cannot modify state in APP layer, but can obtain current state by invoking the API below. The return value
will be one of the five states.

us blc_11_getCurrentState(void);

3.2.3 Link Layer State Machine Combined Application

3.2.3.1 Link Layer State Machine Initialization

Telink BLE SDK Link Layer fully supports all states; however, it's flexible in design. Each state can be assem-
bled as a module; be default there’s only the basic Idle module, and user needs to add modules and establish
state machine combination for his application. For example, for BLE Slave application, user needs to add
Advertising module and ConnSlaveRole, while the remaining Scanning/Initiating modules are not included
so as to save code size and ram_code. The code of unused states won’t be compiled.

The API below is used for MCU initialization. This API is necessary for all BLE applications.

void blc_11_1initBasicMCU (void);

The API below serves to add the basic Idle module. This API is also necessary for all BLE applications.

void blc_11_1initStandby_module (u8 *public_adr);

Following are initialization APIs of modules corresponding to the other states (Advertising, Initiating, Slave
Role).

void blc_11_1initAdvertising_module(void);
void blc_11_1initConnection_module(void);
void blc_11_1initSlaveRole_module(void);

among them,

AN-20111000-E3 55 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void blc_11_1initConnection_module(void);
is used to initialize the common module share between master and slave mode.

User can flexibly establish Link Layer state machine combination by using the APIs above. Following shows
some common combination methods as well as corresponding application scenes.

3.2.3.2 Idle + Advertising

bls_Il_setAdvEnable(0)
Advertising dle

bls Il _setAdvEnable(1)

Figure 3.6: Idle + Advertising

As shown above, only Idle and Advertising module are initialized, and it applies to applications which use
basic advertising function to advertise product information in single direction, e.qg. beacon.

Following is module initialization code of Link Layer state machine.

u8 mac_public[6];
blc_11_1initBasicMCU();
blc_11_1initStandby_module(mac_public);
blc_11_1initAdvertising_module();

State switch of Idle and Advertising is implemented via the “bls_Il_setAdvEnable”.

AN-20111000-E3 56 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.2.3.3 Idle + Advertising + ConnSlaveRole

\ bls_Il_setAdvEnable(0) \

| Advertising L " ldle |

\ /’; bls_Il_setAdvEnable(1) \\ /

/Connection \
\ Slave role /

/
7

—

Figure 3.7: BLE Slave LL State

The figure above shows a Link Layer state machine combination for a basic BLE Slave application. In the
SDK, B91 hci/B91 ble sample/B91 remote/B91 module are all based on this combination.

Following is module initialization code of Link Layer state machine.

u8 mac_public[6];
blc_11_1initBasicMCU();
blc_11_1initStandby_module(mac_public);
blc_11_1initAdvertising_module();
blc_11_1initConnection_module();
blc_11_1initSlaveRole_module();

State switch in this combination is shown as below:

AN-20111000-E3 57 Ver1.2.0

T

Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.2.

In th

After power on, B91 MCU enters Idle state. In Idle state, when adv is enabled, Link Layer switches to
Advertising state; when adv is disabled, it will return to Idle state.

The API “bls_IlI_setAdvEnable” serves to enable/disable Adv.

After power on, Link Layer is in Idle state by default. Typically it's needed to enable Adv in the
“user_init” so as to enter Advertising state.

When Link Layer is in Idle state, Physical Layer won’t take any RF operation including packet transmis-
sion and reception.

When Link Layer is in Advertising state, advertising packets are transmitted in adv channels. Master
will send conneciton request if it receives adv packet. After Link Layer receives this connection request,
it will respond, establish connection and enter ConnSlaveRole.

When Link Layer is in ConnSlaveRole, it will return to Idle State or Advertising state in any of the
following cases:

Master sends “terminate” command to Slave and requests disconnection. Slave will exit ConnSlaveRole
after it receives this command.

By sending “terminate” command to Master, Slave actively terminates the connection and exits
ConnSlaveRole.

If Slave fails to receive any packet due to Slave RF Rx abnormity or Master Tx abnormity until BLE
connection supervision timeout is triggered, Slave will exit ConnSlaveRole.

When Link Layer exits ConnSlaveRole state, it will switch to Adv or Idle state according to whether
Adv is enabled or disabled which depends on the value configured during last invoking of the
“bls_Il_setAdvEnable” in APP layer.

If Adv is enabled, Link Layer returns to Advertising state.

If Adv is disabled, Link Layer returns to Idle state.

4 Link Layer Timing Sequence

is section, Link Layer timing sequence in various states will be illustrated combining with rf_irq_handler,

stimer_irq_handler and main_loop of this BLE SDK.

_attribute_ram_code_ void rf_irq_handler(void)

AN-20111000-E3 58 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void main_loop (void)

{

/111777177/7///////// BLE entry [///////////////////////////
blt_sdk_main_loop();

11177/77777//////////// UL entry [///////////////////////////

The “blt_sdk_main_loop” function at BLE entry serves to process data and events related to BLE protocol
stack. Ul entry is for user application code.

3.2.4.1 Timing Sequence in Idle State

When Link Layer is in Idle state, no task is processed in Link Layer and Physical Layer; the “blt_sdk_main_loop”
function doesn’t act and won't generate any interrupt, i.e. the whole timing sequence of main_loop is
occupied by Ul entry.

3.2.4.2 Timing Sequence in Advertising State

chn 37 chn 38 chn 39

TX’ RX TX‘ RX TX‘ RX

Adv event ‘ Ul task/suspend Adv event Ul task/suspend

I
[
<« Adv interval :
I
1

Figure 3.8: Timing Sequence Chart in Advertising State

As shown in figure above, an Adv event is triggered by Link Layer during each adv interval. A typical Adv
event with three active adv channels will send an advertising packet in channel 37, 38 and 39, respectively.
After an adv packet is sent, Slave enters Rx state, and waits for response from Master:

« If Slave receives a scan request from Master, it will send a scan response to Master.

+ If Slave receives a connect request from Master, it will establish BLE connection with Master and enter
Connection state Slave Role.

Code of Ul entry in main_loop is executed during Ul task/suspend part in figure above. This duration can be
used for Ul task only, or MCU can enter sleep (suspend or deep sleep retention) for the redundant time to
reduce power consumption.

AN-20111000-E3 59 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In Advertising state, the “blt_sdk_main_loop” function does not need to process many tasks, and only
some callback events related to Adv will be triggered, including BLT_EV_FLAG_ADV_DURATION_TIMEQUT.
BLT_EV_FLAG_SCAN_RSP, BLT_EV_FLAG_CONNECT, etc.

3.2.4.3 Timing Sequence in Scanning State

le———— Scanning/Ul task Scanning/Ul task Scanning/Ul task ———

Scan interval ————

|
Channel 37 Channel 38 Channel 39

Figure 3.9: Timing Sequence Chart in Scanning State

Scan interval is configured by the API “blc_Il_setScanParameter”. During a whole Scan interval, packet
reception is implemented in one channel, and Scan window is not designed in the SDK. Therefore, the SDK
won'’t process the setting of Scan window in the “blc_II_setScanParameter”.

After the end of each Scan interval, it will switch to the next receiving channel, and enters next Scan interval.
Channel switch action is triggered by interrupt, and it's executed in irq which takes very short time.

In Scanning interval, PHY Layer of Scan state is always in RX state, and it depends on MCU hardware to
implement packet reception. Therefore, all timing in software are for Ul task.

After correct BLE packet is received in Scan interval, the data are first buffered in software RX fifo (corre-
sponding to “my_fifo_t blt_rxfifo” in code), and the “blt_sdk_main_loop” function will check whether there
are data in software RX fifo. If correct adv data are discovered, the data will be reported to BLE Host via
the event “HCI_SUB_EVT_LE_ADVERTISING_REPORT".

3.2.4.4 Timing Sequence in Initiating State

le——— Scanning/Ul task Scanning/Ul task Scanning/Ul task ——

|
X Scan interval ———»
I

Channel 37 Channel 38 Channel 39

Figure 3.10: Timing Sequence Chart in Initiating State

Timing sequence of Initiating state is similar to that of Scanning state, except that Scan interval is configured
by the API “blc_II_createConnection”. During a whole Scan interval, packet reception is implemented in one
channel, and Scan window is not designed in the SDK. Therefore, the SDK won’t process the setting of Scan
window in the “blc_Il_createConnection”.

After the end of each Scan interval, it will switch to the next listening channel, and start a new Scan interval.
Channel switch action is triggered by interrupt, and it's executed in irq which takes very short time.

AN-20111000-E3 60 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In Scanning state, BLE Controller will report the received adv packet to BLE Host; however, in Ini-
tiating state, adv won’'t be reported to BLE Host, and it only scans for the device specified by the
“blc_Ill_createConnection”. If the specific device is scanned, it will send connection_request and establish
connection, then Link Layer enters ConnMasterRole.

3.2.4.5 Timing Sequence in Conn State Slave Role

brx brx brx
start | working| pos

Ul task H Ul task/suspend ﬂ Ul task H Ul task/suspend
| brx : I brx |
event_'! l‘_event_-:

! Conn interval ~:
I

Figure 3.11: Timing Sequence Chart in Conn State Slave Role

As shown in the above figure, each conn interval starts with a brx event, i.e. transfer process of BLE RF
packets by Link Layer: PHY enters Rx state, and an ack packet will be sent to respond to each received data
packet from Master. If there is more data, then continue to receive master packets and reply, this process
is called brx event for short.

In this BLE SDK, each brx process consists of three phases according to the assignment of hardware and
software.

(1) brx start phase

When Master is about to send packet, an interrupt is triggered by system tick irq to enter brx start phase.
During this interrupt, MCU sets BLE state machine of PHY to enter brx state, hardware in bottom layer
prepares for packet transfer, and then MCU exits from the interrupt irq.

(2) brx working phase

After brx start phase ends and MCU exits from irq, hardware in bottom layer enters Rx state first and waits for
packet from Master. During the brx working phase, all packet reception and transmission are implemented
automatically without involvement of software.

(3) brx post phase

After packet transfer is finished, the brx working phase is completed. System tick irq triggeres an interrupt
to switch to the brx post phase. During this phase, protocol stack will process BLE data and timing sequence
according to packet transfer in the brx working phase.

During the three phases, brx start and brx post are implemented in interrupt, while brx working phase does
not need the involvement of software, and Ul task can be executed normally (Note that during brx working
phase, Ul task can be executed in the time slots except RX, TX, and System Timer interrupt handler). During
the brx working phase, MCU can’t enter sleep (suspend or deep sleep retention) since hardware needs to
transfer packets.

AN-20111000-E3 61 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Within each conn interval, the duration except for brx event can be used for Ul task only, or MCU can enter
sleep (suspend or deep sleep retention) for the redundant time to reduce power consumption.

In the ConnSlaveRole, the “blt_sdk_main_loop” needs to process the data received during the brx process.
During the brx working phase, the data packet received from Master will be copied out during RX interrupt
irq handler; these data won’t be processed immediately, but buffered in software RX fifo (corresponding
to my_fifo_t blt_rxfifo in code). The “blt_sdk_main_loop” function will check whether there are data in
software RX fifo, and process the detected data packet correspondingly.

The processing of packets by blt_sdk_main_loop includes:
(1) Decryption of data packet
(2) Parsing of data packet

If the parsed data belongs to the control command sent by Master to Link Layer, this command will be
executed immediately; if it's the data sent by Master to Host layer, the data will be transferred to L2CAP
layer via HCl interface.

3.2.5 Link Layer State Machine Extension

The above BLE Link Layer state machine and timing sequence introduces the most basic states, which can
meet basic applications such as BLE slave/master. However, considering that the user may have some
special applications (such as being able to advertising in the Conn state Slave role), Telink BLE SDK adds
some special extension functions to the Link Layer state machine. The states of the state machine exten-
sions: ADVERTISING_IN_CONN_SLAVE_ROLE, SCANNING_IN_ADV and SCAN_IN_CONN_SLAVE_ROLE are
described in detail below.

3.2.5.1 ADVERTISING_IN_CONN_SLAVE_ROLE

The Advertising feature can be added when the Link Layer is in ConnSlaveRole.

The API for adding Advertising feature is:

ble_sts_t blc_11_addAdvertisingInConnSlaveRole(void);

The API to remove Advertising feature is:

ble_sts_t blc_11_removeAdvertisingFromConnSLaveRole(void);

The return value of the above two API ble_sts_t types is BLE_SUCCESS.

Combining the timing diagrams of the Advertising and ConnSlaveRole, when the Advertising feature is added
to ConnSlaveRole, the timing diagram is as follows:

AN-20111000-E3 62 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ﬂ Ul task H Adv L Ul task/sleep -
event

| brx ' |

. event |

|- Conn interval -

|

Figure 3.12: Timing of advertising in ConnSlaveRole

The current Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). After the brx event ends in each
Conn interval, an adv event is executed immediately, and the remaining time is left to the Ul task or goes
to sleep (suspend/deepsleep retention) to save power consumption.

For the use of Advertising in ConnSlaveRole, please refer to *TEST_ADVERTISING_IN_CONN_SLAVE_ROLE"
in B91m_feature_test.

3.2.5.2 ADVERTISING_IN_CONN_SLAVE_ROLE

The Scanning feature can be added when the Link Layer is in the Advertising state.

The API for adding Scanning feature is:

ble_sts_t blc_11_addScanningInAdvState(void);

The API to remove Scanning feature is:

ble_sts_t blc_11_removeScanningFromAdvState(void);
The return value of the above two API ble_sts_t types is BLE_SUCCESS.
Combining the timing diagrams of the Advertising state and Scanning state, when the Scanning feature is

added to the Advertising state, the timing diagram is as follows:

Set Scan Set Scan

Adv event Fi Scanning/Ul task % Scanning/Ul task %

Adv interval ——;

Figure 3.13: Timing of scanning in Advertising state

The current Link Layer is still in the Advertising state (BLS_LINK_STATE_ADV). In each Adv interval, except
for the Adv event, all the remaining time is used for Scanning.

AN-20111000-E3 63 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In each Set Scan, it will judge whether the current time is more than a Scan interval from the last Set Scan
time (from the setting of blc_ll_setScanParameter), and if it exceeds, switch the Scan channel (channel
37/38/39).

For the use of Scanning in Advertising state, please refer to "TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE”
in B91m_feature_test.

3.2.5.3 SCAN_IN_CONN_SLAVE_ROLE

The Scanning feature can be added when the Link Layer is in ConnSlaveRole.

The API for adding Scanning feature is:

ble_sts_t blc_11_addScanningInConnSlaveRole(void);

The API to remove Scanning feature is:

ble_sts_t blc_11_removeScanningFromConnSLaveRole(void);

The return value of the above two API ble_sts_t types is BLE_SUCCESS.

Combining the timing diagrams of the Scanning state and ConnSlaveRole, when the Scanning feature is
added to the ConnSlaveRole, the timing diagram is as follows:

Set Scan Set Scan

ﬂ Ul task (47 Scanning/Ul task 4>ﬂ Ul task H<7 Scanning/Ul task ——
|

[brx I
B | brx
event 1 avent |

| Conn interval ‘I

Figure 3.14: Timing of scanning in ConnSlaveRole

The current Link Layer is still in ConnSlaveRole (BLS_LINK_STATE_CONN). In each Conn interval, except for
the brx event, all the remaining time is used for Scanning.

In each Set Scan, it will judge whether the current time is more than a Scan interval from the last Set Scan
time (from the setting of blc_lI_setScanParameter), and if it exceeds, switch the Scan channel (channel
37/38/39).

For the use of Scanning in ConnSlaveRole, please refer to "TEST_SCANNING_IN_ADV_AND_CONN_SLAVE_ROLE"
in B91m_feature_test.

3.2.6 Link Layer TX fifo & RX fifo

The processing methods of BLE TX fifo and BLE RX fifo of Slave role are the same.

AN-20111000-E3 64 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.2.6.1 Link Layer RX fifo Introduction

All data received from peer device during Link Layer brx will be buffered in a BLE RX fifo, and then transmitted
to BLE Host or APP layer for processing.

BLE RX fifo is defined at the application layer:

#define ACL_RX_FIFO_SIZE 48

#define ACL_RX_FIFO_NUM 8

_attribute_data_retention_ u8 app_acl_rxfifo[ACL_RX_FIFO_SIZE * ACL_RX_FIFO_NUM] = {0};
blc_11_1initAclConnRxFifo(app_acl_rxfifo, ACL_RX_FIFO_SIZE, ACL_RX_FIFO_NUM);

ACL_RX_FIFO_SIZE is 48 by default. Unless you need to use the data length extension, you are not allowed
to modify this size.

ACL_RX_FIFO_NUM must be set to a power of 2, which is 2, 4, 8, 16, etc. Users can make slight modifications
according to their needs.

ACL_RX_FIFO_NUM is 8 by default, which is a reasonable value and can ensure that the bottom layer of the
Link Layer can buffer up to 8 packets. If the setting is too large, it will take up too much SRAM. If the setting
is too small, there may be a risk of data overwriting: in the brx event, the Link Layer is likely to word under
more data (MD) mode on an interval, and continue to receive multiple packets, if you set 4, it is likely that
there will be five or six packets in an interval (such as OTA, playing master voice data, etc.), and the upper
layer’s response to these data is too long to process due to the long decryption time, then it is possible some
data is overflowed.

Here is an example of RX overflow, we have the following assumptions:

a) The number of RX fifo is 8;
b) Before brx_event(n) is turned on, the read and write pointers of RX fifo are O and 2 respectively;

c) In the brx_event(n) and brx_event(n+1) stages, the main_loop has task blockage, and the RX fifo is
not taken in time;

d) Both brx_event stages are multi-packet situations.

From the description in the “Conn state Slave role timing” section above, we know that the BLE data packets
received in the brx_working stage will only be copied to the RX fifo (RX fifo write pointer++), and the RX fifo
data is actually taken out for processing. In the main_loop stage (RX fifo read pointer++), we can see that
the sixth data will cover the read pointer O area. It should be noted here that the Ul task time slot in the brx
working stage is the time except for interrupt processing such as RX, TX, and system timer.

AN-20111000-E3 65 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

brx brx brx brx
tart| brx working p07 iart brx working post
UI task UT task
I _III__II__IF__IIF__I[_ | I__I:_-I:_—Il[__H__II__I

HIRXI: (1) A2 (T2 RXS) {1X3 H UI task/sleep (£ B 8 e S :mﬂ UI task/sleep

| |

<—Brx event (m)—= :4—Bﬁi event (n+H—>:

rptr:0

rptr:0
wptr (2+6)& (8-1)=0

‘b If the RX fifo rptr is 0 before the
pkt is received, assuming that
there are miltiple pkts in one brx

event and main_loop does not
process RX fifo(means rptr not ++),
then after receiving the 6th RX
data, the RX fifo wptr will cross
the rptr area, causing lst pkt to
‘\wptr:Z be covered.

Figure 3.15: RX Overflow Case 1

Relative to the extreme case above with long task blockade duration due to one connection interval, the
case below is more likely to occur:

During one brx_event, since Master writes multiple packets (e.g. 7/8 packets) into Slave, Slave fails to process
the received data in time. As shown below, the rptr (read pointer) is increased by two, but the wptr (write
pointer) is also increased by eight, which thus causes data overflow.

AN-20111000-E3 66 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

brx brx
tart brx working post
UI task
[T R T R T T | R | R | B R | s | B T s T R 1 1]
T N Dl el Dl el el e e UI task/sleep

[
|<—— Brx event (n)

I

rptr:0
wptr (2+8) & (8-1)=2

If the RX fifo rptr is 0 before the
pkt is received, assuming that
there are multiple pkts in one brx
event and main_loop does process 2
RX pkts(means rptr point to 2),
then after receiving the 8th RX
data, the RX fifo wptr will cross
the rptr area, causing 2nd pkt to
‘ ‘\‘wptr:Z be covered.

rptr:2
Once there is a data loss problem caused by overflow, for the encryption system, there will be a MIC failure
disconnection problem. SDK has Rx overflow check: check whether the current RX fifo write pointer and
read pointer difference is greater than the number of Rx fifo in brx Rx IRQ. Once the Rx fifo is found to be
full, the RF will not ACK the other party. BLE protocol Data retransmission will be ensured. In addition, the
SDK also provides the Rx overflow callback function to notify users. This callback will be introduced in the
chapter “Telink defined event” later in the document.

Figure 3.16: RX Overflow Case 2

Similarly, if there may be more than 8 valid packets in an interval, the default 8 is not enough.

3.2.6.2 Link Layer TX fifo Introduction

All data of the application layer and the BLE Host need to be transmitted through the Link Layer of the
Controller to complete the RF data transmission. A BLE TX fifo is designed in the Link Layer, which can be
used to buffer the transmitted data and proceed after the start of brx Data transmission.

BLE TX fifo is defined at the application layer:

#define ACL_TX_FIFO_SIZE 48

#define ACL_TX_FIFO_NUM 17

_attribute_data_retention_ u8 app_acl_txfifo[ACL_TX_FIFO_SIZE * ACL_TX_FIFO_NUM] = {0};
blc_11_1initAclConnTxFifo(app_acl_txfifo, ACL_TX_FIFO_SIZE, ACL_TX_FIFO_NUM);

ACL_TX_FIFO_SIZE defaults to 48. Unless you need to use the data length extension, you are not allowed
to modify this size.

AN-20111000-E3 67 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ACL_TX_FIFO_NUM must be set to a power of 2 plus 1, that is, 3, 5, 9, 17 and so on. Users can make slight
modifications according to their needs.

The default TX fifo number is 17, which can handle voice data with a large amount of data. If User does not
use such a large fifo, it can be modified to 9.

It should be noted that (ACL_TX_FIFO_SIZE * (ACL_TX_FIFO_NUM -1)) cannot exceed OxFFF (4096).

In TX fifo, the SDK bottom stack needs to use 3, and the rest is completely used by the application layer.
When the TX fifo is 17, the application layer can only use 14; when it is 9, the application layer can only use
6.

When the user sends data at the application layer (for example, calling blc_gatt_pushHandleValueNotify),
he should first check how many TX fifos are available in the current Link Layer.

The following API is used to determine how many TX fifos are currently occupied, not how many are avail-
able.

u8 blc_11_getTxFifoNumber (void);

For example, when the TX fifo number defaults to 17, the number of users available is 14, so as long as the
value returned by the APl is less than 14, it is available: returning 13 means that there is 1 more available,
and returning O means that there are 14 more available.

When using TX fifo, if the customer first looks at how many are left before deciding whether to directly push
the data, a fifo should be reserved to prevent various boundary problems.

In B91 Audio’s voice processing, since it is known that each voice data will be split into 5 packets, 5 TX
fifos are required, and no more than 9 fifos are occupied. In order to avoid abnormalities caused by some
boundary conditions when TX fifo is used (for example, when the BLE stack is just in time to reply to the
command of the master, a data is inserted into TX fifo), the final code is written as follows: When the
occupied TX fifo does not exceed After 8 hours, the voice data is pushed to TX fifo.

if (blc_11_getTxFifoNumber() < 9)

The problem of data overflow has been discussed above. In addition to the automatic processing mechanism
for data overflow, the bottom of the SDK also provides the following API to limit the number of more data
received on an interval (if the customer wants RX fifo to be sufficient, the data can also be processed Limit,
you can use the following API).

3.2.7 Controller Event

Considering user may need to record and process some key actions of BLE stack bottom layer in the APP
layer, Telink BLE SDK provides three types of event: Standard HCl event defined by BLE Controller; Telink
defined event; event-notification type GAP event (Host event) defined by BLE Host for stack flow interaction
(see section GAP event).

AN-20111000-E3 68 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

As shown in the BLE SDK event architecture below: HCI event and Telink defined event are Controller event,
while GAP event is BLE Host event.

Host event

(GAP event) _ _
Host ~ Application

HCI event Telink defined event

BLE Controller

Figure 3.17: BLE SDK Event Architecture

3.2.7.1 Controller HCI Event
HCI event is designed according to BLE Spec; Telink defined event only applies to BLE Slave (B91 module
etc).

+ BLE Master only supports HCI event.

« BLE Slave supports both HCI event and Telink defined event.

For BLE Slave, basically the two sets of event are independent of each other, except for the connect and
disconnect event of Link Layer.

User can select one set or use both as needed. In Telink BLE SDK, B91 module use Telink defined event.

As shown in the “Host + Controller” architecture below, Controller HCI event indicates all events of Controller
are reported to Host via HCI.

AN-20111000-E3 69 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

BLE Host

HCI

Host data
cmd

HCI

HCI
Controller data event

BLE Controller

Figure 3.18: HCI Event

For definition of Controller HCI event, please refer to “Core_v5.0” (Vol 2/Part E/7.7 “Events”). “LE Meta
Event” in 7.7.65 indicates HCI LE (low energy) Event, while the others are commom HCl events.

As defined in Spec, Telink BLE SDK also divides Controller HCI event into two types: HCI Event and HCI
LE event. Since Telink BLE SDK focuses on BLE, it supports most HCI LE events and only a few basic HCI
events.

For the definition of macros and interfaces related to Controller HCI event, please refer to head files under
“stack/ble/hci”.

To receive Controller HCI event in Host or APP layer, user should register callback function of Controller HCI
event, and then enable mask of corresponding event.

Following are callback function prototype and register interface of Controller HCI event:

typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);
vold blc_hci_registerControllerEventHandler(hci_event_handler_t handler);

In the callback function prototype, "u32 h” is @ mark which will be frequently used in bottom-layer stack,
and user only needs to know the following:

#define HCI_FLAG_EVENT_TLK_MODULE (1<<24)
#define HCI_FLAG_EVENT_BT_STD (1<<25)

“HCI_FLAG_EVENT_TLK_MODULE" will be introduced in “Telink defined event”, while *"HCI_FLAG_EVENT_BT_STD"
indicates current event is Controller HCI event.

AN-20111000-E3 70 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In the callback function prototype, “para” and “n” indicate data and data length of event. The data is
consistent with the definition in BLE spec.

blc_hci_registerControllerEventHandler(controller_event_callback);

3.2.7.2 HCI event

Telink BLE SDK supports a few HCI events. Following lists some events for user.

#define HCI_EVT_DISCONNECTION_COMPLETE 0x05
#define HCI_EVT_ENCRYPTION_CHANGE 0x08
#define HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE 0x0C

#define HCI_EVT_ENCRYPTION_KEY REFRESH 0x30
#define HCI_EVT_LE_META Ox3E

a) HCI_EVT_DISCONNECTION_COMPLETE

Please refer to "Core_v5.0” (Vol 2/Part E/7.7.5 “Disconnection Complete Event”). Total data length of this
event is 7, and 1-byte “param len” is 4, as shown below. Please refer to BLE spec for data definition.

hci event event param status |connection handle| reason
code len
0x04 0x05 4 0x00

Figure 3.19: Disconnection Complete Event

b) HCI_EVT_ENCRYPTION_CHANGE and HCI_EVT_ENCRYPTION_KEY_REFRESH

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.8 & 7.7.39). The two events are related to Controller encryption,
and the processing is assembled in library.

¢) HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE

Please refer to "Core_v5.0" (Vol 2/Part E/7.7.12). When Host uses the *HCI_CMD_READ_REMOTE_VER_INFO"
command to exchange version information between Controller and BLE peer device, and version of peer
device is received, this event will be reported to Host. Total data length of this event is 11, and 1-byte
“param len” is 8, as shown below. Please refer to BLE spec for data definition.

hci event i\;iir;t pelierim status |connection handle| version |manufacture name subversion
0x04 0x0c 8 0x00

Figure 3.20: Read Remote Version Information Complete Event

d) HCI_EVT_LE_META

AN-20111000-E3 71 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

It indicates current event is HCI LE event, and event type can be judged according to sub event code. Except
for HCI_EVT_LE_META, other HCI events should use the API below to enable corresponding event mask.

ble_sts_t blc_hci_setEventMask_cmd(u32 evtMask);

Definition of event mask:

#define HCI_EVT_MASK_DISCONNECTION_COMPLETE 0x0000000010
#define HCI_EVT_MASK_ENCRYPTION_CHANGE 0x0000000080
#define HCI_EVT_MASK_READ_REMOTE_VERSION_INFORMATION_COMPLETE 0x0000000800

If HCl event mask is set via this API, by default only the mask corresponding to the *HCI_CMD_DISCONNECTION_COMPLET
is enabled in the SDK, i.e. the SDK only ensures report of “Controller disconnect event” by default.

3.2.7.3 HCI LE event

When event code in HCl event is "HCI_EVT_LE_META” to indicate HCI LE event, common sub-event code
are shown as below:

#define HCI_SUB_EVT_LE_CONNECTION_COMPLETE 0x01
#define HCI_SUB_EVT LE_ADVERTISING REPORT 0x02
#define HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE 0x03
#define HCI_SUB_EVT_LE_CONNECTION_ESTABLISH 0x20

a) HCI_SUB_EVT_LE_CONNECTION_COMPLETE

Please refer to "Core_v5.0" (Vol 2/Part E/7.7.65.1 "LE Connection Complete Event”). When connection is
established between Controller Link Layer and peer device, this event will be reported. Total data length of
this event is 22, and 1-byte “param len” is 19, as shown below. Please refer to BLE spec for data definition.

0Ox04 Ox3e 19 0x01
. event aram b t . Addrt
hci event P subeven status | connection handle| Role |Pe&™ 9
code len code ype
peer addr conn interval
supervision master
conn latecncy i t clock
Imeou dCcuracy

Figure 3.21: LE Connection Complete Event

b) HCI_SUB_EVT_LE_ADVERTISING_REPORT

Please refer to “Core_v5.0” (Vol 2/Part E/7.7.65.2 “LE Advertising Report Event”). When Link Layer of Con-
troller scans right adv packet, it will be reported to Host via the "HCI_SUB_EVT_LE_ADVERTISING_REPORT".

AN-20111000-E3 72 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data length of this event is not fixed and it depends on payload of adv packet, as shown below. Please refer
to BLE spec for data definition.

0x04 Ox3e 0x02
i event param | subevent num event i
hci event code len code report type address type[1...i]
address[1...i] length[1..i]
data[1...i] rssi[1..i]

Figure 3.22: LE Advertising Report Event

Note:

In Telink BLE SDK, each “LE Advertising Report Event” only reports an adv packet, i.e. “i” in figure above
is 1.

c) HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE

Please refer to "Core_v5.0” (Vol 2/Part E/7.7.65.3 “"LE Connection Update Complete Event”). When “con-
nection update” in Controller takes effect, the *HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE" will
be reported to Host. Total data length of this event is 13, and 1-byte “param len” is 10, as shown below.
Please refer to BLE spec for data definition.

0x04 Ox3e 10 0x03
. event aram .
hci event P subevent status | connection handle
code len code
. supervision
conn interval conn latency .
timeout

Figure 3.23: LE Connection Update Complete Event

d) HCI_SUB_EVT_LE_CONNECTION_ESTABLISH

The "HCI_SUB_EVT_LE_CONNECTION_ESTABLISH" is a supplement to the "HCI_SUB_EVT_LE_CONNECTION_COMPLETE"
so all the parameters except for subevent is the same. This Telink private defined event is the sole event
which is not standard in BLE spec. This event is only used in B91 master kma dongle.

Following illustrates the reason for Telink to define this event.

When BLE Controller in Initiating state scans adv packet from specific device to be connected, it will send
connection request packet to peer device; no matter whether this connection request is received, it will be

considered as “"Connection complete”, "LE Connection Complete Event” will be reported to Host, and Link
Layer immediately enters Master role. Since this packet does not support ack/retry mechanism, Slave may

AN-20111000-E3 73 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

miss the connection request, thus it cannot enter Slave role, and won’t enter brx mode to transfer packets.
In this case, Master Controller will process according to the mechanism below: After it enters Master role,
it will check whether there’s any packet received from Slave during the beginning 6~10 conn intervals (CRC
check is negligible).

 If no packet is received, it's considered that Slave does not receive connection request; suppose "LE
Connection Complete Event” has already been reported, it must report a "Disconnection Complete
Event” quickly, and indicate disconnect reason is "Ox3E (HCI_ERR_CONN_FAILED_TO_ESTABLISH)".

« If there’s packet received from Slave, it can confirm that Connection is established, thus Master can
continue rest of the flow.

According to the description above, the processing method of BLE Host should be: After it receives “LE Con-
nection Complete Event” of Controller, it cannot confirm that connection has already been established, but
instead, starts a timer based on conn interval (timing value should be configured as 10 intervals or above
to cover the longest time). After the timer is started, it will check whether there is "Disconnection Com-
plete Event” with disconnect reason of Ox3E; if there is no such event, it will be considered as “Connection
Established”.

Considering this processing of BLE Host is very complex and error prone, the SDK defines the
“HCI_SUB_EVT_LE_CONNECTION_ESTABLISH” in the bottom layer. When Host receives this event, it
indicates that Controller has confirmed connection is OK on Slave side and can continue rest of the flow.

“"HCI LE event” needs the API below to enable mask.

ble_sts_t blc_hci_le_setEventMask_cmd(u32 evtMask);

Following lists some evtMask definitions. User can view the other events in the “hci_const.h”.

#define HCI_LE_EVT_MASK_CONNECTION_COMPLETE 0x00000001
#define HCI_LE_EVT_MASK_ADVERTISING REPORT 0x00000002
#define HCI_LE_EVT_MASK_CONNECTION_UPDATE_COMPLETE 0x00000004
#define HCI_LE_EVT_MASK_CONNECTION_ESTABLISH 0x80000000

If HCI LE event mask is not set via this API, mask of all HCI LE events in the SDK are disabled by default.

3.2.7.4 Telink Defined Event

Besides standard Controller HCI event, the SDK also provides Telink defined event. Up to 20 Telink defined
events are supported, which are defined by using macros in the “stack/ble/Il/Il.h".

Current SDK version supports the following callback events. The "BLT_EV_FLAG_CONNECT /BLT_EV_FLAG_TERMINATE"
has the same function as the "HCI_SUB_EVT_LE_CONNECTION_COMPLETE" / “"HCI_EVT_DISCONNECTION_COMPLETE"
in HCI event, but data definition of these events are different.

#define BLT_EV_FLAG_ADV 0
#define BLT_EV_FLAG_ADV_DURATION_TIMEOUT 1
#define BLT_EV_FLAG_SCAN_RSP 2

AN-20111000-E3 74 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define BLT_EV_FLAG_CONNECT 3
#define BLT_EV_FLAG_TERMINATE 4
#define BLT_EV_FLAG_LL_REJECT_IND 5
#define BLT_EV_FLAG_RX_DATA_ABANDOM 6
#define BLT_EV_FLAG_PHY UPDATE 7
#define BLT_EV_FLAG_DATA_LENGTH_EXCHANGE 8
#define BLT_EV_FLAG_GPIO_EARLY WAKEUP 9
#define BLT_EV_FLAG_CHN_MAP_REQ 10
#define BLT_EV_FLAG_CONN_PARA_REQ 11
#define BLT_EV_FLAG_CHN_MAP_UPDATE 12
#define BLT_EV_FLAG_CONN_PARA_UPDATE 13
#define BLT_EV_FLAG_SUSPEND_ENTER 14
#define BLT_EV_FLAG_SUSPEND_EXIT 15

Telink defined event is only triggered in BLE slave applications. There are two ways to implement callback
of Telink defined event in BLE slave application.

(1) The first method, which is called “independent registration”, is to independently register callback func-
tion for each event.

Prototype of callback function is shown as below:

typedef void (*blt_event_callback_t)(u8 e, u8 *p, int n);

“e”: event number.

“p”: It's the pointer to the data transmitted from the bottom layer when callback function is executed, and
it varies with the callback function.

“n”: length of valid data pointed by pointer.

API to register callback function:

void bls_app_registerEventCallback (u8 e, blt_event_callback_t p);

Whether each event will respond depends on whether corresponding callback function is registered in APP
layer.

(2) The second method, which is called “shared event entry”, is that all event callback functions share the
same entry. Whether each event will respond depends on whether its event mask is enabled.

This method uses the same API as HCI event to register event callback:

typedef int (*hci_event_handler_t) (u32 h, u8 *para, int n);
vold blc_hci_registerControllerEventHandler(hci_event_handler_t handler);

Although registered callback function of HCI event is shared, they are different in implementation. In HCI
event callback function:

AN-20111000-E3 75 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

h = HCI_FLAG_EVENT_BT_STD | hci_event_code;

While in Telink defined event “shared event entry”:

h = HCI_FLAG_EVENT_TLK_MODULE | e;

Where “e” is event number of Telink defined event.

Telink defined event “shared event entry” is similar to mask of HCI event; the API below serves to set the
mask to determine whether each event will be responded.

ble_sts_t bls_hci_mod_setEventMask_cmd(u32 evtMask);

Relationship between evtMask and event number is:

evtMask = BIT(e);

The two methods for Telink defined event are exclusive to each other. The first method is recommended
and is adopted by most demo code of the SDK; only "B91_module” uses the “shared event entry” method.

For the use of Telink defined event, please refer to the demo code of project "B91_module” for 2 “shared
event entry”.

The following takes the connect and terminate event callbacks as examples to describe the code implemen-
tation methods of these two methods.

(1) The first method: “independent registration”

void task_connect (u8 e, u8 *p, int n)
{

// add connect callback code here
}
void task_terminate (u8 e, u8 *p, int n)
{

// add terminate callback code here
}

bls_app_registerEventCallback (BLT_EV_FLAG_CONNECT, &task_connect);
bls_app_registerEventCallback (BLT_EV_FLAG_TERMINATE, &task_terminate);

(2) The second method: “shared event entry”

int event_handler(u32 h, u8 *para, int n)

{
if((h&HCI_FLAG_EVENT_TLK_MODULE)!= 0@) //module event

{

AN-20111000-E3 76 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

switch(event)

{
case BLT_EV_FLAG_CONNECT:

{

// add connect callback code here

break;
case BLT_EV_FLAG_TERMINATE:
{

// add terminate callback code here

}

break;
default:
break;
}
}
}

blc_hci_registerControllerEventHandler(event_handler);
bls_hci_mod_setEventMask_cmd(BIT(BLT_EV_FLAG_CONNECT) | BIT(BLT_EV_FLAG_TERMINATE));

Following will introduce details about all events, event trigger condition and parameters of corresponding
callback function for Controller.

(1) BLT_EV_FLAG_ADV
This event is not used in current SDK.
(2) BLT_EV_FLAG_ADV_DURATION_TIMEQUT

Event trigger condition: If the API “bls_IlI_setAdvDuration” is invoked to set advertising duration, a timer will
be started in BLE stack bottom layer. When the timer reaches the specified duration, advertising is stopped,
and this event is triggered. In the callback function of this event, user can modify adv event type, re-enable
advertising, re-configure advertising duration, and etc.

Pointer "p”: null pointer.

Data length “n”: 0.

Note: This event won’t be triggered in “advertising in ConnSlaveRole” which is an extended state of Link
Layer.

(3) BLT_EV_FLAG_SCAN_RSP

Event trigger condition: When Slave is in advertising state, this event will be triggered if Slave responds
with scan response to the scan request from Master.

Pointer "p”: null pointer.

Data length *n”: 0.

(4) BLT_EV_FLAG_CONNECT

AN-20111000-E3 77 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Event trigger condition: When Link Layer is in advertising state, this event will be triggered if it responds to
connect reqeust from Master and enters Conn state Slave role.

Data length “n”: 34.

Pointer "p”: p points to one 34-byte RAM area, corresponding to the “connect request PDU" below.

Payload
InitA AdvA LLData
(6 octets) (6 octets) (22 octets)

Figure 2.10: CONNECT_REQ PDU payload

The format of the LLData field is shown in Figure 2.11.

LLData
AA CRCInit |WinSize | WinOffset | Interval | Latency | Timeout ChM Hop | SCA
(4 octets) | (3 octets) | (1 octet) | (2 octets) | (2 octets) | (2 octets) | (2 octets) | (5 octets) | (5 bits) | (3 bits)

Figure 2.11: Ll Data field structure in CONNECT _REQ PDU's payload

Figure 3.24: Connect Request PDU

Please refer to the “rf_packet_connect_t" defined in the “ble_formats.h”. In the structure below, the connect

request PDU is from scanA[6] (corresponding to InitA in figure above) to hop.

typedef struct{
u32 dma_len;
u8
u8
u8
u8
u8
u8
u8
u8
u8
u8
u8
ulé
ulé
ulé
ulé
u8
u8
}rf_packet_connect_t;

type 14,
rful 2dlg
chan_sel:1;
txAddr :1;
rxAddr :1;
rf_len;
initA[6];
advA[6];

crcinit[3];
winSize;

winOffset;
interval;
latency;
timeout;
chm[5];
hop;

accessCode[4];

AN-20111000-E3

78

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(5) BLT_EV_FLAG_TERMINATE

Event trigger condition: This event will be triggered when Link Layer state machine exits from Conn state
Slave role in any of the three specific cases.

Pointer "p”: p points to an u8-type variable “terminate_reason”. This variable indicates the reason for
disconnection of Link Layer.

Data length *n”: 1.
Three cases to exit Conn state Slave role and corresponding reasons are listed as below:

A. If Slave fails to receive packet from Master for a duration due to RF communication problem (e.g. bad
RF or Master is powered off), and “connection supervision timeout” expires, this event will be triggered to
terminate connection and return to None Conn state. The terminate reason is HCI_ERR_CONN_TIMEOUT
(Ox08).

B. If Master sends “terminate” command to actively terminate connection, after Slave responds to
the command with an ack, this event will be triggered to terminate connection and return to None
Conn state. The terminate reason is the Error Code in the “LL_TERMINATE_IND” control packet re-
ceived in Slave Link Layer. The Error Code is determined by Master. Common Error Codes include
HCI_ERR_REMOTE_USER_TERM_CONN (0x13), HCI_ERR_CONN_TERM_MIC_FAILURE (0Ox3D), and etc.

C. If Slave invokes the API “bls_IlI_terminateConnection(u8 reason)” to actively terminate connection, this
event will be triggered. The terminate reason is the actual parameter “reason” of this API.

(6) BLT_EV_FLAG_LL_REJECT_IND

Event trigger condition: When Master sends a "LL_ENC_REQ" (encryption request) in the Link Layer and
it's declared to use the pre-allocated LTK, if Slave fails to find corresponding LTK and responds with a
“LL_REJECT_IND” (or “LL_REJECT_EXT_IND"), this event will be triggered.

Pointer "p”: p points to the response command (LL_REJECT_IND or LL_REJECT_EXT_IND).
Data length *n”: 1.

For more information, please refer to "Core_v5.0" Vol 6/Part B/2.4.2.
(7) BLT_EV_FLAG_RX_DATA_ABANDOM

Event trigger condition: This event will be triggered when BLE RX fifo overflows (see section Link Layer TX
fifo & RX fifo), or the number of More Data received in an interval exceeds the preset threshold (Note: User
needs to invoke the API “blc_lI_init_max_md_nums” with non-zero parameter, so that SDK bottom layer will
check the number of More Data.)

Pointer “p”: null pointer.

Data length *n”: 0.
(8) BLT_EV_FLAG_PHY_UPDATE

Event trigger condition: This event will be triggered after the update succeeds or fails when the slave or
master proactively initiates LL_PHY_REQ; Or when the slave or master passively receives LL_PHY_REQ and
meanwhile PHY is updated successfully, this event will be triggered.

Data length “n”: 1.

AN-20111000-E3 79 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Pointer "p”: p points to an u8-type variable indicating the current connection of PHY mode.

typedef enum {

BLE_PHY_1M = 0x01,
BLE_PHY_2M = 0x02,
BLE_PHY_CODED = 0x03,

} le_phy_type_t;

(9) BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

Event trigger condition: This event will be triggered when Slave and Master exchange max data length of
Link Layer, i.e. one side sends “ll_length_req”, while the peer responds with “ll_length_rsp”. If Slave ac-
tively sends “ll_length_req”, this event won't be triggered until “ll_length_rsp” is received. If Master initiates
“ll_length_req”, this event will be triggered immediately after Slave responds with “ll_length_rsp”.

Data length *n": 12.

Pointer “p”: p points to data of a memory area, corresponding to the beginning six u16-type variables in
the structure below.

typedef struct {

ulé connEffectiveMaxRxOctets;
ul6 connEffectiveMaxTxOctets;
ulé connMaxRx0Octets;

ulé connMaxTxOctets;

ulé connRemoteMaxRxOctets;
ulé connRemoteMaxTxOctets;

}11_data_extension_t;

The “connEffectiveMaxRxOctets” and “connEffectiveMaxTxOctets” are max RX and TX data length finally
allowed in current connection; *connMaxRxOctets” and “connMaxTxOctets” are max RX and TX data length
of the device; “connRemoteMaxRxOctets” and “connRemoteMaxTxOctets” are max RX and TX data length
of peer device.

connEffectiveMaxRxOctets = min(supportedMaxRxOctets,connRemoteMaxTxOctets);

connEffectiveMaxTxOctets = min(supportedMaxTxOctets, connRemoteMaxRxOctets);

(10) BLT_EV_FLAG_GPIO_EARLY_WAKEUP

Event trigger condition: Slave will calculate wakeup time before it enters sleep (suspend or deepsleep
retention), so that it can wake up when the wakeup time is due (It's realized via timer in sleep). Since
user tasks won't be processed until wakeup from sleep, long sleep time may bring problem for real-time
demanding applications.

Take keyboard scanning as an example: If user presses keys fast, to avoid key press loss and process de-
bouncing, it's recommended to set the scan interval as 10~20ms; longer sleep time (e.g. 400ms or 1s, which
may be reached when latency is enabled) will lead to key press loss. So it's needed to judge current sleep
time before MCU enters sleep; if it's too long, the wakeup method of user key press should be enabled, so

AN-20111000-E3 80 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

that MCU can wake up from sleep (suspend or deepsleep retention) in advance (i.e. before timer timeout) if
any key press is detected. This will be introduced in details in following PM module section.

The event "BLT_EV_FLAG_GPIO_EARLY_WAKEUP” will be triggered if MCU is woke up from sleep (suspend
or deepsleep) by GPIO in advance before wakeup timer expires.

Data length "n”: 1.

Pointer “"p”: p points to an u8-type variable “wakeup_status”. This variable indicates valid wakeup source
status for current sleep.

Following types of wakeup status are defined in the “drivers/B91/pm.h":

enum {
WAKEUP_STATUS_COMPARATOR = BIT(0),
WAKEUP_STATUS_TIMER = BIT(1),
WAKEUP_STATUS_CORE = BIT(2),
WAKEUP_STATUS_PAD = BIT(3),
WAKEUP_STATUS_MDEC = BIT(4),
STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),
STATUS_ENTER_SUSPEND = BIT(30),

1K

For parameter definition above, please refer to “Power Management” section.
(11) BLT_EV_FLAG_CHN_MAP_REQ

Event trigger condition: When Slave is in Conn state, if Master needs to update current connection channel
list, it will send a "LL_CHANNEL_MAP_REQ” command to Slave; this event will be triggered after Slave
receives this request from Master and has not processed the request yet.

Data length *n”: 5.

w

Pointer "p”: p points to the starting address of the following channel list array. unsigned char type
bltc.conn_chn_mapl[5]

Note: When the callback function is executed, p points to the old channel map before update.

Five bytes are used in the “conn_chn_map” to indicate current channel list by mapping. Each bit indicates
a channel:

conn_chn_map[O] bitO-bit7 indicate channelO~channel7, respectively.
conn_chn_mapl[1] bit0-bit7 indicate channel8~channel15, respectively.
conn_chn_map[2] bit0-bit7 indicate channel16~channel23, respectively.
conn_chn_map[3] bit0-bit7 indicate channel24~channel31, respectively.
conn_chn_map[4] bitO-bit4 indicate channel32~channel36, respectively.

(12) BLT_EV_FLAG_CHN_MAP_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if Slave has updated
channel map after it receives the "LL_CHANNEL_MAP_REQ"” command from Master.

Pointer “p”: p points to the starting address of the new channel map conn_chn_map[5] after update.

AN-20111000-E3 81 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data length *n”: 5.
(13) BLT_EV_FLAG_CONN_PARA_REQ

Event trigger condition: When Slave is in connection state (Conn state Slave role), if Master needs to update
current connection parameters, it will send a "LL_CONNECTION_UPDATE_REQ"” command to Slave; this
event will be triggered after Slave receives this request from Master and has not processed the request
yet.

Data length “n”: 11.
Pointer “p”: p points to the 11-byte PDU of the LL_CONNECTION_UPDATE_REQ.

CtrData

WinSize WinOffset Interval Latency Timeout Instant
(1 octet) (2 octets) (2 octets) (2 octets) (2 octets) (2 octets)

Figure 2.15: CtrData field of the LL_CONNECTION_UFDATE_RECQ FDU

Figure 3.25: LL_CONNECTION_UPDATE REQ Format in BLE Stack

(14) BLT_EV_FLAG_CONN_PARA_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if Slave has updated
connection parameters after it receives the "LL_CONNECTION_UPDATE_REQ" from Master.

Data length "n”: 6.

Pointer “p”: p points to the new connection parameters after update, as shown below.
p[O] | p[1]1<<8: new connection interval in unit of 1.25ms.

p[2] | p[3]1<<8: new connection latency.

p[4] | p[5]<<8: new connection timeout in unit of 10ms.
(15) BLT_EV_FLAG_SUSPEND_ENETR

Event trigger condition: When Slave executes the function “blt_sdk_main_loop”, this event will be triggered
before Slave enters suspend.

w

Pointer “p”: Null pointer.

Data length *n”: 0.
(16) BLT_EV_FLAG_SUSPEND_EXIT

Event trigger condition: When Slave executes the function “blt_sdk_main_loop”, this event will be triggered
after Slave is woke up from suspend.

Pointer “p”: Null pointer.

Data length “n”: 0.

Note:

AN-20111000-E3 82 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

This callback is executed after SDK bottom layer executes “cpu_sleep_wakeup” and Slave is woke up,
and this event will be triggered no matter whether the actual wakeup source is gpio or timer. If the
event "BLT_EV_FLAG_GPIO_EARLY_WAKEUP” occurs at the same time, for the sequence to execute
the two events, please refer to pseudo code in “Power Management - PM Working Mechanism”.

3.2.8 Data Length Extension

BLE Spec core_4.2 and above supports Data Length Extension (DLE).

Link Layer in this BLE SDK supports data length extension to max rf_len of 251 bytes per BLE Spec. Please
refer to “Core_v5.0” (Vol 6/Part B/2.4.2.21 "LL_LENGTH_REQ and LL_LENGTH_RSP").

Following steps explains how to use data length extension.
(1) Configure suitable TX & RX fifo size

To receive and transmit long packet, bigger Tx & Rx fifo size is required and thus ocupies large SRAM space.
So be cautious when setting fifo size to avoid waste of SRAM space.

Tx fifo size should be increasd to transmit long packet. Tx fifo size should be larger than Tx rf_len by 12,
and must be aligned by 16 bytes.

TX rf_len = 56 bytes: blc_ll_initTxFifo (app_ll_txfifo, 80, 17);
TX rf_len = 100 bytes: blc_Il_initTxFifo (app_II_txfifo, 112, 17);
TX rf_len = 200 bytes: blc_lI_initTxFifo (app_ll_txfifo, 224, 17);

Rx fifo size should be increasd to receive long packet. Rx fifo size should be larger than Rx rf_len by 24, and
must be aligned by 16 bytes.

RX rf_len = 56 bytes: blc_ll_initRxFifo (app_ll_rxfifo, 80, 8);
RX rf_len = 100 bytes: blc_ll_initRxFifo (app_ll_rxfifo, 128, 8);
RX rf_len = 200 bytes: blc_ll_initRxFifo (app_Il_rxfifo, 224, 8);

(2) Set proper MTU size

MTU, the maximum transmission unit, is used to set the size of the payload in a single packet of the L2CAP
layer in BLE. THe att.h provides the interface function ble_sts_t blc_att_setRxMtuSize(u16 mtu_size); during
the initialization of the BLE stack, users can directly use this function to pass the parameter to set the MTU.
The return value is success, please refer to the DLE Demo of B91 feature, you can choose to set the MTU
size by replacing different macros.

#define DLE_LENGTH_SELECT DLE_LENGTH_200_BYTES

#if (DLE_LENGTH_ SELECT == DLE_LENGTH_27_BYTES)
#define ACL_CONN_MAX_RX_OCTETS 27

#elif (DLE_LENGTH_SELECT == DLE_LENGTH_52_BYTES)
#define MTU_SIZE_SETTING 48

#elif (DLE_LENGTH_SELECT == DLE_LENGTH_56_BYTES)
#define MTU_SIZE_SETTING 52

AN-20111000-E3 83 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#elif (DLE_LENGTH_SELECT == DLE_LENGTH_100_BYTES)

#define MTU_SIZE_SETTING 96
#elif (DLE_LENGTH_SELECT == DLE_LENGTH_200_BYTES)
#define MTU_SIZE SETTING 196
#elif (DLE_LENGTH_SELECT == DLE_LENGTH_251 BYTES)
#define MTU_SIZE_SETTING 247
#else
#define MTU_SIZE SETTING 23
#endif

blc_att_setRxMtuSize(MTU_SIZE_SETTING);

(3) data length exchange

Before transfer of long packets, please make sure the “data length exchange” flow has already been com-
pleted in BLE connection. Data length exchange is an interactive process in Link Layer by LL_LENGTH_REQ
and LL_LENGTH_RSP. Either master or slave can initiate the process by sending LL_LENGTH_REQ, while the
peer responds with LL_LENGTH_RSP. Through this interaction, master and slave obtain the max Tx and Rx
packet size from each other, and adopt the minimum of the two as the max Tx and Rx packet size in current
connection.

No matter which side initiates LL_LENGTH_REQ, at the end of data length exchange process, the SDK
will generate "BLT_EV_FLAG_DATA_LENGTH_EXCHANGE" event callback assuming this callback has been
registered. User can refer to “Telink defined event” section to understand the parameters of this event
callback function.

The final max Tx and Rx packet size can be obtained from the "BLT_EV_FLAG_DATA_LENGTH_EXCHANGE"
event callback function.

When B91 acts as slave device in actual applications, master may or may not initiate LL_LENGTH_REQ. If
master does not initiate it, slave should initiate LL_LENGTH_REQ by the following APl in the SDK:

ble_sts_t blc_11_exchangeDatalLength (u8 opcode, ul6 maxTxOct);

In this API, *opcode” is "LL_LENGTH_REQ", and "maxTxOct” is the max Tx packet size supported by current
device. For example, if max Tx packet size is 200bytes, the setting below applies:

blc_11_exchangeDatalLength(LL_LENGTH_REQ , 200);

In Telink BLE SDK, when the slave end in the main function call blc_att_setRxMtuSize () to set the Rx MTU
size, if the size is greater than 23 it will take the initiative to report MTU and update DLE, which will trigger
two Event, the corresponding code is task_dle_exchange and app_ host_event_callback. Users can add their
own flags to determine the trigger event, if no triggering is found, it represents that the setting parameters
MTU and DLE is not updated, then manually set below two functions.

ble_sts_t blc_att_requestMtuSizeExchange (ul6 connHandle, ul6 mtu_size);
ble_sts_t blc_11_exchangeDatalength (u8 opcode, ul6 maxTxOct);

AN-20111000-E3 84 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(4) MTU size exchange

In addition to data length exchange, MTU size exchange flow should also be executed to ensure large MTU
size takes effect, so that the peer can process long packet in BLE L2CAP layer. MTU size should be equal or
larger than max packet size of Tx & Rx. Please refer to “"ATT & GATT" section or the demo of the B91_feature
for the implementation of MTU size exchange.

(5) Transmission/Reception of long packet

Please refer to "ATT & GATT” section for illustration of Handle Value Notification, Handle Value Indication,
Write request and Write Command.

Transmission and reception of long packet can start after correct completion of the three steps above.

The APIs corresponding to “Handle Value Notification” and “Handle Value Indication” can be invoked in ATT
layer to transmit long packet. As shown below, fill in the address and length of data to be sent to the

Wk _ o

parameters “*p” and “len”, respectively:

ble_sts_t blc_gatt_pushHandleValueNotify(ul6 connHandle, ul6 attHandle, u8 *p, int len);
ble_sts_t blc_gatt_pushHandleValueIndicate(ul6 connHandle, ul6 attHandle, u8 *p, int len);

To receive long packet, it's only needed to use callback function *w” corresponding to “Write Request” and
“Write Command” as explained in “"ATT & GATT” section.

Note:

Telink BLE protocol stack will actively update MTU and DLE, and the application layer can set them
without manually calling interface functions.

3.2.9 Controller API

3.2.9.1 Controller API Introduction

In standard BLE stack architecture (see Figure23), APP layer cannot directly communicate with Link Layer
of Controller, i.e. data of APP layer must be first transferred to Host, and then Host can transfer control
command to Link Layer via HCI. All control commands from Host to LL via HCI follow the definition in BLE spec
“Core_v5.0", please refer to "Core_v5.0" (Vol 2/Part E/ Host Controller Interface Functional Specification)
for more information.

Telink BLE SDK based on standard BLE architecture can serve as a Controller and work together with Host
system. Therefore, all APIs to operate Link Layer strictly follow the data format of Host commands in the
spec.

Although the architecture in Figure26 is used in Telink BLE SDK, during which APP layer can directly operate
Link Layer, it still use the standard APIs of HCI part.

In BLE spec, all HClI commands to operate Controller have corresponding “HClI command complete event”
or "HCl command status event” in response to Host layer. However, in Telink BLE SDK, it is handled case by
case.

Controller API declaration is available in head files under “stack/ble/Il” and “stack/ble/hci”. Corresponding to
Link Layer state machine functions, the “II” directory contains Il.h, ll_adv.h, ll_scan.h, ll_ext_adv.h, ll_pm.h
and ll_whitelist.h, e.g. APIs related to advertising function should be in ll_adv.h.

AN-20111000-E3 85 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.2.9.2 API Return Type ble_sts_t

An enum type “ble_sts_t” defined in the “stack/ble/ble_common.h” is used as return value type for most
APIs in the SDK. When API invoking with right parameter setting is accepted by the protocol stack, it will
return “0” to indicate BLE_SUCCESS; if any non-zero value is returned, it indicates a unique error type. All
possible return values and corresponding error reason will be listed in the subsections below for each API.

The “ble_sts_t” applies to both APIs in Link Layer and some APIs in Host layer.

3.2.9.3 MAC address initialization

In this document, "BLE MAC address” includes both “public address” and “random static address”.

In this BLE SDK, the API below serves to obtain public address and random static address:

void blc_initMacAddress(int flash_addr, u8 *mac_public, u8 *mac_random_static);

“flash_addr” is the flash address to store MAC address. As explained earlier, this address in B91 1MB flash is
OXFFOOO. If random static address is not needed, set *mac_random_static” as "NULL".

The Link Layer initialization API can be invoked to load the obtained MAC address into BLE prototol stack:

blc_11_1initStandby_module(mac_public);

3.2.9.4 Link Layer state machine initialization

The APIs below serve to configure initializaiont of each module when BLE state machine is established.
Please refer to introduction of Link Layer state machine.

blc_11_1initBasicMCU();
blc_11_1initStandby_module(mac_public);
blc_11_1initAdvertising_module();
blc_11_1initConnection_module();
blc_11_1initSlaveRole_module();

3.2.9.5 bls_IllI_setAdvData

Please refer to “Core_v5.0" (Vol 2/Part E/ 7.8.7 "LE Set Advertising Data Command”).

LSB MSB
Header Payload
(16 bits) (as per the Length field in the Header)

Figure 3.26: Adv Packet Format in BLE Stack

AN-20111000-E3 86 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

As shown above, an Adv packet in BLE stack contains 2-byte header, and Payload (PDU). The maximum
length of Payload is 31 bytes.

The API below serves to set PDU data of adv packet:

ble_sts_t bls_1l1_setAdvData(u8 *data, u8 len);

The “data” pointer points to the starting address of the PDU, while the “len” indicates data length.

The table below lists possible results for the return type “ble_sts_t".

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_INVALID_HCI_ CMD_PARAMS 0x12 Len exceeds the maximum length 31

This APl can be invoked during initialization to set adv data, or invoked in main_loop to modify adv data
when firmware is running.

In the “feature_backup” project of this BLE SDK, Adv PDU definition is shown as below. Please refer to "Data
Type Specifcation” in BLE Spec “CSS v6” (Core Specification Supplement v6.0) for introduction to various
fields.

const u8 tbl_advData[] = {
0x08, 0x09, 'f', 'e', 'a', 't', 'u', 'r', 'e',
0x02, 0x01, 0x05,
0x03, 0x19, 0x80, Ox01,
0x05, 0x02, 0x12, 0x18, OxOF, 0x18,
1§

As shown in the adv data above, the adv device name is set as “feature”.

3.2.9.6 bls_lI_setScanRspData

Please refer to “Core_v5.0" (Vol 2/Part E/ 7.8.8 "LE Set Scan response Data Command”).

The API below serves to set PDU data of scan response packet.

ble_sts_t bls_11_setScanRspData(u8 *data, u8 len);

The “data” pointer points to the starting address of the PDU, while the “len” indicates data length.

The table below lists possible results for the return type “ble_sts_t".

AN-20111000-E3 87 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ble_sts_t Value ERR Reason

BLE_SUCCESS 0] Success

HCI_ERR_INVALID_HCI_ CMD_PARAMS 0x12 Len exceeds the maximum length 31

The user can call this API to set the Scan response data during initialization, or call this APl in the main_loop
at any time while the program is running to modify the Scan response data. The scan response data defined
in the B91 ble remote project in the BLE SDK is as follows, and the scan device name is “Eaglerc”. For the
meaning of each field, please refer to the specific description of Data Type Specifcation in the document
BLE Spec “CSS v6” (Core Specification Supplement v6.0).

const u8 tbl_scanRsp [] = { 0x08, 0x09, 'E', 'a', 'g', 'L', 'e', 'r', 'c',};

£

The device name is set in the advertising data and scan response data above and is not the same. Then
when scanning a Bluetooth device on a mobile phone or 10S system, the device name may be different:

a) Some devices only watch broadcast packets, then the displayed device name is “feature”;

b) After seeing the broadcast, some devices send scan request and read back the scan response, then
the displayed device name may be “Eaglerc”.

The user can also write the same device name in these two packages, and two different names will not be
displayed when scanned.

In fact, after the device is connected by the master, when the master reads the Attribute Table of the
device, it will obtain the gap device name of the device. After connecting to the device, it may also display
the device name according to the settings there.

3.2.9.7 bls_lI_continue_adv_after_scan_req

static inline void bls_1l1_continue_adv_after_scan_req(u8 enable);

This function is used to add and remove scan requests when broadcasting, and to set up the continuous
sending of broadcast packets when a scan request is received.

3.2.9.8 bis_IllI_setAdvParam

Please refer to “Core_v5.0” (Vol 2/Part E/ 7.8.5 "LE Set Advertising Parameters Command”).

AN-20111000-E3 88 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Advertising Advertising Advertising
Event Event Event
T_advEvent — T_an‘vEu‘enE -
advinterval -l advinterval |
adu.DE?a 1y advDela
Advertising
State
entered

Figure 3.27: Advertising Event in BLE Stack

The figure above shows Advertising Event (Adv Event in brief) in BLE stack. It indicates during each
T_advEvent, Slave implements one advertising process, and sends one packet in three advertising chan-
nels (channel 37, 38 and 39) respectively.

The API below serves to set parameters related to Adv Event.

ble_sts_t bls_l1_setAdvParam(ul6 intervalMin, ul6 intervalMax, adv_type_t advType,

<~ own_addr_type_t ownAddrType, u8 peerAddrType, u8 *peerAddr, adv_chn_map_t, adv_channelMap,
< adv_fp_type_t advFilterPolicy);

(1) intervalMin & intervalMax

The two parameters serve to set the range of advertising interval in integer multiples of 0.625ms. The valid
range is from 20ms to 10.24s, and intervalMin should not exceed intervalMax.

As required by BLE spec, it's not recommended to set adv interval as fixed value; in Telink BLE SDK, the
eventual adv interval is random variable within the range of intervalMin ~ intervalMax. If intervalMin and
intervalMax are set as same value, adv interval will be fixed as the intervalMin.

Adv packet type has limits to the setting of intervalMin and intervalMax. Please refer to “Core 5.0” (Vol 6/
Part B/ 4.4.2.2 “Advertising Events”) for details.

(2) advType

AS per BLE spec, the following four basic advertising event types are supported.

AN-20111000-E3 89 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Advertising Event | PDU used in this advertising | Allowable response PDUs for

Type event type advertising event
SCAN_REQ | CONNECT_REQ
Connectable Undi- ADV_IND YES YES

rected Event

Connectable ADV_DIRECT_IND NO YES*
Directed Event

Non-connectable ADV_NONCONN_IND NO NO
Undirected Event

Scannable Undi- ADV_SCAN_IND YES NO
rected Event

Table 4.1: Advertising event types, PDUs used and allowable response PDUs

Figure 3.28: Four Adv Events in BLE Stack

In the “Allowable response PDUs for advertising event” column, “YES” and *“NO” indicate whether correspond-
ing adv event type can respond to “Scan request” and “Connect Request” from other device. For example,
“Connectable Undirected Event” can respond to both “Scan request” and “Connect Request”, while *Non-
connectable Undireted Event” will respond to neither “Scan request” nor “Connect Request”.

For “Connectable Directed Event”, "YES” marked with an asterisk indicates the matched "Connect Request”
received won't be filtered by whitelist and this event will surely respond to it. Other “YES” not marked with
asterisk indicate corresponding request can be responded depending on the setting of whitelist filter.

The “Connectable Directed Event” supports two sub-types including “Low Duty Cycle Directed Advertising”
and “High Duty Cycle Directed Advertising”. Therefore, five types of adv events are supported in all, as
defined below.

/* Advertisement Type */

typedef enum{
ADV_TYPE_CONNECTABLE_UNDIRECTED
ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY
ADV_TYPE_SCANNABLE_UNDIRECTED
ADV_TYPE_NONCONNECTABLE_UNDIRECTED
ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY

}adv_type_t;

0x00, // ADV_IND

0x01, // ADV_INDIRECT_IND (high duty cycle)
0x02 , // ADV_SCAN_IND

0x03 , // ADV_NONCONN_IND

0x04, // ADV_INDIRECT_IND (low duty cycle)

By default, the most common adv event type is "“ADV_TYPE_CONNECTABLE_UNDIRECTED".
(3) ownAddrType

There are four optional values for “ownAddrType” to specify adv address type.

AN-20111000-E3 90 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

/* Own Address Type */

typedef enum{
OWN_ADDRESS_PUBLIC O
OWN_ADDRESS_RANDOM 1,
OWN_ADDRESS_RESOLVE_PRIVATE_PUBLIC = 2,
OWN_ADDRESS_RESOLVE_PRIVATE_RANDOM = 3,

Jown_addr_type_t;

First two parameters are explained herein.

The "OWN_ADDRESS_PUBLIC” indicates that public MAC address is used during advertising. Actual address
is the setting from the API “blc_lI_initAdvertising_module(u8 *public_adr)” during MAC address initializa-
tion.

The "OWN_ADDRESS_RANDOM” indicates random static MAC address is used during advertising, and the
address comes from the setting of the API below:

ble_sts_t blc_11_setRandomAddr(u8 *randomAddr);

(4) peerAddrType & *peerAddr

When advType is set as directed adv type (ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY or
ADV_TYPE_CONNECTABLE_DIRECTED_LOW_DUTY), the “peerAddrType” and “*peerAddr” serve to specify
the type and address of peer device MAC Address.

When advType is set as type other than directed adv, the two parameters are invalid, and they can be set
as "0” and “NULL".

(5) adv_channelMap

The “adv_channelMap” serves to set advertising channel. It can be selectable from channel 37, 38, 39 or
combination.

typedef enum{

BLT_ENABLE_ADV_37 = BIT(0),
BLT_ENABLE_ADV_38 = BIT(1),
BLT_ENABLE_ADV_39 = BIT(2),
BLT_ENABLE_ADV_ALL = (BLT_ENABLE_ADV_37 | BLT_ENABLE_ADV_38 | BLT_ENABLE_ADV_39),

}adv_chn_map_t;

(6) advFilterPolicy

The “advFilterPolicy” serves to set filtering policy for scan request/connect request from other device when
adv packet is transmitted. Address to be filtered needs to be pre-loaded in whitelist.

Filtering type options are shown as below. The “ADV_FP_NONE" can be selected if whitelist filter is not
needed.

AN-20111000-E3 91 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

typedef enum {

ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY = 0x00,
ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_ANY = 0x01,
ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_WL = 0x02,
ADV_FP_ALLOW_SCAN_WL_ALLOW_CONN_WL = 0x03,
ADV_FP_NONE = ADV_FP_ALLOW_SCAN_ANY_ALLOW_CONN_ANY,

} adv_fp_type_t; //adv_filterPolicy_type t

The table below lists possible values and reasons for the return value “ble_sts_t".

ble_sts_t Value ERR Reason

BLE_SUCCESS 0] Sucess

HCI_ERR_INVALID_HCI_ Ox12 The intervalMin or intervalMax value does not meet the
CMD_PARAMS requirement of BLE spec.

According to Host command design in HCI part of BLE spec, eight parameters are configured simultaneously
by the “bls_lI_setAdvParam” API. This setting also takes some coupling parameters into consideration. For
example, the “advType” has limits to the setting of intervalMin and intervalMax, and range check depends
on the advType; if advType and advinterval are set in two APIs, the range check is uncontrollable.

3.2.9.9 blis_Il_setAdvEnable

Please refer to “Core_v5.0" (Vol 2/Part E/ 7.8.9 "LE Set Advertising Enable Command”) .

ble_sts_t bls_11_setAdvEnable(int en);

en”: 1 - Enable Advertising; O - Disable Advertising.
a) In Idle state, by enabling Advertising, Link Layer will enter Advertising state.
b) In Advertising state, by disabling Advertising, Link Layer will enter Idle state.
c) In other states, Link Layer state won’t be influenced by enabling or disabling Advertising.

Note:

Note that at any time this function is called, ble_sts_t unconditionally returns BLE_SUCCESS, which
means that the adv-related parameters will be turned on or off internally, but only if they are in idle
or adv state.

3.2.9.10 blis_lI_setAdvDuration

AN-20111000-E3 92 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ble_sts_t bls_11_setAdvDuration (u32 duration_us, u8 duration_en);

After the "bls_Il_setAdvParam” is invoked to set all adv parameters successfully, and the “bls_Il_setAdvEnable
(1)" is invoked to start advertising, the API “bls_II_setAdvDuration” can be invoked to set duration of adv
event, so that advertising will be automatically disabled after this duration.

“duration_en”: 1-enable timing function; O-disable timing function.

“duration_us”: The “duration_us” is valid only when the “duration_en” is set as 1, and it indi-
cates the advertising duration in unit of us. When this duration expires, “AdvEnable” becomes un-
valid, and advertising is stopped. None Conn state will swtich to Idle State. The Link Layer event
“BLT_EV_FLAG_ADV_DURATION_TIMEOUT" will be triggered.

As specified in BLE spec, for the adv type "ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY", the dura-
tion time is fixed as 1.28s, i.e. advertising will be stopped after the 1.28s duration. Therefore, for this adv
type, the setting of “bls_Il_setAdvDuration” won’'t take effect.

The return value “ble_sts_t” is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_INVALID_HCI_ Ox12 Duration Time can’t be configured for

CMD_PARAMS “ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY".

When Adv Duratrion Time expires, advertising is stopped, if user needs to re-configure adv parameters (such
as AdvType, Advinterval, AdvChannelMap), first the parameters should be set in the callback function of
the event "BLT_EV_FLAG_ADV_DURATION_TIMEOUT", then the “bls_IlI_setAdvEnable (1)” should be invoked
to start new advertising.

To trigger the "BLT_EV_FLAG_ADV_DURATION_TIMEOUT", a special case should be noted:

Suppose the “duration_us” is set as "2000000" (i.e. 2s).

« If Slave stays in advertising state, when adv time reaches the preset 2s timeout, the "BLT_EV_FLAG_ADV_DURATION
will be triggered to execute corresponding callback function.

« If Slave is connected with Master when adv time is less than the 2s timeout (suppose adv time is 0.5s),
the timeout timing is not cleared but cached in bottom layer. When Slave stays in connection state
for 1.5s (i.e. the preset 2s timeout moment is reached), since Slave won’t check adv event timeout in
connection state, the callback of "BLT_EV_FLAG_ADV_DURATION_TIMEOUT” won’t be triggered.

Note:

When Slave stays in connection state for certain duration (e.g. 10s), then terminates connection and
returns to adv state, before it sends out the first adv packet, the Stack will regard current time exceeds
the preset 2s timeout and trigger the callback of "BLT_EV_FLAG_ADV_DURATION_TIMEOUT". In this
case, the callback triggering time largely exceeds the preset timeout moment.

AN-20111000-E3 93 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.2.9.11 blc_Ill_setAdvCustomedChannel

The API below serves to customize special advertising channel/scanning channel, and it only applies some
special applications such as BLE mesh. It's not recommended to use this API for other conventional applica-
tion cases.

vold blc_11_setAdvCustomedChannel (u8 chn®, u8 chnl, u8 chn2);

chnO/chn1/chn2: customized channel. Default standard channel is 37/38/39. For example, to set three
advertising channels as 2420MHz, 2430MHz and 2450MHz, the API below should be invoked:

blc_11_setAdvCustomedChannel (8, 12, 22);

3.2.9.12 rf_set_power_level_index

This BLE SDK supplies the API to set output power for BLE RF packet, as shown below.

voild rf_set_power_level_index (rf_power_level _index_e level)

The “level” is selectable from the corresponding enum variable RF_PowerTypeDef in the “drivers/B91/
rf_drv.h”.

The Tx power configured by this API will take effect for both adv packet and conn packet, and it can be set
freely in firmware. The actual Tx power will be determined by the latest setting.

Please note that the “rf_set_power_level_index” configures registers related to MCU RF. Once MCU enters
sleep (suspend/deepsleep retention), these registers’ values will be lost, so they should be reconfigured
after each wakeup. For example, SDK demo employs the event callback "BLT_EV_FLAG_SUSPEND_EXIT" to
guarantee RF power is recovered after wakeup from sleep.

_attribute_ram_code_ void user_set_rf_power (u8 e, u8 *p, int n)

{
rf_set_power_level_index (MY_RF_POWER_INDEX);

}

user_set_rf_power(0, 0, 0);
bls_app_registerEventCallback (BLT_EV_FLAG_SUSPEND_EXIT, &user_set_rf_power);

3.2.9.13 bls_Il_terminateConnection

ble_sts_t bls_11_terminateConnection (u8 reason);

This APl is used for BLE Slave device, and it only applies to Connection state Slave role.

AN-20111000-E3 94 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In order to actively terminate connection, this APl can be invoked by APP Layer to send a “Terminate” to
Master in Link Layer. “reason” indicates reason for disconnection. Please refer to "Core_v5.0” (Vol 2/Part D/
2 “Error Code Descriptions”).

If connection is not terminated due to system operation abnormity, generally APP layer specifies the “reason”
as:

HCI_ERR_REMOTE_USER_TERM_CONN = 0x13
bls_11_terminateConnection(HCI_ERR_REMOTE_USER_TERM_CONN);

In bottom-layer stack of Telink BLE SDK, this API is invoked only in one case to actively terminate connec-
tion: When data packets from peer device are decrpted, if an authentication data MIC error is detected,
the “bls_II_terminateConnection(HCI_ERR_CONN_TERM_MIC_FAILURE)” will be invoked to inform the peer
device of the decryption error, and connection is terminated.

After Slave invokes this API to actively initiate disconnection, the event "BLT_EV_FLAG_TERMINATE” will be
triggered. The terminate reason in the callback function of this event will be consistent with the reason
manually configured in this API.

In Connection state Slave role, generally connection will be terminated successfully by invoking this API; how-
ever, in some special cases, the API may fail to terminate connection, and the error reason will be indicated
by the return value “ble_sts_t”. It's recommended to check whether the return value is "BLE_SUCCESS”
when this APl is invoked by APP layer.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Success

HCI_ERR_CONN_NOT_ Ox3E Link Layer is not in Connection state Slave role.
ESTABLISH

HCI_ERR_CONTROLLER 0x3A Controller busy (mass data are being transferred), this command
_BUSY cannot be accepted for the moment.

3.2.9.14 Get Connection Parameters

The following APIs serves to obtain current connection paramters including Connection Interval, Connection
Latency and Connection Timeout (only apply to Slave role).

uleé bls_11_getConnectionInterval(void);
ul6 bls_11_getConnectionLatency(void);
ul6 bls_11_getConnectionTimeout(void);

a) If return value is O, it indicates current Link Layer state is None Conn state without connection param-
eters available.

b) The returned non-zero value indicates the corresponding parameter value.

 Actual conn interval divided by 1.25ms will be returned by the API “bls_IlI_getConnectionlnterval”. Sup-
pose current conn interval is 10ms, the return value should be 10ms/1.25ms=8.

AN-20111000-E3 95 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« Acutal Latency value will be returned by the API “bls_lI_getConnectionLatency”.

+ Actual conn timeout divided by 10ms will be returned by the API “bls_II_getConnectionTimeout”. Sup-
pose current conn timeout is 1000ms, the return value would be 1000ms/10ms=100.

3.2.9.15 blc_lI_getCurrentState

The API below serves to obtain current Link Layer state.

u8 blc_11_getCurrentState(void);

User can invoke the “bls_Ill_getCurrentState()” in APP layer to judge current state, e.q.

if(blc_l1_getCurrentState() == BLS_LINK_STATE_ADV)
if(blc_l1_getCurrentState() == BLS_LINK_STATE_CONN)

3.2.9.16 bic_lI_getLatestAvgRSSI

The API serves to obtain latest average RSSI of connected peer device after Link Layer enters Slave role or
Master role.

u8 blc_11_getLatestAvgRSSI(void)

The return value is u8-type rssi_raw, and the real RSSI should be: rssi_real = rssi_raw- 110. Suppose the
return value is 50, rssi = -60 db.

3.2.9.17 Whitelist & Resolvinglist

As introduced above, “filter_policy” of Advertising/Scanning/Initiating state involves Whitelist, and actual
operation may depend on devices in Whitelist. Actually Whitelist contains two parts: Whitelist and Resolv-
inglist.

User can check whether address type of peer device is RPA (Resolvable Private Address) via “peer_addr_type”
and “peer_addr”. The API below can be invoked directly.

#define IS_NON_RESOLVABLE_PRIVATE_ADDR(type, addr)
((type)==BLE_ADDR_RANDOM && (addr[5] & 0xCO) == 0x00)

Only non-RPA address can be stored in whitelist. In current SDK, whitelist can store up to four devices.

#define MAX_WHITE_LIST_SIZE 4

The API below serves to reset whitelist:

AN-20111000-E3 96 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ble_sts_t 11 _whitelList_reset(void);

The return value of reset whitelist is "BLE_SUCCESS”.

ble_sts_t 11 _whitelList_add(u8 type, u8 *addr);

Add a device into whitelist, the return value is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

HCI_ERR_MEM_CAP_EXCEEDED 0Ox07 Whitelist is already full, add failure

Delete a device from whitelist, the return value is "BLE_SUCCESS".

ble_sts_t 11 _whitelList_delete(u8 type, u8 *addr);

RPA (Resolvable Private Address) device needs to use Resolvinglist. To save RAM space, “Resolvinglist” can
store up to two devices in current SDK.

#define MAX_WHITE_IRK_LIST SIZE 2

Corresponding API:

ble_sts_t 11l_resolvinglList_reset(void);

Reset Resolvinglist, the return value is "BLE_SUCCESS”.

The API below serves to enable/disable device address resolving for Resolvinglist. It is used for device
address resolution. If you want to use Resolvinglist to resolve addresses, you must enable it. You can
disable it when you do not need to parse it.

ble_sts_t 11_resolvinglList_setAddrResolutionEnable (u8 resolutionEn);

The API below serves to add device using RPA address into Resolvinglist, peerldAddrType/ peerldAddr and
peer-irk indicate identity address and irk declared by peer device. These information will be stored into flash
during pairing encryption process, and corresponding interfaces to obtain the info are available in SMP part.
“local_irk” is not processed in current SDK, and it can be set as "NULL".

ble_sts_t 1l_resolvingList_add(u8 peerIdAddrType, u8 *peerIdAddr,
u8 *peer_1irk, u8 *local_irk);

The API below serves to delete a RPA device from Resolvinglist.

AN-20111000-E3 97 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ble_sts_t 11l_resolvinglList_delete(u8 peerIdAddrType, u8 *peerIdAddr);

For usage of address filter based on Whitelist/Resolvinglist, please refer to "TEST_WHITELIST” in feature
test demo of the SDK.

3.2.10 Coded PHY/2M PHY

3.2.10.1 Coded PHY/2M PHY Introduction

Coded PHY and 2M PHY are new features to <Core_5.0>, this expands the BLE application scenario, Coded
PHY includes S2 (500kbps) and S8 (125kbps) in order to support long range application. 2M PHY (2Mbps)
improved the BLE bandwidth. Coded PHY and 2M PHY could be used under both the adversting channel
and data channel when in connected state. Connected state application will be introduced in the following
section, advertising channel application will be introduced in “Extended Advertising).

3.2.10.2 Coded PHY/2M PHY Demo Introduction

In the BLE SDK, in order to save the sram space, Code PHY and 2M PHY is disabled by default. If user wants
to enable this feature, you can enable it manually. You can refer to the BLE SDK demo:

» Slave mode reference demo “B91_feature_test”

In the vendor/B91_feature/feature_config.h, macro definition:

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY_CONNECTION

3.2.10.3 Coded PHY/2M PHY API Introduction

(1) API

voild blc_11_init2MPhyCodedPhy_feature(void)

is used to enable Code PHY and 2M PHY.

(2) A new event - BLT_EV_FLAG_PHY_UPDATE is introduced to Telink Defined Event in order to support
Coded and 2M PHY, the detail implementation could refer to section “Controller Event”.

(3) API:

ble_sts_t blc_1l1_setPhy (ul6 connHandle,le_phy prefer_mask_t all_phys, le_phy_prefer_type_t
< tx_phys, le_phy_prefer_type_t rx_phys, le_ci_prefer_t phy_options);

This is a BLE Spec standard interface, please refer to <Core_5.0>, Vol 2/Part7/7.8.49, “"LE Set PHY Com-
mand”.

AN-20111000-E3 98 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

connHandle:
slave mode: it should set to BLS_CONN_HANDLE;
master mode: it should set to BLM_CONN_HANDLE.

For other parameters, please refer to Spec’s definition along with SDK’s enumeration definition.

3.2.11 Channel Selection Algorithm #2

Channel Selection Algorithm #2 is a new feature added to <Core_5.0, with a better interference avoidance
capability. You can refer to <Core_5.0> (Vol 6/Part B/4.5.8.3 "Channel Selection Algorithm #2”) for further
information.

a) User could call below API if choosing the hopping algorithm #2.
voild blc_11_initChannelSelectionAlgorithm_2_ feature(void)

b) If using <Core_4.2> API, user could choose to use or not use the hopping algothrim#2. In Eagle SDK,
it is also not using it by default.

c) If using <Core_5.0> extended advertising and initiate connect through Extend ADV, user will have to
use above API to choose Algorithm #2 according to the spec <Core_5.0>. Because if the connection
is initiated through Extended Adyv, it’ll choose Algorithm#2 by default, and on the othe hand, if only
uses advertising, in order to save sram space, Algorithm #2 is not recommended.

3.2.12 Extended Advertising

3.2.12.1 Extended Advertising Introduction

Extended Advertising is @ new feature to <Core_5.0>

Due to the new feature to Advertising in <Core_5.0>, SDK has new APIs in order to support the legacy Adver-
tising function in <Core_4.2) and the new Advertising function in <Core_5.0>. These APIs will be covered in
later secions, named as <Core_5.0> API. (following secion will use this name as reference), and <Core_4.2)>
APIs refered in section , like bls_Il_setAdvData(). bls_ll_setScanRspData(). bls_ll_setAdvParam(), will only
support for <Core_4.2>'s Advertising function, but not <Core_5.0> Advertising new function.

Extended Advertising primary feature as following:

(1) Increase the Advertising PDUs - In <Core_4.2>, the Advertising PDU length is ranging from 6 to 37
bytes, and in <Core_5.0>, the extended Advertising PDU is ranging from O to 255 bytes (single PDU).
If the Advertising Data length > Adv PDU, it’ll be fragmented into N Advertising PDU and send it out.

(2) It could chose different PHYs (1Mbps, 2Mbps, 125kbps, 500kbps) based on different application.

3.2.12.2 Extended Advertising Demo Setup

Extended Advertising Demo “B91_feature”:

Demol: use to illustrate all the basic advertising functions in <Core_5.0>.

AN-20111000-E3 99 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

a) In vendor/B91_feature/feature_config.h, declares the following macro:

#define FEATURE_TEST_MODE TEST_EXTENDED_ADVERTISING

b) Based on the type of Advertising, select the corresponding macro. The demo could also test all the
supported Advertising type in <Core_5.0>, below are all the type that Eagle SDK currently supported.

/* Advertising Event Properties type*/
typedef enum{

ADV_EVT_PROP_LEGACY_CONNECTABLE_SCANNABLE_UNDIRECTED = 0x0013,
ADV_EVT_PROP_LEGACY_CONNECTABLE_DIRECTED_LOW_DUTY = 0x0015,
ADV_EVT_PROP_LEGACY_CONNECTABLE_DIRECTED_HIGH_DUTY = 0x001D,
ADV_EVT_PROP_LEGACY_SCANNABLE_UNDIRECTED = 0x0012,
ADV_EVT_PROP_LEGACY_NON_CONNECTABLE_NON_SCANNABLE_UNDIRECTED = 0x0010,
ADV_EVT_PROP_EXTENDED_NON_CONNECTABLE_NON_SCANNABLE_UNDIRECTED = 0x0000,
ADV_EVT_PROP_EXTENDED_CONNECTABLE_UNDIRECTED = 0x0001,
ADV_EVT_PROP_EXTENDED_SCANNABLE_UNDIRECTED = 0x0002,
ADV_EVT_PROP_EXTENDED_NON_CONNECTABLE_NON_SCANNABLE_DIRECTED = 0x0004,
ADV_EVT_PROP_EXTENDED_CONNECTABLE_DIRECTED = 0x0005,
ADV_EVT_PROP_EXTENDED_SCANNABLE_DIRECTED = 0x0006,
ADV_EVT_PROP_EXTENDED_MASK_ANONYMOUS_ADV = 0x0020,
ADV_EVT_PROP_EXTENDED_MASK_TX_POWER_INCLUDE = 0x0040,

}advEvtProp_type_t;

Demo2: Based on Demol, enable the Coded PHY/2M PHY option

a) In vendor/B91_feature/feature_config.h, declares the following macro:
#define FEATURE_TEST_MODE TEST_2M_CODED_PHY EXT_ADV

b) Based on the type of Advertising and PHY mode, select the corresponding macro

3.2.12.3 Extended Advertising Related API

Extended Advertising is using module design. Due to the variable length of adv data length/scan response
data where the maximum length will be up to more than 1000 bytes, instead of statically defining the
maximum value in BLE stack that might waste the SRAM space, we leave the definition of SRAM space
to developer, so that it would have the flexibility for user to review their needs to best use of the SRAM
space.

Current SDK only support one Advertising set, but with the design that has flexibility to support multiple adv
set for future as well. So you could see the APIs’ parameters are all designed in the way to support multiple
adv sets for future.

With that design, following are the APIs.

(1) Initialization stage, you would need to call the following APIs to allocate the SRAM.

AN-20111000-E3 100 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

blc_11_1initExtendedAdvertising_module(app_adv_set_param, app_primary_adv_pkt,

< APP_ADV_SETS_NUMBER);

blc_11_1initExtSecondaryAdvPacketBuffer(app_secondary_adv_pkt, MAX_LENGTH_SECOND_ADV_PKT);
blc_11_1initExtAdvDataBuffer(app_advData, APP_MAX_LENGTH_ADV_DATA);
blc_11_1initExtScanRspDataBuffer(app_scanRspData, APP_MAX_LENGTH_SCAN_RESPONSE_DATA);

According to above API, the memory allocation is shown as below:

app_advData app_primary adv_pkt

44bytes

APP_MAX_LENGTH_ADV_DATA \ yd

P
/
rd
'
\ app_adv_set param /7

e
P
rd
A
p

*dat_extAdv /

app_scanRspData ’ app_secondary_adv_pkt

APP_MAX_LENGTH_SCAN_RESPONSE_DATA = MAX_LENGTH_SECOND_ADV_PKT

Figure 3.29: Extended Advertising Initialize Memory Allocation

« APP_MAX_LENGTH_ADV_DATA: Advertising Set length, developer could adjust the macro to define
the size based on the needs in order to save the DeepRetention space.

« APP_MAX_LENGTH_SCAN_RESPONSE_DATA: Scan response data length, developer could adjust the
macro to define the size based on the needs in order to save the DeepRetention space.

« app_primary_adv_pkt: Primary Advertising PDU data length, the size is allocated as 44 bytes, appli-
cation can’t change it.

« app_secondary_adv_pkt: Secondary Advertising PDU data length, the size is allocated as 264 bytes,
application can’t change it.

In the demo of “B91_feature”, (vendor/B91_feature/feature_extend_adv/app.c), developer can use the fol-
lowing macro to allocate the sram based on your requirement in order to best use the sram.

#define APP_ADV_SETS_NUMBER 1

#define APP_MAX_LENGTH_ADV_DATA 1024

#define APP_MAX_LENGTH_SCAN_RESPONSE_DATA 31
(2) API

AN-20111000-E3 101 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ble_sts_t blc_l1_setExtAdvParam(-:--);

This is @ BLE Spec standard interface, used to configure Advertising parameter, please refer to <Core_5.0>
(Vol 2/Part E/7.8.53 “LE Set Extended Advertising Parameters Command”) for further information.

Note:

The parameter adv_tx_pow does not currently support the option to send power value, you need to
call the API void rf_set_power_level_index (rf_power_level_index_e level) to configure the send power.

(3) API

ble_sts_t blc_11_setExtScanRspData(u8 advHandle, data_oper_t operation, data_fragm_t
< fragment_prefer, u8 scanRsp_datalen, u8 *scanRspData);

This is a BLE Spec standard interface, used to configure the Scan Response Data, please refer to <Core_5.0>
(Vol 2/Part E/7.8.53 “LE Set Extended Scan Response Command”).

(4) API

ble_sts_t blc_11_setExtAdvEnable_n(u32 extAdv_en, u8 sets_num, u8 *pData);

This is a BLE Spec standard interface, used to enable/disable Extended Advertising, please refer to
<Core_5.0> (Vol 2/Part E/7.8.56 "LE Set Extended Advertising Enable Command”).

Since B91 SDK currently only support one Advertising Set, so this API is for furture support, and not func-
tioning at this moment, And a separate APl is added to support one Advertising Set.

ble_sts_t blc_11_setExtAdvEnable_1(u32 extAdv_en, u8 sets_num, u8 advHandle, ulé duration,
< U8 max_extAdvEvt);

(5) API

vold blc_11_setDefaultExtAdvCodingIndication(u8 advHandle, le_ci_prefer_t prefer_CI);

This is @ BLE Spec standard interface, used to configure the Random address, please refer to <Core_5.0>
(Vol 2/Part E/7.8.4 “LE Set Random Address Command”).

The user can pass parameters via prefer_Cl for S2/58 mode selection, as enumerated below.

typedef enum {

CODED_PHY_PREFER_NONE = 0,
CODED_PHY_PREFER_S2 =1,
CODED_PHY_PREFER_S8 =2,

} le_ci_prefer_t; //LE coding indication prefer

(6) API

AN-20111000-E3 102 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

vold blc_11_setAuxAdvChnIdxByCustomers(u8 aux_chn);

This is a none BLE Spec standard interface, if developer use BLE standard interface blc_II_setExtAdvParam()
to configure the Advertising parameters, and also if configure it to Coded PHY (for either S2 or S8) in the
same time, but didn’t specify which Coded PHY mode is, S2 will be choosen by default. This API is added
for developer to specify the Coded PHY mode.

(7) API

vold blc_11_setMaxAdvDelay_for_AdvEvent(u8 max_delay_ms);

This is a none BLE Spec standard interface, used to configure the AdvDelay timing based on the Adv Interval,
the input range is from O, 1, 2, 4, 8 in the unit of ms.

advDelay(unit: us) = Random() % (max_delay_ms*1000);
T_advEvent = advInterval + advDelay

If max_delay_ms = O ,T_advEvent is right on the advinterval timing; If max_delay_ms = 8, T_advEvent is
based on the advinterval with a random offset in between 0-8ms.

3.3 BLE Host

3.3.1 BLE Host Introduction

BLE Host consists of L2CAP, ATT, SMP, GATT and GAP layer, and user-layer applications are implemented
on the basis of the Host layer.

3.3.2 L2CAP

The L2CAP, Logical Link Control and Adaptation Protocol, connects to the upper APP layer and the lower
Controller layer. By acting as an adaptor between the Host and the Controller, the L2CAP makes data
processing details of the Controller become negligible to the upper-layer application operations.

The L2CAP layer of BLE is a simplified version of classical Bluetooth. In basic mode, it does not implement
segmentation and re-assembly, has no involvement of flow control and re-transmission, and only uses fixed
channels for communication. The figure below shows simple L2CAP structure: Data of the APP layer are
sent in packets to the BLE Controller. The BLE Controller assembles the received data into different CID data
and report them to the Host layer.

AN-20111000-E3 103 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ATT SMP
CID = 0x0004 CID = 0x0006
1=~~~ T
| | L2CAP Signaling
L2CAP | CID =0x0005 |
e e e 1
LE-U Logical Link
LE Controller
Attribute Protocol Attribute Protocol
A ¥ 3
SDU SDU
Y A 4
L2CAP o L2CAP PDU _ L2CAP
Maximum size depends on MTU
Device A Device B

Figure 3.30: BLE L2CAP Structure and ATT Packet Assembly Model

As specified in BLE Spec, L2CAP is mainly used for data transfer between Controller and Host. Most work
are finished in stack bottom layer with little involvement of user. User only needs to invoke the following
APIs to set correspondingly.

void blc_12cap_register_handler (void *p);

In BLE slave applications such as B91 module, the function of SDK L2CAP layer processing controller data
is:

int blc_12cap_packet_receive (ul6 connHandle, u8 * p);

This function has been implemented in the protocol stack and it will parse the received data and transmit it
upwards to ATT, SIG or SMP.

Initialization:

blc_12cap_register_handler (blc_l2cap_packet_receive);

AN-20111000-E3 104 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.3.2.1 Slave Requests for Connection Parameter Update

In BLE stack, Slave can actively apply for a new set of connection parameters by sending a "CONNECTION
PARAMETER UPDATE REQUEST” command to Master in L2CAP layer. The figure below shows the command
format. Please refer to "Core_v5.0" (Vol 3/Part A/ 4.20 "CONNECTION PARAMETER UPDATE REQUEST") .

LSB octet 0 octet 1 octet 2 octet 3 MSB
Code=0x12| Identifier Length
Interval Min Interval Max
Slave Latency Timeout Multiplier

Figure 4. 22: Connection Parameters Update Request Packet

Figure 3.31: Connection Para Update Req Format in BLE Stack

The BLE SDK provides an API for slaves to actively apply to update connection parameters on the L2CAP
layer to send the above CONNECTION PARAMETER UPDATE REQUEST command to the master.

void bls_12cap_requestConnParamUpdate (ul6 min_interval, ulé max_interval, ulé latency, ulé

< timeout);

The four parameters of this API correspond to the parameters in the “data” field of the "CONNECTION
PARAMETER UPDATE REQUEST". The “min_interval” and “max_interval” are the actual interval time divided
by 1.25ms (e.g. for 7.5ms connection interval, the value should be 6); the “timeout” is actual supervision
timeout divided by 10ms (e.q. for 1s timeout, the value should be 100).

Application example: Slave requests for new connection parameters when connection is established.

void task_connect (u8 e, u8 *p, int n)

{
bls_l2cap_requestConnParamUpdate (6, 6, 99, 400);

bls_12cap_setMinimalUpdateReqSendingTime_after_connCreate(1000);

; Data Type Data Header L2CAP Header SIG Pkt Header SIG_Connection_Param_Update_Req CRC
e LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld |[Code Id Data-Length ||IntervalMin IntervalMax Slavelatency TimecutMultiplier

L2CRP-S || 2 1 1] 0 16 0x000C 0x0005 [|0x12 0x01 Ox0008 0x0006 0x0006 0x0063 0x0190 0x28Di
] Data Header L2CAP Header SIG Pkt Header SIG_Connection_Param_Update_Rsp RSSI
i Data Ty = = = = CRC FCS
us YPe 111D NESW SN MD EDU-Length ||L2CAP-Length Chanld ||[Code Id Data-Length ||Result (dBm)

L2CRP-S || 2 1 1 0 10 0x0006 0x0005 [|0x13 0x01 0Ox0002 0x0000 0x2DE483 || -38 OK
tue Il Nata Tuna ” Data Header Il ~or Il RSSI I EI‘EI

Figure 3.32: BLE Sniffer Packet Sample Conn Para Update Request and Response

The API:

AN-20111000-E3 105 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

vold bls_l2cap_setMinimalUpdateReqSendingTime_after_connCreate(int time_ms)

serves to make the Slave wait for time_ms miliseconds after connection is established, and then invoke
the API “bls_I2cap_requestConnParamUpdate” to update connection parameters. After conection is estab-
lished, if user only invokes the “bls_I2cap_requestConnParamUpdate”, the Slave will wait for 1s to execute
this request command.

For Slave applications, the SDK provides register callback function interface of obtaining Conn_UpdateRsp
result, so as to inform user whether connection parameter update request from Slave is rejected or accepted
by Master. As shown in the figure above, Master accepts Connection_Param_Update_Req from Slave.

vold blc_l2cap_registerConnUpdateRspCb(12cap_conn_update_rsp_callback_t cb);

Please refer to the use case of Slave initialization:

blc_l2cap_registerConnUpdateRspCb(app_conn_param_update_response)

Following shows the reference for the callback function “app_conn_param_update_response”.

int app_conn_param_update_response(u8 id, ul6 result)

{
if(result == CONN_PARAM_UPDATE_ACCEPT){
//the LE master Host has accepted the connection parameters
}
else if(result == CONN_PARAM_UPDATE_REJECT){
//the LE master Host has rejected the connection parameter
}
return 0;
}

3.3.3 ATT & GATT

3.3.3.1 GATT basic unit “Attribute”

GATT defines two roles: Server and Client. In this BLE SDK, Slave is Server, and corresponding Android/iOS
device is Client. Server needs to supply multiple Services for Client to access.

Each Service of GATT consists of multiple Attributes, and each Attribute contains certain information.

AN-20111000-E3 106 Ver1.2.0

i Telink
Telink B91 BLE Single Connection SDK Developer Handbook

GATT Server

Service

Attribute

Attribute

Service

Attribute

Attribute

Attribute

Figure 3.33: GATT Service Containing Attribute Group

The basic contents of Attribute are shown as below:
(1) Attribute Type: UUID

The UUID is used to identify Attribute type, and its total length is 16 bytes. In BLE standard protocol, the
UUID length is defined as two bytes, since Master devices follow the same method to transform 2-byte UUID
into 16 bytes.

When standard 2-byte UUID is directly used, Master should know device types indicated by various UUIDs.
8x5x BLE stack defines some standard UUIDs in “stack/service/hids.h” and “stack/ble /uuid.h”.

Telink proprietary profiles (OTA, MIC, SPEAKER, and etc.) are not supported in standard Bluetooth. The

AN-20111000-E3 107 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

16-byte proprietary device UUIDs are defined in “stack/ble/uuid.h”.
(2) Attribute Handle

Slave supports multiple Attributes which compose an Attribute Table. In Attribute Table, each Attribute is
identified by an Attribute Handle value. After connection is established, Master will analyze and obtain the
Attribute Table of Slave via “Service Discovery” process, then it can identify Attribute data via the Attribute
Handle during data transfer.

(3) Attribute Value

Attribute Value corresponding to each Attribute is used as request, response, notification and indication
data. In 8x5x BLE stack, Attribute Value is indicated by one pointer and the length of the area pointed by
the pointer.

3.3.3.2 Attribute and ATT Table

To implement GATT Service on Slave, an Attribute Table is defined in this BLE SDK and it consists of multiple
basic Attributes. Attribute definition is shown as below.

typedef struct attribute

{
ulé attNum;
u8 perm;
u8 uuidLen;
u32 attrlLen; //4 bytes aligned
u8* uuid;
u8* pAttrvalue;
att_readwrite_callback_t w;
att_readwrite_callback_t r;

} attribute_t;

Below is Attribute Table given by the BLE SDK to illustrate the meaning of the above items. See app_att.c
for the Attribute Table code, as shown below:

static const attribute_t my_Attributes[] = {
{ATT_END_H - 1, 0,0,0,0,0}, // total num of attribute
// 0001 - 0007 gap
{7,ATT_PERMISSIONS_READ,2,2,(u8*)(&my_primaryServiceUUID), (u8*)(&my_gapServiceUUID), 0},
{0,ATT_PERMISSIONS_READ,2,sizeof(my_devNameCharVal), (u8*)(&my_characterUUID), (u8%*)
< (my_devNameCharval), 0},
{0,ATT_PERMISSIONS_READ,2,sizeof(my_devName), (u8+*)(&my_devNameUUID), (u8*)(my_devName), 0},
{O0,ATT_PERMISSIONS_READ,2,sizeof(my_appearanceCharVal), (u8*)(&my_characterUUID), (u8*)
< (my_appearanceCharVal), 0},
{0,ATT_PERMISSIONS_READ,2,sizeof (my_appearance), (u8*)(&my_appearanceUIID), (u8*)
< (&my_appearance), 0},
{0,ATT_PERMISSIONS_READ,2,sizeof(my_periConnParamCharVal), (u8*)(&my_characterUUID), (u8%*)
< (my_periConnParamCharVal), 0},

AN-20111000-E3 108 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

{0,ATT_PERMISSIONS_READ,2,sizeof (my_periConnParameters),(u8*)(&my_periConnParamuuID),
< (u8*)(&my_periConnParameters), 0},
// 0008 - 000b gatt
{4,ATT_PERMISSIONS_READ,2,2,(u8*)(&my_primaryServiceUUID), (u8*)(&my_gattServiceUUID), 0},
{O0,ATT_PERMISSIONS_READ,2,sizeof(my_serviceChangeCharVal), (u8*)(&my_characterUuiD),
< (u8*)(my_serviceChangeCharval), 0},
{0,ATT_PERMISSIONS_READ,2,sizeof (serviceChangeVal), (u8*)(&serviceChangeUUID), (u8*)
< (&serviceChangeVval), 0},
{0,ATT_PERMISSIONS_RDWR,2,sizeof (serviceChangeCCC),(u8*)(&clientCharacterCfguuiD), (u8*)
< (serviceChangeCCC), 0},
};

Note: The key word “const” is added before Attribute Table definition:

const attribute_t my_Attributes[] = { ... };

By adding the “const”, the compiler will store the array data to flash rather than RAM, while all contents of
the Attribute Table defined in flash are read only and not modifiable.

(1) attNum

The “attNum” supports two functions.

The “attNum” can be used to indicate the number of valid Attributes in current Attribute Table, i.e. the
maximum Attribute Handle value. This number is only used in the invalid Attribute item O of Attribute Table
array.

{57,0,0,0,0,0}, // ATT_END_H - 1 = 57

“attNum = 57" indicates there are 57 valid Attributes in current Attribute Table.

In BLE, Attribute Handle value starts from Ox0001 with increment step of 1, while the array index starts
from 0. When this virtual Attribute is added to the Attribute Table, each Attribute index equals its Attribute
Handle value. After the Attribute Table is defined, Attribute Handle value of an Attribute can be obtained
by counting its index in current Attribute Table array.

The final index is the number of valid Attributes (i.e. attNum) in current Attribute Table. In current SDK, the
attNum is set as 57; if user adds or deletes any Attribute, the attNum needs to be modified correspond-

ingly.
The “attNum” can also be used to specify Attributes constituting current Service.

The UUID of the first Attribute for each Service must be "GATT_UUID_PRIMARY_SERVICE(0x2800)"; the
first Attribute of a Service sets "attNum” and it indicates following “attNum” Attributes constitute current
Service.

As shown in code above, for the gap service, the Attribute with UUID of "GATT_UUID_PRIMARY_SERVICE”
sets the “attNum” as 7, it indicates the seven Attributes from Attribute Handle 1 to Attribute Handle 7
constitute the gap service.

AN-20111000-E3 109 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Except for Attribute item O and the first Attribute of each Service, attNum values of all Attributes must be
set as O.

(2) perm

The “perm” is the simplified form of “permission” and it serves to specify access permission of current
Attribute by Client.

The “perm” of each Attribute should be configured as one or combination of following 10 values.

#define ATT_PERMISSIONS_READ 0x01
#define ATT_PERMISSIONS WRITE 0x02
#define ATT_PERMISSIONS AUTHEN_READ 0x61
#define ATT_PERMISSIONS AUTHEN WRITE 0x62
#define ATT_PERMISSIONS_SECURE_CONN_READ OxE1
#define ATT_PERMISSIONS SECURE_CONN_WRITE = OXE2
#define ATT_PERMISSIONS AUTHOR_READ 0x11
#define ATT_PERMISSIONS AUTHOR WRITE 0x12
#define ATT_PERMISSIONS ENCRYPT_READ 0x21
#define ATT_PERMISSIONS_ENCRYPT_WRITE 0x22

Note: Current SDK version does not support PERMISSION READ and PERMISSION WRITE yet.
(3) vuid and vuidLen

As introduced above, UUID supports two types: BLE standard 2-byte UUID, and Telink proprietary 16-byte
UUID. The “uuid” and “uuidLen” can be used to describe the two UUID types simultaneously.

The “uuid” is an u8-type pointer, and “uuidLen” specifies current UUID length, i.e. the uuidLen bytes starting
from the pointer are current UUID. Since Attribute Table and all UUIDs are stored in flash, the “uuid” is a
pointer pointing to flash.

a) BLE standard 2-byte UUID:
For example, the Attribute “devNameCharacter” with Attribute Handle of 2, related code is shown as be-

low:

#define GATT_UUID CHARACTER 0x2803

static const ul6 my_characterUUID = GATT_UUID_CHARACTER;

static const u8 my_devNameCharVal[5] = {0x12, 0x03, 0x00, 0x00, 0x2A};
{0,1,2,5,(u8*)(&my_characterUUID), (u8*)(my_devNameCharVal), 0},

"UUID=0x2803" indicates “character” in BLE and the “uuid” points to the address of *my_devNameCharVal”
in flash. The “uvuidLen” is 2. When Master reads this Attribute, the UUID would be “0x2803".

b) Telink proprietary 16-byte UUID:

For example, the Attribute MIC of audio, related code is shown as below:

AN-20111000-E3 110 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define TELINK_MIC DATA {0x18,0x2B,0x0d, Ox0c,0x0b, 0x0a,0x09, 0x08, 0x07,0x06,0x05,0x04,0x03, 0x02,
o 0x01,0x0}

const u8 my_MicUUID[16] TELINK_MIC_DATA;

static u8 my_MicData 0x80;

{0,1,16,1,(u8*)(&my_MicUUID), (u8*)(&my_MicData), 0},

The “uuid” points to the address of *my_MicData” in flash, and the “uuidLen” is 16. When Master reads this
Attribute, the UUID would be "0x000102030405060708090a0b0c0d2b18".

(4) pAttrValue and attrLen

Each Attribute corresponds to an Attribute Value. The “pAttrValue” is an u8-type pointer which points to
starting address of Attribute Value in RAM/Flash, while the “attrLen” specifies the data length. When Master
reads the Attribute Value of certain Attribute from Slave, the “attrLen” bytes of data starting from the area
(RAM/Flash) pointed by the “pAttrValue” will be read by this BLE SDK to Master.

Since UUID is read only, the “uuid” is a pointer pointing to flash; while Attribute Value may involve write
operation into RAM, so the “pAttrValue” may points to RAM or flash.

For example, the Attribute hid Information with Attribute Handle of 35, related code is as shown below:

const u8 hidInformation[] =

{
U16_L0(0x0111), U16_HI(O0x0111), // bcdHID (USB HID version), 0x11,0x01
0x00, // bCountryCode
0x01 // Flags

};

{0,1,2, sizeof(hidInformation),(u8*)(&hidinformationUUID), (u8*)(hidInformation), 0},

In actual application, the key word “const” can be used to store the read-only 4-byte hid information “0x01
0x00 0x01 0x11” into flash. The “pAttrValue” points to the starting address of hidinformation in flash, while
the “attrLen” is the actual length of hidinformation. When Master reads this Attribute, "0x01000111” will be
returned to Master correspondingly.

Figure below shows a packet example captured by BLE sniffer when Master reads this Attribute. Master
uses the “ATT_Read_Req” command to set the target AttHandle as Ox23 (35), corresponding to the hid
information in Attribute Table of SDK.

Data Header L2CAP Header ATT_Read_Req RSSI

us [|DataType |77 Npaw sy MD PDU-Length || oo Enabled {10 o Tength Chanid ||Gpcode AttHandle — (aBmy || F%
L2CAE-5 || 2 1 0 @ 11 ves 020003 0x0004 ||0x02 00023 oxescecs || o || ox

1 Data Header) RSSI

wus || Data Type [IID NESN SN MD PDU-Length Security Enabled CRC (dBm) FCS
Erpty EDU|| 1 1 1 o 0 Yes 0x2B5TEA| O || oK

1 Data Header) RSS!

us || DataTy Security Enabled || CRC FCS

us YPe |l777n WESN sw MD PDU-Lengeh || SCCUM Enal {dBm)
Empty EDU|| 1 0 1 o0 0 Yes 0x2851B9|| 0 || oK

] Data Header _ LZCAP Header ATT Read Rsp RSSI

us [|DataType |17 paw W MD PDU-Length || oo o Y Enabled (i o Tength ChanTd ||Opcode Attvalue EiE (aBm) || FE3
L2CAE-5 || 2 0 0 0 13 Yes 0x0005 0x0004 |[0x08__ 131 01 00 01 || oxsBFe0|| o || ok

Figure 3.34: BLE Sniffer Packet Sample when Master Reads hidlnformation

AN-20111000-E3 111 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

For the Attribute “battery value” with Attribute Handle of 40, related code is as shown below:

u8 my_batVal[1] = {99};
{0,1,2,1,(u8*)(&my_batCharuuiD), (u8*)(my_batval), 0},

|u

In actual application, the *my_batVal” indicates current battery level and it will be updated according to ADC
sampling result; then Slave will actively notify or Master will actively read to transfer the *my_batVal” to
Master. The starting address of the "my_batVal” stored in RAM will be pointed by the “pAttrValue”.

(5) Callback function w

The callback function w is write function with prototype as below:

typedef int (*att_readwrite_callback_t)(void* p);

User must follow the format above to define callback write function. The callback function w is optional,
i.e. for an Attribute, user can select whether to set the callback write function as needed (null pointer O
indicates not setting callback write function).

The trigger condition for callback function w is: When Slave receives any Attribute PDU with Attribute
Opcode as shown below, Slave will check whether the callback function w is set.

a) opcode = 0x12, Write Request.
b) opcode = 0x52, Write Command.

c) opcode = 0x18, Execute Write Request.

After Slave receives a write command above, if the callback function w is not set, Slave will automatically
write the area pointed by the "pAttrValue” with the value sent from Master, and the data length equals the
“2capLen” in Master packet format minus 3; if the callback function w is set, Slave will execute user-defined
callback function w after it receives the write command, rather than writing data into the area pointed by
the “pAttrValue”. Note: Only one of the two write operations is allowed to take effect.

By setting the callback function w, user can process Write Request, Write Command, and Execute Write
Request in ATT layer of Master. If the callback function w is not set, user needs to evaluate whether the
area pointed by the “pAttrValue” can process the command (e.g. If the “pAttrValue” points to flash, write
operation is not allowed; or if the “attrLen” is not long enough for Master write operation, some data will be
modified unexpectedly.)

AN-20111000-E3 112 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.4.5.1 Write Request

The Write Request is used to request the server to write the value of an
attribute and acknowledge that this has been achieved in a Write Response.

Parameter Size (octets) Description

Attribute Opcode 1 0x12 = Write Request

Attnbute Handle 2 The handle of the attribute to be
written

Attribute Value 0to (ATT_MTU-3) The value to be written to the attri-
bute

Figure 3.35: Write Request in BLE Stack

3.4.5.3 Write Command

The Write Command is used to request the server to write the value of an
attribute, typically into a control-point attribute.

Parameter Size (octets) Description

Attribute Opcode 1 0x52 = Write Command

Attnbute Handle 2 The handle of the attribute to be
set

Attribute Value 0 to (ATT_MTU-3) The value of be written to the attri-
bute

Figure 3.36: Write Command in BLE Stack

AN-20111000-E3 113 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.4.6.3 Execute Write Request

The Execute Write Request is used to request the server to write or cancel the
write of all the prepared values currently held in the prepare queue from this
client. This request shall be handled by the server as an atomic operation.

Parameter Size (octets) Description

Attribute Opcode 1 0x18 = Execute Write Request

Figure 3.37: Execute Write Request in BLE Stack

The void-type pointer "p” of the callback function w points to the value of Master write command. Actually
“p” points to @ memory area, the value of which is shown as the following structure.

typedef struct{

u8 type;

u8 rf_len;

ulée 12cap;

ul6 chanid;

u8 att;

u8 hl;

u8 hh;

u8 dat[20];
}rf_packet_att_data_t;

“p” points to “type”, valid length of data is 12cap minus 3, and the first valid data is pw->dat[0].

int my_WriteCallback (void *p)

{
rf_packet_att_data_t *pw = (rf_packet_att_data_t *)p;
int len = pw->12cap - 3;
//add your code
//valid data is pw->dat[@] ~ pw->dat[len-1]
return 1;
}

The structure “rf_packet_att_data_t” above is available in the “stack/ble/ble_format.h".

(6) Callback function r

The callback function r is read function with prototype as below:

AN-20111000-E3 114 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

typedef int (*att_readwrite_callback_t)(ul6 connHandle,void* p);

User must follow the format above to define callback read function. The callback function r is also optional,
i.e. for an Attribute, user can select whether to set the callback read function as needed (null pointer O
indicates not setting callback read function), connHandle is connecting sentence between master and slave,
type BLS_CONN_HANDLE for slave application, and type BLM_CONN_HANDLE for master application.

The trigger condition for callback function ris: When Slave receives any Attribute PDU with Attribute Opcode
as shown below, Slave will check whether the callback function r is set.

a) opcode = OxOA, Read Request.

b) opcode = Ox0C, Read Blob Request.
After Slave receives a read command above,

a) If the callback read function is set, Slave will execute this function, and determine whether to respond
with "Read Response/Read Blob Response” according to the return value of this function.

« If the return value is 1, Slave won't respond with "Read Response/Read Blob Response” to Master.

« If the return value is not 1, Slave will sutomatically read “attrLen” bytes of data from the area pointed by
the “pAttrValue”, and the data will be responded to Master via “Read Response/Read Blob Response”.

b) If the callback read function is not set, Slave will automatically read “attrLen” bytes of data from the
area pointed by the “"pAttrValue”, and the data will be responded to Master via “Read Response/Read
Blob Response”.

Therefore, after a Read Request/Read Blob Request is received from Master, if it's needed to modify the
content of Read Response/Read Blob Response, user can register corresponding callback function r, modify
contents in RAM pointed by the “pAttrValue” in this callback function, and the return value must be O.

(7) Attribute Table layout

Figure below shows Service/Attribute layout based on Attribute Table. The “attnum” of the first Attribute
indicates the number of valid Attributes in current ATT Table; the remaining Attributes are assigned to dif-
ferent Services, the first Attribute of each Service is the “declaration”, and the following “attnum” Attributes
constitute current Service. Actually the first item of each Service is a Primary Service.

#define GATT_UUID_PRIMARY_SERVICE 0x2800
const ulé6 my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

AN-20111000-E3 15 Ver1.2.0

i Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Index

Index
1+

Index
2+

Index

IndexM+

Index
MN+1+

Index
MN+2+

Index
MN+3+

Index-
MN+M-

Total number of attribute items that excludes itself.+

Servicel declaration attribute and it has N attributes
including itself service declaration attribute.+

Attribute#1+~

Attribute#2+

Attribute#N-1+

Service? declaration attribute and it has M attributes
including itself service declaration attribute.~

Attribute#l«

Attribute#2+

Attribute#h-1+

Figure 3.38: Service Attribute Layout

(8) ATT table Initialization

GATT & ATT initialization only needs to transfer the pointer of Attribute Table in APP layer to protocol stack,
and the API below is supplied:

AN-20111000-E3

116 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void bls_att_setAttributeTable (u8 *p);

“p” is the pointer of Attribute Table.

3.3.3.3 Attribute PDU and GATT API

As required by BLE spec, the following Attribute PDU types are supported in current SDK.

» Requests: Data request sent from Client to Server.

« Responses: Data response sent by Server after it receives request from Client.
« Commands: Command sent from Client to Server.

» Notifications: Data sent from Server to Client.

+ Indications: Data sent from Server to Client.

« Confirmations: Confirmation sent from Client after it receives data from Server.

The subsections below will introduce all ATT PDUs in ATT layer. Please refer to structure of Attribute and
Attribute Table to help understanding.

(1) Read by Group Type Request, Read by Group Type Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.4.9 and 3.4.4.10) for details about the "Read by Group Type
Request” and "Read by Group Type Response” commands.

The “Read by Group Type Request” command sent by Master specifies starting and ending attHandle, as well
as attGroupType. After the request is received, Slave will check through current Attribute Table according
to the specified starting and ending attHandle, and find the Attribute Group that matches the specified
attGroupType. Then Slave will respond to Master with Attribute Group information via the “Read by Group
Type Response” command.

AN-20111000-E3 17 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI

Data Ty FCS
ype LLID NESN SN MD FDU-Length ||L2CAP-Length Chanld |(Opcode StartingHandle EndingHandle AttGroupType (dBm)
L2CRP-S || 2 1] 1 1] 11 0x0007 0x0004 |[0x10 0x0001 0xFFFF 00 28 0xB9867B || -38 oK |
Data Header RSSI
Data Ty CRC FCS
YP€ |LLID WESN =¥ MD EDU-Length {dBm)
Empty FDU || 1 0 0 0 0 OxREQODS || -38 O |
Data Header L2CAP Header ATT_Read_By_Group_Type_Rsp RSSI
Data1ype | 7o n Weaw am D POU-Length ||[L2CAP-Length ChanId ||Opcode Length AttData CRC (aBm) || F¢*
L2CLP-3 2 a a a 24 0x0014 0x0004 || 0x11 0x06 01 00 07 00 00 1& 08 00 OA 00 OA 1& 0B 00 25 00 12 18 0x58FCAT || -38 OK |
Data Ty Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI FCs
R LLID NESN SN MD PLDU-Length ||[L2CAP-Length ChanId ||Opcode StartingHandle EndingHandle AttGroupType (dBm)
L2CLP-5 2 1 0 1] 11 0x0007 0x0004 | 0x10 0x0026 OXFEFF 00 28 Ox5R6275 || -38 [0):4 |
Data Header RSSI
Data Ty CRC FCS
YP® |{L1D WESN SN MD PDU-Length (dBm)
Empty PODU|| 1 1 1 a a 0xAEOBRO || -38& OK
Data Header RSSI
DataType ||| 10 WESN SN MD EDU-Lemgeh| O°C (aBm) ||F€3
Empty FDU || 1 0 1 0 0 OxREOD73 || -38 O
Data Type Data Header L2CAP Header ATT_Read_By_Group_Type_Rsp CRC RSSI FCs
LLID NESN SN MD PDU-Length |[[L2CAP-Length Chanld |/Opcode Length AttData (dBm)
L2CRE-5 | 2 0 0 0 12 0x0008 0x0004 | 0x1l 0x06 26 00 28 00 OF 18 0x158866 || -38 OK |
Data T Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI FCS
ype LLID MNESN SN MD FPLDU-Length |[L2CAP-Length ChanId |Cpcode StartingHandle EndingHandle AttGroupType (dBm)
L2CLP-5 2 1 [1] 1] 11 0x0007 0x0004 || 0x10 0x0023 OXFEFF 00 28 0x055C4D || -38 OK |
Data Header RSSI
Data Ty CRC FCS
¥P€ |liL0 WESW SN MD PDU-Length (dBm)
Empty FODU|| 1 1 1 0 1] 0xAEOBRO || -38 O
Data Header RSSI
DataVpe || 17n WESN sv MD EDU-Lengeh| OO (aBmy ||F€S
Empty PODU|| 1 a 1 a a 0xAEODT3 || -38& OK
Data Type Data Header L2CAP Header ATT_Read By Group_Type Rsp CRC RSSI FCs
LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opcode Length AttData (dBm)
L2CRP-5 | 2 0 0 0 26 0x0016 0x0004 | 0x1l 0x14 29 00 32 00 11 19 0D OC OB OA 09 O& 07 06 05 04 03 02 01 00 0x898D99 || -38 0K |
Data T Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI FCS
i LLID NESN SN MD PODU-Length |[L2CRAP-Length ChanId ||Opcode StartingHandle EndingHandle AttGroupType (dBm)
L2CLP-3 2 1 a a 11 0x0007 0x0004 || 0x10 0x0033 0xFFFF 00 28 0x3C57D1 || -3& OK |
Data Header RSSI
Data Ty CRC FCS
YPS |IIIID NWESN SN MD EDU-Length {dBm)
Empty FDU || 1 1 1 0 0 OxREOBRO || -38 O
Data Header R5SI
LOEEEE LLID NESN SN MD PDU-Length ELE (dBm) FES
Empty PODU|| 1 a 1 a a 0xAEODT3 || -38& OK
Data Header |l L2CAP Header Il ATT_Error_Response Il RSSI
Data Type CRC FCS
LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld [[Opcode ReqOpCode AttHandle ErrorCode I (dBm)
Toeap-s 2 non 0 [Ilnsxnnns nznnna linxkn1 nx1n NxnN3z arT noT Formninsnzy |l nxanorarll —3s | o

Figure 3.39: Read by Group Type Request Read by Group Type Response

As shown above, Master requests from Slave for Attribute Group information of the “primaryServiceUUID”
with UUID of 0x2800.

#define GATT_UUID_PRIMARY_SERVICE Ox2800
const ulé my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

The following groups in Slave Attribute Table meet the requirement according to current demo code.
a) Attribute Group with attHandle from 0x0001 to Ox0007,
Attribute Value is SERVICE_UUID_GENERIC_ACCESS (0x1800).
b) Attribute Group with attHandle from Ox0008 to 0x000s3,
Attribute Value is SERVICE_UUID_DEVICE_INFORMATION (Ox180A).
c) Attribute Group with attHandle from OxOOOB to 0x0025,
Attribute Value is SERVICE_UUID_HUMAN_INTERFACE_DEVICE (0x1812).
d) Attribute Group with attHandle from 0x0026 to 0x0028,

Attribute Value is SERVICE_UUID_BATTERY (Ox180F).

AN-20111000-E3 118 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

e) Attribute Group with attHandle from 0x0029 to Ox0032,
Attribute Value is TELINK_AUDIO_UUID_SERVICE(0x11,0x19,0x0d,0x0c,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04

Slave responds to Master with the attHandle and attValue information of the five Groups above via the
“Read by Group Type Response” command. The final ATT_Error_Response indicates end of response. When
Master receives this packet, it will stop sending “Read by Group Type Request”.

(2) Find by Type Value Request, Find by Type Value Response

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.3.3 and 3.4.3.4) for details about the “Find by Type Value
Request” and “Find by Type Value Response” commands.

The “Find by Type Value Request” command sent by Master specifies starting and ending attHandle, as
well as AttributeType and Attribute Value. After the request is received, Slave will check through current
Attribute Table according to the specified starting and ending attHandle, and find the Attribute that matches
the specified AttributeType and Attribute Value. Then Slave will respond to Master with the Attribute via
the “Find by Type Value Response” command.

Data Type Data Header L2CAP Header ATT_Find_By_Type_Value_Req CRC RSSI FCs
LLID NESN SN MD FDU-Length ||L2CAP-Length ChanlId ||[Opcode StartingHandle EndingHandle AttIype AttValue (dBm)

[L2cap-s || 2 1 1 0 13 0x0009 0x0004 ||0x06 0x0001 O0xFFFF 0x2800 OA 18 0x4CER12 || -54 || OK |
] Data Header RSSI

LR LLID NESN SN MD PDU-Length EiE (dBm) —
1]||Empty FDU|| 1 0 0 0 0 0xC4COES || -54 OK |
T Data Header L2CAP Header ATT_Find_By_Type_Value_Rsp RSSI

Data T CRC FCS

?WP®|LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opcode HandleInfo (dBm)

| L2caE-5 || 2 1 0 0 El 0x0005 0x0004 ||0x07 0C 00 OE 00 0xF92EDS || -54 OK |

Figure 3.40: Find by Type Value Request Find by Type Value Response

(3) Read by Type Request, Read by Type Response

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.4.1 and 3.4.4.2) for details about the "Read by Type Request”
and “Read by Type Response” commands.

The "Read by Type Request” command sent by Master specifies starting and ending attHandle, as well as
AttributeType. After the request is received, Slave will check through current Attribute Table according to
the specified starting and ending attHandle, and find the Attribute that matches the specified AttributeType.
Then Slave will respond to Master with the Attribute via the "Read by Type Response”.

AN-20111000-E3 119 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

i Data T Data Header L2CAP Header ATT_Read_By_Type_Req
L LLID NESN 5N MD FPDU-Length ||L2CAP-Length Chanld ||Opcode StartingHandle EndingHandle AttType
| zacae-s| 2 0 o0 1 11 0x0007 0x0004 ||0x08 0x0001 0xFFFF 00 2B 0y
l Data Header RS5SI
Data T CRC FCS
YPe |lL1ID NESN SN MD PDU-Length (dBm)
J|Empty EDU |1 1 0 0 i oxg98717| 0 || o
i Data Header RSSI
Data T CRC FCS
YP® |l{ILID NESN SN MD POU- Length (dBm)
J|Empry EDU|| 1 1 1 0 i oxg9ERBl|| o || o
i Data Header RSSI
Datalype (I, - NEsw SN MD PDU-Length CRC (aBm) || F€S
J|Empty POU|| 1 0 1 0 i oxeoecez || o || ok
l Data Header RS5SI
Data T CRC FCS
YP® |lL1ID NESN SN MD FPOU-Length (dBm)
|| Empty EOU|| 1 0 0 0 i oxeseica| o || cx
i Data T Data Header L2CAP Header ATT_Read_By_Type_Rsp CRC
YPElTTIn MESW SN MD EDU-Length ||L2CAP-Length Chanld ||Opcede Length AttData
| z2caE-s| 2 1 0 0 14 0x000R 0x0004 |0x09 0x08 03 00 74 53 65 6C 66 &9 || 0xDB&O:

ar r e — = ir | Ly | L]

Figure 3.41: Read by Type Value Request Find by Type Value Response

As shown above, Master reads the Attribute with attType of Ox2A00, i.e. the Attribute with Attribute Handle
of 00 03 in Slave.

const u8 my_devName [] = {'t"', 'S', 'e', '"L', 'f', '"i1'};

#define GATT_UUID_DEVICE_NAME 0Ox2a00

const ul6 my_devNameUUID = GATT_UUID_DEVICE_NAME;

{0,1,2, sizeof (my_devName), (u8*)(&my_devNameUUID),(u8*)(my_devName), 0},

In the "Read by Type response”, attData length is 8, the first two bytes are current attHandle “0003",
followed by 6-byte Attribute Value.

(4) Find information Request, Find information Response

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.3.1 and 3.4.3.2) for details about the “Find information request”
and “Find information response” commands.

The master sends a “Find information request”, specifying the starting and ending attHandle. After receiving
the command, the slave replies to the master through “Find information response” the UUIDs of all the
starting and ending attHandle corresponding Attributes. As shown in the figure below, the master requires
information of three Attributes with attHandle of O0x0016~0x0018, and Slave responds with corresponding
UUIDs.

AN-20111000-E3 120 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data Type Data Header L2CAP Header ATT_Find_Info_Req — RSSI |[F,
LLID NESH SN MD FPDU-Length ||L2CAP-Length Chanld ||Opcode StartingHandle EndingHandle (dBm)
L2CAP-5 || 2 0 1 0 g 0x0005 0x0004 |l0x04 0x0016 00018 0x362R2F || -38 || ¢
] Data Header RSSI
Data®ype l;77n Wesw sw MD PDU-Length| CHC (@Bm) || F€*
J|Empty POU|| 1 0o 0 0 i 0xAE0ODS || -38 || OK
] Data Header RSSI
DataTyPe |l:77p wmESW Sw MD PDU-Length Ee (asm) || 73
J|Empty POU|| 1 1 0 0 0 0xRE0606 || -38 || oK
] Data Type Data Header L2CAP Header ATT_Find_Info_Rsp
LE LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld [|OCpcode Format InfoData
Jlzacap-s|| 2 1 1 0 15 0x000E 0x0004 |l0x05 0x01 16 00 02 29 17 00 08 29 18 00 03 28 || o

Figure 3.42: Find Information Request Find Information Response

(5) Read Request, Read Response

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.4.3 and 3.4.4.4) for details about the “Read Request” and “Read
Response” commands.

The “"Read Request” command sent by Master specifies certain attHandle. After the request is received,
Slave will respond to Master with the Attribute Value of the specified Attribute via the "Read Response”
command (If the callback function r is set, this function will be executed), as shown below.

Data Header L2CAP Header ATT_Read_Req R&5I
Data T —Read | CRC FCS
YPEI11ID WESN SN MD FDU-Length ||L2CAP-Length ChanId ||Opcode AttHandle {dBm)
L2CAP-5 || 2 o 1 o0 7 0x0003 0x0004 ||0x0R 0x0017 0x99C5FD || -38 || oK
Data Header RSS5I
Data Ty CRC FCS
YPe |ITTD NESN SN MD PDU-Length (dBm)
Erpty POU|| 1 0 0 0 0 0xAEOODS || -38 || 0K
Data Header RSSI
Data Ty CRC FCS
YP€ |[IID NESHN SN MD PDU-Length {dBm)
Erpty POU|| 1 1 0 0 0 0xRE0G06 || -38 || 0K
Data Header L2CAP Header ATT_Read_Rsp R551
Data T —Read_ CRC FCS
YPElIIID WESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opeode AttValue (dBm)
LoCAP-5 || 2 1 1 o0 7 0%0003 0x0004 |[0x0B 02 01 0x908287 || -38 || ox

Figure 3.43: Read Request Read Response

(6) Read Blob Request, Read Blob Response

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.4.5 and 3.4.4.6) for details about the “Read Blob Request” and
“Read Blob Response” commands.

If some Slave Attribute corresponds to Attribute Value with length exceeding MTU_SIZE (It's set as 23 in
current SDK), Master needs to read the Attribute Value via the “"Read Blob Request” command, so that the
Attribute Value can be sent in packets. This command specifies the attHandle and ValueOffset. After the
request is received, Slave will find corresponding Attribute, and respond to Master with the Attribute Value
via the “Read Blob Response” command according to the specified ValueOffset. (If the callback function r
is set, this function will be executed.)

As shown below, when Master needs the HID report map of Slave (report map length largely exceeds 23),
first Master sends "Read Request”, then Slave responds to Master with part of the report map data via “Read
response”; Master sends “Read Blob Request”, and then Slave responds to Master with data via “Read Blob
Response”.

AN-20111000-E3 121 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data Header L2CAP Header ATT_Read_Req RSSI
Data T, Shcad™ CRC FCS
YPILLID NESN SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle (dBm)
Tocaps || 2 0 1 0 7 0x0003 0x0004 |[0x02 0x0020 oxE4Dc27 || 38 || 0K |
Data Header RSSI
Data T CRC FCs
YP® |ITITD NESN SN MD EDU-Length (dBm)
Erpty P00 || 1 o0 o0 0 oxAE00Ds || 38 || o
Data Reader RSSI
Data T CRC FCs
YP® |lTITD NESN SN MD EDU-Length (dBm)
Erpty P00 || 1 1 a0 o0 0 0xAE0s06 || —38 || o
Data Header L2CAP Header ATT_Read_Rsp RSSI
Data T —Read CRC FCS
YP|ILID NESN SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode AtcValue (dBm)
Tacap-5 || 2 1 1 0 27 0x0017 0x0004 |[0x0B__ 05 01 09 02 A1 01 85 01 09 01 AL 00 05 09 19 01 29 03 15 00 25 01| oxEE&sDD|| -3¢ | oK |
— Data Header L2CAP Header ATT_Read_Blob_Req cre mss [oe
ILID NESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ValueOffset (dBm)
Tacap-5 || 2 0 1 0 9 0x0005 0x0004 |[0x0C__ 0x0020 0x0016 0x8F3E9S || 38 || oK |
Data Header RSSI
Datalype |i;77p Wesw sW MD EDU-Length EE (a8m ||F€5
Erpty 200 || 1 00 o0 0 oxAE00DS || 38 || o
Data Header RSSI
DataTyPe |77 WESW sW MD PDU-Length ELE (asmy || F€*
Erpty 200 || 1 1 0 o0 0 0xAE0G06 || —38 || o
Data Header L2CAP Header ATT_Read_Blob_Rsp RSSI
DataTYpe (/77D NESN S MD PDU-Length ||L2CAP-Tengch Chanid ||Opcode PartActValue CRC || (aBm) | €5
Tacap5 || 2 1 1 0 27 0x0017 0x0004 |[0x0D 75 01 95 03 81 02 75 05 95 01 81 01 05 01 09 30 09 31 09 38 15 61| oxzDEcF2 || -3¢ | oK |
Data Header L2CAP Header ATT_Read_Blob_Req RSSI
DataTYPe |\ 71D NESN S MD PDU-Length ||L2CAP-Lengoh Chanld ||Opcode AttHandle Valueoffseo| CC | w6m)|/FCS
Tacap-s | 2 o 1 0 9 0x0005 oxon04 |loxoc oxo020 0x002C oxss7oeE || -3z | ox

Figure 3.44: Read Blob Request Read Blob Response

(7) Exchange MTU Request, Exchange MTU Response

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.2.1 and 3.4.2.2) for details about the "Exchange MTU Request”
and “Exchange MTU Response” commands.

As shown below, Master and Slave obtain MTU size of each other via the "Exchange MTU Request” and
“Exchange MTU Response” commands.

Data Header L2CAP Header ATT_Exchange_MTU_Req RsSI

DataType ||/ 71D NESN SN MD EDU-Length |(L2CAP-Length Chanld ||Opcode CliencRxMIU CRE 1l (aBm) [FE3

L2CAP-5 2 1] 1 1] 7 0x0003 0x0004 ||0x02 0x008E 0xC70102 || -38 OK

1 Data Header L2CAP Header |[ATT_Exchange_MTU_Rsp - RssI |[_
DataTyP® |I;711D NESN SN MD EDU-Length ||[L2CAP-Length Chanld ||Opcode ServerRxMIU CRC | (aBm) || €3

L2CAP-S || 2 0o 0 0 7 0%0003 0x0004 [[0x03 _ 0x0017 ox1DeeE1 || -38 | ok

Figure 3.45: Exchange MTU Request Exchange MTU Response

During data access process of Telink BLE Slave GATT layer, if there’s data exceeding a RF packet length,
which involves packet assembly and disassembly in GATT layer, Slave and Master need to exchange RX MTU
size of each other in advance. Transfer of long packet data in GATT layer can be implemented via MTU
size exchange. In the Telink BLE SDK described in the previous section 3.2.8, when the slave end sets the
Rx MTU size in the main function call blc_att_setRxMtuSize(), if the size is greater than 23, it will actively
perform the upstream MTU and update the DLE.

a) User can register callback of GAP event (see section 3.3.5.2 GAP event) and enable the eventMask
“"GAP_EVT_MASK_ATT_EXCHANGE_MTU" to obtain EffectiveRxMTU.

EffectiveRxMTU=min(ClientRxMTU, ServerRxMTU).

The “"GAP event” section of this document will introduce GAP event in detail.

AN-20111000-E3 122 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

b) Processing of long Rx packet data in Slave GATT layer

Slave ServerRxMTU is set as 23 by default. Actually maximum ServerRxMTU can reach 250, i.e. 250-byte
packet data on Master can be correctly re-assembled on Slave. When it's needed to use packet re-assembly
of Master in an application, the API below should be invoked to modify RX size of Slave first.

ble_sts_t blc_att_setRxMtuSize(ul6 mtu_size);

The return value is shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0] Add success
GATT_ERR_INVALID_ See the definition in the SDK mtu_size exceeds the max value
PARAMETER 250.

When Master GATT layer needs to send long packet data to Slave, Master will actively initiate
“ATT_Exchange_MTU_req”, and Slave will respond with “ATT_Exchange_MTU_rsp”. “ServerRxMTU" is
the configured value of the API “blc_att_setRxMtuSize”. If user has registered GAP event and enabled the
eventMask “GAP_EVT_MASK_ATT_EXCHANGE_MTU", “EffectiveRxMTU"” and “ClientRxMTU"” of Master can
be obtained in the callback function of GAP event.

c) Processing of long Tx packet data in Slave GATT layer

When Slave needs to send long packet data in GATT layer, it should obtain Client RxMTU of Master first, and
the eventual data length should not exceed ClientRxMTU.

First Slave should invoke the API "blc_att_setRxMtuSize” to set its ServerRxMTU. Suppose it’s set as 158.

blc_att_setRxMtuSize (158) ;

Then the API below should be invoked to actively initiate an "ATT_Exchange_MTU_req”.

ble_sts_t blc_att_requestMtuSizeExchange (ul6 connHandle, ul6 mtu_size);

“connHandle” is ID of Slave conection, i.e. "BLS_CONN_HANDLE", while “mtu_size” is ServerRxMTU.

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 158);

After the "ATT_Exchange_MTU_req” is received, Master will respond with “"ATT_Exchange_MTU_rsp”. After
receiving the response, the SDK will calculate EffectiveRxMTU. If user has registered GAP event and en-
abled the eventMask “GAP_EVT_MASK_ATT_EXCHANGE_MTU", “EffectiveRxMTU"” and “ClientRxMTU" will
be reported to user.

(8) Prepare Write Request

AN-20111000-E3 123 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

When User uses the Prepare Write command to transfer data, if the transferred data is larger than
260Bytes, the Slave end may receive incomplete data because the default Buffer size set by Telink BLE
SDK stack is 260Bytes and the last 3 bytes are used to save other useful information. User can call API
blc_att_setPrepareWriteBuffer to customize the required Buffer size for the actual application.

void blc_att_setPrepareWriteBuffer(u8 *p, ul6é len);

The parameter p is a pointer to the set buffer, len is the length of the set buffer.

(9) Write Request, Write Response

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.5.1 and 3.4.5.2) for details about the “Write Request” and
“Write Response” commands. The “Write Request” command sent by Master specifies certain attHandle
and attaches related data. After the request is received, Slave will find the specified Attribute, determine
whether to process the data by using the callback function w or directly write the data into corresponding
Attribute Value depending on whether the callback function w is set by user. Finally Slave will respond to

Master via “Write Response”.

As shown in below, by sending “Write Request”, Master writes Attribute Value of Ox0001 to the Slave
Attribute with the attHandle of Ox0016. Then Slave will execute the write operation and respond to Master

via “Write Response”.

Data Header L2CAP Header ATT_Write_Req RS5I
Data T Virite_ CRC FCS
YPENTIID WESN SN MD FDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ActValue {dBm)
L2CAE-S || 2 0 1 0 9 020005 0x0004 ||l0xl2 0x0016 0l 0o oxDCE476 || —38 || ox
Data Header RSSI
DataType ||\ /10 NESN SN MD PDU-Length CRC (aBm) || €5
Empty POU|| 1 o o0 o 0 0xAE0ODS || —38 || oK
Data Header RSSI
DataType ;777 WEsW sN MD PDU-Length CRC (dBm) || FC2
Empty POU|| 1 1 o0 o o 0xAE0606 || —38 || OK
Data Header L2CAP Header ATT_Write_Rsp RS5I
Data T Virite_| CRC FCS
YPEITIID WESN SN MD FEDU-Length ||L2CAP-Length ChanId ||Opcode {dBm)
L2CAP-S || 2 1 1 @ 5 0x0001 nx0004 ||0x13 oxFEDBELZ || 38 || oK

Figure 3.46: Write Request Write Response

(10) Write Command

Please refer to "Core_v5.0” (Vol 3/Part F/3.4.5.3) for details about the “Write Command”. The “Write Com-
mand” sent by Master specifies certain attHandle and attaches related data. After the command is received,
Slave will find the specified Attribute, determine whether to process the data by using the callback function
w or directly write the data into corresponding Attribute Value depending on whether the callback function
w is set by user. Slave won't respond to Master with any information.

(11) Queued Writes

“Queued Writes” refers to ATT protocol including “Prepare Write Request/Response” and “Execute Write
Request/Response”. Please refer to “Core_v5.0” (Vol 3/Part F/3.4.6/Queued Writes).

“Prepare Write Request” and “Execute Write Request” can implement the two functions below.

a) Provide write function for long attribute value.

b) Allow to write multiple values in an atomic operation that is executed seperately.

AN-20111000-E3 124 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Similar to “Read_Blob_Req/Rsp”, “Prepare Write Request” contains AttHandle, ValueOffset and Par-
tAttValue. That means Client can prepare multiple attribute values or various parts of a long attribute value
in the queue. Thus, before executing the prepared queue indeed, Client can confirm that all parts of some
attribute can be written into Server.

Note: Current SDK version only supports the write function of long attribute value with the maximum length
not exceeding 244 bytes.

The figure below shows the case when Master writes a long character string “I am not sure what a new
song” (byte number is far more than 23, and use the default MTU) into certain characteristic of Slave. First
Master sends a “"Prepare Write Request” with offset of Ox0000, to write the data "I am not sure what” into
Slave, and Slave responds to Master with a "Prepare Write Response”. Then Master sends a “Prepare Write
Request” with offset of Ox12, to write the data * a new song” into Slave, and Slave responds to Master with
a “Prepare Write Response”. After the write operation of the long attribute value is finished, Master sends
an “Execute Write Request” to Slave. “Flags=1" indicates write result takes effect immediately. Then Slave
responds with an “Execute Write Response” to complete the whole Prepare Write process.

As we can see, “Prepare Write Response” also contains AttHandle, ValueOffsetand PartAttValue in the re-
quest, so as to ensure reliable data transfer. Client can compare field value of Response with that of Request,
to ensure correct reception of the prepared data.

Data Type Data Header L2CAP Header ATT_Prepare_Write_Rsp
L LLID NESN 5N MD PDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ValueOffset PartAttValue
Lacap-s| 2 0 1 @ 27 0x0017 0x0004 |[0x17 0x0015 0x0000 49 20 61 6D 20 GE GF 74 20 73 75 72 65 20 77 68 61 74| o
Data Type Data Header L2CAP Header ATT_Prepare_Write_Req CRC RSSI ECS
LLID NESN 5N MD PDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ValueOffset PartAttValue (dBm)
Lecap-s| 2 00 @ 20 0x0010 0x0004 |[0x16 0x0015 0x0012 20 61 20 6E 65 77 20 73 6F 6E 67 || 0x92D4A6 || -S4 || 0K |
Data Header R5SI
Data Ty CRC FCS
YP® |ILID NESN SN MD EDU-Length (dBm)
Empty FOU|| 1 1 00 0 0x071388 || -54 || oK
Data Header RSSI
Data Ty CRC FCS
YPe |II1ID WESN 5N MD PDU Length (dBm)
Empty FOU|| 1 1 1 0 0 0x0T1EZE || -54 || 0K
Data Type Data Header L2CAP Header ATT_Prepare_Write_Rsp CRC RSSI FCs
yp LLID NE3N 35N MD PDU-Length ||L2CAP-Length Chanld ||Opcode AttHandle ValueODffset PartAttValue {dBm)
racap-s | 2 0 1 o0 20 0x0010 0x0004 |[0x17 oxo015 0x0012 20 61 20 GE 5 77 20 73 6F GE 67 || OxFF79B4 || -54 || ox
Data Header L2CAP Header ATT_Execute_Write_Req R5SI
Data Ty = e CRC FCS
YPe|1LID NESN SN MD EDU-Lengch ||L2CAE-Length Chanld ||[Opcode Flags (dBm)
Lacar-s| 2 0 0 o0 5 0x0002 0x0004 |[0x18 0x01 0x24D166 || -54 || OK |
Data Header RS31
DataT¥pe ||/ 7 70 WEsN sw MD EDU-Length G (aBm ||F€3
Empty POU || 1 1 0 0 0 0x071388 || 54 || 0K
Data Header R5SI
Data Ty CRC FCS
YPe |I1TID WESN 5N MD PDU-Length (dBm)
Empty FOU|| 1 1 1 0 0 0x0T1EZE || -54 || 0K
] Data Header RSSI
Data Ty CRC FCS
YP® |IIID NESN SN MD PDU-Length (dBm)
Empty FOU| 1 00 @ 0 0x071558 || -54 || oK
] Data Header L2CAP Header ATT_Execute_Write_Rsp RSSI
Data Ty = e CRC FCS
YP|LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld ||Opcode (dBm)
T2caP-5 | 2 0o 1 0 5 0x0001 ox0004 |(0x19 0x430057 || -54 || ox

Figure 3.47: Example for Write Long Characteristic Values

(12) Handle Value Notification

Please refer to "Core_v5.0"” (Vol 3/Part F/3.4.7.1).

AN-20111000-E3 125 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Parameter Size [octets) Description

Attnbute Opcode 1 0x1B = Handle Value Notification
Attribute Handle P The handle of the attribute
Attribute Value 0to (ATT_MTU-3) The cumrent value of the attribute

Table 3.34: Format of Handle Value Notification

Figure 3.48: Handle Value Notification in BLE Spec

The figure above shows the format of *Handle Value Notification” in BLE Spec.

This BLE SDK supplies an API for Handle Value Notification of an Attribute. By invoking this API, user can
push the notify data into bottom-layer BLE software fifo. Stack will push the data of software fifo into
hardware fifo during the latest packet transfer interval, and finally send the data out via RF.

(13) Handle Value Indication

Please refer to "Core_v5.0" (Vol 3/Part F/3.4.7.2).

Parameter Size (octets) Description

Attribute Opcode 1 0x1D = Handle Value Indication
Attribute Handle 2 The handle of the attribute
Attribute Value 0to (ATT_MTU-3) The current value of the attribute

Table 3.35: Format of Handle Value Indication

Figure 3.49: Handle Value Indication in BLE Spec

The figure above shows the format of *Handle Value Indication” in BLE Spec.

This BLE SDK supplies an API for Handle Value Indication of an Attribute. By invoking this API, user can
push the indicate data into bottom-layer BLE software fifo. Stack will push the data of software fifo into
hardware fifo during the Iatest packet transfer interval, and finally send the data out via RF.

ble_sts_t blc_gatt_pushHandleValueIndicate (ul6 connHandle, ul6 attHandle, u8 *p, int len);

When calling this API, it is recommended that users check whether the return value is BLE_SUCCESS: 1.
When in the pairing phase, the new API returns the value: SMP_ERR_PAIRING_BUSY; 2. When in the
encryption phase, the new API returns the value: LL_ERR_ENCRYPTION_BUSY; 3. When len is greater than
ATT_MTU-3 (3 is the ATT layer packet format length opcode and handle), it means that the data length PDU
to be sent exceeds the maximum PDU length ATT_MTU supported by the ATT layer.

The first parameter connHandle is the connHandle of the corresponding GATT service, the second parameter
attHandle is attHandle corresponding to Attribute, the third parameter “p” is the head pointer of successive

AN-20111000-E3 126 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

memory data to be sent, and the fourth parameter “len” specifies byte number of data to be sent. Since this
API supports auto packet disassembly based on EffectiveMaxTxOctets, long indicate data to be sent can be
disassembled into multiple BLE RF packets, large “len” is supported. (EffectiveMaxTxOctets indicates the
maximum RF TX octets to be sent in the Link Layer. Its default value is 27, and DLE may modify it. Another
API as a replacement will be introduced later.)

As specified in BLE Spec, Slave won't regard data indication as success until Master confirms the data, and
the next indicate data won’t be sent until the previous data indication is successful.

When Link Layer is in Conn state, generally data will be successfully pushed into bottom-layer software
FIFO by invoking this API; however, some special cases may result in invoking failure, and the return value
“ble_sts_t” will indicate the corresponding error reason.

When this API is invoked in APP layer, it's recommended to check whether the return value is
“BLE_SUCCESS”. If the return value is not "BLE_SUCCESS”, a delay is needed to re-push the data.
The return value is shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

LL_ERR_CONNECTION_NOT_ See the definition Link Layer is in None Conn state

ESTABLISH in the SDK

LL_ERR_ENCRYPTION_BUSY See the definition Data cannot be sent during pairing or
in the SDK encryption phase.

LL_ERR_TX_FIFO_NOT_ENOUGH See the definition Since task with mass data is being executed,
in the SDK software Tx fifo is not enough.

GATT_ERR_DATA_PENDING_DUE See the definition Data cannot be sent during service discovery
TO_SERVICE_DISCOVERY_BUSY in the SDK phase.

GATT_ERR_PREVIOUS_INDICATE_ See the definition The previous indicate data has not been
DATA_HAS_NOT_CONFIRMED in the SDK confirmed by Master.

(14) Handle Value Confirmation

Please refer to “Core_v5.0” (Vol 3/Part F/3.4.7.3).

Whenever the API “bls_att_pushindicateData” (or “blc_gatt_pushHandleValuelndicate”) is invoked by APP
layer to send an indicate data to Master, Master will respond with “Confirmation” to confirm the data, then
Slave can continue to send the next indicate data.

Parameter Size (octets) Description

Attribute Opcode 1 0x1E = Handle Value Confirmation

Table 3.36: Format of Handle VValue Confirmation

Figure 3.50: Handle Value Confirmation in BLE Spec

As shown above, “Confirmation” is not specific to indicate data of certain handle, and the same “Confirma-

AN-20111000-E3 127 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

tion” will be responded irrespective of handle.

To enable the APP layer to know whether the indicate data has already been confirmed by Master, user can
register the callback of GAP event (see section 3.3.5.2 GAP event), and enable corresponding eventMask
“"GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM” to obtain Confirm event.

3.3.3.4 GATT Service Security
Before reading "GATT Service Security”, user can refer to section 3.3.4 SMP to learn basic knowledge related
to SMP including LE pairing method, security level, and etc.

The figure below shows the mapping relationship of service request for GATT Service Security level given
by BLE spec. Please refer to “core5.0” (Vol3/Part C/10.3 AUTHENTICATION PROCEDURE).

AN-20111000-E3 128 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Local Device Pairing Status
Link Local Device's Unauthenticated | Authenticated | Authenticated
Encryp- | Access LTK or LTK or LTK with
tion Requirement |No LTK Unauthenticated | Authenticated | Secure
State for Service No STK STK S5TK Connections
None Request Request Request Request
succeeds succeeds succeeds succeeds
Encryption, Error Resp.: |Ermor Resp.: Error Resp.: Error Resp.:
No MITM Insufficient Insufficient Insufficient Insufficient
E Protection Authentication | Encryption Encryption Encryption
o
E" Encryption, Error Resp.: |Error Resp.: Error Resp.: Error Resp.:
S |MITM Insufficient Insufficient Insufficient Insufficient
5 Protection Authentication | Encryption Encryption Encryption
Encryption, Error Resp.: |Error Resp.: Error Resp.: Error Resp.:
MITM Protec- |Insufficient Insufficient Insufficient Insufficient
tion, Secure |Authentication | Encryption Encryption Encryption
Connections
None Request Request Request
succeeds succeeds succeeds
Encryption, Request Request Request
No MITM succeeds succeeds succeeds
T Protection N/A
4 - (Not possible)
> Encryption, to be Errar .R.esp._ Request Request
2 MITM _ encrypted Insufﬂ::lgnt_ succeeds succeeds
w Protection without LTK) Authentication
Encryption, Error Resp.: Error Resp.: Request
MITM Protec- Insufficient Insufficient succeeds
tion, Secure Authentication Authentication
Connections

Table 10.2: Local device responds to a service request

Figure 3.51: Mapping Diagram for Service Request and Response

As shown in the figure above:

« The first column marks whether currently connected Slave device is in encryption state;

* The second column (local Device’s Access Requirement for service) is related to Permission Access
setting for attributes in ATT table;

» The third column includes four sub-columns corresponding to four levels of LE secuiry mode1 for
current device pairing state:

AN-20111000-E3

129

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

a) No authentication and no encryption

b) Unauthenticated pairing with encryption
c) Authenticated pairing with encryption
d) Authenticated LE Secure Connections

/** Bdefgroup ATT PERMISSIONS BITMAPS GAP ATT Attribute Access Permissions Bit Fields

* g
* (See the Core v5.0(Vol 3/Part C/10.3.1/Table 10.2) for more information)
*/
#define ATT PERMISSIONS AUTHOR 0x10 //Attribute access(Read & Write) requires Buthorization
#define ATT PERMISSIONS_ENCRYPT 0x20 //Bttribute access(Read & Write) requires Encryption
#define ATT PERMISSIONS AUTHEN 0x40 //Attribute access(Read & Write) requires Authentication (MITM protection)
#define ATT PERMISSIONS SECURE CONN 0x80 //Attribute access(Read & Write) recuires Secure Connection
#define ATT PERMISSIONS SECURITY {A'I'I'_PE.RMISSIONS_A.DTHOR 1 ATT PERMISSIONS ENCRYPT 1 ATT PERMISSIONS AUTHEN | A'I'I'_PE.M-IISSIONS_SECURE_CONN)

//user can choose permission below

#define ATT PERMISSIONS READ 0x01 //!< Attribute is Readable

#define ATT PERMISSIONS WRITE 0x02 //!< Attribute is Writable

#define ATT PERMISSIONS RDWR (ATT_PERMISSIONS READ | ATT PERMISSIONS WRITE) //!< Attribute is Readable & Writable

#define ATT PERMISSIONS ENCRYPT READ (ATT PERMISSIONS READ | ATT PERMISSIONS ENCRYPT) //'< Read requires Encryption

#define ATT PERMISSIONS ENCRYPT WRITE (ATT PERMISSIONS WRITE | ATT PERMISSIONS ENCRYPT) /{'< Write requires Encryption

#define ATT PERMISSIONS_ENCRYPT RDWR (ATT_PERMISSIONS RDWR | ATT PERMISSIONS ENCRYPT) //1< Read & Write requires Encryption

#define ATT PERMISSIONS AUTHEN READ (ATT_PERMISSIONS READ | ATT PERMISSIONS ENCRYPT | ATT PERMISSIONS AUTHEN) //1< Read requires Authe
#define ATT PERMISSIONS AUTHEN WRITE (ATT PERMISSIONS WRITE | ATT PERMISSIONS ENCRYPT | ATT PERMISSIONS AUTHEN) //'< virite requires Autl
#define ATT PERMISSIONS AUTHEN RDWR (ATT PERMISSIONS RDWR | ATT PERMISSIONS ENCRYPT | ATT PERMISSIONS AUTHEN) //1< Read & Write requi:
#define ATT PERMISSIONS_SECURE CONN_READ (ATT_PERMISSIONS READ | ATT PERMISSIONS SECURE CONN | ATT PERMISSIONS ENCRYPT | ATT PERMISSIONS AUTHEN)
#define ATT PERMISSIONS SECURE CONN WRITE (ATT PERMISSIONS WRITE | ATT PERMISSIONS SECURE CONN | ATT PERMISSIONS ENCRYPT | ATT PERMISSIONS AUTHEN)
#define ATT PERMISSIONS SECURE CONN_RDWR (ATT PERMISSIONS RDWR | ATT PERMISSIONS SECURE CONN | ATT PERMISSIONS ENCRYPT | ATT PERMISSIONS AUTHEN)
#define ATT PERMISSIONS_AUTHOR READ (ATT_PERMISSIONS READ | ATT PERMISSIONS_AUTHOR) //'< Read requires Authorization

#define ATT PERMISSIONS AUTHOR WRITE (ATT PERMISSIONS WRITE | ATT PERMISSIONS AUTHEN) / /< Write requires Authorization

#define ATT PERMISSIONS AUTHOR RDWR (ATT PERMISSIONS RDWR | ATT PERMISSIONS AUTHOR) //'< Read & Write requires Authorization

Figure 3.52: ATT Permission Definition

The final implementation of GATT Service Security is related to parameter settings during SMP initialization,
including the highest security level, permission access of attributes in ATT table.

It is also related to Master, for example, suppose Slave sets the highest security level supported
by SMP as “Authenticated pairing with encryption”, but the highest level supported by Master is
“Unauthenticated pairing with encryption”; if the permission for some write attribute in ATT table is
“ATT_PERMISSIONS_AUTHEN_WRITE”, when Master writes this attribute, an error will be responded to
indicate “encryption level is not enough”.

User can set permission of attributes in ATT table to implement the application below:

Suppose the highest security level supported by Slave is “Unauthenticated pairing with encryption”,
but it's not hoped to trigger Master pairing by sending “Security Request” after connection, user
can set the permission for CCC (Client Characteristic Configuration) attribute with nofity attribute as
“ATT_PERMISSIONS_ENCRYPT_WRITE". Only when Master writes the CCC, will Slave respond that security
level is not enough and trigger Master to start pairing encryption.

Note:

Security level set by user only indicates the highest security level supported by device, and GATT Service
Secuiry can be used to realize control as long as ATT Permission does not exceed the highest level that
takes effect indeed. For LE security mode1 level 4, if use only sets the level “Authenticated LE Secure
Connections”, the setting supports LE Secure Connections only.

For the example of GATT security level, please refer to "“B91_feature/feature_gatt_security/app.c”.

AN-20111000-E3 130 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.3.4 SMP

Security Manager (SM) in BLE is mainly used to provide various encryption keys for LE device to ensure data
security. Encrypted link can protect the original contents of data in the air from being intercepted, decoded
or read by any attacker. For details about the SMP, please refer to "Core_v5.0” (Vol 3/Part H/ Security
Manager Specification).

3.3.4.1 SMP Security Level

BLE 4.2 Spec adds a new pairing method “LE Secure Connections” which further strengthens security. The
pairing method in earlier version is called “LE legacy pairing”.

As shown in the section of GATT Service Security, local device supports pairing states below:

Local Device Pairing Status

Unauthenticated | Authenticated | Authenticated

LTK or LTK or LTK with
No LTK Unauthenticated | Authenticated | Secure
No STK STK STK Connections

Figure 3.53: Local Device Pairing Status

The four states correspond to the four levels of LE security mode1:

a) No authentication and no encryption (LE security mode1 level1)
b) Unauthenticated pairing with encryption (LE security mode1 level2)
c) Authenticated pairing with encryption (LE security mode1 level3)

d) Authenticated LE Secure Connections (LE security mode1 level4)

For more details, please refer to “Core_v5.0” (Vol 3//Part C/10.2 LE SECURITY MODES).

Note: Security level set by local device only indicates the highest security level that local device may reach.
However, to reach the preset level indeed, the two factors below are important:

a) The supported highest security level set by peer Master device >= the supported highest security level
set by local Slave device.

b) Both local device and peer device complete the whole pairing process (if pairing exsits) correctly as
per the preset SMP parameters.

For example, even if the highest security level supported by Slave is set as “mode1 level3” (Authenticated
pairing with encryption), when the highest security level supported by peer Master is set as *mode1 level1”
(No authentication and no encryption), after connection Slave and Master won’t execute pairing, and indeed
Slave uses security mode1 level 1.

User can use the API below to set the highest security level supported by SM:

AN-20111000-E3 131 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

vold blc_smp_setSecurityLevel(le_security_mode_level_t mode_level);

Following shows the definition for the enum type le_security_mode_level_t:

typedef enum {

LE_Security_Mode_1_Level_1 = BIT(0), No_Authentication_No_Encryption = BIT(0),

< No_Security = BIT(0),
LE_Security_Mode_1_Level_2 = BIT(1), Unauthenticated_Paring_with_Encryption = BIT(1),
LE_Security_Mode_1_Level 3 = BIT(2), Authenticated_Paring_with_Encryption = BIT(2),
LE_Security_Mode_1_Level_4 = BIT(3),

< Authenticated_LE_Secure_Connection_Paring_with_Encryption =BIT(3),

}le_security_mode_level t;

3.3.4.2 SMP Parameter Configuration

SMP parameter configuration In Telink BLE SDK is introduced according to the configuration of four SMP
security levels.

For Slave, SMP function currently can support the highest security level “LE security mode1 level4”.
(1) LE security mode1 levell

Level 1 indicates device does not support encryption pairing. If it's needed to disable SMP function, user
only needs to invoke the function below during initialization:

blc_smp_setSecurityLevel(No_Security);

It means the device won’t implement pairing encryption for current connection. Even if the peer requests
for pairing encryption, the device will reject it. It generally applies to the device that does not support
encryption pairing process. As shown in the figure below, Master sends a pairing request, and Slave responds
with “SM_Pairing_Failed”.

Gezacrases || sov || ok Empty P00 L 10 o 0 || oxooooi1|| —ss | o]

—
N Data Header L2CAP Header SM_Pairing_Req

Feess Address | Direction || ACK Status || DataType |17 -0 eay oy wp PDU-Length ||L2CAP-Length Chanld |Opcode I0Cap OOBDataFlag AuthReg MaxEncKeySize InitKeyDist RespKeyDist CRC (
0x2AC793CS 2 OK L2CRP-5 2 1 1 a 11 0x0007 0x0006 |0x01 0x04 0x00 0x05 0x10 0x07 0x07 0x000014

RSS!
aam) | FCS
54 | oK
RSSI
(dam) || F€5
-62

Data Type Data Header L2CAP Header |‘SM7Pairingjailed||
e LLID NESN SN HD PDU Lengr.h LZCAP L2CRAP-Length Chanld |/Cpcode Reason
0K L2CRP-3 || 2 1 0x0002 0x0006 | 0205 0x05

T LI I Ll Nata Headar 1M mss1

Data Header
LLID HESN SN MD FDU-Length
1 a 1 a

tcess Address || Direction || ACK Status || Data Type

Empty PDU

0x2ACT799CS 2 OK 0x000014

Data Header
LLID NESN SN MD FPDU-Length
1 a 0 a 0

tcess Address || Direction || ACK Status || Data Type

Empty FDU

0x2ACTY8CS 2 OK 0x000015

RSS!
(dBm)
-54

CRC FCS

ccess Address || Direction || ACK Status

| 0x00000E OK

0x2ACT799CS

2

Figure 3.54: Packet Example for Pairing Disable

(2) LE security mode1 level2

Level 2 indicates device supports the highest security level *Unauthenticated_Paring_with_Encryption”, e.q.
“Just Works” pairing mode in legacy pairing and secure connection pairing method.

AN-20111000-E3 132 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

A. As introduced earlier, SMP supports legacy encryption and secure connection pairing. The SDK provides
the API below to set whether the new encryption feature in BLE4.2 is supported.

void blc_smp_setParingMethods (paring_methods_t method);

Following shows the definition for the enum type paring_methods_t:

typedef enum {
LE_Legacy_Paring =0, // BLE 4.6/4.2

LE_Secure_Connection = 1, // BLE 4.2/5.0/5.1

}paring_methods_t;

B. When using security level other than LE security mode1 levell, the API below must be invoked to initialize
SMP parameter configuration, including flash initialization setting of bonded area.

int blc_smp_peripheral_init (void);

If only this APl is invoked during initialization, the SDK will use default parameters to configure SMP:

+ The highest security level supported by default: Unauthenticated_Paring_with_Encryption.

« Default bonding mode: Bondable_Mode (store KEY that is distributed after pairing encryption into
flash).

+ Default IO capability: IO_CAPABILITY_NO_INPUT_NO_OUTPUT.

The default parameters above follow the configuration of legacy pairing “Just Works” mode. Therefore
invoking this APl only is equivalent to configure LE security mode1 level2. LE security mode1 level2 has two
types of setting:

A. Device supports initialization setting of “Just Works” in legacy pairing.

blc_smp_peripheral_init();

B. Device supports initialization setting of “Just Works” in secure connections.

blc_smp_setParingMethods(LE_Secure_Connection);
blc_smp_peripheral_init();

(3) LE security mode1 level3

Level 3 indicates device supports the highest security level “Authenticated pairing with encryption”, e.qg.
“Passkey Entry” / “Out of Band” in legacy pairing mode.

As required by this level, device should support Authentication, i.e. legal identity of two pairing sides should
be ensured.

The three Authentication methods below are supported in BLE:

+ Method 1 with involvement of user, e.g. device has button or display capability, so that one side can
display TK, while the other side can input the same TK (e.g. Passkey Entry).

AN-20111000-E3 133 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« Method 2: The two pairing sides can exchange information using the method of non-BLE RF transfer
to implement pairing (e.g. Out of Band which transfers TK via NFC generally).

« Method 3: Use the TK negotiated and agreed by two device sides (e.g. Just Works with TK O used by
two sides). Since this method is Unauthenticated, the security level of “Just Works” corresponds to LE
security mode1 level2.

Authentication can ensure the legality of two pairing sides, and this protection method is called MITM (Man-
in-the-Middle) protection.

A. Device with Authentication should set its MITM flag or OOB flag. The SDK provides the two APIs below to
set MITM flag and OOB flag.

vold blc_smp_enableAuthMITM (int MITM_en);
void blc_smp_enableOobAuthentication (int 00B_en);

“MITM_en”/"O0B_en”: 1 - enable; O - disable.

B. As introduced earlier, SM provides three Authentication methods selectable depending on IO capability of
two sides. The SDK provides the API below to set IO capability for current device.

vold blc_smp_setIoCapability (io_capability_t 1oCapablility);

Following shows the definition for the enum type io_capability_t:

typedef enum {
I0_CAPABILITY_UNKNOWN = Oxff,
I0_CAPABILITY_DISPLAY_ONLY = 0,
I0_CAPABILITY_DISPLAY_YESNO 1,
I0_CAPABILITY_KEYBOARD_ONLY 2,
I0_CAPABILITY_NO_IN_NO_OUT = 3,
I0_CAPABILITY_KEYBOARD_DISPLAY = 4,

} io_capability_t;

C. The figure below shows the rule to use MITM flag and OOB flag in legacy pairing mode.

AN-20111000-E3 134 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Initiator

OOB Set OOB Not Set | MITM Set MITM Not Set
QOB Set Use OOB Check MITM
OOB Not Set | Check MITM | Check MITM

Use Use
MITM Set |O Capabilities | 10 Capabilities

Responder

Use Use
MITM Not Set |O Capabilities | Just Works

Table 2.6: Rules for using Out-of-Band and MITM flags for LE legacy pairing

Figure 3.55: Usage Rule for MITM OOB Flag in Legacy Pairing Mode

The OOB and MITM flag of local device and peer device will be checked to determine whether to use OOB
method or select certain KEY generation method as per |0 capability.

As shown in the figure below, the SDK will select different KEY generation methods according to IO capability
(Row/Column parameter type io_capability_t):

// H: Initiator Capabilities

// V: Responder Capabilities

// See the Core v5.0(Vol 3/Part H/2.3.5.1) for more information.

static const stk generationMethod t gen method legacy[5 /*Responder*/][5 /*Initiator*/] = {
{ JustWorks, JustWorks, PE Resp Dsply Init Input, JustWorks, PE Resp Dsply Init Input },
{ JustWorks, JustWorks, PK Resp Dsply Init Input, JustWorks, PK Resp Dsply Init Inmput },
{ PK Init Dsply Resp Input, PK Init Dsply Resp Input, PK BOTH INPUT, JustWorks, PK Init Dsply Resp Input },
{ JustWorks, JustWorks, JustWorks, JustWorks, JustWorks }.
{ PK Init Dsply Resp Input, PK Init Dsply Resp Input, PK Resp Dsply Init Input, JustWorks, PK Init Dsply Resp Input },

bi

#if SECURE CONNECTION ENABLE
static const stk generationMethod t gen method sc[5 /*Responder*/][5 /*Initiator*/] = {

{ JustWorks, JustWorks, PE Resp Dsply Init Input, JustWorks, PE Resp Dsply Init Input },
{ JustWorks, Numric Comparison, PK Resp Dsply Init Input, JustWorks, Numric Comparison },
{ PK Init Dsply Resp Input, PK Init Dsply Resp Input, PK BOTH INPUT, JustWorks, PK Init Dsply Resp Input },
{ JustWorks, JustForks, JustWorks, JustWorks, JustWorks }.
{ PE Init Dsply Resp Input, Numric Comparison, PK Resp Dsply Init Input, JustWorks, Numric Comparison },

Fi

#endif

Figure 3.56: Mapping Relationship for KEY Generation Method and IO Capability

For details about the mapping relationship, please refer to “core5.0” (Vol3/Part H/2.3.5.1 Selecting Key
Generation Method).

LE security mode1 level3 supports the methods below to configure initial values:

A. Initialization setting of OOB for device with legacy pairing:

blc_smp_enableOobAuthentication(1);
blc_smp_peripheral_init();

AN-20111000-E3 135 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Considering TK value transfer by OOB, the SDK provides related GAP event in the APP layer (see section
3.3.5.2 GAP event).

The API below serves to set TK value of OOB.

voild blc_smp_setTK_by 00B (u8 *oobData);

The parameter “oobData” indicates the head pointer for the array of 16-digit TK value to be set.

B. Initialization setting of Passkey Entry (PK_Resp_Dsply_Init_Input) for device with legacy pairing:

blc_smp_enableAuthMITM(1);
blc_smp_setIoCapability(I0_CAPABILITY_DISPLAY_ONLY);
blc_smp_peripheral_init();

C. Initialization setting of Passkey Entry (PK_Init_Dsply_Resp_Input or PK_BOTH_INPUT) for device with
legacy pairing:

blc_smp_enableAuthMITM(1);
blc_smp_setIoCapability(IO_CAPABLITY_KEYBOARD_ONLY);
blc_smp_peripheral_init();

Considering TK value input by user, the SDK provides related GAP event in the APP layer (see section 3.3.5.2
GAP event). The API below serves to set TK value of Passkey Entry:

vold blc_smp_setTK_by PasskeyEntry (u32 pinCodelInput);

The parameter “pinCodelnput” indicates the pincode value to be set and its range is 0~999999. It applies
to the case of Passkey Entry method in which Master displays TK and Slave needs to input TK.

KEY generation method finally adopted is related to SMP security level supported by two pairing sides. If
Master only supports LE security model levell, since Master does not support pairing encryption, Slave
won’t enable SMP function.

(4) LE security model level4

Level 4 indicates device supports the highest security level “Authenticated LE Secure Connections”, e.g. Nu-
meric Comparison/Passkey Entry/Out of Band in secure connection pairing mode.

LE security mode1 level4 supports the methods below to configure initial values:

A. Initialization setting of Numeric Comparison for device with secure connection pairing:

blc_smp_setParingMethods(LE_Secure_Connection);
blc_smp_enableAuthMITM(1);
blc_smp_setIoCapability(IO_CAPABLITY_DISPLAY_YESNO);

Considering display of numerical comparison result to user, the SDK provides related GAP event in the APP
layer (see section 3.3.5.2 GAP event). The API below serves to set numerical comparison result as “YES” or
“NO”".

AN-20111000-E3 136 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void blc_smp_setNumericComparisonResult(bool YES_or_NO);

The parameter “YES_or_NO” serves to confirm whether six-digit values on two sides are consistent. If yes,
input 1 to indicate “YES”; otherwise input O to indicate *NO”.

B. Initialization setting of Passkey Entry for device with secure connection pairing:

User initialization code of this part is almost the same with that of the configuration mode B/C (Passkey
Entry in legacy pairing) in LE security mode1 level3, except that pairing method herein should be set as
“secure connection pairing” at the start of initialization.

blc_smp_setParingMethods(LE_Secure_Connection);
..... //Refer to configuration method B/C in LE security model level3

C. Initialization setting of Out of Band for device with secure connection pairing:

This part is not implemented in current SDK yet.
(5) Several APIs related to SMP parameter configuration:

A. The API below serves to set whether to enable bonding function:

vold blc_smp_setBondingMode(bonding_mode_t mode);

Following shows the enum type bonding_mode_t:

typedef enum {
Non_Bondable_Mode
Bondable_Mode 1,

}bonding_mode_t;

]
(o]
-

For device with security level other than mode1 levell, bonding function must be enabled. Since the SDK
has enabled bonding function by default, generally user does not need to invoke this API.

B. The API below serves to set whether to enable Key Press function:

void blc_smp_enableKeypress (int keyPress_en);

It indicates whether it's supported to provide some necessary input status information for KeyboardOnly
device during Passkey Entry. Since the current SDK does not support this function yet, the parameter must
be set as 0.

C. The API below serves to set whether to enable key pairs for ECDH (Elliptic Curve Diffie-Hellman) debug
mode:

voild blc_smp_setEcdhDebugMode(ecdh_keys_mode_t mode);

Following shows the definition for the enum type ecdh_keys_mode_t:

AN-20111000-E3 137 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

typedef enum {
non_debug_mode = 0,//ECDH distribute private/public key pairs
debug_mode = 1,//ECDH use debug mode private/public key pairs
} ecdh_keys_mode_t;

This APl only applies to the case with secure connection pairing. The ellipse encryption algorithm can prevent
eavesdropping effectively, but at the same time, it’s not very friendly to debugging and development, since
user cannot capture BLE packet in the air by sniffer and analyze the data. Thus, as defined in BLE spec,
ellipse encryption mode with private and public key pairs is provided for debugging. As long as this mode is
enabled, BLE sniffer tool can use the known key to decrypt the link.

D. Following is a unified API to set whether to enable bonding, whether to enable MITM flag, whether to
support OOB, whether to support Keypress notification, as well as to set supported 10 capability(The previous
documents are all separate configuration APIs. For the convenience of user settings, the SDK also provides
a unified configuration API).

vold blc_smp_setSecurityParameters (bonding_mode_t mode,int MITM_en,int OOB_en, int keyPress_en,
io_capability_t ioCapablility);

Definition for each parameter herein is consistent with the same parameter in the corresponding indepen-
dent API.

3.3.4.3 SMP Security Request Configuration

Only Slave can send SMP Security Request, so this part only applies to Slave device.

During phase 1 of pairing process, there’s an optional Security Request packet which serves to enable Slave
to actively trigger pairing process to start. The SDK provides the API below to flexibly set whether Slave
sends Security Request to Master immediately after connection/re-connection, or delay for pending_ms
miliseconds before sending Security Request, or does not send Security Request, so as to implement differ-
ent pairing trigger combination.

blc_smp_configSecurityRequestSending(secReq_cfg newConn_cfg, secReq_cfg reConn_cfg, ul6
< pending_ms);

Following shows the definition for the enum type secReq_cfq:

typedef enum {
SecReq_NOT_SEND = 0,
SecReq_IMM_SEND = BIT(0),
SecReq_PEND_SEND = BIT(1),
}secReq_cfg;

« SecReq_NOT_SEND: After connection is established, Slave won’t send Security Request actively.

« SecReq_IMM_SEND: After connection is established, Slave will send Security Request immediately.

AN-20111000-E3 138 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« SecReq_PEND_SEND: After connection is established, Slave will wait for pending_ms miliseconds and
then determine whether to send Security Request.

(1) For the first connection, Slave receives Pairing_request from Master before pending_ms miliseconds,
and it won't send Security Request;

(2) For re-connection, if Master has already sent LL_ENC_REQ before pending_ms miliseconds to encrypt
reconnection link, Slave won’t send Security Request.

The parameter “newConn_cfg” serves to configure new device, while the parameter “reConn_cfg” serves to
configure device to be reconnected. During reconnection, the SDK also supports the configuration whether
to send purpose of pairing request: During reconnection for a bonded device, Master may not actively initiate
LL_ENC_REQ to encrypt link, and Security Request sent by Slave will trigger Master to actively enrypt the

link. Therefore, the SDK provides reConn_cfg configuration, and user can configure it as needed.

Note: This APl must be invoked before connection. It's recommended to invoke it during initialization.

The input parameters for the API “blc_smp_configSecurityRequestSending” supports the nine combinations

below:
Table 3.9: Input parameter combination
Parameter SecReq_NOT_SEND SecReq_IMM_SEND SecReq_PEND_SEND
SecReq_NOT Not send SecReq after the Not send ecReq after the Not send ecReq after the
_SEND first connection or first connection, and first connection, and wait
reconnection (the para immediately send SecReq for pending_ms
pending_ms is invalid). after reconnection (the miliseconds to send SecReq
para pending_ms is after reconnection.
invalid).
SecReq_IMM Immediately send SecReq Immediately send SecReq Immediately send SecReq
_SEND after the first connection, after the first connection or after the first connection
and not send SecReq after reconnection (the para and wait for pending_ms
reconnection (the para pending_ms is invalid). miliseconds to send SecReq
pending_ms is invalid). after reconnection.
SecReq_ Wait for pending_ms Wait for pending_ms Wait for pending_ms
PEND_SEND miliseconds to send miliseconds to send SecReq miliseconds to send SecReq

SecReq after the first
connection, and not send
SecReq after
reconnection.

after the first connection,
and immediately send
SecReq after reconnection.

after the first connection or
reconnection.

Following shows two examples:

(1) newConn_cfg: SecReq_NOT_SEND

reConn_cfg: SecReq_NOT_SEND

pending_ms: This parameter does not take effect.

AN-20111000-E3

139

Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

When newConn_cfg is set as SecReq_NOT_SEND, it means new Slave device won’t actively initiate Security
Request, and it will only respond to the pairing request from the peer device. If the peer device does not
send pairing request, encryption pairing won’t be executed. As shown in the figure below, when Master
sends a pairing request packet “SM_Pairing_Req”, Slave will respond to it, but won't actively trigger Master
to initiate pairing request.

[s rpp - —

T T LLID NESH SN MD PDU-Length ~ (dBmy) [|"
4714E5 5-3M O Empty EDU|[1 1 0 0 [i] 0x00000D | =54 || oK
Data Header I L2CAP Header Il SN_Pairing_Req I RSS
tess Address || Direction || ACK Status || Data T = CRC
irection us YP®||LLID WESN SN MD PDU-Length ||L2CAP-Length ChanId ||Opcode IOCap OCBDataFlag AuthReg ySize InitKeyDist RespReyDist | (dBm
[xAB4714ES 2 OK L2CRP-5 || 2 1 1 0 11 |[ox0007 0x0006 ||0x01 0x04 0x00 0x05 0x10 0x07 0x07 || _oxooo00s || -78
Data Header RSSI
fess Address (| Direction || ACK Status || DataType ||/ ooy~ or 1 Eoy-rengon CRC Bm) || €S
KEE4T14ES 2 O Empty PDU|[1 01 0 [i] 0x00001C || -54 || oK
Data Header RSS!
sess Address || Direction || ACK Status || Data Type ILID WESN S§ MD PDU-Length CRC (dBm) FCS
xB24714ES 2 OK Empty PDU|| 1 [[i] 0x00000c ||_-78 || oK
Data Header [L2CAP Header [SM_Pairing_Rsp RSS
tess Address || Direction || ACK Status || Data T - CRC
rection us YPE|[LID NESN SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode IOCap 0CBDataFlag AuthReq MasEncKeySize InitHeyDist RespHeyDist (dBm
KEB4TI2ES | 2 OK L2CAE-S || 2 1 0 0 11 020007 0x0006 ||0x02_ 0x03 _ 0x00 0x01 010 0x03 0x03 0x000012 || -54

Figure 3.57: Packet Example for Pairing Peer Trigger

When reConn_cfg is set as SecReq_NOT_SEND, it means device pairing has already been completed, and
Slave won’t send Security Reqeust after reconnection.

(2) newConn_cfg: SecReq_IMM_SEND
reConn_cfg: SecReq_NOT_SEND
pending_ms: This parameter does not take effect.

When newConn_cfg is set as SecReq_IMM_SEND, it means new Slave device will immediately send Security
Request to Master after connection, to trigger Master to start pairing process.

As shown in the figure below, Slave actively sends a SM_Security_Req to trigger Master to send pairing
request.

592 ||=8321634 | 0x09 0x4CDE12E9 M->5 OK Control ||_3 0o o o L) | N REEOE0E [EONCONCeN TN | 0:000021 | -S54 || ox
Time (us) Data Header L2CAP Header
P | T2 §1%1 | Channet{| Access Address | Direction | ACK status | DataType |- oo "Gt p - B00-Length | L2cRB-tength. - ChanTd
593 |-2321995 || ox0s | oxacpeizes | s->u ox | zecars] 2 1 0 o & 0x0002 0x0006
= e — — e —
Time (us) Data Header L2CAP Header SM_Pairing_Req
Pnbr. Channel || Access Address || Direction || ACK Status || Data T
P11 30609 annel irection us YPEIl[711D NESW SN MD PDU-Length ||L2CAP-Length Chanld ||Cpeode I0Cap OCBDataFlag AuthReq MaxEncKeySize InitKeyDis
594 ||-e3slese || ox1z || OxaCDeIZES || M->S oK ||Tacar-s|| z 11 o 1 0x0007 0x0006 |[0x01_ 0x04 oxon 020D oxlo 0x0E
[t [[Tme 591][chane: |[AGcess Adaressl oiection [l ack status [[oata type [Datereader | RN OSSOl | o "% lrcs

Figure 3.58: Packet Example for Pairing Conn Trigger

When reConn_cfg is set as SecReq_NOT_SEND, it means Slave won’t send Security Reqeust after reconnec-
tion.

The SDK also provides an API to send Security Request packet only for special use case. The APP layer can
invoke this API to send Security Request at any time.

int blc_smp_sendSecurityRequest (void);

Note: If user invokes the “blc_smp_configSecurityRequestSending” to control secure pairing request packet,
the “blc_smp_sendSecurityRequest” should not be invoked.

AN-20111000-E3 140 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

3.3.4.4 SMP Bonding info

SMP bonding information herein is discussed relative to Slave device. User can refer to the code of “direct
advertising” setting during initialization in the SDK demo “feature_gatt_security/feature_smp_security”.

Slave can store pairing information of up to four Master devices at the same time, so that all of the four
devices can be reconnected successfully. The API below serves to set the max number of bonding devices
with the upper limit of 4 which is also the default value.

ble_sts_t blc_smp_param_setBondingDeviceMaxNumber(int device_num);

If using blc_smp_param_setBondingDeviceMaxNumber (4) to set the max number as 4, after four devices
have been paired, excuting pairing for the fifth device will automatically delete the pairing info of the earliest
connected (first) device, so as to store the pairing info of the fifth device.

If using blc_smp_param_setBondingDeviceMaxNumber (2) to set the max number as 2, after two devices
have been paired, excuting pairing for the third device will automatically delete the pairing info of the earliest
connected (first) device, so as to store the pairing info of the third device.

The API below serves to obtain the number of currently bonded Master devices (successfully paired with
Slave) stored in the flash.

u8 blc_smp_param_getCurrentBondingDeviceNumber(void);

(1) Storage sequence for bonding info

Index is a concept related to BondingDeviceNumber. If current BondingDeviceNumber is 1, there’s only one
bonding device whose index is O; if BondingDeviceNumber is 2, there’re two bonding devices with index O
and 1.

The SDK provides two methods to update device index, Index_Update_by_Connect_Order and In-
dex_Update_by_Pairing_Order, i.e. update index as per the time sequence of lastest connection or pairing
for devices.

The API below serves to select index update method.

void bls_smp_setIndexUpdateMethod(index_updateMethod_t method);

Following shows the enum type index_updateMethod_t:

typedef enum {
Index_Update_by_Pairing_Order = 0, //default value
Index_Update_by_Connect_Order = 1,

} index_updateMethod_t;

Two index update methods are introduced below:
A. Index_Update_by_Connect_Order

If BondingDeviceNumber is 2, device index stored in Slave flash includes O and 1. Index sequence is updated
by the order of the latest successful connection rather than the latest pairing. Suppose Slave is paired with

AN-20111000-E3 141 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

MasterA and MasterB in sequence, since MasterB is the latest connected device, the index for MasterA is
0, while the index for MasterB is 1. Then reconnect Slave with MasterA. Now MasterA becomes the latest
connected device, so the index for MasterB is O, and the index for MasterA is 1.

If BondingDeviceNumber is 3, device index includes O, 1 and 2. The index for the latest connected device is
2, and index for the earliest connected device is O.

If BondingDeviceNumber is 4, device index includes 0, 1, 2 and 3. The index for the latest connected device
is 3, and index for the earliest connected device is O. Suppose Slave is paired with MasterA, MasterB,
MasterC and MasterD in sequence, the index for the latest connected MasterD is 3. If Slave is reconnected
with MasterB, the index for the latest connected MasterB is 3.

Since the upper limit for bonding devices is 4, please note the case when more than four Master devices are
paired: When Slave is paired with MasterA, MasterB, MasterC and MasterD in sequence, pairing Slave with
MasterE will make Slave delete the pairing info for MasterA; however, if Slave is reconnected with MasterA
before pairing Slave with MasterE, since the sequence changes to B-C-D-A, the latest pairing operation
between Slave and MasterE will delete the pairing info for MasterB.

B. Index_Update_by_Pairing_Order

If BondingDeviceNumber is 2, device index stored in Slave flash includes O and 1. Index sequence is updated
by the order of the latest pairing. Suppose Slave is paired with MasterA and MasterB in sequence, since
MasterB is the latest paired device, the index for MasterA is O, while the index for MasterB is 1. Then
reconnect Slave with MasterA. Now the index sequence for MasterA and MasterB is not changed.

If BondingDeviceNumber is 4, device index includes O, 1, 2 and 3. The index for the latest paired device is
3, and the index for the earliest paired device is 0. Suppose Slave is paired with MasterA, MasterB, MasterC
and MasterD in sequence, the index for the latest paired MasterD is 3. No matter how Slave is reconnected
with MasterA/B/C/D, the index sequence won‘t be changed.

Note: When Slave is paired with MasterA, MasterB, MasterC and MasterD in sequence, pairing Slave with
MasterE will make Slave delete the pairing info for MasterA; if Slave is reconnected with MasterA before
pairing Slave with MasterE, since the sequence is still A-B-C-D, the latest pairing operation between Slave
and MasterE will delete the pairing info for MasterA.

(2) Format for bonding info and related APIs

Bonding info of Master device is stored in flash with the format below:

typedef struct {

us8 flag;

u8 peer_addr_type; //address used in link layer connection

us peer_addr[6];

us8 peer_key_size;

us8 peer_id_adrType; //peer identity address information in key distribution, used to
< 1identify

us peer_id_addr[6];

us own_ltk[16]; //own_ltk[16]

u8 peer_irk[16];

us peer_csrk[16];

}smp_param_save_t;

AN-20111000-E3 142 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Bonding info includes 64 bytes.

« peer_addr_type and peer_addr indicate Master connection address in the Link Layer which is used
during device direct advertising.

- peer_id_adrType/peer_id_addr and peer_irk are identity address and irk declared in the key distribution
phase.

Only when the peer_addr_type and peer_addr are Resolvable Private Address (RPA), and address filtering
is needed, should related info be added into resolving list for Slave to analyze it (refer to TEST_WHITELIST
in the B91_feature_test). Other parameters are negligible to user.

The API below serves to obtain device information from flash by using index.

u32 bls_smp_param_loadByIndex(u8 index, smp_param_save_t* smp_param_load);

If the return value is O, it indicates failure to get info; non-zero return value indicates starting flash address
to store the info. For example, suppose there're three bonded devices, user can invoke the

bls_smp_param_loadByIndex(2,)

to get related info of the latest device. The API below serves to obtain bonding device info from flash by
using Master address (connection address in the Link Layer).

u32 bls_smp_param_loadByAddr(u8 addr_type, u8* addr, smp_param_save_t* smp_param_load);

If the return value is O, it indicates failure to get info; non-zero return value indicates starting flash address
to store the info.

The API below is used for Slave device to erase all pairing info stored in local flash.

void bls_smp_eraseAllParingInformation(void);

Note: Before invoking this API, please ensure the device is in non-connection state.

The API below is used for Slave device to configure address to store pairing info in flash.

voild bls_smp_configParingSecurityInfoStorageAddr(int addr);

User can set the parameter “addr” as needed, and please refer to the section 2.1.4 SDK flash space partition
so as to determine a suitable flash area for bonding info storage.

(1) Non-standard self-defined pairing management (set the macro "BLE_HOST_SMP_ENABLE” as Q)

When using self-defined pairing management, initialization related APIs are shown as below:

blc_smp_setSecurityLevel(No_Security);//disable SMP function
user_master_host_pairing_flash_init();//custom method

AN-20111000-E3 143 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

A. Design flash storage method The default flash sector used for pairing is Ox78000 ~ Ox78FFF, and it's
modifiable in the “app_config.h”".

#define FLASH_ADR_PAIRING 0x78000

Starting from flash address 0x78000, every eight bytes form an area (named 8 bytes area). Each area can
store MAC address of one Slave, and includes 1-byte bonding mark, 1-byte address type and 6-byte MAC
address.

typedef struct {
u8 bond_mark;
u8 adr_type;
u8 address[6];
} macAddr_t;

All valid Slave MAC addresses are stored in 8 bytes areas successively: The first valid Slave MAC address is
stored in 0x78000-~0x78007, and the mark in O0x78000 is set as "Ox5A” to indicate current address is valid.
The second valid Slave MAC address is stored in the next 8 bytes area Ox78008~ 0x7800f and the mark
in 0x78008 is set as "0x5A".The third valid Slave MAC address is stored in the next 8 bytes area 0x78010~
0x78017 and the mark in Ox78010 is set as "Ox5A”".

To un-pair certain Slave device, it's needed to erase its MAC address in the Dongle side by setting the mark
of the corresponding 8 bytes area as "0Ox00". For example, to erase the MAC addres of the first Slave device
as shown above, user should set 0x78000 as “0x00".

The reason to adopt this design is: During execution of program, the SDK cannot invoke the function
“flash_erase_sector” to erash flash, since this operation takes 20~200ms to erase a 4kB sector of flash
and thus will result in BLE timing error.

Mark of "Ox5A” and "0x00” are used to indicate pairing storage and un-pairing erasing of all Slave MAC
addresses.

Considering 8 bytes areas may occupy the whole 4kB sector of flash and thus result in error, a special
processing is added during initialization: Read info of 8 bytes areas starting from address 0x78000, and
store all valid MAC addresses into Slave MAC table of RAM. During this process, it will check whether there’re
too many 8 bytes areas. If yes, erase the whole sector and then write the contents of Slave MAC table in
RAM back to 8 bytes areas starting from 0x78000.

B. Slave mac table

#define USER_PAIR_SLAVE_MAX_NUM 4 /J/telink demo use max 4, you can change this value
typedef struct {
u8 bond_mark;
u8 adr_type;
u8 address[6];
} macAddr_t;
typedef struct {
u32 bond_flash_idx[USER_PAIR_SLAVE_MAX_NUM]; //mark paired slave mac address in flash
macAddr_t bond_device[USER_PAIR_SLAVE_MAX_NUM]; //macAddr_t alreay defined in ble stack

AN-20111000-E3 144 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

u8 curNum;
} user_salveMac_t;
user_salveMac_t user_tbl_slaveMac;

The structure above serves to use Slave MAC table in RAM to maintain all paired devices.

The macro "USER_PAIR_SLAVE_MAX_NUM" serves to set the max allowed number of maintainable paired
devices, and the default value is 4 which indicates four paired device is maintainable. User can modify this
value as needed.

Suppose the "USER_PAIR_SLAVE_MAX_NUM" is set as 3 to indicate up to three paired devices can be main-
tained. In the “user_tbl_slaveMac”, the “curNum” indicates the number of current valid Slave devices in
flash, the array “"bond_flash_idx” records offset relative to 0x78000 for starting address of each valid 8
bytes area in flash (When un-pairing certain device, based on corresponding offset, user can locate the
mark of the 8 bytes area, and then write the mark as 0x00), while the array “bond_device” records MAC
address.

C. Related APIs

Based on the design of flash storage and Slave MAC table above, user can invoke the APIs below.

a) user_master_host_pairing_flash_init

void user_master_host_pairing_flash_init(void);

This API should be invoked to implement flash initialization when enabling user-defined pairing manage-
ment.

b) user_tbl_slave_mac_add

int user_tbl_slave_mac_add(u8 adr_type, u8 *adr);

The API above should be invoked when a new device is paired, and it serves to add one Slave MAC address.
The return value should be either 1 (success) or O (failure).

The API will check whether current number of devices in flash and Slave MAC table has reached the max-
imum. If not, directly add the MAC address of the new device into Slave MAC table, and store it in an
8 bytes area of flash. If yes, the viable processing policy may be: “pairing is not allowed”, or “directly
delete the earliest MAC address”. Telink demos adopts the latter. Since Telink supported max number
of paired device is 1, this method will preempt current paired device, i.e. delete current device by using
the “user_tbl_slave_mac_delete_by_index(0)” and then add MAC address of new device into Slave MAC
table.User can modify the implementation of this API as per his own policy.

c) user_tbl_slave_mac_search

int user_tbl_slave_mac_search(u8 adr_type, u8 * adr)

This API serves to check whether the device is already available in Slave MAC table according to device
address reported by adv, i.e. whether the device sending adv packet currently has already been paired with
Master. The device that has already been paired can be directly reconnected.

AN-20111000-E3 145 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

d) user_tbl_slave_mac_delete_by_adr

int user_tbl_slave_mac_delete_by_adr(u8 adr_type, u8 *adr)

This API serves to delete MAC addr of certain paired device from Slave MAC table by specified address.

e) user_tbl_slave_mac_delete_by_index

vold user_tbl_slave_mac_delete_by_index(int index)

This API serves to delete MAC addr of certain paired device from Slave MAC table by specified index. The
parameter “index” indicates device pairing sequence. If the max pairing number is 1, the index for the paired
device is always O; if the max pairing number is 2, the index for the first paired device is O, and the index
for the second paired device is 1......

f) user_tbl_slave_mac_delete_all

vold user_tbl_slave_mac_delete_all(void)

This API serves to delete MAC addr of all the paired devices from Slave MAC table.

g) user_tbl_salve_mac_unpair_proc

vold user_tbl_salve_mac_unpair_proc(void)

This APl serves to process un-pairing. The demo code adopts the processing method using the default max
pairing number (1) to delete all paired devices. User can modify the implementation of the API.

D. Connection and pairing

When Master receives adv packet reported by Controller, it will establish connection with Slave in the two
cases below: Invoke the function “user_tbl_slave_mac_search” to check whether current Slave device has
already been paired with Master and un-pairing has not been executed. If yes, Master can automatically
establish connection with the device.

master_auto_connect = user_tbl_slave_mac_search(pa->adr_type, pa->mac);
if(master_auto_connect) { create connection }

If current adv device is not available in Slave MAC table, auto connection won't be initiated, and it's needed to
check whether manual pairing condition is met. The SDK provides two manual pairing solutions by default.

Premise: Current adv device is close enough.
Solution 1: The pairing button on Master Dongle is pressed.

Solution 2: Current adv data is pairing adv packet data defined by Telink.

AN-20111000-E3 146 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

//manual paring methods 1: button triggers

user_manual_paring = dongle_pairing_enable && (rssi > -56); //button trigger pairing(rssi
< threshold, short distance)

//manual paring methods 2: special paring adv data

if(!user_manual_paring){ //special adv pair data can also trigger pairing
user_manual_paring =

< (memcmp(pa->data,telink_adv_trigger_paring,sizeof(telink_adv_trigger_paring)) == 0)

8&& (rssi > -56);

}

if(user_manual_paring) { create connection }

After connection triggered by manual pairing is established successfully, the current device is added into
Slave MAC table when reporting "HCI LE CONECTION ESTABLISHED EVENT".

//manual paring, device match, add this device to slave mac table
if(blm_manPair.manual_pair && blm_manPair.mac_type == pCon->peer_adr_type &&
!'memcmp(blm_manPair.mac,pCon->mac, 6))

{
blm_manPair.manual_pair = 0;
user_tb1l_slave_mac_add(pCon->peer_adr_type, pCon->mac);
}
E. Un-pairing

_attribute_ram_code_void host_pair_unpair_proc (void)
{
//terminate and unpair proc
static int master_disconnect_flag;
if(dongle_unpair_enable){
if(!master_disconnect_flag && blc_11_getCurrentState() == BLS_LINK_STATE_CONN){
if(blm_11_disconnect(cur_conn_device.conn_handle, HCI_ERR_REMOTE_USER_TERM_CONN) ==
BLE_SUCCESS){
master_disconnect_flag = 1;
dongle_unpair_enable = 0;

#1f (BLE_HOST_SMP_ENABLE)
tb1l_bond_slave_unpair_proc(cur_conn_device.mac_adrType,
< cur_conn_device.mac_addr);
#else
user_tbl_salve_mac_unpair_proc();
#endif

}
if(master_disconnect_flag && blc_11_getCurrentState() != BLS_LINK_STATE_CONN){

AN-20111000-E3 147 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

master_disconnect_flag = 0;

As shown in the code above, when un-pairing condition is triggered, Master first invokes the “blm_II_disconnect”
to terminate connection, and then invokes the “user_tbl_salve_mac_unpair_proc” to process un-
pairing. The demo code will directly delete all paired devices. In the default case, the max pairing
number is 1, so only one device will be deleted. |If user sets the max number larger than 1, the
“user_tbl_slave_mac_delete_by_adr” or “user_tbl_slave_mac_delete_by_index” should be invoked to
delete specified device.

The demo code provides two conditions to trigger un-pairing:

* The un-pairing button on Master Dongle is pressed.

» The un-pairing key value “"OxFF” is received in “HID keyboard report service”.

User can modify un-pairing trigger method as needed.

3.3.5 GAP

3.3.5.1 GAP Initialization

GAP initialization for Master and Slave is different. Slave uses the API below to initialize GAP.

vold blc_gap_peripheral_init(void);

As introduced earlier, data transfer between the APP layer and the Host is not controlled via GAP; the
ATT, SMP and L2CAP can directly communicate with the APP layer via corresponding interface. In current
SDK version, the GAP layer mainly serves to process events in the Host layer, and GAP initialization mainly
registers processing function entry for events in the Host layer.

3.3.5.2 GAP Event

GAP event is generated during the communication process of Host protocol layers such as ATT, GATT, SMP
and GAP. As introduced earlier, current SDK supports two types of event: Controller event, and GAP (Host)
event. Controller event also includes two sub types: HCl event, and Telink defined event.

GAP event processing is added in current BLE SDK, which enables the protocol stack to layer events more
clearly and to process event communication in the user layer more conveniently. SMP related processing,
such as Passkey input and notification of pairing result to user, is also included.

If user wants to receive GAP event in the APP layer, it's needed to register the corresponding callback
function, and then enable the corresponding mask.

Following shows the prototype and register interface for callback function of GAP event.

AN-20111000-E3 148 Ver1.2.0

vl Telink
; Telink B91 BLE Single Connection SDK Developer Handbook

typedef int (*gap_event_handler_t) (u32 h, u8 *para, int n);
voild blc_gap_registerHostEventHandler (gap_event_handler_t handler);

The “u32 h” in the callback function prototype is the mark of GAP event which will be frequently used in the
bottom layer protocol stack. Following lists some events which user may use.

#define GAP_EVT_SMP_PAIRING BEAGIN 0
#define GAP_EVT_SMP_PAIRING_SUCCESS 1
#define GAP_EVT_SMP_PAIRING FAIL 2
#define GAP_EVT_SMP_CONN_ENCRYPTION_DONE 3
#define GAP_EVT_SMP_SECURITY_ PROCESS_DONE 4
#define GAP_EVT_SMP_TK_DISPALY 8
#define GAP_EVT_SMP_TK_REQUEST_PASSKEY 9

#define GAP_EVT_SMP_TK_REQUEST_00B 10
#define GAP_EVT_SMP_TK_NUMERIC_COMPARE 11
#define GAP_EVT_ATT_EXCHANGE_MTU 16
#define GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM 17

In the callback function prototype, “para” and "n” indicate data and data length of event. User can refer to
the usage below in the “B91 feature/feature_smp_security/app.c” and the implementation of the function
“app_host_event_callback”.

blc_gap_registerHostEventHandler(app_host_event_callback);

The API below serves to enable the mask for GAP event.

void blc_gap_setEventMask(u32 evtMask);

Following lists the definition for some common eventMasks. For other event masks, user can refer to the
“ble/gap/gap_event.h".

#define GAP_EVT_MASK_SMP_PAIRING_BEAGIN (1<<GAP_EVT_SMP_PAIRING_BEAGIN)
#define GAP_EVT_MASK_SMP_PAIRING_SUCCESS (1<<GAP_EVT_SMP_PAIRING_SUCCESS)
#define GAP_EVT_MASK_SMP_PAIRING_FAIL (1<<GAP_EVT_SMP_PAIRING_FAIL)

#define GAP_EVT_MASK_SMP_CONN_ENCRYPTION_DONE (1<<GAP_EVT_SMP_CONN_ENCRYPTION_DONE)
#define GAP_EVT_MASK_SMP_SECURITY_PROCESS_DONE (1<<GAP_EVT_SMP_SECURITY_PROCESS_DONE)
#define GAP_EVT_MASK_SMP_TK_DISPALY (1<<GAP_EVT_SMP_TK_DISPALY)

#define GAP_EVT MASK_SMP_TK_REQUEST_PASSKEY (1<<GAP_EVT_SMP_TK_REQUEST_PASSKEY)
#define GAP_EVT_MASK_SMP_TK_REQUEST_00B (1<<GAP_EVT_SMP_TK_REQUEST_00B)
#define GAP_EVT_MASK_SMP_TK_NUMERIC_COMPARE (1<<GAP_EVT_SMP_TK_NUMERIC_COMPARE)
#define GAP_EVT_MASK_ATT_EXCHANGE_MTU (1<<GAP_EVT_ATT_EXCHANGE_MTU)

#define GAP_EVT_MASK_GATT_HANDLE_VLAUE_CONFIRM (1<<GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM)

If user does not set GAP event mask via this API, the APP layer won’t receive notification when corresponding
GAP event is generated.

Note:

AN-20111000-E3 149 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

For the description about GAP event below, it's supposed that GAP event callback has been registered,
and corresponding eventMask has been enabled.

(1) GAP_EVT_SMP_PAIRING_BEAGIN

Event trigger condition: When entering connection state, Slave sends a SM_Security_Req command, and
Master sends a SM_Pairing_Req to request for pairing. When Slave receives the pairing request, this event
will be triggered to indicate that pairing starts.

Data Type Data Header L2CAP Header SM_Security_Req
LLID NESHN SH MD PDU-Length |L2CAP-Length Chanlid jOpccde AuthReq
LICAP=-S || 2 1 0 0 & 0x0002 0x0006 JOx0B 01
Data Type Data Header LZCAP Header SM_Pairing_Req
LLID NWESN SN MD PDU-Length ||[L2CAP-Length Chanld ((Opcode IOCap OOBDataFlag AuthReq HaxEncHeySize InicKeyDist RespHeyDist
L2CAF-S || 2 1 1 @ 11 0x0007 0x0006 ||0x01 O0x03 Ox00 Ox01 0x10 0x02 0x03

Figure 3.59: Master Initiates PairingReq

Data length *n": 4.

Pointer “p”: p points to data of 8 memory area, corresponding to the structure below.

typedef struct {
ul6 connHandle;
u8 secure_conn;
u8 tk_method;
} gap_smp_paringBeginEvt_t;

“connHandle”: current connection handle.

“secure_conn”: If it's 1, secure encryption feature (LE Secure Connections) will be used; otherwise LE legacy
pairing will be used.

“tk_method”: It indicates the method of TK value to be used in the subsequent pairing, e.g. JustWorks,
PK_Init_Dsply_Resp_Input, PK_Resp_Dsply_Init_Input, Numric_Comparison.

(2) GAP_EVT_SMP_PAIRING_SUCCESS

Event trigger condition: This event will be generated when the whole pairing process is completed correctly.
This phase is called “*Key Distribution, Phase 3” of LE pairing phase. If there’s key to be distributed, the pairing
success event will be triggered after the two sides have completed key distribution; otherwise the pairing
success event will be triggered directly.

Data length “n”: 4.

w

Pointer "p”: p points to data of @ memory area, corresponding to the structure below.

typedef struct {
ul6 connHandle;
u8 bonding;
u8 bonding_result;
} gap_smp_paringSuccessEvt_t;

AN-20111000-E3 150 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

“connHandle”: current connection handle.
“bonding”: If it's 1, bonding function is enabled; otherwise bonding function is disabled.

“bonding_result”: It indicates bonding result. If bonding function is disabled, the result value should be 0.
If bonding function is enabled, it's also needed to check whether encryption Key is correctly stored in flash;
if yes, the result value is 1; otherwise the result value is O.

(3) GAP_EVT_SMP_PAIRING_FAIL

Event trigger condition: If Slave or Master does not conform to standard pairing flow, or pairing process is
terminated due to abnormity such as error report during communication, this event will be triggered.

Data length "n”: 2.

Pointer “p”: p points to data of 8 memory area, corresponding to the structure below.

typedef struct {
ul6 connHandle;
u8 reason;
} gap_smp_paringFailEvt_t;

“connHandle”: current connection handle.

“reason”: It indicates the reason for pairing failure. Following lists some common reason values, and for
other values, please refer to the file “stack/ble/smp/smp_const.h”.

For the definition of pairing failure values, please refer to "Core_v5.0" (Vol 3/Part H/3.5.5 “Pairing Failed”).

#define PAIRING_FAIL_REASON_CONFIRM_FAILED 0x04
#define PAIRING_FAIL_REASON_PAIRING_NOT_SUPPORTED 0x05
#define PAIRING_FAIL_REASON_DHKEY CHECK_FAIL 0x08
#define PAIRING FAIL_REASON_NUMUERIC_FAILED 0x0C
#define PAIRING FAIL_REASON_PAIRING_ TIEMOUT 0x80
#define PAIRING_FAIL_REASON_CONN_DISCONNECT 0x81

(4) GAP_EVT_SMP_CONN_ENCRYPTION_DONE

Event trigger condition: When Link Layer encryption is completed (the LL receives “start encryption re-
sponse” from Master), this event will be triggered.

Data length *n”: 3.

Pointer "p”: p points to data of 8 memory area, corresponding to the structure below.

typedef struct {

ul6 connHandle;

u8 re_connect; //1: re_connect, encrypt with previous distributed LTK; 0: pairing ,
< encrypt with STK
} gap_smp_connEncDoneEvt_t;

“connHandle”: current connection handle.

AN-20111000-E3 151 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

“re_connect”: If it's 1, it indicates fast reconnection (The LTK distributed previously will be used to encrypt
the link); if it’s O, it indicates current encryption is the first encryption.

(5) GAP_EVT_MASK_SMP_SECURITY_PROCESS_DONE

Event trigger condition: when pairing for the first time, it is triggered after the GAP_EVT_SMP_PAIRING_SUCCESS
event, and in the fast reconnection, triggered after GAP_EVT_SMP_CONN_ENCRYPTION_DONE event.

Data length "n”: 3.

Pointer “p”: p points to data of @ memory area, corresponding to the structure below.

typedef struct {

ul6 connHandle;

u8 re_connect; //1: re_connect, encrypt with previous distributed LTK; @: paring ,
< encrypt with STK
} gap_smp_securityProcessDoneEvt_t;

“re_connect”: If it's 1, it indicates fast reconnection (The LTK distributed previously will be used to encrypt
the link); if it’s O, it indicates current encryption is the first encryption.

(6) GAP_EVT_SMP_TK_DISPALY

Event trigger condition: After Slave receives a Pairing_Req from Master, as per the pairing parameter con-
figuration of the peer device and the local device, the method of TK (pincode) value to be used for pairing
will be known. If the method "PK_Resp_Dsply_Init_Input” is enabled, which means Slave displays 6-digit
pincode and Master inputs 6-digit pincode, this event will be triggered.

Data length “n": 4.

Pointer “p”: p points to an u32-type variable “tk_set”. The value is 6-digit pincode that Slave needs to
inform the APP layer, and the APP layer needs to display the pincode.

If the user does not use the 6-digit pincode code randomly generated by the bottom layer when debugging,
he can manually set a user-specified pincode code, such as “123456", using the following API.

Users need to add the following statement to /stack/ble/host/smp/smp.h:

extern void blc_smp_setDefaultPinCode(u32 pinCodeInput);

User should get the 6-digit pincode from Slave and input the pincode on Master side (e.g. Mobile phone), to
finish TK input and continue pairing process. If user has input wrong pincode, or has clicked “cancel”, the
pairing process fails.

The demo “vendor/B91_feature/feature_smp_security/app.c” provides an example for Passkey Entry appli-
cation.

case GAP_EVT_SMP_TK_DISPALY:

{
char pc[7];
u32 pinCode = 123456;
memset(smp_param_own.paring_tk, 0, 16);

AN-20111000-E3 152 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

memcpy(smp_param_own.paring_tk, &pinCode, 4);

}

break;

(7) GAP_EVT_SMP_TK_REQUEST_PASSKEY

Event trigger condition: When the slave device enables the Passkey Entry mode and the PK_Init_Dsply_Resp_Input
or PK_BOTH_INPUT pairing mode is used, this event will be triggered to notify the user that the TK value
needs to be input. After receiving the event, the user needs to input the TK value through the IO input port

(if the timeout is 30s, the pairing fails). The API for inputting the TK value: blc_smp_setTK_by_PasskeyEntry

is explained in the "SMP parameter configuration” chapter.

Data length “n”: 0.

Pointer “p”: NULL.
(8) GAP_EVT_SMP_TK_REQUEST_OOB

Event trigger condition: When Slave device enables the OOB method of legacy pairing, this event will be
triggered to inform user that 16-digit TK value should be input by the OOB method. After this event is
received, user needs to input 16-digit TK value within 30s via |0 input capability, otherwise pairing will fail
due to timeout. For the API “blc_smp_setTK_by_OOB” to input TK value, please refer to section 3.3.4.2 SMP
parameter configuration.

Data length *n”: 0.

Pointer “p”: NULL.
(9) GAP_EVT_SMP_TK_NUMERIC_COMPARE

Event trigger condition: After Slave receives a Pairing_Req from Master, as per the pairing parameter con-
figuration of the peer device and the local device, the method of TK (pincode) value to be used for pairing
will be known. If the method “Numeric_Comparison” is enabled, this event will be triggered immediately.

For *Numeric_Comparison”, a method of SMP4.2 secure encryption, dialog window will pop up on both
Master and Slave to show 6-digit pincode, “YES” and “NO”; user needs to check whether pincodes on the
two sides are consistent, and decide whether to click “YES” to confirm TK check result is OK.

Data length “n": 4.

w

Pointer “p”: p points to an u32-type variable “pinCode”. The value is 6-digit pincode that Slave needs to
inform the APP layer. The APP layer needs to display the pincode, and supplies “YES or "NO” confirmation
mechanism.

The demo “vendor/B91_feature/feature_smp_security/app.c” provides an example for Numeric_Comparison
application.

(10) GAP_EVT_ATT_EXCHANGE_MTU
Event trigger condition: This event will be triggered in either of the two cases below.

« Master sends "Exchange MTU Request”, and Slave responds with "Exchange MTU Response”.

« Slave sends “Exchange MTU Request”, and Master responds with “Exchange MTU Response”.

AN-20111000-E3 153 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data length *n”: 6.

Pointer "p”: p points to data of a8 memory area, corresponding to the structure below.

typedef struct {
ul6 connHandle;
ulé peer_MTU;
ulé6 effective MTU;
} gap_gatt_mtuSizeExchangeEvt_t;

connHandle: current connection handle.
peer_MTU: RX MTU value of the peer device.

effective_MTU = min(CleintRxMTU, ServerRxMTU). “CleintRxMTU” and “ServerRxMTU"” indicate RX MTU size
value of Client and Server respectively. After Master and Slave exchanges MTU size of each other, the
minimum of the two values is used as the maximum MTU size value for mutual communication between
them.

11) GAP_EVT_GATT_HANDLE_VLAUE_CONFIRM

Event trigger condition: Whenever the APP layer invokes the “blc_gatt_pushHandleValuelndicate” to send
indicate data to Master, Master will respond with a confirmation for the data. This event will be triggered
when Slave receives the confirmation.

Data length *n”: 0.

Pointer “p”: Null pointer.

AN-20111000-E3 154 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

4 Low Power Management (PM)

Low Power Management is also called Power Management, or PM as referred by this document.

4.1 Low Power Driver

4.1.1 Low Power Mode
For the B91 family, when MCU works in normal mode, or working mode, current is about 3~7mA. To save
power consumption, MCU should enter low power mode.

There are three low power modes, or sleep modes: Suspend mode, Deepsleep mode, and Deepsleep reten-
tion mode. Please be noted that AO chip does not support suspend mode.

Module suspend deepsleep retention deepsleep
Sram 100% keep first 32K(or 64K) keep, others lost 100% lost
digital register 99% keep 100% lost 100% lost
analog register 100% keep 99% lost 99% lost

The table above illustrates statistically data retention and loss for SRAM, digital registers and analog registers
during each sleep mode.

(1) Suspend mode (sleep mode 1)

In this mode, program execution pauses, most hardware modules of MCU are powered off, and the PM
module still works normally. In this mode, IC current is about 40-50uUA. Program execution continues after
wakeup from suspend mode.

In suspend mode, data of the SRAM and all analog registers are maintained. In order to reduce power
consumption, the SDK has set the power-down mode for some modules when entering the suspend low-
power processing, at which time the digital register of the module will also be powered down, and must be
re-initialized and configured after waking up.

User should pay close attention to the registers configured by the API “rf_set_power_level_index”. This API
needs to be invoked after each wakeup from suspend mode.

(2) Deepsleep mode (sleep mode 2)

In this mode, program execution pauses, vast majority of hardware modules are powered off, and the PM
module still works. In this mode, IC current is less than 1uA, but if flash standby current comes up at 1uA or
so, total current may reach 1~2uA. After wakeup from deepsleep mode, similar to power on reset, MCU will
restart, and program will reboot and re-initialize.

In deepsleep mode, except a few retention analog registers, data of all registers (analog & digital) and SRAM
are lost.

(3) Deepsleep retention mode (sleep mode 3)

AN-20111000-E3 155 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In deepsleep mode, current is very low, but all SRAM data are lost; while in suspend mode, though SRAM
and most registers are non-volatile, current is increased.

Deepsleep with SRAM retention (deepsleep retention or deep retention) mode is designed in the B91 family,
so as to achieve application scenes with low sleep current and quick wakeup to restore state, e.g. maintain
BLE connection during long sleep. Corresponding to 32K or 64K SRAM retention area, deepsleep retention
32K Sram and deepsleep retention 64K Sram are introduced.

Deepsleep retention mode is also a kind of deepsleep. Most of the hardware modules of the MCU are
powered off, and the PM hardware modules remain working. Power consumption is the power consumed
by retention Sram plus that of deepsleep mode, and the current is between 2~3uA. When deepsleep mode
wake up, the MCU will restart and the program will restart to initialize.

Deepsleep retention mode and deepsleep mode are consistent in register state, almost all of them are
powered off. Compare with in deepsleep mode, in deepsleep retention mode, the first 32K (or the first 64K)
of Sram can be kept without power-off, and the remaining Sram is powered off.

In deepsleep mode and deepsleep retention mode, there are very few analog registers that can be kept
without power-down. These non-power-down analog registers include:

a) Analog registers to control GPIO pull-up/down resistance

When configured via the API “gpio_setup_up_down_resistor” or the following method in the app_config.h,
GPIO pull-up/down resistance are non-volatile:

#define PULL_WAKEUP_SRC_PD5 PM_PIN_PULLDOWN_100K

Using GPIO output belongs to the state controlled by the digital register. B91 can use GPIO output to control
some peripherals during suspend, but after being switched to deepsleep retention mode, the GPIO output
status becomes invalid and it cannot accurately control peripherals during sleep. At this point, you can
use GPIO to simulate the state of the pull-up and pull-down resistors instead: pull-up 10K instead of GPIO
output high, and pull-down 100K instead of GPIO output low.

b) Special retention analog registers of the PM module:

The code below shows the "DEEP_ANA_REG” in the “drivers/B91/pm.h".

#define PM_ANA_REG_POWER_ON_CLR_BUF1 0x3a // initial value 0x00
#define PM_ANA_REG_POWER_ON_CLR_BUF2 6x3b // initial value 0x60
#define PM_ANA_REG_POWER_ON_CLR_BUF3 0x3c // initial value 0x00
#define PM_ANA_REG_POWER_ON_CLR_BUF4 0x3d // initial value 0x00
#define PM_ANA_REG_POWER_ON_CLR_BUF5 0x3e // initial value 0x00

The above registers will restore their initial values only when the power is off. Please note, that customers
are not allowed to use ana_39. This analog register is reserved for the underlying stack. If the application
layer code uses this register, it needs to be modified to ana_3a~ana_3f. Because the number of non-power-
off analog registers is relatively small, it is recommended that customers use each of its bits to indicate
different status bits.

AN-20111000-E3 156 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define PM_ANA_REG_POWER_ON_CLR_BUFO 0x39 // initial value 0x00. [BitO][Bit1l] is already
< occupied. The customer cannot change!

The above 0x38 register will be initialized in the following three cases: hardware/software reset, power
down and watchdog. Please note that bitO has been used by the stack, and users need to avoid this bit
when using it.

Users can use the return value of APl pm_get_mcu_status(void) after sys_init(power_mode_e power_mode)
to determine which state the cpu is returning from. The return value is as follows:

typedef enum{

MCU_STATUS_POWER_ON = BIT(0),
MCU_STATUS_REBOOT_BACK = BIT(2), //the user will not see the reboot status.
MCU_STATUS_DEEPRET_BACK = BIT(3),
MCU_STATUS_DEEP_BACK = BIT(4),

MCU_STATUS_REBOOT_DEEP_BACK
}pm_mcu_status;

BIT(5), //reboot + deep

4.1.2 Low Power Wake-up Source

The low-power wake-up source diagram of B91 MCU is shown below, suspend/deepsleep/deepsleep
retention can all be awakened by GPIO PAD and timer. In the BLE SDK, only two types of wake-up
sources are concerned, as shown below (note that the two definitions of PM_TIM_RECOVER_START and
PM_TIM_RECOVER_END in the code are not wake-up sources):

typedef enum {
PM_WAKEUP_PAD BIT(3),
PM_WAKEUP_TIMER = BIT(5),
}SleepWakeupSrc_TypeDef;

AN-20111000-E3 157 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Suspend
Mode

wakeup

-——————————————————

Deepsleep
Retention
Mode

wakeup

PAO
PA1 | wakeup
GPIO -
. wakeup
PAD
wakeup
PD6
PD7

Deepsleep
Mode

wakeup

32k
timer

Figure 4.1: BS1 MCU HW Wakeup Source

As shown above, there are two hardware wakeup sources: TIMER and GPIO PAD.

« The "PM_WAKEUP_TIMER” comes from 32k HW timer (32k RC timer or 32k Crystal timer). The 32k
timer has been correctly initialized in the SDK, and the user only needs to set the wakeup source

in cpu_sleep_wakeup() when using it.

The cpu_sleep_wakeup is a function pointer.

When using

the internal 32k RC, the user calls blc_pm_select_internal_32k_crystal in the main function to make
cpu_sleep_wakeup point to cpu_sleep_wakeup_32k_rc; when using the external 32k crystal, the user
calls blc_pm_select_external_32k_crystal in the main function to make cpu_sleep_wakeup point to

cpu_sleep_wakeup_32k_xtal.

» The "PM_WAKEUP_PAD" comes from GPIO module. Except 4 MSPI pins, all GPIOs (PAx/PBx/PCx/PDx)

support high or low level wakeup .

The API below serves to configure GPIO PAD as wakeup source for sleep mode.

typedef enum{
Level_Low=0,
Level_High =1,

}pm_gpio_wakeup_Level _e;

voild pm_set_gpio_wakeup (gpio_pin_e pin, pm_gpio_wakeup_Level e pol, int en);

#define cpu_set_gpio_wakeup

pm_set_gpio_wakeup

AN-20111000-E3

158

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

* "pin”: GPIO pin
+ “pol”: wakeup polarity, Level_High: high level wakeup, Level_Low: low level wakeup
* “en”: 1-enable, O-disable.

Examples:

cpu_set_gpio_wakeup (GPIO_PC2, Level_High, 1); //Enable GPIO_PC2 PAD high level wakeup
cpu_set_gpio_wakeup (GPIO_PC2, Level_High, 0); //Disable GPIO_PC2 PAD wakeup
cpu_set_gpio_wakeup (GPIO_PB5, Level_Low, 1); //Enable GPIO_PB5 PAD low level wakeup
cpu_set_gpio_wakeup (GPIO_PB5, Level_Low, 0); //Disable GPIO_PB5 PAD wakeup

4.1.3 Sleep and Wake-up from Low Power Mode

The API below serves to configure MCU sleep and wakeup.

typedef int (*cpu_pm_handler_t)(SleepMode_TypeDef sleep_mode, SleepWakeupSrc_TypeDef
< wakeup_src, unsigned int wakeup_tick);
cpu_pm_handler_t cpu_sleep_wakeup;

+ “sleep_mode”: This para serves to set sleep mode as suspend mode, deepsleep mode, deepsleep
retention 32K Sram or deepsleep retention 64K Sram.

typedef enum {
//available mode for customer
SUSPEND_MODE
DEEPSLEEP_MODE
DEEPSLEEP_MODE_RET_SRAM_LOW32K
DEEPSLEEP_MODE_RET_SRAM_LOW64K
DEEPSLEEP_MODE_RET_SRAM = 0x21,
//not available mode
DEEPSLEEP_RETENTION_FLAG
}SleepMode_TypeDef;

0x00,
0x30,
0x21, //for boot from sram
0x03, //for boot from sram

OxO0F,

« wakeup_src: This para serves to set wakeup source for suspend/deep retention/deepsleep as one or
combination of PM_WAKEUP_PAD and PM_WAKEUP_TIMER. If set as O, MCU wakeup is disabled for
sleep mode.

+ “wakeup_tick”: if PM_WAKEUP_TIMER is assigned as wakeup source, the “wakeup_tick” serves to set
MCU wakeup time. If PM_WAKEUP_TIMER is not assigned, this para is negligible.

The “wakeup_tick” is an absolute value, which equals current value of System Timer tick plus intended sleep
duration. When System Timer tick reaches the time defined by the wakeup_tick, MCU wakes up from sleep
mode. Without taking current System Timer tick value as reference point, wakeup time is uncontrollable.

Since the wakeup_tick is an absolute time, it follows the max range limit of 32bit System Timer tick. In
current SDK, 32bit max sleep time corresponds to 7/8 of max System Timer tick. Since max System Timer
tick is 268s or so, max sleep time is 268*7/8=234s, which means the “delta_Tick” below should not exceed
234s. If a longer sleep time is needed, user can call the long sleep function, as described in section 4.2.7.

AN-20111000-E3 159 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

cpu_sleep_wakeup(SUSPEND_MODE, PM_WAKEUP_TIMER, clock_time() + delta_tick);

The return value is an ensemble of current wakeup sources. Following shows wakeup source for each bit of
the return value.

typedef enum {

WAKEUP_STATUS_COMPARATOR = BIT(0),
WAKEUP_STATUS_TIMER = BIT(1),
WAKEUP_STATUS_CORE = BIT(2),
WAKEUP_STATUS_PAD = BIT(3),
WAKEUP_STATUS_MDEC = BIT(4),
STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),
STATUS_ENTER_SUSPEND = BIT(30),

}pm_wakeup_status_e;;

a) If WAKEUP_STATUS_TIMER bit = 1, wakeup source is Timer.
b) If WAKEUP_STATUS_PAD bit = 1, wakeup source is GPIO PAD.

c) If both WAKEUP_STATUS_TIMER and WAKEUP_STATUS_PAD equal 1, wakeup source is Timer and GPIO
PAD.

d) STATUS_GPIO_ERR_NO_ENTER_PM is a special state indicating GPIO wakeup error. E.g. Sup-
pose a GPIO is set as high level PAD wakeup (PM_WAKEUP_PAD). When MCU attempts to
invoke the “cpu_sleep_wakeup” to enter suspend, if this GPIO is already at high level, MCU
will fail to enter suspend and immediately exit the “cpu_sleep_wakeup” with return value STA-
TUS_GPIO_ERR_NO_ENTER_PM.

Sleep time is typically set in the following way:

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_TIMER, clock_time() + delta_Tick);

The “delta_Tick”, a relative time (e.g. 100" CLOCK_16M_SYS_TIMER_CLK_1MS), plus “clock_time()” becomes
an absolute time.

Some examples on cpu_sleep_wakeup:

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_PAD, 0);

When it’s invoked, MCU enters suspend, and wakeup source is GPIO PAD.

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_TIMER, clock_time() + 10*
& CLOCK_16M_SYS_TIMER_CLK_1MS;

When it’s invoked, MCU enters suspend, wakeup source is timer, and wakeup time is current time plus 10ms,
so the suspend duration is 10ms.

AN-20111000-E3 160 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

cpu_sleep_wakeup (SUSPEND_MODE , PM_WAKEUP_PAD | PM_WAKEUP_TIMER,
clock_time() + 50* CLOCK_16M_SYS_TIMER_CLK_1MS);

When it's invoked, MCU enters suspend, wakeup source includes timer and GPIO PAD, and timer wakeup
time is current time plus 50ms.

If GPIO wakeup is triggered before 50ms expires, MCU will be woke up by GPIO PAD in advance; otherwise,
MCU will be woke up by timer.

cpu_sleep_wakeup (DEEPSLEEP_MODE, PM_WAKEUP_PAD, 0);

When it’s invoked, MCU enters deepsleep, and wakeup source is GPIO PAD.

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K , PM_WAKEUP_TIMER, clock_time() + 8%
< CLOCK_16M_SYS_TIMER_CLK_1S);

When it's invoked, MCU enters deepsleep retention 32K Sram mode, wakeup source is timer, and wakeup
time is current time plus 8s.

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K , PM_WAKEUP_PAD | PM_WAKEUP_TIMER,clock_time()
&+ 10* CLOCK_16M_SYS_TIMER_CLK_1S);

When it's invoked, MCU enters deepsleep retention 32K Sram mode, wakeup source includes GPIO PAD and
Timer, and timer wakeup time is current time plus 10s. If GPIO wakeup is triggered before 10s expires, MCU
will be woke up by GPIO PAD in advance; otherwise, MCU will be woke up by timer.

4.1.4 Low Power Wake-up Procedure
When user calls the API cpu_sleep_wakeup, the MCU enters the sleep mode; when the wake-up source
triggers the MCU to wake up, the MCU software operation flow is inconsistent for different sleep modes.

The following is a detailed description of the MCU operating process after the suspend, deepsleep, and
deepsleep retention three sleep modes are awakened. Please refer to the figure below.

AN-20111000-E3 161 Ver1.2.0

Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Power on

<t

Y

Running

Hardware bootloder

<

A

Running
software bootloder

A

System initialization

A

User initialization

A J

mainloop

while(1)

Operation set A

Y

cpu_sleep_wakeup(...)

suspend

Y

deep

sleep

deepsleep
retention

wakeup

wakeup

wakeup

Operation set B

Figure 4.2: Sleep Mode Wakeup Work Flow

Ver1.2.0

AN-20111000-E3

162

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Detailed process after the MCU is powered on (Power on) is introduced as following:
(1) Running hardware bootloader

It is pure MCU hardware operation without involvement of software.

Couple of examples:

Chip back from power on/deep sleep: By reading the flash boot mark “TLNK"”, determine the current
firmware storage address (offset address 0x00000/0x20000/0x40000/0x80000), then jump to the corre-
sponding address of the flash (base address 0x20000000+offset address 0Ox00000/0x20000/0x40000/0x80000)
and start executing the software bootloader. (The reason why this can be done is that the B91 series chips
support direct execution from Flash.)

(2) Running software bootloader

After hardware bootloader, MCU starts "Running software bootloader”. Software bootloader is vector side
corresponding to assembly in the “cstartup_B91.S".

Software bootloader serves to set up memory environment for C program execution, so it can be regarded
as memory initialization.

(3) System initialization

System initialization corresponds to the initialization of each hardware module (including sys_init,
rf_drv_init, gpio_init, clock_init) from sys_init to user_init in the main function, and sets the digital/analog
reqister status of each hardware module.

(4) User initialization
User initialization corresponds to user_init, or user_init_normal/ user_init_deepRetn in the SDK.
(5) main_loop

After User initialization, program enters main_loop inside while(1). The operation is called “Operation Set
A" before main_loop enters sleep mode, and called “Operation Set B” after wakeup from sleep.

As shown in figure above, sleep mode process is detailed as following:
(6) no sleep

Without sleep mode, MCU keeps looping inside while(1) between “Operation Set A” -> “Operation Set B".
(7) suspend

MCU enters suspend mode by invoking cpu_sleep_wakeup, wakes up from suspend after exiting from
cpu_sleep_wakeup, and then executes “Operation Set B".

Suspend can be regarded as the most “clean” sleep mode, in which data of SRAM, digital and analog reqisters
are retained. After wakeup from suspend, program continues from the breakpoint, with almost no need to
recover SRAM or registers. However, in suspend current is relatively high.

(8) deepsleep

MCU can also enter deepsleep by invoking cpu_sleep_wakeup. After wakeup from deepsleep, MCU restarts
from “Running hardware bootloader”. Almost the same as power on reset, all hardware and software ini-
tialization are required after deepsleep wakeup. Since SRAM and registers - except a few retention analog
registers - will lose their data in deepsleep, MCU current is decreased to less than TuA.

AN-20111000-E3 163 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(9) deepsleep retention

MCU can also enter deepsleep retention mode by invoking cpu_sleep_wakeup. After wakeup from deepsleep
retention, MCU restarts from “Running software bootloader”.

Deepsleep retention is an intermediate sleep state between suspend and deepsleep. In suspend mode,
both SRAM and most registers need to retain data, which thus ends up with higher current. In deepsleep
retention, it’s only needed to maintain states of a few retention analog registers, as well as data of first 32K
or 64K SRAM, so current is largely decreased to 2UA or so.

After deepsleep wake_up, MCU needs to restart the whole flow. Since first 32K or 64K SRAM are non-volatile
in deepsleep retention, there’s no need to re-load from flash to SRAM after wake_up, and thus “Running
hardware bootloader” is skipped. Due to limited SRAM retention size, “Running software bootloader” can-
not be skipped. Since deepsleep retention does not keep register state, system initialization must also be
executed to re-initialize registers.

User initialization after deepsleep retention wake_up can actually be optimized to differentiate from MCU
power on and deepsleep wake_up.

4.1.5 API pm_is_MCU_deepRetentionWakeup

According to the “sleep mode wakeup work flow” above, MCU power on, deepsleep wake_up and deepsleep
retention wake_up all need to go through “Running software bootloader”, “system initialization”, and “user
initialization”.

While running system initialization and user initialization, user needs to know whether MCU is woke up from
deepsleep retention, so as to differentiate from power on and deepsleep wake_up. The following APl in the
PM driver serves to make this judgement.

int pm_1is_MCU_deepRetentionWakeup(void);

Return value: 1 - deepsleep retention wake_up; O - power on or deepsleep wake_up.

4.2 BLE Low Power Management

4.2.1 BLE PM Initialization

For applications with low power mode, BLE PM module needs to be initialized by following API.

void blc_11_1initPowerManagement_module(void);

If low power is not required, DO NOT use this API, so as to skip compiling of related code and variables into
program and thus save FW and SRAM space.

AN-20111000-E3 164 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

4.2.2 BLE PM for Link Layer

In this BLE SDK, PM module manages power consumption in BLE Link Layer. It would be helpful referring to
introduction to Link Layer in earlier chapter.

Current SDK only applies low power management to Advertising state and Connection state Slave role with
a set of APIs for user. It's not applicable yet to Scanning state, Initiating state and Connection state Master
role.

The SDK does not apply low power management to Idle state either. In Idle state, since there is no RF activity,
i.e. the “blt_sdk_main_loop” function is not valid, user can use PM driver for certain low power management.
E.qg. In the demo code below, when Link Layer is in Idle state, every main_loop would suspend for 10ms.

void main_loop (void)
{

/111777777/7////////// BLE entry [////////////////////////
blt_sdk_main_loop();

/11777777777777////// UI entry [/////////////////////////
// add user task

///1777//77//7//////// PM configuration ////////////////////////
if(blc_11_getCurrentState() == BLS_LINK_STATE_IDLE){ //Idle state
cpu_sleep_wakeup(SUSPEND_MODE, PM_WAKEUP_TIMER,
clock_time() + 10*CLOCK_16M_SYS_TIMER_CLK_1MS);

}
else{

blt_pm_proc(); //BLE Adv & Conn state
}

The figure below shows timing of sleep mode when Link Layer is in Advertising state or Conn state Slave
role with connection latency = O.

AN-20111000-E3 165 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

T advertising T wakeup

UI task
sleep 15 sleep
|
| |
|j«— Adv interval :
1
|
: |
|
brx ! brx
T brx start) |working
- I
! |
! |
! |
UT task sleep l—\ Ul tasw sleep
brx | | hrx |
event event |1

|
<« Conn interval :
Figure 4.3: Sleep Timing for Advertising State and Conn State Slave Role

(1) In Advertising state, during each Adv Internal, Adv Event is mandatory; MCU can enter sleep mode
(suspend/deepsleep retention) during the rest time other than Ul task.

In figure above, the starting time of Adv event at first Adv interval is defined as T_advertising, and the time
for MCU to wake up from sleep is defined as T_wakeup.T_wakeup is also the start of Adv event at next Adv
interval. Both these two parameters will be elaborated in later section.

(2) During each Conn-interval at Conn state Slave role, the time for brx Event (brx start+brx working+brx
post) is mandatory. MCU can enter sleep mode (suspend/ deepsleep retention) during the rest time
other than Ul task.

The starting time of of Brx event at first Connection interval is defined as T_brx, and the time for MCU to
wake up from sleep is T_wakeup.

T_wakeup is also the start of BRx event at next Connection interval. Both these two parameters will be
elaborated in later section.

BLE PM is basically the sleep mode management in Advertising state or Conn state Slave role. User can
select sleep mode and set related time parameters.

As explained earlier, the B91 family has 3 sleep modes: suspend, deepsleep, and deepsleep retention.

For suspend and deepsleep retention, since the blt_sdk_main_loop of the SDK includes low PM in BLE stack
according to Link Layer state, to configure low power management, user only needs to invoke corresponding
APIs instead of the “cpu_sleep_wakeup”.

Deepsleep is not included in BLE low PM, so user needs to manually invoke the API “cpu_sleep_wakeup” in
APP layer to enter deepsleep. Please refer to the “blt_pm_proc” function in the project “"8258_ble_remote”
of the SDK.

Following sections illustrate details of low power management in Advertising state and Connection state
Slave role.

AN-20111000-E3 166 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

4.2.3 BLE PM Variables

The variables in this section are helpful to understand BLE PM software flow.

The struct “st_Il_pm_t" is defined in BLE SDK. Following lists some variables of the struct which will be used
by PM APIs.

typedef struct {

us8 suspend_mask;

u8 wakeup_src;

ulé sys_latency;

uleé user_latency;

u32 deepRet_advThresTick;

u32 deepRet_connThresTick;

u32 deepRet_earlyWakeupTick;
}st_ 11 _pm_t;

Following struct is defined in the file “ll_pm.c” for understanding purpose.

st_ 1l _pm_t bltPm;

Note:

This file is assembled in library, and user is not allowed to make any operation on this struct variable.

There will be a lot of variables like the “bltPm. suspend_mask” in later sections.

4.2.4 API bls_pm_setSuspendMask

The APIs below serve to configure low power management in Link Layer at “Advertising state” and “Conn
state Slave role”.

void bls_pm_setSuspendMask (u8 mask);
u8 bls_pm_getSuspendMask (void);

The “bltPm.suspend_mask” is set by the “bls_pm_setSuspendMask” and its default value is SUS-
PEND_DISABLE.

Following shows source code of the 2 APIs.

vold bls_pm_setSuspendMask (u8 mask)

{

b1tPm.suspend_mask = mask;
}
u8 bls_pm_getSuspendMask (void)
{

return bltPm.suspend_mask;
}

AN-20111000-E3 167 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The “bltPm.suspend_mask” can be set as any one or the “or-operation” of following values:

#define SUSPEND_DISABLE 0

#define SUSPEND_ADV BIT(0)
#define SUSPEND_CONN BIT(1)
#define DEEPSLEEP_RETENTION_ADV BIT(2)
#define DEEPSLEEP_RETENTION_CONN BIT(3)

“SUSPEND_DISABLE” means sleep is disabled which allows MCU to enter neither suspend nor deepsleep
retention.

“SUSPEND_ADV"” and "DEEPSLEEP_RETENTION_ADV” decide whether MCU at Advertising state can enter
suspend and deepsleep retention.

“SUSPEND_CONN" and "DEEPSLEEP_RETENTION_CONN" decide whether MCU at Conn state Slave role can
enter suspend and deepsleep retention.

In low power sleep mode design of the SDK, deepsleep retention is a substitute of suspend mode to reduce
sleep power consumption.

Take Conn state slave role as an example:

The SDK will first check whether SUSPEND_CONN is enabled in the “bltPm.suspend_mask”, and MCU
can enter suspend only when SUSPEND_CONN is enabled. Further on, based on the value of the DEEP-
SLEEP_RETENTION_CONN, MCU can decide whether it will enter suspend mode or deepsleep retention
mode.

Therefore, to enable MCU to enter suspend, user only needs to enable SUSPEND_ADV/SUSPEND_CONN. To
enable MCU to enter deepsleep retention mode, both SUSPEND_CONN and DEEPSLEEP_RETENTION_CONN
should be enabled.

Following shows 3 typical use cases:

bls_pm_setSuspendMask (SUSPEND_DISABLE);

MCU will not enter sleep mode (suspend/deepsleep retention).

bls_pm_setSuspendMask (SUSPEND_ADV | SUSPEND_CONN);

At Advertising state and Conn state Slave role, MCU can only enter suspend mode, and it's not allowed to
enter deepsleep retention.

bls_pm_setSuspendMask (SUSPEND_ADV | DEEPSLEEP_RETENTION_ADV
| SUSPEND_CONN | DEEPSLEEP_RETENTION_CONN);

At Advertising state and Conn state Slave role, MCU can enter both suspend and deepsleep retention, but
the sleep mode to enter depends on sleeping time which will be explained later.

There may be some special applications, for example:

AN-20111000-E3 168 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

bls_pm_setSuspendMask (SUSPEND_ADV)

Only at Advertising state can MCU enter suspend, and at Conn state Slave role it's not allowed to enter sleep
mode.

bls_pm_setSuspendMask (SUSPEND_CONN | DEEPSLEEP_RETENTION_CONN)

Only at Conn state Slave role, can MCU enter suspend or deepsleep retention, and at Advertising state it's
not allowed to enter sleep mode.

4.2.5 API bls_pm_setWakeupSource

User can set the bls_pm_setSuspendMask to enable MCU to enter sleep mode (suspend or deepsleep reten-
tion), and use the following API to set wakeup source.

void bls_pm_setWakeupSource(u8 source);

“source”: Wakeup source, can be set as PM_WAKEUP_PAD.

This API sets the bottom-layer variable “bltPm.wakeup_src”. Following shows source code in the SDK.
void bls_pm_setWakeupSource (u8 src)

{

bltPm.wakeup_src = src;

When MCU enters sleep mode at Advertising state or Conn state Slave role, its actual wakeup source is:

bltPm.wakeup_src | PM_WAKEUP_TIMER

So PM_WAKEUP_TIMER is mandatory, not depending on user setup. This guarantees that MCU will wake
up at specified time to handle Adv Event or Brx Event.

Everytime wakeup source is set by the “bls_pm_setWakeupSource”, after MCU wakes up from sleep mode,
the bltPm.wakeup_src is set to O.

4.2.6 API blc_pm_setDeepsleepRetentionType

Deepsleep retention further separates into 32K SRAM retention or 64K SRAM retention. When entering
deepsleep retention mode, the following API can be set to decide which sub-mode to enter:

vold blc_pm_setDeepsleepRetentionType(SleepMode_TypeDef sleep_type);

Only two options are available:

AN-20111000-E3 169 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

typedef enum {
DEEPSLEEP_MODE_RET_SRAM_LOW32K
DEEPSLEEP_MODE_RET_SRAM_LOW64K

}SleepMode_TypeDef;

0x21,
0x03,

In the B91 SDK, default deepsleep retention mode is set as DEEPSLEEP_MODE_RET_SRAM_LOW32K, and
to use 64K retention mode, user needs to invoke the API below during initialization.

blc_pm_setDeepsleepRetentionType(DEEPSLEEP_MODE_RET_SRAM_LOW64K);

Note:

This APl must be invoked after the “blc_lI_initPowerManagement_module” to take effect.

4.2.7 API cpu_long_sleep_wakeup_32k_rc
This APl is mainly used to set the time point for waking up the CPU:

int cpu_long_sleep_wakeup_32k_rc(SleepMode_TypeDef sleep_mode, SleepWakeupSrc_TypeDef
< wakeup_src, unsigned int wakeup_tick);

The main difference between this APl and cpu_sleep_wakeup_32k_rc is the sleep duration. The original
function cpu_sleep_wakeup_32k_rc cannot set the maximum sleep duration more than 5 minutes, while
this function can support sleep duration more than 5 minutes. The premise of calling this function is to
disconnect and close the advertising, and both suspend mask and sleep mask should be set to disable.

The first parameter sleep_mode is the low-power mode, and there are four modes to choose from.

typedef enum {

SUSPEND_MODE = 0x00,
DEEPSLEEP_MODE = 0x30,
DEEPSLEEP_MODE_RET_SRAM_LOW32K = 0x21,
DEEPSLEEP_MODE_RET_SRAM_LOW64K = 0x03,

iy

The second parameter wakeup_src is the wakeup source, and there are five wakeup sources to choose
from.

typedef enum {

PM_WAKEUP_PAD = BIT(3),
PM_WAKEUP_CORE = BIT(4),
PM_WAKEUP_TIMER = BIT(5),
PM_WAKEUP_COMPARATOR = BIT(6),
PM_WAKEUP_MDEC = BIT(7),

fiY;

AN-20111000-E3 170 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The third parameter wakeup_tick is the wakeup count value, which is 31.25us. When the sleep time is equal
to this count value, the CPU will wake up, and the return value of O means wakeup is successful, otherwise
it is failure.

4.2.8 PM software processing flow

Both actual code and pseudo-code are used herein to explain the flow details.

4.2.8.1 blt_sdk_main_loop
As shown below, the “blt_sdk_main_loop” is repetitively executed in while (1) loop of the SDK.

while(1)

{
/1/1//7///7////////////// BLE entry ////////////////////////
blt_sdk_main_loop();

/1171777777/7//77///// UL entry [///////////////////////

//UI task

//1/7/1//7////7///////// user PM config ////////////////////////
//blt_pm_proc();

The blt_sdk_main_loop function is executed continuously in while(1), and the code for BLE low-power man-
agement is in the blt_sdk_main_loop function, so the code for low-power management is also executed all
the time.

Following shows the implementation of BLE PM logic inside the “blt_sdk_main_loop”.

int blt_sdk_main_loop (void)

{
if(bltPm. suspend_mask == SUSPEND_DISABLE) // SUSPEND_DISABLE, can not
{ // enter sleep mode
return 0;
}
if((Link Layer State == Advertising state) || (Link Layer State == Conn state Slave role)
s)
{
if(Link Layer is in Adv Event or Brx Event) //RF is working, can not enter
{ //sleep mode
return 0;
}
else
{

blt_brx_sleep (); //process sleep & wakeup

AN-20111000-E3 171 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

return 0;

(1) When the “bltPm.suspend_mask” is SUSPEND_DISABLE, the SW directly exits without executing the
“blt_brx_sleep” function. So when using the “bls_pm_setSuspendMask(SUSPEND_DISABLE)”, PM logic
is completely ineffective; MCU will never enter sleep and the SW always execute while(1) loop.

(2) When the SW is executing Adv Event at Advertising State or Brx Event at Conn state Slave role,
the “blt_brx_sleep” won't be executed either due to RF task ongoing. The SDK needs to guarantee
completion of Adv Event/Brx Event before MCU enters sleep mode.

Only when both cases above are invalid, the blt_brx_sleep will be executed.

4.2.8.2 blt_brx_sleep

Following shows logic implementation of the “blt_brx_sleep” function in the case of default deepsleep re-
tention 32K Sram.

void blt_brx_sleep (void)
{
if((Link Layer state == Adv state)&& (bltPm. suspend_mask &SUSPEND_ADV))
{ //current state is adv state, suspend is allowed
T_wakeup = T_advertising + advInterval;
” BLT_EV_FLAG_SUSPEND_ENTER” event callback execution
T_sleep = T_wakeup — clock_time();
if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_ADV &&
T_sleep > bltPm.deepRet_advThresTick)
{ //suspend is automatically switched to deepsleep retention
cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K,
PM_WAKEUP_TIMER | bltPm.wakeup_src,T_wakeup); //suspend
//MCU reset to @ after wakeup, restart on “software bootloader’
}
else
{
cpu_sleep_wakeup (SUSPEND_MODE, PM_WAKEUP_TIMER | bltPm.wakeup_src, T_wakeup);

}

”»”

BLT_EV_FLAG_SUSPEND_EXIT ” event callback execution

if(suspend is woke up by GPIO PAD)

{
” BLT_EV_FLAG_GPIO_EARLY_WAKEUP” event callback execution
}
}
else if((Link Layer state == Conn state Slave role)&& (SuspendMask&SUSPEND_CONN))
{ //current Conn state, enter suspend

AN-20111000-E3 172 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

if(conn_latency != 0)

{
latency_use = bls_calculatelLatency();
T_wakeup = T_brx + (latency_use +1) * conn_interval;
}
else
{
T_wakeup = T_brx + conn_interval;
}

”»

BLT_EV_FLAG_SUSPEND_ENTER” event callback execution
T_sleep = T_wakeup — clock_time();

if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_CONN &&
T_sleep > bltPm.deepRet_connThresTick)
{ //suspend is automatically switched to deepsleep retention
cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K,
PM_WAKEUP_TIMER | bltPm.wakeup_src,T_wakeup); //suspend
//MCU reset to @ after wakeup, restart on “software bootloader”
}
else
{
cpu_sleep_wakeup (SUSPEND_MODE, PM_WAKEUP_TIMER | bltPm.wakeup_src, T_wakeup);

}

”»

BLT_EV_FLAG_SUSPEND_EXIT” event callback execution
if(suspend is woke up by GPIO PAD)
{

”»

BLT_EV_FLAG_GPIO_EARLY_WAKEUP” event callback execution
Adjust BLE timing

bltPm.wakeup_src = 0;
bltPm.user_latency = OXFFFF;
}

Note:

Here is the default deepsleep retention 32K Sram to illustrate.

To simplify the discussion, let’s begin with an easy case: conn_latency =0, only suspend mode, no deepsleep
retention. This is the case when setting suspend mask in APP layer via the “bls_pm_setSuspendMask(SUSPEND_ADV
| SUSPEND_CONN)".

Referring to controller event introduced earlier, please pay close attention to the timing of these suspend
related events and callback functions: BLT_EV_FLAG_SUSPEND_ENTER, BLT_EV_FLAG_SUSPEND_EXIT,
BLT_EV_FLAG_GPIO_EARLY_WAKEUP.

When Link Layer is in Advertising state with "bltPm. suspend_maskis” set to SUSPEND_ADV, or at Conn
state slave role with “bltPm. suspend_mask” set to SUSPEND_CONN, MCU can enter suspend mode.

AN-20111000-E3 173 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In suspend mode, the API “cpu_sleep_wakeup” in the driver is finally invoked.

cpu_sleep_wakeup (SUSPEND_MODE, PM_WAKEUP_TIMER | bltPm.wakeup_src, T_wakeup);

This API sets wakeup source as PM_WAKEUP_TIMER | bltPm.wakeup_src, so Timer wakeup is mandatory
to guarantee MCU wakeup before next Adv Event or Brx Event. For wakeup time “T_wakeup”, please refer
to earlier “sleep timing for Advertising state & Conn state Slave role” diagram.

When exiting the “blt_brx_sleep” function, both the “bltPm.wakeup_src” and the “bltPm.user_latency” are
reset. So the API “bls_pm_setWakeupSource” and “bls_pm_setManualLatency” are only effective for current
sleep mode.

4.2.9 Analysis of deepsleep retention

Introduce deepsleep retention, and continue to analyze the above software processing flow. When the
application layer is set as follows, deepsleep retention mode is enabled.

bls_pm_setSuspendMask(SUSPEND_ADV | DEEPSLEEP_RETENTION_ADV | SUSPEND_CONN |
< DEEPSLEEP_RETENTION_CONN);

4.2.9.1 API blc_pm_setDeepsleepRetentionThreshold

At Advertising state and Conn state slave role, suspend can switch to deep retention only when following
conditions are met, respectively:

if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_ADV &&T_sleep > bltPm.deepRet_advThresTick)
if(bltPm. suspend_mask & DEEPSLEEP_RETENTION_CONN 8&T_sleep > bltPm.deepRet_connThresTick)

Firstly, the “bltPm. suspend_mask” should be set to DEEPSLEEP_RETENTION_ADV or DEEPSLEEP_RETENTION
_CONN, as explained before.

Secondly, for T_sleep > bltPm.deepRet_advThresTick or T_sleep > bltPm.deepRet_connThresTick , T_sleep,
sleep duration time, equals Wakeup time "T_wakeup” minus current time “clock_time()”. It means that sleep
duration should exceed certain threshold so that MCU can switch sleep mode from suspend to deepsleep
retention.

Here is the API to set the two threshold in unit of ms for Advertising state and Conn state slave role.

vold blc_pm_setDeepsleepRetentionThreshold(u32 adv_thres_ms,

u32 conn_thres_ms)

{

bltPm.deepRet_advThresTick = adv_thres_ms * CLOCK_16M_SYS_TIMER_CLK_1MS;
b1tPm.deepRet_connThresTick = conn_thres_ms * CLOCK_16M_SYS_TIMER_CLK_1MS;
}

AN-20111000-E3 174 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

API blc_pm_setDeepsleepRetentionThreshold is used to set the time threshold when suspend is switched to
deepsleep retention trigger condition. This design is to pursue lower power consumption.

Refer to the description of the “"Run Process After Sleep Wake_up” section above. After suspend mode
wake_up, you can immediately return to the environment before suspend to continue running. In the above
software flow, after T_wakeup wakes up, it can immediately start executing the Adv Event/Brx Event task.

After deepsleep retention wake_up, you need to return to the place where “Run software bootloader”
started. Compared with suspend wake_up, you need to run 3 more steps (Run software bootloader +
System initialization + User initialization) before you can return to main_loop to execute Adv Event again. /
Brx Event task.

Taking Conn state slave role as an example, the following figure shows the timing (sequence) & power (power
consumption) comparison when sleep mode is suspend and deepsleepretention respectively.

The time difference T_cycle between two adjacent Brx events is the current time period. Average the power
consumption of Brx Event, the equivalent current is I_brx, and the duration is t_brx (the name t_brx here
is to distinguish it from the previous concept T_brx). The bottom current of Suspend is |_suspend, and the
bottom current of deep retention is |_deepRet.

The average current in the process of "Run software bootloader + System initialization + User initialization”
is equivalent to I_init, and the total duration is T_init. In actual applications, the value of T_init needs to be
controlled and measured by the user, and how to implement it will be introduced later.

AN-20111000-E3 175 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

I
I brx |-------
Brx
Event Brx
Event
suspend
I suspend 1

| | |
1 ! |

| * | t
he t_brx 4} !
I i : T cycle E
| | |

I_brx |-------
Brx
Event Brx
Event
I initf--- ! X
| E
! I
| deepsl i |
| eepsleep retention |
|]
|]
I deepRet ‘ ' , E
1,

/ \
// \\ t
/ L. \\
S/<—T init — '\
. \

T wakeup’ T wakeup

Figure 4.4: Suspend Deep sleep Retention Timing Power

The following is the description of terms in the figure.

« T_cycle: the time difference between two adjacent Brx events

« I_brx: average the power consumption of Brx Event, the equivalent current is |_brx
« t_brx: I_brx duration

* |_suspend: suspend bottom current

+ |_deepRet: bottom current of deep retention

« |_init: Software bootloader + System initialization + User initialization process equivalent average cur-
rent

e T_init: the total duration of I_init

AN-20111000-E3 176 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Average Brx current with suspend mode is:
I_avgSuspend = |_brx*t_brx + I_suspend* (T_cycle - t_brx)
Simplified by T_cycle >> t_brx, (T_cycle - t_brx) can be regarded as T_cycle.
|_avgSuspend = I_brx*t_brx + |_suspend” T_cycle
Average Brx current with deepsleep retention mode is:
|_avgDeepRet = I_brx*t_brx + |_init*T_init + |_deepRet* (T_cycle - t_brx)
= |_brx*t_brx + L_init*T_init + |_ deepRet * T_cycle
Calculate the delta between I_avgSuspend and I_avgDeepRet:
|_avgSuspend - |_avgDeepRet = |_suspend* T_cycle - I_init*T_init - |_ deepRet * T_cycle
= T_cycle((I_suspend - I_ deepRet) - (T_init*I_init)/T_cycle)

For application program with correct power debugging on both HW circuit and SW, the “(I_suspend - I_
deepRet)” and “(T_init*I_init)” can be regarded as fixed value.

Suppose |_suspend=30uA, |_deepRet=2uUA, (I_suspend - |_ deepRet) = 28UA; I_init=3mA, T_init=400 us,
(T_init*I_init)=1200 uA*us:

I_avgSuspend - I_avgDeepRet = Tcycle (28 - 1200/Tcycle)

|_avgSuspend - |_avgDeepRet
>0 when Tcycle > (1200/28) = 43ms, DeepRet consumes less power;

<0 when Tcycle < 43ms, Suspend mode consumes less power.

Mathematically, when Tcycle < 43 ms, suspend mode is more power efficient; when Tcycle > 43 ms, deep-
sleep retention mode is a better choice.

By using the threshold setting API below, MCU will automatically switch suspend to deepsleep retention for
T_sleep more than 43mS, and maintain suspend for T_sleep less than 43mS.

blc_pm_setDeepsleepRetentionThreshold(43, 43);

Take a long connection of 10ms connection interval * (99 + 1) = 1s as an example:

At Conn state slave role, even though user may choose different suspend duration such as 10ms, 20ms,
50ms, 100ms, or 1s due to Ul task, Iatency etc, this threshold API will ensure optimum power consumption
by auto switching between suspend mode and deepsleep retention mode.

It is reasonable to assume MCU working time (Brx Event + Ul task) is short enough therefore when T_cycle
is long, T_sleep approximately equals to T_cycle.Fundamentally, user may need to measure and come up
with more accurate current and timing values for a correct threshold value.

In practice, following demos in the SDK, as long as user initialization does not incorrectly run across extended
time, for T_cycle larger than 100ms, deepsleep retention mode should end up with lower power in most
application scenarios.

AN-20111000-E3 177 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

4.2.9.2 blc_pm_setDeepsleepRetentionEarlyWakeupTiming
According to the “suspend & deepsleep retention timing & power”, suspend wake_up time “T_wakeup” is
exactly the starting point of next Brx Event, or the time point when BLE master starts sending packet.

For deepsleep retention, wake_up time needs to start earlier than T_wakeup to allow T_init: running soft-
ware bootloader + system initialization + user initialization, or it will miss Brx Event, i.e., the time when BLE
master starts sending packet. So MCU wake_up time should be pulled in to T_wakeup’:

T_wakeup’ = T_wakeup - T_init

When applying to:

cpu_sleep_wakeup (DEEPSLEEP_MODE_RET_SRAM_LOW32K, PM_WAKEUP_TIMER | bltPm.wakeup_src,
T_wakeup - bltPm.deepRet_earlyWakeupTick);

T_wakeup is automatically calculated by the BLE stack, while the “bltPm.deepRet_earlyWakeupTick” can be
assigned to the measured T_init (or slightly larger) by following API:

vold blc_pm_setDeepsleepRetentionEarlyWakeupTiming(u32 earlyWakeup_us)

{
bltPm.deepRet_earlyWakeupTick = earlyWakeup_us * CLOCK_16M_SYS_TIMER_CLK_1US;

User can directly set the measured value of T_init to the above API, or set a value slightly larger than T_init,
but not less than this value.

4.2.9.3 Optimization and measurement of T_init

For SRAM concept to be discussed in this section such as ram_code, retention_data, deepsleep retention
area, please refer to section 2.1.2 SRAM space partition.

(1) T_init timing

From the figure “suspend & deepsleep retention timing & power”, combined with the previous analysis, we
can see that for the larger T_cycle, the sleep mode uses deepsleep retention with lower power consumption,
but in this mode the T_init time is mandatory. In order to minimize the power consumption of long sleep,
the time of T_init needs to be optimized to the minimum. The value of I_init is basically stable and does not
need to be optimized.

T_init is the sum of the time consumed by the 3 steps of Run software bootloader + System initialization +
User initialization. The 3 steps are disassembled and analyzed, and the time of each step is defined first.

« T_cstatup is the time of running software bootloader, i.e. executing assembly file cstartup_xxx.S.
« T_syslInit is system initialization time.

» T_userlnit is user initialization time.

AN-20111000-E3 178 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

T_init = T_cstatup + T_sysInit + T_userlnit

Following is a complete timing diagram of T_init:

irq_enable

T init

Debug gpio T cstartup T sysInit + T userlnit

main_loop
1

I

]

<« T ecs_1 ——i« T c¢s bss —»i -— 'Lcsidataaif Teces 2>
| |]

While (1)
[

-— —_—

|
i

! i

! I

! I

! |

! |

! I

|
i

! |

! |

! I

|
i

! |

! 1

T TTTTLLRLLETETEBELELEE VRN
1

! |

! |

! I
1

! |

I

1

I

1

I

1

f¢e————— T cstartup —M8M8M8Mm™

I

I

I

I

I

I

T

I

}

<— T sysInit —|<——— T userlnit ——
I
I
I
I

I
I
I
I
I
! !
T brx or
T advertising

T wakeup’

int main(void)

Figure 4.5: T_init Timing

Based on earlier definition, T_wakeup is the starting point of next Adv Event/Brx Event, and T_wakeup’ is
MCU early wake_uptime.

After wake_up, MCU will execute cstatup_xxx.S, jump to main() to start system initialization followed by user
initialization, and then enter main_loop. Once getting in main_loop, it can start processing of Adv Event/
Brx Event. The end of T_userlnit is the starting point of Adv Event/Brx Event, or T_brx/T_advertising as
shown in above diagram. “irg_enable” in the diagram is the separation between T_userlnit and main_loop,
matching the code in the SDK.

In the SDK, T_syslnit includes execution time of cpu_wakeup_init, rf_drv_init, gpio_init and clock_init. These
timing parameters have been optimized in the SDK by placing the associated code into the ram_code.

T_cstatup and T_userlnit in the SDK are elaborated herein.
(2) T_userlnit
User initialization is executed at power on, deepsleep wake_up, and deepsleep retention wake_up.
For applications without deepsleep retention mode, user initialization does not need to differentiate between

deepsleep retention wake_up and power on/ deepsleep wake_up.

vold user_init(void);

For applications with deepsleep retention mode, to reduce power, T_userlnit needs to be as short as pos-
sible as explained earlier, so deepsleep retention wake_up would be different from power on / deepsleep

AN-20111000-E3 179 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

wakeup.

Initialization tasks in the user_init falls into 2 categories: initialization of hardware registers, and initialization
of logic variables in SRAM.

Since in deepsleep retention mode first 32K or 64K SRAM is non-volatile, logic variables can be defined as
retention_data to save time for initialization. Since registers cannot retain data across deepsleep retention,
re-initialization is required for registers.

In summary, for deepsleep retention wake_up, user_init_deepRetn applies; while for power on and deep-
sleep wake_up, user_init_normal function applies, as shown in following code:

int deepRetWakeUp = pm_is_MCU_deepRetentionWakeup();
1f(deepRetWakeUp){
user_init_deepRetn ();

}
else{

user_init_normal ();
}

The user can compare the implementation of these two functions. The following is the implementation of
the user_init_deepRetn function in the SDK demo “B91_ble_sample”.

_attribute_ram_code_ void user_init_deepRetn(void)

{

#if (PM_DEEPSLEEP_RETENTION_ENABLE)
blc_11_1initBasicMCU(); //mandatory
rf_set_power_level_index (MY_RF_POWER_INDEX);
blc_11_recoverDeepRetention();

irg_enable(); #endif

First 3 lines (from blc_lI_initBasicMCU(); to blc_II_recoverDeepRetention();) are mandatory BLE initialization
of hardware reqisters.

The blc_ll_recoverDeepRetention() is to recover software and hardware state at Link Layer by low level
stack.

User is not recommended to modify these lines.

The GPIO wakeup configuration and LED state setting in the demo "B91_ble_sample” are hardware initial-
ization. The UART hardware register state in the demo “B91_module” needs to re-initialize.

On top of SDK demo, if additional items are added to user initialization, following judgement is recom-
mended:

« Ifitis SRAM variable, put it to the “retention_data” section by adding the keyword “attribute_data_retention”,
so as to save re-initialization time after deepsleep retention wake_up. Then it can be run at
user_init_normal function.

AN-20111000-E3 180 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« If it is hardware regqister, it should be placed inside user_init_deepRetn function.

With above implementation, after deepsleep retention wake_up, T_userlnit is execution time of
user_init_deepRetn. The SDK also tries to place these functions inside ram_code to save time. |If
deepsleep retention area allows, user should place added register initialization functions inside ram_code
as well.

(3) T_userlnit Optimization for Conn state slave role
TBD
(4) T_cstartup
T_cstartupis the execution time of cstartup_xxx.S, e.qg. cstartup_B91.S in the SDK.
T_cstartup has 4 components, in time sequence:
T_cstartup = T_cs_1+ T_cs_bss + T_cs_data + T_cs_2
T_cs_1and T_cs_2 are fixed timing which user is not allowed to modify.

T_cs_data is initialization of “data” sector in SRAM. “data” is already initialized global variables with initial
values stored in “data initial value” sector of flash. Therefore, T_cs_data is the time transferring “data” from
flash “data initial value” sector to SRAM “data” sector. Corresponding assembly code is:

/* Move Data from flash to sram */

_DATA_INIT:
la t1, _DATA_LMA_START
la t2, _DATA_VMA_START
la t3, _DATA_VMA_END

_DATA_INIT_BEGIN:
bleu t3, t2, _ZERO_BSS
w t0, 0(t1)
SW t0, 0(t2)
addi t1, ti1, 4
addi t2, t2, 4
j _DATA_INIT_BEGIN

Data transferring from flash is slow. As a reference, 16 bytes would take 7us. So more data are in “data”
sector, the longer T_cs_data and T_init would be, or vice versa.

User can use method explained earlier to check size of “data” sector in list file.

If “*data” sector is too big and there is enough space in deepsleep retention area, user can add the keyword
“attribute_data_retention” to place some of the variables in *data” sector into “retention_data” sector, so
as to reduce T_cs_data and T_init.

T_cs_bss is time to initialize SRAM “bss” sector. Initial values of “bss” sector are all 0s. It’s only need to reset
SRAM “bss” sector to O, and no flash transferring is needed. Corresponding assembly code is:

/* Zero .bss section in sram */
_ZERO_BSS:
Tut t0, 0

AN-20111000-E3 181 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

la t2, _BSS_VMA_START

1la t3, _BSS_VMA_END
_ZERO_BSS_BEGIN:

bleu t3, t2, _ZERO_AES

sw t0, 0(t2)

addi t2, t2, 4

j _ZERO_BSS_BEGIN

Resetting each word (4 byte) to O can be very fast. So when “bss” is small, T_cs_bss is very small. But if
“bss” sector is large, for example when a huge global data array is defined (int AAA[2000] = {0}), T_cs_bss
can also be very long. So it is worth paying attention to “bss” size in list file.

To optimize T_cs_bss when “bss” sector is large, if retention area allows, some of them can also be defined
as “attribute_data_retention” to place in “retention_data” sector.

(5) T_init measurement

After T_cstartup and T_userlnit are optimized to minimize T_init, it's also needed to measure T_init, and
apply to API: blc_pm_setDeepsleepRetentionEarlyWakeupTiming

T_init starts at the timing as T_cstartup, which is the *_reset” point in cstartup_B91.S file as shown below:

_START:
#if 0
// add debug, PB4 output 1
lut to, 0x80140 //0x8014030a
11 tl, Oxef
L1 t2, 0x10
sb tl , 0x30a(toe) //0x8014030a PB oen = Oxef
sb t2 , 0x30b(tO) //0x8014030b PB output = 0x10
#endif

Combined with the Debug gpio indication in the picture “T_init timing”, the Debug GPIO PB4 output high
operation is placed in *__start®™. The user only needs to change”#if 0” to “#if 1" to enable the PB4 output
high operation.

T_cstartup finishes at “tjl main”.

_MAIN_FUNC:
nop
la t0, main
jalr to
nop
nop
nop
nop
nop
_END:

AN-20111000-E3 182 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Since main function starts almost at the end of T_cstartup, PB4 can be set to output low at beginning of main
function as shown below. Please note that DBG_CHNO_LOW requires enabling "DEBUG_GPIO_ENABLE” in
app_config.h.

_attribute_ram_code_ int main (void) //must run in ramcode

{
DBG_CHNO_LOW; //debug
sys_init();

By scoping signal of PB4, T_cstartup is obtained.

Adding PB4 output high at end of T_userlnit inside user_init_deepRetn will generate same timing diagram
as Debug gpio as shown above. T_init and T_cstartup can be measured by oscilloscope or logic analyzer.
Following understanding of GPIO operation, user can modify the Debug gpio code as needed, so as to get
other timing parameters as well, e.g. T_sysInit, T_userlnit etc.

4.2.10 Connection Latency

4.2.10.1 Sleep timing with non-zero connection latency

The previous introduction to the sleep mode of Conn state slave role (refer to the figure “sleep timing for
Advertising state & Conn state Slave role”) is based on the premise that connection latency (conn_latency
for short) does not take effect.

In the PM software processing flow, T_wakeup = T_brx + conn_interval, the corresponding code is as fol-
lows.

if(conn_latency != 0)

{
latency_use = bls_calculatelLatency();
T_wakeup = T_brx + (latency_use +1) * conn_interval;
}
else
{
T_wakeup = T_brx + conn_interval;
}

When the BLE slave goes through the connection parameters update process and conn_latency takes effect,
the sleep wake_up time is:

T_wakeup = T_brx + (latency_use +1) * conn_interval;

Following diagram illustrates sleep timing with non-zero conn_latency when Iatency_use= 2.

AN-20111000-E3 183 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

TX RX X X X RX
Master
T brx T_wakeup
I
| I
I sleep “““‘W
Slave l

T T
brx | | |
| event | |
[L ! o ! o
|<+<— Conn interval — :4— Conn interval — : <+—— (onn interval —
I

@
2
T R
=
=+

Figure 4.6: Sleep Timing for Valid Conn_latency

When conn_latency is not effective, the sleep duration is no more than 1 connection interval (generally
small). After conn_latency becomes effective, the sleep time may have a relatively large value, such as
1S, 2S, etc., and the system power consumption can become very low. It makes sense to use deepsleep
retention mode with lower power consumption during long sleep.

4.2.10.2 latency_use calculation

At effective conn_latency, T_wakeup is determined by latency_use, so it is not necessarily equal to
conn_latency.

latency_use = bls_calculateLatency();

In the calculation of Iatency_use, user_latency is involved. This is the value that the user can set. The API
to be called and its source code are:

vold bls_pm_setManualLatency(ulé6 latency)
{

bltPm.user_latency = latency;

Initial value of bltPm.user_latency is OxFFFF, and at the end of blt_brx_sleep function it will be reset to
OXFFFF, which means the value set by the API bls_pm_setManualLatency is only valid for latest sleep, so it
needs to be set on every sleep event.

The calculation process of latency_use is as follows.
First calculate the system latency:
(1) If connection latency=0, system latency=0
(2) If connection latency > O:

« If system task is not done in current connection interval, MCU needs to wake up on next connection
interval to continue the task such as transfer packet not completely sent out, or handle data from
master not fully processed yet, and under this scenario, system latency=0.

AN-20111000-E3 184 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

« If no task is left over, system latency = connection latency. However, if slave receives master’s update
map request or update connection parameter request, and its updated timing is before (connection
latency+1)*interval, then the actual system latency would force MCU to wake up before the updated
timing point to ensure correct BLE timing sequence.

Combining user_latency and system_latency:
latency_use = min(system latency, user_latency)

Accordingly, if user_latency set by the API bls_pm_setManuallLatency is less than system latency,
user_latency would be the final latency_use; otherwise, system latency is the final latency_use.

4.2.11 API bls_pm_getSystemWakeupTick
Following APl is used to obtain wakeup time out of suspend (System Timer tick), or T_wakeup:

u32 bls_pm_getSystemWakeupTick(void);

According to blt_brx_sleep explanation in 4.2.7.2, T_wakeup is calculated fairly late, almost next to
cpu_sleep_wakeup. Application layer can only get an accurate T_wakeup by BLT_EV_FLAG_SUSPEND_ENTER
event callback function.

Following keyscan example explains usage of BLT_EV_FLAG_SUSPEND_ENTER event callback function and
bls_pm_getSystemWakeupTick.

bls_app_registerEventCallback(BLT_EV_FLAG_SUSPEND_ENTER, &ble_remote_set_sleep_wakeup);

<

vold ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{
if(blc_11_getCurrentState() == BLS_LINK_STATE_CONN && ((u32)
< (bls_pm_getSystemWakeupTick() - clock_time())) >
80 * CLOCK_SYS_CLOCK_1MS){
bls_pm_setWakeupSource(PM_WAKEUP_PAD);
}
}

Above callback function is meant to prevent loss of key press.

A normal key press lasts for a few hundred ms, or at least 100~200ms for a fast press. When Advertising
state and Conn state are configured by bls_pm_setSuspendMask to enter sleep mode, without conn_latency
in effect, as long as Adv interval or conn_interval is not very long, typically less than 100ms, sleep time will
not exceed Adv Interval or conn_interval, in other words, sleep time is less than 100ms or a fast key press
time, loss of key press can be prevented and there is no need to enable GPIO wakeup.

With conn_latency ON, for example, with conn_interval = 10ms, connec_latency = 99, sleep time may last
1s, obviously key loss may occur. If current state is Conn state and wakeup time of suspend to be entered
is more than 80ms from current time as determined by BLT_EV_FLAG_SUSPEND_ENTER callback function,
key loss can be prevented by using GPIO level trigger to wake up MCU for keyscan process in case timer
wakeup is too late.

AN-20111000-E3 185 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

4.3 Issues in GPIO Wake-up

In B91, GPIO wakeup is level triggered instead of edge triggered, so when GPIO PAD is configured as wakeup
source, for example, suspend wakeup triggered by GPIO high level, MCU needs to make sure when MCU
invokes cpu_sleep_wakeup to enter suspend, that the wakeup GPIO is not at high level. Otherwise, once
entering cpu_sleep_wakeup, it would exit immediately and fail to enter suspend.

If the above situation occurs, it may cause unexpected problems. For example, the MCU is awakened after
entering deepsleep, and the program is re-executed. As a result, the MCU cannot enter deepsleep, causing
the code to continue to run, which is not the state we expected, and the flow of the entire program may be
messed up.

Users should pay attention to avoid this problem when using Telink’s GPIO PAD wakeup.

If the APP layer does not avoid this problem, and GPIO PAD wakeup source is already effective at invoking
of cpu_sleep_wakeup, PM driver makes some improvement to avoid flow mess:

(1) Suspend & deepsleep retention mode

For both suspend and deepsleep retention mode, the SW will fast exit cpu_sleep_wakeup with two potential
return values:

» Return WAKEUP_STATUS_PAD if the PM module has detected effective GPIO PAD state.

» Return STATUS_GPIO_ERR_NO_ENTER_PM if the PM module has not detected effective GPIO PAD
state.

(2) deepsleep mode

For deepsleep mode, PM diver will reset MCU automatically in bottom layer (equivalent to watchdog reset).
The SW restarts from “Run hardware bootloader”.

To prevent this problem, following is implemented in the SDK demo.

In BLT_EV_FLAG_SUSPEND_ENTER, it is configured that only when suspend time is larger than a certain
value, can GPIO PAD wakeup be enabled.

void ble_remote_set_sleep_wakeup (u8 e, u8 *p, int n)

{
if(blc_11_getCurrentState() == BLS_LINK_STATE_CONN && ((u32)(bls_pm_getSystemWakeupTick() -
<~ clock_time())) >
80 * CLOCK_SYS_CLOCK_1MS){
bls_pm_setWakeupSource(PM_WAKEUP_PAD);
}
}

When key is pressed, manually set latency to O or a small value (as shown in below code), so as to ensure
short sleep time, e.g. shorter than 80ms as set in above code. Therefore, the high level on drive pin due to
a pressed key will never become a high-level GPIO PAD wakeup trigger.

AN-20111000-E3 186 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

int user task flg = ota is working || scan pin need || key not released || DEVICE LED BUSY;
if (user_task _flg){
bls pm setSuspendMask (SUSPEND ADV | SUSPEND COCNN) ;

#if (LONG PRESS KEY POWER OPTIMIZE)
extern int key matrix same as last cnt;
if(!ota is working && key matrix same as last cnt > 5){ //key matrix stable can optimize
bls pm setManuallatency(3):
¥
else{
bls pm setManuallatency(0); //latency off: 0
¥
fel=e
bls pm setManuallatency (0);
fendif

Figure 4.7: Low Power Code

There are 2 scenarios that will make MCU enter deepsleep.

+ First one is if there’s no event for 60s, MCU will enter deepsleep.

» The other scenario is if a key is stuck for more than 60s, MCU will enter deepsleep. Under the second
scenario, the SDK will invert polarity from high level trigger to low level trigger to solve the problem.

4.4 BLE System Low Power Management

Based upon understanding of PM principle of this BLE SDK, user can configure PM under different application
scenarios, referring to the demo "B91 ble sample” low power management code as explained below.

Function blt_pm_proc is added in PM configuration of main_loop. This function must be placed at the end
of main_loop to ensure it is immediate to blt_sdk_main_loop in time, since blt_pm_proc needs to configure
low power management according to different Ul entry tasks.

Summary of highlights in blt_pm_proc function:

(1) When Ul task requires turning off sleep mode, such as audio (ui_mic_enable) and IR, set
bltm.suspend_mask to SUSPEND_DISABLE.

(2) After advertising for 60s in Advertising state, MCU enters deepsleep with wakeup source set to GPIO
PAD in user initialization. 60s timeout is determined by software timer using advertise_begin_tick
variable to capture advertising start time.

The design of 60s into deepsleep is to save power, prevent slave wasting power on advertising even when
not connected with master. User can justify 60s setting based on different applications.

(3) At Conn state slave role, under conditions of no key press, no audio or LED task for over 60s
from last task, MCU enters deepsleep with GPIO PAD as wakeup source, and at the same time set
DEEP_ANA_REGO Iabel in deepsleep register, so that once after wakeup slave will connect quickly
with master.

AN-20111000-E3 187 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The design of 60s into deepsleep is to save power. Actually if power consumption under connected state is
tuned low enough as with deepsleep retention, it is not absolutely necessary to enter deepsleep.

To enter deepsleep at Conn state slave role, slave first issues 8 TERMINATE command to master by calling
bls_lI_terminateConnection, after receiving ack which triggers BLT_EV_FLAG_TERMINATEcallback function,
slave will enter deepsleep. If slave enters deepsleep without sending any request, since master is still at
connected state and would constantly try to synchoroniz with slave till connection timeout. The connection
timeout could be a very large value, e.g. 20s. If slave wakes up before 20s, slave would send advertising
packet attempting to connect with master. But since master would assume it is already in connected state,
it would not be able to connect to slave, and user experience is therefore very slow reconnection.

(4) If certain task can not be disrupt by long sleep time, user_latency can be set to O, so latency_use is O.

Under applications such as key_not_released, or DEVICE_LED_BUSY, call API bls_pm_setManualLatency to
set user_latency to 0. When conn_interval is 10ms, sleep time is no more than 10ms.

(5) For scenario as in item 4, with latency set to O, slave will wakeup at every conn interval, power might
be unnecessarily too high since key scan and LED task does not repeat on every conn interval. Further
power optimization can be done as following:

When LONG_PRESS_KEY_POWER_OPTIMIZE=1, once key press is stable (key_matrix_same_as_last_cnt >
5), manually set latency. With bls_pm_setManualLatency (3), sleep time will not exceed 4 *conn_interval.
If conn_interval=10 ms, MCU will wake up every 40ms to process LED task and keyscan.

User can tweak this approach toward different conn intervals and task response time requirements.

4.5 Timer Wake-up by Application Layer

At Advertising state or Conn state Slave role, without GPIO PAD wakeup, once MCU enters sleep mode, it
only wakes up at T_wakeup pre-determined by BLE SDK. User can not wake up MCU at an earlier time which
might be needed at certain scenario. To provide more flexibility, application layer wakeup and associated
callback function are added in the SDK:

Application layer wakeup API:

vold bls_pm_setAppWakeupLowPower(u32 wakeup_tick, u8 enable);

“wakeup_tick” is wakeup time at System Timer tick value.
“enable”: 1-wakeup is enabled; O-wakeup is disabled.
Reqistered call back function bls_pm_registerAppWakeupLowPowerCb is executed at application layer

wakeup:

typedef voild (*pm_appWakeupLowPower_callback_t)(int);
void bls_pm_registerAppWakeupLowPowerCb(pm_appWakeupLowPower_callback_t cb);

Take Conn state Slave role as an example:

When the user uses bls_pm_setAppWakeupLowPower to set the app_wakeup_tick for the application layer
to wake up reqularly, the SDK will check whether app_wakeup_tick is before T_wakeup before entering
sleep.

AN-20111000-E3 188 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

- If app_wakeup_tick is before T_wakeup, as shown in the figure below, it will trigger sleep in
app_wakeup_tick to wake up early;

« If app_wakeup_tick is after T_wakeup, MCU will still wake up at T_wakeup.

T brx T wakeup

app_wakeup_tick

T_WUI task{_= sleep >
| brx ! |
' |

. event |
= Conn interval >
|

Figure 4.8: EarlyWake_upatapp_wakup_tick

AN-20111000-E3 189 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

5 Low Battery Detect

Battery power detect/check, which may also appear in the Telink BLE SDK and related documentation
under other names, includes: battery power detect/check, low battery detect/check low power detect/
check), battery detect/check, etc. For example, the relevant files and functions in the SDK are named
battery_check, battery_detect, battery_power_check, etc.

This document is unified under the name of “low battery detect”.

5.1 The importance of low battery detect

For battery-powered products, as the battery power will gradually drop, when the voltage is low to a certain
value, it will cause many problems.

a) The operating voltage range of B91 chip is 1.8V~4.3V. When the voltage is lower than 1.8V, B91 chip
can no longer guarantee stable operation.

b) When the battery voltage is low, due to the unstable power supply, the “*write” and “erase” operations
of Flash may have the risk of error, causing the program firmware and user data to be modified abnor-
mally, and eventually causing the product to fail. Based on our previous mass production experience,
we set the low voltage threshold for this risk to 2.0V.

According to the above description, for battery-powered products, a secure voltage must be set, and the
MCU is allowed to continue working only when the voltage is higher than this secure voltage; once the
voltage falls below the secure voltage, the MCU stops running and needs to be shutdown immediately (this
is achieved by entering deepsleep mode on the SDK).

The secure voltage is also called alarm voltage, and the value of this voltage is 2.0 V by default in the SDK .
If the user has an unreasonable design in the hardware circuit, resulting in the deterioration of the stability
of the power network, the secure voltage value needs to be increased, such as 2.1V, 2.2V, etc.

For the product developed and implemented using Telink BLE SDK, as long as the use of battery power, low
power detection must be a real-time operation of the task for the product’s entire life cycle to ensure the
stability of the product.

5.2 The implementation of low battery detect

The low battery detect requires the use of ADC to measure the power supply voltage. Users can refer to the
B91 Datasheet and Driver SDK Developer Handbook chapter on ADC to get the necessary understanding of
the B91 ADC module first.

The implementation of the low battery detect is described in the SDK demo “B91_ble_sample”, refer to the
files battery_check.h and battery_check.c.

Make sure the macro "BATT_CHECK_ENABLE" is enabled in app_config.h. This macro is disabled by default,
and users need to pay attention to it when using the low battery detect function.

#define BATT_CHECK_ENABLE 1

AN-20111000-E3 190 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

5.2.1 Notes on low battery detect

Low battery detect is a basic ADC sampling task, and there are a number of issues that need attention when
implementing an ADC to sample the supply voltage, as described below.

5.2.1.1 GPIO input channel recommended

The sampling method of B91 chip can be sampled by Vbat or GPIO analog signal input. However, the
sampling accuracy of Vbat channel is poor, and it is recommended to sample by external GPIO method for
high sampling accuracy requirement.

« 3/4 external resistor divider (total resistance value of 400k, without any capacitance)
» 1.2V Vref reference voltage
+ 1/4 pre_scale factor

« Sampling frequency below 48K

The available GPIO input channels are the input channels corresponding to PBO~PB7, PDO, PD1.

typedef enum{

ADC_GPIO_PBO® = GPIO_PBO | (Ox1<<12),
ADC_GPIO_PB1 = GPIO_PB1 | (Ox2<<12),
ADC_GPIO_PB2 = GPIO_PB2 | (Ox3<<12),
ADC_GPIO_PB3 = GPIO_PB3 | (0x4<<12),

I
|
I
I
ADC_GPIO_PB4 = GPIO_PB4 | (0x5<<12),
I
I
I
I
I

ADC_GPIO_PB5 = GPIO_PB5 | (Ox6<<12),
ADC_GPIO_PB6 = GPIO_PB6 | (Ox7<<12),
ADC_GPIO_PB7 = GPIO_PB7 | (Ox8<<12),
ADC_GPIO_PDO = GPIO_PDO | (0x9<<12),
ADC_GPIO_PD1 = GPIO_PD1 | (Oxa<<12),

}adc_input_pin_def_e;

Use GPIO input channel for ADC sampling of power supply voltage, its specific use is as follows.

In the hardware circuit design, the power supply is directly connected to the GPIO input channel, and the
ADC is initialized by setting the GPIO to high resistance (ie, oe, output all set to 0), at which time the voltage
on the GPIO is equal to the power supply voltage, and ADC sampling can be performed directly.

User can switch the GPIO input channel through the macro in app_config.h of B91 sample, choose PB7 as
GPIO input channel, PB7 as ordinary GPIO function, initialize all states (ie, oe, output) using the default
state, no special modification. In the demo, PBO is selected as the GPIO input channel by default.

#define PBO_FUNC AS_GPIO
#define PBO_INPUT_ENABLE 0

#define PBO_OUTPUT_ENABLE 0

#define PBO_DATA_OUT (0]

#define ADC_INPUT_PIN_CHN ADC_GPIO PBO

AN-20111000-E3 191 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

5.2.1.2 Differential mode only

Although the B91 ADC input mode supports both Single Ended Mode and Differential Mode, for some specific
reasons, Telink specifies that only Differential Mode can be used, and Single Ended Mode is not allowed.

The differential mode input channel is divided into positive input channel and negative input channel, the
measured voltage is the voltage difference obtained by subtracting the negative input channel voltage from
the positive input channel voltage.

If the ADC sample has only one input channel, when using differential mode, set the current input channel
as the positive input channel and GND as the negative input channel, so that the voltage difference between
the two is equal to the positive input channel voltage.

The differential mode is used in SDK low battery detect, the interface function is as follows.

adc_set_diff_input(ADC_INPUT_PIN_CHN>>12, GND);

5.2.1.3 Need to switch different ADC tasks

The Misc channel is used for low battery detect as the most basic ADC sampling. Users need to use the
Misc channel if they need other ADC tasks besides low battery detect. The low battery detect cannot run
simultaneously with other ADC tasks and must be implemented by switching.

5.2.2 Stand-alone use of low battery detect

In the SDK demo, both B91_ble_sample and B91_module project implement the low battery detect function,
user needs to enable the low battery detect function in battery_check.h to use.

5.2.2.1 Low battery detect initialization

Refer to the implementation of the adc_bat_detect_init function.

The order of ADC initialization must satisfy the following procedure: first power off sar adc, then configure
other parameters, and finally power on sar adc. All initialization of ADC sampling must follow this flow.

_attribute_ram_code_ void adc_bat_detect_init(void)
{

adc_power_off(); // power off sar adc
""" // add ADC Configuration
adc_power_on(); // power on sar adc

}

For the configuration before sar adc power on and power off, the user try not to modify, and use the
default settings. If users choose a different GPIO input channel, directly modify the app_config.h related
macro definition described earlier.

The adc_bat_detect_init initialization function is called in app_battery_power_check with the following
code:

AN-20111000-E3 192 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

if(!adc_hw_initialized){
adc_hw_1initialized = 1;
adc_bat_detect_init();
}

Here a variable adc_hw_initialized is used, which is called once only when it is O and set to 1; it is not
initialized again when it is 1. The adc_hw_initialized is also manipulated in the following API.

vold battery_set_detect_enable (int en)

{
lowBattDet_enable = en;
if(len){
adc_hw_1initialized = 0; //need initialized again
}
}

The functions that can be implemented by a design using adc_hw_initialized are:
a) Switching with other ADC task

The effect of sleep mode (suspend/deepsleep retention) is not considered first, and only the switching
between low battery detect and other ADC tasks is analyzed.

Because of the need to consider the switch between low battery detect and other ADC tasks,
adc_bat_detect_init may be executed several times, so it cannot be written to user initialization and
must be implemented in main_loop.

The first time the app_battery_power_check function is executed, adc_bat_detect_init is executed and will
not be executed repeatedly.

Once the “ADC other task” needs to be executed, it will take away the ADC usage and make sure
that the “ADC other task” must call battery_set_detect_enable(0) when it is initialized, which will clear
adc_hw_initialized to O.

When the "ADC other task” is finished, the right to use the ADC is handed over. The app_battery_power_check
is executed again, and since the value of adc_hw_initialized is O, adc_bat_detect_init must be executed
again. This ensures that the low battery detect is reinitialized each time it is switched back.

b) Adaptive handling of suspend and deepsleep retention
Take sleep mode into account.

The adc_hw_initialized variable must be defined as a variable on the “data” or “bss” segment, not on the
retention_data. Defining it on the “data” segment or “bss” ensures that this variable is used after each
deepsleep retention wake_up when the software bootloader is executed (i.e., cstartup_xxx. S) will be re-
initialized to O; after sleep wake_up, this variable can be left unchanged.

The common feature of the register configured inside the adc_bat_detect_init function is that it does not
power down in suspend mode and can maintain the state; it will power down in deepsleep retention mode.

If the MCU enters into suspend mode, when it wakes up and executes app_battery_power_check again,
the value of adc_hw_initialized is the same as before suspend, so there is no need to re-execute the
adc_vbat_detect_init function.

AN-20111000-E3 193 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

If the MCU enters deepsleep retention mode and wakes up with adc_hw_initislized to O, adc_bat_detect_init
must be re-executed and the ADC-related register state needs to be reconfigured.

The state of register set in the adc_bat_detect_init function can be kept from powering down during the
suspend.

The keyword “attribute_ram_code” is added to the adc_bat_detect_init function in the SDK to set it to
ram_code, with the ultimate goal of optimizing power consumption for long sleep connection states. For
example, for a typical long sleep connection of 10ms * (99+1) = 1s, waking up every 1s and using deepsleep
retention mode during long sleep, adc_bat_detect_init must be executed again after each wake-up, and
the execution speed will become faster after adding to ram_code.

This “attribute_ram_code” is not required. In the product application, the user can decide whether to put
this function into ram_code based on the usage of the deepsleep retention area and the results of the power
test.

5.2.2.2 Low battery detect processing

In main_loop, the app_battery_power_check function is called to implement the processing of low battery
detect, and the related code is as follows.

_attribute_data_retention_ u8 lowBattDet_enable = 1;
us8 adc_hw_1initialized = 0;
vold battery_set_detect_enable (int en)

{
lowBattDet_enable = en;
if(len){
adc_hw_1initialized = 0; //need initialized again
}
}
int battery_get_detect_enable (void)
{
return lowBattDet_enable;
}

if(battery_get_detect_enable() && clock_time_exceed(lowBattDet_tick, 500000)){
lowBattDet_tick = clock_time();
app_battery_power_check(bat_deep_thres,bat_suspend_thres);

}

The default value of lowBattDet_enable is 1. Low battery detect is allowed by default, and the MCU can
start low battery detect immediately after powering up. This variable needs to be set to retention_data to
ensure that deepsleep retention cannot modify its state.

The value of lowBattDet_enable can only be changed when other ADC tasks need to seize ADC usage: when
other ADC tasks start, battery_set_detect_enable(0) is called, at this time app_battery_power_check is not
called again in main_loop; After the other ADC tasks are finished, call battery_set_detect_enable(1) to sur-
render the right to use ADC, then the app_battery_power_check function can be called again in main_loop.

AN-20111000-E3 194 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The frequency of low battery detect is controlled by the variable lowBattDet_tick, which is executed every
500ms in the demo. Users can modify this time according to their needs.

The app_battery_power_check function is put on ram_code, refer to the above description of
“adc_vbat_detect_init” ram_code, also to save running time and optimize power consumption.

The “attribute_ram_code” is not necessary. In the product application, the user can decide whether to put
this function into ram_code based on the usage of the deepsleep retention area and the results of the power
test.

_attribute_ram_code_ void app_battery_power_check(u16 threshold_deep_vol_mv, ul6
< threshold_suspend_vol_mv)

5.2.2.3 Low voltage alarm

The two parameters of app_battery_power_check are to specify the alarm voltage in mV for low battery
detect. The first parameter is the threshold voltage for deepsleep, and the second parameter is the threshold
voltage for suspend. According to the previous content, the default setting in SDK is 2000 mV for deepsleep
and 1800 mV for suspend. In the low voltage detection of main_loop, when the power supply voltage is
lower than 1800 mV, it enters suspend, and when the power supply voltage is greater than 1800 mV but
less than 2000 mV, it enters deepsleep mode.

The "B91_ble_sample” and "B91_ble_module” use the way to enter deepsleep to implement the shutdown
MCU, and set the key to wake up.

After "B91_ble_sample” and "B91_ble_module” are shutdown, they enter the deepsleep mode where they
can be woken up. If a key wake-up occurs, the SDK will do a quick low battery detect during user initialization
instead of waiting until the main_loop. The reason for this process is to avoid application errors, as illustrated
by the following example.

If the product user has been alerted by the flashing LED during the low power alarm and then wakes up
again by entering deepsleep, it takes at least 500ms to do the low battery detect from the processing of
main_loop. Before 500ms, the slave’s broadcast packet has been sent for a long time, and it is likely to
be connected to the master already. In this case, there is a bug that the device already having low power
alarm continues to work again.

For this reason, the SDK must do the low battery detect in advance during user initialization, and must
prevent the above situation from happening at this step. So add low battery detect during user initialization,
and the function interface in the SDK is:

void user_init_battery_power_check (void)
i1f(!deepRetWakeUp){
user_init_battery_power_check();

}

In user_init_battery_power_check function, the macro BAT_LEAKAGE_PROTECT_EN is used to make a dis-
tinction, by default the macro is enabled, mainly based on the previous low battery detection into sleep
voltage and then increase 200mV to detect; after disabling the macro, the fixed setting value such as the
original setting of low battery detection 2000mV and then increase 200mV to detect. The reason is that

AN-20111000-E3 195 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

when the fast low battery detection after the shutdown mode wakes up, the alarm voltage will be adjusted
slightly higher, and the adjustment is slightly higher than the maximum error of low battery detection, so it
is necessary to make the setting to increase the voltage detected when waking up. Generally, only when a
certain low battery detection found that the voltage is lower than 2000mV into the shutdown mode, there
will be a recovery voltage of 2200mV, so the user does not have to worry about this 2200mV will cause
false alarm low voltage for the actual voltage of 2V ~ 2.2V products.

5.2.3 Low battery detect and Amic Audio

Referring to the detailed introduction in Low Battery Detect Stand-alone Use mode, for products that need
to implement Amic Audio, just switch between Low Battery Detect and Amic Audio.

According to the low battery detection stand-alone use mode, after the program starts running, the default
low battery detection is enabled first. When Amic Audio is triggered, do the following two things.

(1) Disable low battery detection

Call battery_set_detect_enable(0) to inform the low battery detect module that the ADC resources have
been seized.

(2) Amic Audio ADC initialization

Since the ADC is used in a different way than the low battery detection, the ADC needs to be initialized
again. For details, refer to the “Audio” section of this document.

At the end of Amic Audio, battery_set_detect_enable(1) is called to inform the low battery detect module
that the ADC resources have been released. At this point the low battery detection needs to reinitialize the
ADC module and then start the low battery detection.

If it is low battery detection and other non-Amic Audio ADC tasks at the same time, the processing of other
ADC tasks can imitate the processing flow of Amic Audio.

If there are three kinds of tasks at the same time: low battery detection, Amic Audio and other ADC tasks,
user can refer to the method of switching between low battery detection and Amic Audio to implement
them according to the principle of “switching if ADC circuit needs”.

AN-20111000-E3 196 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

6 Audio

The source of Audio can be AMIC or DMIC.

« DMIC is a chip that directly uses peripheral audio processing to read digital signals onto B91;

+ AMIC needs to use the codec module inside B91 to sample and post-process the original Audio signal,
and finally convert it into a digital signal and transmit it to the MCU.

6.1 Initialization

6.1.1 AMIC and Low Power Detect

The current version does not support this function, and future versions will support it.

6.1.2 AMIC Initialization

Refer to the SDK demo B91 feature “feature_audio” speech processing related code.

vold ui_enable_mic (int en)
{

ui_mic_enable = en;

#if (BLT_APP_LED ENABLE)
device_led_setup(led_cfg[en ? LED_AUDIO_ON : LED_AUDIO_OFF]);
#endif
gpio_write(GPIO_LED BLUE,en);
if(en){ //audio on
/177/777/7//7///////// AUDIO initialization///////////////////
#1f (MICPHONE_SELECT == BLE_DMIC_SELECT) //Dmic config
audio_dmic_init();
#else //Amic config
audio_amic_init();
#endif
}
else{ //audio off
#if (MICPHONE_SELECT == BLE_DMIC_SELECT) //Dmic config
audio_mic_off();
#else //audio off
audio_mic_off();
#endif

#if (BATT_CHECK_ENABLE)
battery_set_detect_enable(!en);

AN-20111000-E3 197 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#endif

In the function “ui_enable_mic”, the parameter “en” serves to enable (1) or disable (O) Audio task.

At the beqginning of Audio, the TL_MICBIAS pin has been configured in audio_amic_init() by default to output
a high level to drive AMIC, and users can use it directly without reconfiguration.

Following shows AMIC initialization setting:

vold audio_amic_init(void)

{
audio_set_codec_1in_path_a_d_gain(CODEC_IN_D_GAIN_20_DB,CODEC_IN_A_GAIN_O_DB);//recommend

<« setting dgain:20db,again 0db
audio_init(AMIC_IN_TO_BUF_TO_LINE_OUT ,AUDIO_16K,MONO_BIT_16);

audio_rx_dma_chain_init(DMA2, (ul6*)buffer_mic,TL_MIC_BUFFER_SIZE);

In the working process of Audio, the data in codec is continuously copied to SRAM through DMA. au-
dio_rx_dma_chain_init is used to configure the buffer and length of the Audio data stored in the SRAM,
and configure it into a circular linked list structure to store the Audio data. The user can refer to the current
SDK method to align the four-byte buffer_mic when defining the buffer_mic.

audio_set_codec_in_path_a_d_gain is used to configure the Audio gain. The setting range of

codec_in_path_digital_gain_e is 0-43db, and the user can configure it as needed.

The configuration of Buffer_mic is handled in the ui_enable_mic function, which is equivalent to doing it
again every time Audio starts. The reason is that the configured register will be lost during sleep.

After the Audio task is over, the codec ADC must be closed to prevent leakage:

audio_codec_adc_power_down ();

The execution of the Audio task is placed in the Ul entry part of the main_loop.

if(ui_mic_enable){
if(audio_start || (audio_stick && clock_time_exceed(audio_stick, 380*1000))){
audio_start = 1;
task_audio();

}
}
else{

audio_start = 0;
}

6.1.3 DMIC Initialization

Enable the macro "BLE_DMIC_ENABLE” and set it to DMIC working mode, the initial configuration of DMIC
is as follows:

AN-20111000-E3 198 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void audio_dmic_1init()

{
audio_set_codec_1in_path_a_d_gain(CODEC_IN_D_GAIN_20_DB,CODEC_IN_A_GAIN_0_DB);
audio_set_dmic_pin(DMIC_D4_DAT_D5_CLK);
audio_init(DMIC_IN_TO_BUF ,AUDIO_16K,MONO_BIT_16);
audio_rx_dma_chain_init(DMA2, (ul6*)&buffer_mic,TL_MIC_BUFFER_SIZE);

}

For the Mic_buffer and voice gain section, please refer to Amic’s explanation. The user needs to configure the
clk pin and dat pin of DMIC through audio_set_dmic_pin. There are DMIC_GROUPB_B2_DAT_B3_B4_CLK,
DMIC_GROUPC_C1_DAT_C2_C3_CLK and DMIC_GROUPD_D4_D6_D for selection.

6.2 Audio Data Processing

6.2.1 Audio Data Volume and RF Transfer

The raw data sampled by AMIC adopt pcm format. The demo currently provides three compression algo-
rithms, sbc, msbc and adpcm, with adpcm using the pcm-to-adpcm algorithm to compress the raw data into
adpcm format with compression ratio of 25%, thus BLE RF data volume will be decreased largely. Master
will decompress the received adpcm-format data back to pcm format.

AMIC sampling rate is 16K x 16bits, corresponding to 16K samples of raw data per second, i.e. 16 samples
per millisecond (16™16bits=32bytes per ms).

For every 15.5ms, 496-byte (15.5"16=248 samples) raw data are generated. Via pcm-to-adpcm convertion
with compression ratio of 1/4, the 496-byte data are compressed into 124 bytes.

The 128-byte data, including 4-byte header and 124-byte compression result, will be disassembled into five
packets, and sent to Master in L2CAP layer; since the maximum length of each packet is 27 bytes, the first
packet must contain 7-byte I2cap information, including: 2-byte 12caplen, 2-byte chanid, 1-byte opcode
and 2-byte AttHandle.

Figure below shows the RF data captured by sniffer. The first packet contains 7-byte extra information and
20-byte audio data, followed by four packets with 27-byte audio data each. As a result, total audio data
length is 20 + 27*4 = 128 bytes.

AN-20111000-E3 199 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data Header RSl
Data Ty CRC FCs
YPE |\T7TnD NESN SN MD PDU-Length (dBm)
Empty BOU|| 1 o on o OxBFEFDC || —38 || 0K
Data Ty Data Header || L2CAP Header AT
YP®||LLTD NESW SN MD PDU-Length |L2CAP-Length Chanld ||Opcode AttHandle AttValue
L2CAE-5 || 2 T 27 0x0083 0x0004 |[0x13 0x002B 3F 03 07 7C A9 BE 13 65 21 43 51 Bl 43 22 14 10 €3 40 22 25
Data Header RSSI
Data Ty CRC FCs
YPE |\T7TD NESN SN MD PDU-Length (dBm)
Empty BOU|| 1 a0 o0 o 0xBFEARS || —38 || oK
Data Header Generic L2CAP Payload RSSI
mta T cispem i LIRS e R CRC FCS
YP|lLLID NESN SN MD PDU-Length ||80 94 38 33 73 08 11 2& 32 61 94 11 99 53 (dBm)
L2CAEC || 1 Tonm 27 41 92 99 A9 E9 81 8B 1C 92 09 AR D1 2B ox13zael || -38 || ox
Data Header RSl
Data Ty CRC FCs
YPE |ITILID NESN SN MD EDU-Length (dBm)
Empty EOU|| 1 2 e o 0xBFEFDC || —38 || 0K
Data Header Generic L2CAP Payload rsst []
Data Ty N vl il St S ot A CRC FCS
YPE|lLLID NESN SN MD EDU-Length ||AC BB C9 B9 CO 2R &D CB 4B 9C 09 AB 99 29 (dBm)
T2caE—C || 1 01 1 27 OF AB 0B 1 OF 04 15 21 53 30 C& 17 90 0x368693 || —38 || ox
Data Header RSSI
Data T CRC FCs
YP¢ ||ILID NESN SN MD FPDU-Length (dBm)
Empty EDU|| 1 o 0 o [0xBFE4RS || -3 || 0K
Data Header Generic L2CAP Payload RSSI
Data Ty % CRC FCs
YPe|lLLID NESN SN MD EDU-Length ||19 09 89 89 89 A8 08 8A 50 ES 19 &R B& DO (dBm)
TacaE—C || 1 AT 27 08 AL F9 88 CL A0 9A Bl 1B 92 9E CA C9 ox441600 ||_-38_|| oK |
Data Header RSl
Data Ty CRC FCs
YPE |\T7TnD NESN SN MD PDU-Length (dBm)
Empty EOU|| 1 Tof o0 o oxeFEFDC ||_-38 || oK |
Data Header Generic L2CAP Payload RSSI
Data Ty CRC FCs
YPe|lLLID NESN SN MD EDU-Length ||EQ 81 0B 09 1A DB B3 99 A9 D2 99 OF B9 91 (dBm)
L2CAE—C || 1 o 1 0 27 €9 BO BL CB B2 E1 1 AR 13 OF 33 47 32 oxFosAcE ||_-38 || oK |
Data Header RSl
Data Ty CRC FCs
YP® ||ITTID NESN SN MD PDU-Tength (dBm)
Empty BOU|| 1 a0 o0 o oxerE4ns || 36 || oK |
Data Header RSl
Data T CRC FCs
YPE |\TTTD NESN SN MD PDU-Length (dBm)
Empty EDU| 1 Y 0 oxerE27a || —38 |l ox

Figure 6.1: Audio Data Sample

According to “Exchange MTU size” in ATT & GATT (section 3.3.3 ATT & GATT), since 128-byte long audio
data packet are disassembled on Slave side, if peer device needs to re-assemble these received packets,
we should determine maximum ClientRxMTU of peer device. Only when “ClientRxMTU" is 128 or above,
can the 128-byte long packet of Slave be correctly processed by peer device. In the Telink BLE SDK de-
scribed in the previous section 3.2.8, when the slave end sets the Rx MTU size in the main function call
blc_att_setRxMtuSize(), if the size is greater than 23, it will actively perform the upstream MTU and update
the DLE.

Following is the audio service in Attribute Table:

// 0034 — 0037 MIC

{0,ATT_PERMISSIONS RERD,2,sizeof (my MicCharVal), (u6*) (&émy characterUUID), (ug*) (my MicCharval), 0},
{0,ATT_PERMISSIONS READ, 16,sizeof (my MicData), (u8*) (&my MicUUID), (uB*) (&my MicData), 0}, //value

{0,ATT PERMISSIONS RDWR, 2,sizeof (micDataCCC), (uB*) (sclientCharacterCfgUUID), (u8*) (micDataccc), 0}, //value

{0,ATT_PERMISSIONS RERD,2,sizecf (my MicName), (uB*) (&userdesc_UUID), (u8*) (my MicName), 0},

Figure 6.2: MIC Service in Attribute Table

The second Attribute above is used to transfer audio data. This Attribute uses “Handle Value Notification” to
send Data to Master. After Master receives Handle Value Notification, the Attribute Value data corresponding
to the five successive packets will be assembled into 128 bytes, and then decompressed back to the pcm-
format audio data.

AN-20111000-E3 200 Ver1.2.0

i Telink
Telink B91 BLE Single Connection SDK Developer Handbook

6.2.2 Audio Data Compression
Related macros are defined in the “audio_config.h”, as shown below:

#if (TL_AUDIO MODE == TL_AUDIO RCU_ADPCM_GATT_TLEINK)

#define ADPCM_PACKET_LEN 128
#define TL_MIC_ADPCM_UNIT_SIZE 248
#define TL_MIC_BUFFER_SIZE 992
#elif (TL_AUDIO _MODE == TL_AUDIO_RCU_ADPCM_GATT_GOOGLE)
#define ADPCM_PACKET_LEN 136 //(128+6+2)
#define TL_MIC_ADPCM_UNIT_SIZE 256
#define TL_MIC_BUFFER_SIZE 1024
#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_ADPCM_HID DONGLE_TO_STB)
#define ADPCM_PACKET_LEN 1260
#define TL_MIC_ADPCM_UNIT_SIZE 240
#define TL_MIC_BUFFER_SIZE 960
#elif (TL_AUDIO MODE == TL_AUDIO_ RCU_ADPCM_HID)
#define ADPCM_PACKET_LEN 120
#define TL_MIC_ADPCM_UNIT_SIZE 240
#define TL_MIC_BUFFER_SIZE 960
#elif (TL_AUDIO_MODE == TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB)
#define ADPCM_PACKET_LEN 20
#define MIC_SHORT_DEC_SIZE 80
#define TL_MIC_BUFFER_SIZE 320
#elif (TL_AUDIO MODE == TL_AUDIO RCU_SBC_HID)
#define ADPCM_PACKET_LEN 20
#define MIC_SHORT_DEC_SIZE 80
#define TL_MIC_BUFFER_SIZE 320
#elif (TL_AUDIO MODE == TL_AUDIO_RCU_MSBC_HID)
#define ADPCM_PACKET_LEN 57
#define MIC_SHORT_DEC_SIZE 120
#define TL_MIC_BUFFER_SIZE 480

Each compression needs to process 248-sample, i.e. 496-byte data. Since AMIC continuously samples audio
data and transfers the processed pcm-format data into buffer_mic, considering data buffering and preser-
vation, this buffer should be pre-configured so that it can store 496 samples for two compressions. If 16K
sampling rate is used, then 496 samples correspond to 992 bytes, i.e. “TL_MIC_BUFFER_SIZE” should be
configured as 992.

“buffer_mic” is defined as below:

s16 buffer_mic[TL_MIC_BUFFER_SIZE>>1]; //496 sample, 992 bytes
audio_rx_dma_chain_init(DMA2, (ul6*)buffer_mic,TL_MIC_BUFFER_SIZE);

Following shows the mechanism of data filling into buffer_mic via HW control.

Data sampled by AMIC are transferred into memory starting from buffer_mic address with 16K speed; once
the maximum length 992 is reached, data transfer returns to the buffer_mic address, the old data will be re-

AN-20111000-E3 201 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

placed directly without checking whether it's read. It's needed to maintain a write pointer when transferring
data into RAM; the pointer is used to indicate the address in RAM for current newest audio data.

The “buffer_mic_enc” is defined to store the 128-byte compression result data; the buffer number is con-
figured as 4 to indicate result of up to four compressions can be buffered.

int buffer_mic_enc[BUFFER_PACKET_SIZE];

Since "BUFFER_PACKET_SIZE" is 128, and “int” occupies four bytes, it's equivalent to 1284 signed char.

buffer mic buffer mic_enc
Read pointer Read pointer
Write pointer| 128 byte
248 __New location

sample) for read pointer

128 byte
S N . Ed
. . - - IQ v
Write pointer > 248 New location New location for 128 byte
Hardware auto maintain = for read pointer write pointer
sample)

128 byte

Figure 6.3: Data Compression Processing

The figure above shows data compression processing method:

The buffer_mic automatically maintains a write pointer by hardware, and maintains a read pointer by soft-
ware.

Whenever SW detects there're 248 samples between the two pointers, the compression handler is invoked
to read 248-sample data starting from the read pointer and compress them into 128 bytes; the read pointer
moves to a new location to indicate following data are new and not read.

The buffer_mic is continuously checked whether there’re enough 248-sample data; if so, the data are
compressed and transferred into the buffer_mic_enc.

Since 248-sample data are generated for every 15.5ms, the firmware must check the buffer_mic with max-
imum frequency of 1/15.5ms. The FW only executes the task_audio once during each main_loop, so the
main_loop duration must be less than 15.5ms to avoid audio data loss. In Conn state, the main_loop dura-
tion equals connection interval; so for applications with audio task, connection interval must be less than
15.5ms. It's recommended to configure connection interval as 10ms.

The buffer_mic_enc maintains a write pointer and a read pointer by software: after the 248-sample data
are compressed into 128 bytes, the compression result are copied into the buffer address starting from the
write pointer, and the buffer_mic_enc is checked whether there’s overflow; if so, the oldest 128-byte data
are discarded and the read pointer switches to the next 128 bytes.

The compression result data are copied into BLE RF Tx buffer as below:

AN-20111000-E3 202 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The buffer_mic_enc is checked if it's non-empty (when writer pointer equals read pointer, it indicates
“empty”, otherwise it indicates “non-empty); if the buffer is non-empty, the 128-byte data starting from
the read pointer are copied into the BLE RF Tx buffer, then the read pointer moves to the new location.

The function “proc_mic_encoder” is used to process Audio data compression.

6.3 Compression and Decompression Algorithm

B91 single connection SDK provides sbc, mscc and adpcm compression and decompression algorithms, the
following mainly takes adpcm to explain the entire compression and decompression algorithm. About sbc
and mscc, the user can refer to the project implementation to understand.

The function below is used to invoke the adpcm compression algorithm:
void mic_to_adpcm_split (signed short *ps, int len, signed short *pds, int start);
« “ps” points to the starting storage address for data before compression, which corresponds to the read
pointer location of the buffer_mic as shown in figure above;

* “len” is configured as “TL_MIC_ADPCM_UNIT_SIZE (248)”, which indicates 248 samples;

« “pds” points to the starting storage address for compression result data, which corresponds to the
write pointer location of the buffer_mic_enc as shown in figure above.

? predict
2 |predict_idx
3 124 audio data len
4
1/4 compression
248 sample
496 bvtes | 124 bytes
127

Figure 6.4: Data Corresponding to Compression Algorithm

After compression, the data space stores 2-byte predict, 1-byte predict_idx, 1-byte length of current valid
adpcm-format audio data (i.e. 124), and 124-byte data compressed from the 496-byte raw data with com-
pression ratio of 1/4.

The function below is used to invoke the decompression algorithm:

AN-20111000-E3 203 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void adpcm_to_pcm (signed short *ps, signed short *pd, int len);

+ “s” points to the starting storage address for data to be decompressed (i.e. 128-byte adpcm-format
data). This address needs user to define a buffer to store 128-byte data copied from BLE RF.

« “pd” points to the starting storage address for 496-byte pcm-format audio data after decompression.
This address needs user to define a buffer to store data to be transferred when playing audio.

* “len” is 248, same as the “len” during compression.

As shown in figure above, during decompression, the data read from the buffer are two-byte predict, 1-
byte predict_idx, 1-byte valid audio data length “124”, and the 124-byte adpcm-format data which will be
decompressed into 496-byte pcm-format audio data.

6.4 Audio data processing flow

The feature_audio project in B91 SDK's B91 feature contains @ number of mode options, the user can select
by changing the macro in app_config.h, the default is TL_AUDIO_RCU_ADPCM_GATT_TLEINK, that is, Telink
custom Audio processing, its related settings are as follows.

/* Audio MODE:
* TL_AUDIO RCU_ADPCM_GATT_TLEINK
* TL_AUDIO_RCU_ADPCM_GATT_GOOGLE
* TL_AUDIO RCU_ADPCM_HID
* TL_AUDIO_RCU_SBC_HID
* TL_AUDIO _RCU_ADPCM_HID_DONGLE_TO_STB
* TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB
* TL_AUDIO_RCU_MSBC_HID
*/
#define TL_AUDIO_MODE TL_AUDIO_RCU_ADPCM_GATT_TLEINK

Since several of these modes have similar processes and the default Telink customization is just a single
compression of voice data for transmission, the whole process is relatively simple.

The TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB and TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB are
two modes with similar implementation functions but different encoding. So this chapter mainly de-
scribes on TL_AUDIO_RCU_ADPCM_GATT_GOOGLE, TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB and
TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB. Note that the B91 SDK only provides the demo program
at Slave end, for master program user can refer to the master_kma_dongle project in the Vulture BLE SDK.
This chapter describes the master-end related operations are referred to the Vulture BLE SDK.

Note:

If in setting different modes, compile prompt error that XX function or variable lack of definition, this is
due to the voice related lib library is not added, Users in the use of TL_AUDIO_RCU_ADPCM_GATT_GOOGLE,
TL_AUDIO_RCU_MSBC_HID, TL_AUDIO_RCU_SBC_HID, respectively, need to add the corresponding
library file, which corresponds to the library file as shown below.

AN-20111000-E3 204 Ver1.2.0

vl Telink
; Telink B91 BLE Single Connection SDK Developer Handbook

v % eagle ble sdk V3 2 0 single wiki A
i Binaries
m! Includes
= algorithm
v (= application
= app
v (= audio
= output
lg adpem.c
i adpem.h
i audio_common.h
i audio_config.h
i gl audio.h
I sbec.h
lg tl_audio.c
i tl audio.h
BB1_gl_audic.a
libB91_msbc_encode.a
libB31 sbc encode.a
= keyboard
= output
= print
= usbstd
i rf frame.h
= B91 ble sample
= B91 feature
= boot
= common
= drivers
= output v

Figure 6.5: Corresponding library files

For example, if using SBC mode, the setting method is shown as below.

AN-20111000-E3 205 Ver1.2.0

vl Telink

Telink B91 BLE Single Connection SDK Developer Handbook

Properties for eagle ble sdk V3 2 0 single wiki

type filter text
Resource
Builders
~ CfC++ Build
Build Variables
Environment
Logging
Target Canfigura
Tool Chain\tditor
C/C++ Genera
Project Referenc
Run/Debug Settin

Settings

Configuration: B91_feature [Active]

® Tool Settings # Build Steps

Build Artifact Binary Parsers @ Error Parsers

(£ nds32le-elf-mculib-v5f Configurations
~ & Andes C Compiler
 Preprocessor
£ Symbols
(% Directories
(# Optimization

Debugging
Warnings

& Miscellaneous
\t}’.} Andes C Linker
 General
Miscellaneous
Loaded Address
~ % Andes Assembler
& General
~ & NM (symbol listing)
 General
~ & Readelf (ELF info listing)
General
~ B Objdump (disassembly)
General
~ i Objcopy (object content copy)
& General
~ & Size (section size listing)
General
~ B LdSaG Tool
General

Libraries (-)

~ | Manage Configurations...

LSRR

m
firmware_encrypt
B91_ble_lib

dsp
B91_sbc encode

Library search path (-L)

a8 8§ &

"${workspace loc:/${ProjName}/proj lib}"

|"${workspace loc:/${ProjName}/application/audio}"

Restore Defaults Apply

Cancel

Figure 6.6: SBC mode setting method

6.4.1 TL_AUDIO_RCU_ADPCM_GATT_GOOGLE

Audio demo refers Google Voice V0.4 Spec for implementation, the user can use this demo and google TV

box for voice-related product development. Google’s Service UUID is also set in accordance with the Spec
provisions, as follows.

AN-20111000-E3

206

Ver1.2.0

il .
(vl Telink
1“ Telink B91 BLE Single Connection SDK Developer Handbook

ATV Voice ATWW_SERVICE_UUID | ABSE0001-5A21-4F05-BCTD-AFO1FE17
Service B664

Wite ATW_CHAR_TX AB5EQ002-5A21-4F05-BCTD-AFO1F617 | Write
Characteristic B664

Read ATW_CHAR_RX ABSEQ0003-5A21-4F05-BCTD-AF01F617 | Notify
Charactenstic B664

Google Confidential 3
Control

ATW_CHAR_CTL ABSE0004-5A21-4F05-BCTD-AFO1F617
B664

Notify |

Characteristic

Figure 6.7: Google Service UUID setting

6.4.1.1 Initialization

BLE Voice (ATV-Remote) Initilization

Remote ATV

Device
connected

1Get_caps (CHAR_TX:0x0A, {get_caps})

Get _caps_resp
(CHAR_CTL:0x0B, {get_caps_resp})
-

Remote ATV

Figure 6.8: Google Voice initialization flow

Initialization is mainly the slave end to obtain the configuration information of the master end, the entire
packet interaction information is as follows.

AN-20111000-E3 207 Ver1.2.0

— .
v Telink
k‘ Telink B91 BLE Single Connection SDK Developer Handbook

® By ATT YWrite Command Packet (ABSEOD02-5421-4F05-BC70D-AF01F617B664: 04 01 00 00 03 01)
B~ ATT Motification Packet (ABSE00D4-5A21-4F0S-BC7D-AF01F6176B664: OB 00 04 00 03 00 86 00 14)

Figure 6.9: Packet Interaction Information

6.4.1.2 Voice data transmission

m

Search button
pressed

SEARCH KEY (Ox0C, ©9x221)

Search (CHAR CTL:9x08) >

Mic_open (CHAR TX:8x0C, {codec used})

Mic_open_error
(CHAR_CTL:0x@C, error_code(2)

__ »
Aucio_start (CHAR CTL:@x®4)
Audio_data (CHAR RX:Data)

Audio _data (CHAR_RX:Data)

Audio sync (CHAR CTL:OxBA) .
Audio data (CHAR RX:Data) ol
L Mic_close (CHAR_TX:Gx0D))
Audio end (CHAR CTL:8x60) N

Figure 6.10: Audio Data Transmission

AN-20111000-E3 208 Ver1.2.0

Telink . . ,
Telink B91 BLE Single Connection SDK Developer Handbook

After the initialization is completed, the Slave end will send Search_KEY to the Master end, and the packet
is as follows.

[B- ATT Notification Packet (Report: 2 bytes) Master: C4:19:D1:01:EA:FE <-> Slave: "vhid" DD:DD:DD:DD:DD... 2 bytes (21 02)

Figure 6.11: Search_KEY packet

Then the Slave end will send Search to the Master end with the following packet.

@ [B. ATT Notification Packet (ABSE0004-5421-4F05-BC7D-AF01F617B664: 08) Master: C4:19:01:01:EA:FE <-> Slave: "vhid" DD:DD:DD:DD:DD:DD 1 byte (08)

Figure 6.12: Search packet

Then the Master end will send MIC_Open to the Slave end, and the packet is as follows.

£ (& ATT Write Transaction (ABSEN002-5A21-4F05-BC70-AF01F6176664: 0C 00 0200 03) Master: C4:19:01:01:EA:FE <- > Slave: "vhid" DD:DD:DD:DD:DD:DD 5 bytes {(0C 00 02 00 03)

Figure 6.13: MIC_Open packet

Then the Slave end sends Start to the Master end with the following packet.

[B- ATT Notification Packet (ABSE0D04-5A21-4F0S-BC7D-AFO01F617B664: 04 00 02 00) Master: C4:19:D1:01:EA:FE <-> Slave: "vhid" DD:DD:DD:DD:DD:DD 4 bytes (04 00 02 00)

Figure 6.14: Start packet

According to Google Voice’s Spec, the voice data transmission implemented in the program is 134 bytes per
frame, and the entire packet is displayed as follows.

— - - - - e m e — e e e oo

ATT Motification Packet (ABSE0003-5A21-4F05-BC7D-AF01F6176664: 00 00 00 00 00 01 FF FF 6808 19 19 00 91 82 94 18 09 9B 40)

[ATT Notification Packet {ABSED003-5A21-4F05-BC7D-AFO1F617B664: B3 01 7B 11 92 A9 00 D3 99 13 2D 2B 3B A7 A4 85 98 24 55 94)

® [E. ATT Motification Packet (ABSED003-5A21-4F05-BC7D-AFO1F617B664: BA SA 89 38 3B 45 9C 12 85 D5 80 1C 94 96 33 CO 10 93 94 92)

@ ATT Notification Packet (ABSEDOD3-5A21-4F05-BC?D-AqubIDtE.§ m@ﬁ QLHI ﬂm ;tgFEl 30 B4 A1 B1 3C)
@ ATT Notification Packet (ABSE0003-5421-4F05-BC7D-AF0 790 AB311IAAZ 4 B 0108 2C B1 C5 1C)
[Ee ATT Motification Packet (ABSEO0D3-5A21-4F05-BC7D-AFD1F617B664: 81 OA 98 29 D4 89 3A 04 A8 1F 24 82 89 91 26 98 90 42 B0 17)

o ATT Motification Packet (ABSE0003-5A21-4F05-BC7D-AFD1F617B664: 99 3B 29 04 E9 15 8B 6A 02 B1 09 08 09 79)

Figure 6.15: 134-byte Audio frame
Note:

On the Dongle side, we do not send a close command to end the voice transmission, but use a timeout
judgment to end the voice. For details, please refer to the code of Dongle implementation on Master
end.

6.4.1.3 TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB

This mode uses Service for the HID service specified in the Bluetooth Spec, through which the service
can achieve communication with the Dongle connected devices, provided that the Dongle and the master
computer device support the HID service method of interaction.

AN-20111000-E3 209 Ver1.2.0

‘v Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master

[0x99 0x99 0x99 0x21]

Start Request——»

[0x01]

Report_Inl[20Bytes]— =

Report_In2[20Bytes] —

Audio
Data
Encode 9 1
30Bvtes ——Report_In3[20Bytes] —
430Byte P Decode 480Bytes

VAV |::> 120Bytes \ 120 |:J,\ A\

Brtes

Audio

Data ——Report_In2[20Bytes] —

{ ——Report_Inl[20Bvtes] —

—— Report_In3[20Bytes] —» -

[0x99 0x99 0x99 0x24]
End Request———»

--Ack
[0x00]

Figure 6.16: Audio data interaction in ADPCM_HID_DONGLE_TO_STB mode

At the beginning, the Slave sends start_request to the Master with the following packet.

Master: C4:19:01:01:EAFE <-... 20 bytes {9999 99 21 00 00 00 00 00 00 00 00 00 0000 0000 ..,

S—— i

© [B- ATT Notification Packet (Report: 20 bytes)

Figure 6.17: Start_request packet

After the Master receives the start_request, it sends the Ack,packet as follows.

ATT ‘Write Command Packet (Report: 1 byte) Master: C4:19:D1:01:EA:FE <-... 1 byte (01)

Figure 6.18: Ack packet

Slave starts to send Audio voice data, the decompression and compression of voice data are operated in
480Bytes size, the voice data is first compressed to 120 bytes by ADPCM compression algorithm, then split
into 6 groups of packets and sent to Master end in turn, each group packet size is 20 bytes. In order to
ensure the sequence of voice packets, use every three groups of packets are changed in turn for a fixed
handle value. The receiver side starts to decompress and restore the voice signal after completing 6 groups
of packets. The packets are as follows.

AN-20111000-E3 210 Ver1.2.0

Telink B91 BLE Single Connection SDK Developer Handbook

1 20 bytes)

Master: C4:19:01:01:EA:FE <-... 20 bytes (77 77 77 40 80 80 86 00 68 08 08 08 08 00 88 00 00 80 90 18)

& ATT Motification Packet (Report: 20 bytes) Master: C4:19:D1:01:EAFE <-... 20bytes (0805 092492B40923B105C294 183892641 1B 21 E3 13)

« ATT Motification Packet (Report: 20 bytes) Master: C4:19:D1:01:EAFE <-... 20 bytes (B7 91 09 56 39 90 9B 1A 07 80 89 59 82 A9 3B 44 67 01 03 0B)
Ee ATT Motification Packet (Report: 20 bytes) Master: C4:19:01:01:EAFE <-... 20 bytes (00 29 03 1D 28 02 BB 42 59 08 01 34 D4 25 42 43 00 BB 31 BS)
fe ATT Motification Packet (Report: 20 bytes) Master: C4:19:01:01:EAFE <-.., 20bytes(3C 22919708 3C 48 186659 36 11 A3 04 C3 0D 39 B1 16 0B)
ﬁ, ATT Motification Packet (Report: 20 bytes) Master: C4:19:D1:01:EAFE <-.., 20bytes (48 1B 97 19 9A 1B 89 BC 1B 29 F8 81 39 A9 94 0C 7B 11 90 B3)
E_ ATT Motification Packet (Report: 20 bytes) Master: C4:19:D1:01:EAFE <-... 20bytes (9831 C290920B8 3934 AS A1 92 C8B078 1C 1A 93 1461 32)
£ ATT Motification Packet (Report: 20 bytes) Master: C4:19:D1:01;EAFE <-.,, 20 bytes (8096 34 CA 20 10B0 5891 F2 00 11 0D 32 00 E1 Al 21 AD 29)
Ee ATT Motification Packet (Report: 20 bytes) Master: C4:19:01:01:EAFE <-... 20 bytes (30 BA BE A% CB 07 33 91 1B 14 B3 1B 90 D0 63 BF 3C 12 CA 29)

Figure 6.19: Audio packet

At the end of the voice transmission, the Slave sends an End Request to the Master with the following

packet.

B- ATT Notification Packet (Report: 20 by

Master: C4:19:D1:01:EA. ..

20 bytes (99 99 ¢

9 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00)

Figure 6.20: End request packet

The Master sends an Ack after receiving the End Request with the following packet.

TT Write Command Packet (R

=l

eport: 1 b

%
vie)

Master: C4:19:01:01:EA:FE <-> Slave: "testau... 1 byte (00)

Figure 6.21: Ack packet

6.4.2 TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB

This mode and TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB, the same use of Service for the HID service
specified in the Bluetooth Spec, through the service can achieve the communication among the Dongle
connected, the premise is that the Dongle and the master computer device support the HID service interac-

tion.

AN-20111000-E3

21

Ver1.2.0

Telink B91 BLE Single Connection SDK Developer Handbook

160ByLes Encode
% :> 20Byres
Audio
160ByLes Encode Data
% ::> 20Bytes
Auvdio
Data

Slave

——Report

——Report

——Report
——Report

——Report

Master

0x99 0x99 0x99 0x31]
Start Regues|———

Inl

20Byvtes] ——s

In2[20Bytes |——

Report In3[20Byvtes|—

Inl[20Bytes]|——=
In2

20Bytes|——-

In3[20Bytes|——

0x99 0x99 0x99 0x34]

End Request——

Decode 1508 yLes

20Bytes > \/\,

Decode
20ByLes

160ByLes

AVAY,

fl===s====s====

Figure 6.22: Audio data interaction in SBC_HID_DONGLE_TO_STB mode

At the beginning, the Slave sends start_request to the Master with the following packet.

[B_ ATT Notification Pa

Master: C4:19:D1:01:EA... 20 by

39 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00)

Figure 6.23: Start_request packet

After the Master receives the start_request, it sends the Ack,packet as follows.

B B ATT Write ¢

ommand Packet (Report: 1 b

Master: C4:19:D1:01:EA...

1 byte (01)

Figure 6.24: Ack packet

Slave starts to send Audio voice data, voice data decompression and compression are operated in 160 bytes
size, voice data is first compressed to 20 bytes by SBC compression algorithm, and then sent to Master end,
each group of packet size is 20 bytes. In order to ensure the sequence of voice packets, use every three
groups of packets for fixed handle value. The receiver end starts to decompress and restore the voice signal
after each group of packets is completed. The packets are as follows.

- ATT Notification P:

G ATT Notification Packet (Report: 20 bytes)
£ ATT Notification Packet (Report: 20 bytes)
£ ATT Notification Packet (Report: 20 bytes)
£ ATT Notification Packet (Report: 20 bytes)
® 'Eg_ ATT Notification Packet (Report: 20 bytes)

B

Master
Master
Master
Master
Master

1 C4:19:D1:01:EA:FE <-> Slave

estAudio” DD:DD:DD:DD:DD:DD
1 C4:19:D1:01:EAFE <-> Slave: "testAudio” DD:DD:DD:DD:DD:DD
: C4:19:D1:01:EAFE <-> Slave: "testAudio” DD:DD:DD:DD:DD:DD
+ C4:19:D1:01:EA:FE <-> Slave: "testAudio” DD:DD:DD:DD:DD:DD
+ C4:19:D1:01:EAFE <-> Slave: "testAudio” DD:DD:DD:DD:DD:DD

DD:DD

ED BS 77 67 66 7B 57 BS 83 58 29 BE OC 31 BB 5B BS BB 56 BES)
20 bytes (BFB221 11 11 C36C 29 C3 1C 49 C4 1C 49 C3 1C 45 C5 1C 45)
20 bytes (B4 B2 11 11 10 C4 2C 43 C4 6C 3C C4 1C 52 C5 6C 49 C4 6C 46)
20 bytes (BC B3 21 1221 C31C 25C25C 25 C3 5C 45 C5 5C 54 C5 5C 45)
20 bytes (AE B3 22 11 11 C3 9C 24 C25C 21 C25C 35 C4 5C 55 C5 9C 55)
20 bytes (9F B2 22 21 22 C5 1C 45 C3 9C 45 C5 5C 45 C3 5C 31 C4 8C 48)

Figure 6.25: Audio packet

AN-20111000-E3

212

Ver1.2.0

(vl Telink . . ,
i Telink B91 BLE Single Connection SDK Developer Handbook

At the end of the voice transmission, the Slave sends an End Request to the Master with the following
packet.

B ATT Notification Packet (Report: 20 bytes) Master: C4:19:D1:01:EA...

20 bytes (99 99 99 34 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00)

Figure 6.26: End request packet

The Master sends an Ack after receiving the End Request with the following packet.

i= ATT Write Command Packet (Report: 1 byte) Master: C4:19:D1:01:EA...

Figure 6.27: Ack packet

AN-20111000-E3 213 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

7 OTA

In order to realize the OTA function of the B91 BLE slave, a device is required as a BLE OTA master.

The OTA master can be a Bluetooth device actually used with the slave (you need to implement OTA in the
APP), or you can use Telink’s BLE master kma dongle. The following uses Telink’s BLE master kma dongle as
the ota master to introduce OTA in detail. The related code implementation can also be found in feature_ota
under the Multi-Connection SDK.

B91 supports Flash multi-address boot: In addition to the first address of Flash 0x00000, it also supports
reading firmware from Flash high addresses 0x20000 (128K), Ox40000 (256K), 0x80000 (512K). This doc-
ument uses high address 0x20000 as an example to introduce OTA.

7.1 Flash Architecture and OTA Procedure

7.1.1 FLASH Storage Architecture

When booting address is 0x20000, size of firmware compiled by the SDK should not exceed 128kB, i.e. the
flash area 0~0x20000 serves to store firmware. If you're using boot address as Ox0 and Ox20000, the
firmware size shouldn’t be larger than 124K. if your firmware size is larger than 124K, then you would need
to use Ox0 and Ox40000 as boot address, the firmware size shouldn’t be larger than 252K. If more than
252K must be upgraded alternately using boot address O and 0x80000, the maximum firmware size must
not exceed 508K.

0x80000 0x80000
0x40000 0x40000 0x40000 0x40000
RF
transform
New_firmware &/$: :
= Firmware 2.bin Firmware 2.bin 0 Firmware_3. bin
storage area)
I
U
&
0x20000 0x20000 0x20000 Q 0x20000
Firmware 1.bin New fi
Ota_master. bin ew_llrmware Ota_master. bin
storage area
0x00000 0x00000 0x00000 0x00000
slave ota master slave ota master
OTA of the (2n+1)-th time OTA of the (2n+2)-th time
Figure 7.1: Flash Storage Structure
(1) OTA Master burns new firmware2 into the Master flash area starting from 0x20000.
AN-20111000-E3 214 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(2) OTA for the first time:

« When power on, Slave starts booting and executing firmware1 from flash 0~0x20000.

« When firmware1is running, the area of Slave flash starting from 0x20000 (i.e. flash 0x20000~0x40000)
is cleared during initialization and will be used as storage area for new firmware.

« OTA process starts, Master transfers firmware2 into Slave flash area starting from Ox20000 via RF.
Then Slave sets bootloader to boot from the new firmware offset and reboots (similar to power cycle).

(3) For subsequent OTA updates, OTA Master first burns new firmware3 into the Master flash area starting
from 0x20000.

(4) OTA for the second time:

* When power on, Slave starts booting and executing firmware2 from flash 0x20000~0x40000.

« When firmware2 is running, the area of Slave flash starting from OxO (i.e. flash 0~0x20000) is cleared
during initialization and will be used as storage area for new firmware.

« OTA process starts, Master transfers firmware3 into Slave flash area starting from OxO via RF. Then
Slave sets bootloader to boot from the new firmware offset and reboots.

(5) Subsequent OTA process repeats steps 1)~4): 1)~2) represents OTA of the (2n+1)-th time, while 3)~4)
represents OTA of the (2n+2)-th time.

7.1.2 OTA Update Procedure

Based on the flash storage structure introduced, the OTA update procedure is illustrated as below:

First introduce the multi-address booting mechanism (only the first two booting addresses 0x0O0000 and
0x20000 will be introduced here): after MCU is powered on, it boots from address O by default. First, read
the content of flash 0x20. If the value is Ox4b, the code starting from O are transferred to RAM, and the
following instruction fetch address equals O plus PC pointer value; if the value of Ox20 is not Ox4b, the
MCU directly reads the value of 0x20020, if the value is 0x4b, the MCU moves the code from 0x20000 to
RAM, and all subsequent fetches start from the 0x20000 address, that is, the fetch address = 0x20000+PC
pointer value.

So as long as you modify the value of the Ox20 and 0x20020 flag bits, you can specify which part of the
FLASH code that the MCU executes.

The power-on and OTA process of a certain SDK (2n+1 or 2n+2) is:

(1) The MCU is powered on, and the values of 0x20 and Ox20020 are read and compared with Ox4b to
determine the booting address, and then boots from the corresponding address and execute the code.
This function is automatically completed by the MCU hardware.

(2) During the program initialization process, read the MCU hardware register to determine which address
the MCU boots from:

If boots from O, set ota_program_offset to Ox20000, and erase all non-0xff content in the 0x20000 area
to Oxff, which means that the new firmware obtained by the next OTA will be stored in the area starting at
0x20000;

AN-20111000-E3 215 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

If boots from Ox20000, set ota_program_offset to 0x0, and erase all the non-0xff content in the Ox0 area
to Oxff, which means that the new firmware obtained by the next OTA will be stored in the area starting
from OxO.

(3) Slave MCU executes the firmware after booting; OTA Master is powered on and establishes BLE con-
nection with Slave.

(4) Trigger OTA Master to enter OTA mode by Ul (e.qg. button press, write memory by PC tool, etc.). After
entering OTA mode, OTA Master needs to obtain Handle value of Slave OTA Service Data Attribute
(The handle value can be pre-appointed by Slave and Master, or obtained via “read_by_type”.)

(5) After the Attribute Handle value is obtained, OTA Master may need to obtain version number of current
Slave Flash firmware, and compare it with the version number of local stored new firmware.

Note:

If legacy protocol is used, user needs to implement the version number; if extend protocol is used, the
operation related to version number acquisition has been implemented. For the difference between
legacy and extend protocol, user can refer to section 7.2.2.

(6) To enable OTA upgrade, OTA Master will send an OTA_start command to inform Slave to enter OTA
mode.

(7) After the OTA_start command is received, Slave enters OTA mode and waits for OTA data to be sent
from Master.

(8) Master reads the firmware stored in the flash area starting from Ox20000, and continuously sends
OTA data to Slave until the entire firmware is sent.

(9) Slave receives OTA data and stores it in the area starting with ota_program_offset.

(10) After the master sends all the OTA data, check whether the data is received correctly by the slave (call
the relevant function of the underlying BLE to determine whether the data of the link layer is correctly
acknowledged).

(11) After the master confirms that all OTA data has been correctly received by the slave, it sends an
OTA_END command.

(12) Slave receives the OTA_END command and writes the offset address of the new firmware area 0x20
(that is, ota_program_offset+0x20) as Ox4b, and writes the offset address of the old firmware storage
area 0x20 as 0x00, which means it will Move code execution from the new area.

(13) Slave reports the results of OTA to master through Handle Value Notification.

(14) Reboot the slave, the new firmware takes effect.

During the whole OTA upgrade process, Slave will continuously check whether there’s packet error, packet
loss or timeout (A timer is started when OTA starts). Once packet error, packet loss or timeout is detected,
Slave will determine the OTA process fails. Then Slave reboots, and executes the old firmware.

The OTA related operations on Slave side described above have been realized in the SDK and can be used
by user directly. On Master side, extra firmware design is needed and it will be introduced later.

AN-20111000-E3 216 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

7.1.3 Modify FW Size and Booting Address

API blc_ota_setNewFirmwwareStorageAddress supports modification of the boot address. Herein booting
address means the address except O to store New_firmware, so it should be one of 0x20000, 0x40000 or
0x80000.

Firmware_Boot_address Firmware size (max)/K

0x20000 124
0x40000 252
0x80000 508

The default maximum firmware size in the SDK is 252K (due to some special reasons, the firmware size of
the startup address Ox40000 must not be greater than 252K), and the corresponding startup addresses
are 0xO0000 and 0x40000. These two values are consistent with the previous description. User need to
follow the above table startup address and firmware_size size constraints when setting. If the maximum
firmware_size changes and exceeds 124K, then you need to move the startup address to 0x40000 (size
maximum must not exceed 252K), similarly if firmware_size exceeds 252K, the boot address needs to be
moved to Ox80000 (the maximum size must not exceed 508K). For example, the maximum firmware size
may be up to 200K, user can call API blc_ota_setNewFirmwwareStorageAddress to set.

ble_sts_t blc_ota_setNewFirmwwareStorageAddress(multi_boot_addr_e new_fw_addr);

The parameter multi_boot_addr_e indicates the available boot addresses, including three.

typedef enum{
MULTI_BOOT_ADDR_0x20000
MULTI_BOOT_ADDR_0x40000
MULTI_BOOT_ADDR_0Ox80000

0x20000, //128 K
0x40000, //256 K
0x80000, //512 K

i

The return value ble_sts_t indicates the set status, for the definition of this type, please refer to
ble_common.h in SDK.

If successful, it returns BLE_SUCCESS; otherwise it returns SERVICE_ERR_INVALID_PARAMETER.

7.2 RF Data Processing for OTA Mode

7.2.1 OTA Processing in Attribute Table

OTA related contents needs to be added in the Attribute Table on slave end. The “att_readwrite_callback_t
r* and “att_readwrite_callback_t w” of the OTA data Attribute should be set as otaRead and otaWrite,
respectively; the attribute should be set as Read and Write_without_Rsp (Telink Master KMA Dongle sends
data via "Write Command” by default, with no need of ack from Slave to enable faster speed). Note that

AN-20111000-E3 217 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

if the master uses Write Response to send data, you need to change gatt’s feature permission to allow the
slave end to respond. (CHAR_PROP_WRITE_WITHOUT_RSP is changed to CHAR_PROP_WRITE).

// OTA attribute values

static const u8 my_OtaCharVal[19] = {
CHAR_PROP_READ | CHAR_PROP_WRITE_WITHOUT_ RSP,
U16_LO(OTA_CMD_OUT_DP_H), U16_HI(OTA_CMD_OUT_DP_H),
TELINK_SPP_DATA_OTA, };

{4,ATT_PERMISSIONS_READ, 2,16, (u8*)(&my_primaryServiceUUID), (u8*)(&my_0OtaServiceUUID),
< 0},
{0,ATT_PERMISSIONS_READ, 2, sizeof(my_OtaCharVal),(u8*)(&my_characterUUID), (u8*)
< (my_OtaCharval), 0}, //prop
{0,ATT_PERMISSIONS_RDWR,16,sizeof(my_OtaData), (u8*)(&my_0taUUID), (&my_OtaData),
< &otaWrite, NULL}, //value
{0,ATT_PERMISSIONS_READ, 2,sizeof (my_OtaName),(u8*)(&userdesc_UUID), (u8*)(my_OtaName), 0},

When Master sends OTA data to Slave, it actually writes data to the second Attribute as shown above, so
Master needs to know the Attribute Handle of this Attribute in the Attribute Table. To use the Attribute
Handle value pre-appointed by Master and Slave, user can directly define it on Master side.

7.2.2 OTA Protocol

The current OTA architecture extends the functionality and is compatible with previous versions of the
protocol. The entire OTA protocol consists of two parts: the Legacy protocol and the Extend protocol.

OTA Protocol -

Legacy protocol Extend protocol

Note:

Functions supported by OTA protocol are:

(1) OTA Result feedback function: this function is not optional, added by default;

(2) Firmware Version Compare function and Big PDU function: This function is optional and can not be
added, it should be noted that the version number comparison function is different in Legacy protocol
and Extend protocol, please refer to the following OTA_CMD section for details.

The following introductions are all focused on Legacy and Extend protocols.
OTA_CMD composition

The PDUs of OTA’s CMD are as follows.

AN-20111000-E3 218 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

OTA Command Payload -

Opcode (2 octet) Cmd_data (0-18 octet)
Opcode
Opcode Name Use*
OxFFOO CMD_OTA_VERSION Legacy
OxFFO1 CMD_OTA_START Legacy
OxFFO2 CMD_OTA_END All
OxFFO3 CMD_OTA_START_EXT Extend
OxFFO4 CMD_OTA_FW_VERSION_REQ Extend
OxFFO5 CMD_OTA_FW_VERSION_RSP Extend
OxFFO6 CMD_OTA_RESULT All
Note:

« Use:To identify the command use in Legacy protocol. Extend protocol or both of all;
» Legacy: Only use in the Legacy protocol;

Extend: Only use in the Extend protocol;

+ All: use both in the Legacy protocol and Extend protocol.

(1) CMD_OTA_VERSION

It is a command to get the current firmware version number of the slave, and the user can choose to use it
if he adopts OTA Legacy protocol for OTA upgrade. It is Optional. This command can be used to pass the
firmware version number through the callback function reserved on the slave end.

vold blc_ota_registerOtaFirmwareVersionReqCb(ota_versionCb_t cb);

The server side will trigger this callback function when it receives the CMD_OTA_VERSION command.
(2) CMD_OTA_START

This command is the OTA update start command. The master sends this command to the slave to officially
start the OTA update. This command is only for Legacy Protocol, if user uses OTA Legacy protocol, this
command must be used.

(3) CMD_OTA_END

This command is the end command, which is used by both legacy and extend protocol in OTA. When Master
confirms all OTA data are correctly received by Slave, it will send this command, which can be followed by
four valid bytes to re-confirm Slave has received all data from Master.

AN-20111000-E3 219 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

- CMD_data -

Adr_index_max (2 octets) Adr_index_max_xor (2 octets) Reserved (16 octets)

* Adr_index_max: the maximum adr_index value
« Adr_index_max_xor: the anomaly value of Adr_index_max for verification
« Reserved: Reserved for future function extension

(4) CMD_OTA_START_EXT

This command is the OTA update start command in the extend protocol. master sends this command to
slave to officially start the OTA update. User must use this command as the start command if using OTA
extend protocol.

- CMD_data -

Length (1 octets) Version_compare (1 octets) Reserved (16 octets)

« Length: PDU length
» Version_compare: Ox01: enable version compare 0x00: disable version compare
* Reserved: Reserved for future extension

(5) CMD_OTA_FW_VERSION_REQ

This command is the version comparison request command in the OTA upgrade process. This command is
initiated by client to Server side to request for version number and upgrade permission.

- CMD_data -

version_num (2 octets) version_compare (1 octets) Reserved (16 octets)

« Version num: the firmware version number to be upgraded on the client side
+ Version compare: OxO1: Enable version compare Ox00: Disable version compare

» Reserved: Reserved for future extensions
(6) CMD_OTA_FW_VERSION_RSP

This command is a version response command, the server side will compare the existing firmware version
number with the version number requested by the client side after receiving the version comparison request
command (CMD_OTA_FW_VERSION_REQ) from the client side to determine whether to upgrade, and the
related information will be sent back to the client via this command.

AN-20111000-E3 220 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

CMD_data -

version_num (2 octets)

version_accept (1 octets) Reserved (16 octets)

» Version num: the firmware version number that Server side is currently running

» Version_accept: Ox01: accept client side upgrade request, Ox00: reject client side upgrade request

» Reserved: Reserved for future extensions

(7) CMD_OTA_RESULT

This command is the OTA result return command, the slave will send the result information to the master
after the OTA is finished. In the whole OTA process, no matter success or failure, the OTA_result will only
be reported once, the user can judge whether the upgrade is successful according to the returned result.

CMD_data -

Result (1 octets) Reserved (16 octets)

Result: OTA result information, all possible return results are shown in the following table.

Table 7.10: All possible return results of OTA

Value Type

info

Ox00 OTA_SUCCESS

0x01 OTA_DATA_PACKET_
SEQ_ERR

0x02 OTA_PACKET_INVALID

0x03 OTA_DATA_CRC_ERR
O0x04 OTA_WRITE_FLASH_ERR
0Ox05 OTA_DATA_UNCOMPLETE
Ox06 OTA_FLOW_ERR

0x07 OTA_FW_CHECK_ERR

0x08 OTA_VERSION_
COMPARE_ERR

Ox09 OTA_PDU_LEN_ERR

Ox0a OTA_FIRMWARE_
MARK_ERR

SUcCcess

OTA data packet sequence number error: repeated OTA PDU or
lost some OTA PDU

invalid OTA packet: 1. invalid OTA command; 2. addr_index out
of range; 3.not standard OTA PDU length

packet PDU CRC err

write OTA data to flash ERR

lost last one or more OTA PDU

peer device send OTA command or OTA data not in correct flow
firmware CRC check error

the version number to be update is lower than the current
version

PDU length error: not 16*n, or not equal to the value it declare in
“"CMD_OTA_START_EXT" packet

firmware mark error: not generated by telink’s BLE SDK

AN-20111000-E3

221 Ver1.2.0

—_—)
v Telink
a’*’“ Telink B91 BLE Single Connection SDK Developer Handbook

Value Type info
Ox0b OTA_FW_SIZE_ERR firmware size error: no firmware_size; firmware size too small or
too big

Ox0c OTA_DATA_PACKET_ time interval between two consequent packet exceed a
TIMEOUT value(user can adjust this value)

0x0d OTA_TIMEOUT OTA flow total timeout

Ox0e OTA_FAIL_DUE_TO_ OTA fail due to current connection terminate(maybe connection
CONNECTION timeout or local/peer device terminate connection)
_TERMIANTE

OxOf- Reserved for future use /
Oxff

Reserved: Reserved for future extensions
OTA Packet structure composition

When the Master sends commands and data to the Slave using WirteCommand or WriteResponse, the value
of the Attribute Handle of the ATT layer is the handle_value of the OTA data on the slave side. According
to the specification of the Ble Spec L2CAP layer regarding the PDU format, Attribute Value length is defined
as the OTA_DataSize part in the following figure.

L2CAP len Ati Handle | Adr_index

loctet 2octets 2octets loctet 2octets 2octets

Figure 7.2: OTA packet in L2CAP PDU

» DLE Size: CID + Opcode + Att_Handle + Adr_index + OTA_PDU + CRC
+ MTU_Size: Opcode + Att_Handle + Adr_index + OTA_PDU +CRC
+ OTA_Data_Size: Adr_index + OTA_PDU + CRC

OTA_Data introduction

Type Length

Default® + BigPDU* 160ctets -2400ctets(n*16,n=1..15)

AN-20111000-E3 222 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Note:

» Default: OTA PDU length fixed default size is 16 octets;
» BigPDU: OTA PDU length can be changed in the range of 16octets - 240 octets, and is an integer
multiple of 16 bytes.

OTA_PDU Format

When user adopts Extend protocol in OTA and supports Big PDU, it can support long packet for OTA upgrade
operation and reduce the time of OTA upgrade. User can customize the PDU size at the client side according
to the need. The last two bytes are a CRC_16 calculation of the previous Adr_Index and Data to get the first
CRC value, the slave will do the same CRC calculation after receiving the OTA data, and only when the CRC
calculated by both matches, it will be considered a valid data.

- OTA PDU -

Adr_Index (2 octets) Data(n*16 octets) n=1..15 CRC (2 octets)

(1) PDU packet length: n=1

Data : 16 octets

Mapping of Adr_Index to Firmware address.

Adr_Index Firmware_address

0x0001 0x0000 - OxO00F
0x0002 0x0010 - OxO01F

XXXX (XXXX -1)"16 - (XXXX)*16+15

(2) PDU packet length: n=2

Data : 32 octets

Mapping of Adr_Index to Firmware address.

Adr_Index Firmware_address

0x0001 0x0000 - OxO01F
0x0002 0x0010 - OxO03F

XXXX (XXXX =1)*32 - (XXXX)*32+31

(3) PDU packet length: n=15

AN-20111000-E3 223 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Data : 240 octets

Mapping of Adr_Index to Firmware address.

Adr_Index Firmware_address

0x0001 0x0000 - OxOOEF
0x0002 0x0010 - OxO1DF

XXXX (XXXX -1)240 - (XXXX)240+239

Note:

» In the OTA upgrade process, each packet of PDU length sent needs to be aligned with 16 bytes,
that is, when the valid OTA data in the last packet is less than 16 bytes, the OxFF data is added to
make up the alignment, as listed below.

a) the current PDU length is set to 32, the last packet of valid data PDU is 4octets, then you need to
add 12octets of OxFF for alignment;

® £ ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2B12: AB 07 B3 ... Master: 4E:DA:20(ES:28:E3 <-> Slave: "B91_ota" DD:DD:DDIDD:DDIDD 36 bytes (AB 07 B3 03 7804 0B 00 030063 01 000002 01 000001 01 0.,

© B ATT write Command Packet (00010203-0405-0607-0809-0A0BOCODZB12: AC 07 4A... Master: 4E:DAI20: 8:E3 <-» Slave: "B91_ota" DD:DD:DD:DD:DD:DD 20 bytes (AC 07 4A DD 6A 3C FF FF FF FF FF FF FF FF FF FF FF FF E7 7D)

b) the current PDU length is set to 48, the last packet of valid data PDUs is 20octets, then you need
to add 12octets of OxFF for alignment;

{5 ATT Write Command Packet (00010203-0405-0607-0809-0A080C0D2B12; 1C 0520 ... S2Zbytes (1C05200100000000 00000000 000000000000003001 CO0100800001000100D70233016B30378...

[ATT Write Command Packet (00010203-0405-0607-0809-0A0B0COD2B12: 10 0501 ... 36 bytes (1D 0501 01 0000 01 02 00 00 C0 00 18 18 18 18 FF FF 4A DD 6A 3C FF FF FF FF FF FF FF FF FF FF FF FF 52 78)

c) the current PDU length is set to 80, the last packet of valid data PDUs is 52octets, then you need

to add 12octets of OxFF for alignment.

Master: 4E:... 84 bytes (1003 0000 0000 64 10 B7 1D €8 20 6E 38 AC 30 DI 26 90 41 DC 76 F4 51 6B 68 58 61 B2 4D 3C 71 05 50 20 83 BS ED 44 93 OF FO E8 A3 D6 D6 8C B3 61 CB BO C2 64 98 D4 D2 D3 86 76 E2 0A AD 1CF2...))
Master: 4E:... 68 bytes (1103003001 CO 01 0080 00 01 00 01 00 D7 02 33 01 B3 03 76 04 0B 00 03 00 63 01 00 00 02 01 00 00 01 01 00 00 01 02 00 00 CO 00 18 18 15 18 FF FF 44 DD 64 3C FF FF FF FF FF FF FF FF FFFF...)

» For the packet capture records corresponding to different PDU sizes, users can contact Telink
technical support to obtain.

7.2.3 RF Transfer Processing on Master Side

The master end sends commands and data to the slave via Write Command or Write Request in the L2CAP
layer, and Spec specifies that it must return Write Response after receiving Write Request. For the introduc-
tion of ATT layer about Write Command and Write Request, please refer to Ble Spec or section 3.3.3.2 for its
specific composition user. Telink Ble master Dongle uses Write Command to send data and commands by
default, in this way, during OTA data transfer, Master won’t check whether each OTA data is acknowledged.
In other words, after sending an OTA data via write command, Master won’t check if there’s ack response
from Slave by software, but will directly push the following data into HW TX buffer which yet does not have
enough data to be sent.

The following will introduce the process of Legacy Protocol and Extend Protocol, and Version Compare
of OTA, respectively, to explain the interaction process of Salve and Master in the whole RF Transform.
The Server side shown below is the Slave side, and the Client side is the Master side, which will not be
distinguished later.

AN-20111000-E3 224 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

OTA Legacy Protocol Process

OTA Legacy is compatible with the previous version of Telink’s OTA protocol. To better explain the whole
interaction process between Slave and Master, the following example is used to illustrate.

Note:

» The default PDU length of 16 octets is used, which does not involve the operation of DLE long
packets.
» Firmware compare function is not selected.

The specific operation flow is shown in the following figure.

eEacy

oy oy
Server Client ‘
\ ’J
CMD_OTA_START
OTA_DATA

(PDU length = l6otets)

CMD_O0TA_Result

OTA_DATA

OTA_DATA

CMD_OTA_END

CMD_OTA_Result

Figure 7.3: OTA Legacy protocol process

Client side will first send CMD_OTA_START command to Server side, Server side will start to prepare to
receive OTA data after receiving the command, then Client side will start to send OTA_Data. If there is any
interaction failure during the process, Server side will send CMD_OTA_Result to Client side, that is, return
an error message and re-run the original program but will not enter reboot, the client side will stop the
OTA data transfer when receiving this message. If the Client side and Server side successfully complete the
OTA_Data transfer, the Client side will send CMD_OTA_END to the Server side, and the Server side will send
CMD_OTA_Result to the Client side after receiving the result information, and enter reboot and run the new
firmware.

OTA Extend Protocol Process

AN-20111000-E3 225 Ver1.2.0

i Telink
Telink B91 BLE Single Connection SDK Developer Handbook

As mentioned above, there are some differences between the interaction commands of OTA Extend and
Legacy introduced above. To better illustrate the whole interaction process between Slave and Master, the
following example is used.

Note:

» PDU length adopts 64 octets size, which involves the operation of DLE long packets.
« Firmware compare function is not selected.

Extend

Server Client

| o—r—

CMD_OTA_START_EXT

OTA_DATA

(PDU Length = G4otets)

CMD_OTA_Result

OTA_DATA

OTA_DATA

QMD_OTA_END

CMD_OTA_Result

Figure 7.4: OTA Extend protocol process

Due to the DLE long packet function, the Client side first needs to interact with the Server side for MTU and
DLE, then the next process is similar to the previous Legacy. The Client side sends CMD_OTA_START_EXT
command to the Server side, the Server side starts to prepare to receive OTA data after receiving the
command, then client side starts sending OTA_Data. If there is any interaction failure during the process,
the Server side will send CMD_OTA_Result to the Client side, which returns the error message and re-runs
the original program but will not enter reboot. If the Client side and Server side successfully complete the
OTA_Data transfer, the Client side will send CMD_OTA_END to the Server side, and the Server side will send
CMD_OTA_Result to the Client side after receiving the result information, and enter reboot and run the new
firmware.

OTA Version Compare Process

AN-20111000-E3 226 Ver1.2.0

v Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In the Slave side, both Extend and Legacy Protocol have version comparison function, where Legacy re-
served the interface, need to be implemented by the user, while Extend has implemented the version
comparison function, the user can directly use, as follows, need to enable the following macro.

#define OTA_FW_VERSION_EXCHANGE_ENABLE 1 //user can change
#define OTA_FW_VERSION_COMPARE_ENABLE 1 //user can change

The following is an example of the interaction flow in Extend with version comparison.

Note:

« PDU length is 16 octets size, no operation of DLE long packet is involved.
» Firmware compare function selection (OTA to be upgraded version number is Ox0001, enable

version compare enable)

Extend Version Compare
Server Client
CMD_OTA_FW _VERSION_REQ
(new_fw _version = 0x0001,
Version_compare = 1)
CMD_OTA_FW_VERSION_RSP
(local_version = 0x0001,
Accept = 0) Fail
CMD_OTA_FW_VERSION_RSP
(local_version = 0x0000,
Accept = 1) SUCCess
CMD_OTA_START_EXT
OTA_DATA
(PDU Length = l6otets)
OTA_DATA
-
OTA_DATA
CMD_OTA_END
CMD_OTA_Result
A -

Figure 7.5: OTA Version Compare Process

After enabling the version comparison function, the Client side first sends the CMD_OTA_FW_VERSION_REQ
version comparison request command to the Server side, where the PDU sent includes the Firmware ver-

AN-20111000-E3 227 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

sion number of the Client side (new_fw_version = Ox0001), and the Server side gets the version number
information of the Client side and compares it with the local version number (local_version).

If the received version number (new_fw_version = Ox0001) is not greater than the local version number
(local version = 0x000T1), the Server side will reject the Client side OTA upgrade request and send the Client
side version response command (CMD_OTA_FW_VERSION_RSP). The information sent includes the receiving
parameter (accept = 0) and the local version number (local_version = 0x0001), and the Client will stop the
OTA related operation after receiving it, that is, the current version upgrade is not successful.

If the received version number (new_fw_version = 0x0001) is larger than the local version number (local
version = 0x0000), the Server side will receive the OTA upgrade request from the Client side and send the
version response command (CMD_OTA_FW_VERSION_RSP) to the Client side. The message sent includes
the acceptance parameter (accept = 1) and the local version number (local_version = Ox0000), which the
Client receives to start preparing the OTA upgrade related operations.The process is similar to the previous
content, that is, first send the CMD_OTA_START command to the Server side, and then the Server side
starts to prepare to receive the OTA data after receiving the command, client side starts sending OTA_data.
If there is any interaction failure during the process, the Server side will send CMD_OTA_Result to the Client
side, which will return the error message and re-run the original program but will not enter reboot, and the
Client side will stop OTA data transmission immediately after receiving it. If the Client side and Server side
successfully complete the OTA_Data transfer, the Client side will send CMD_OTA_END to the Server side,
and the Server side will send CMD_OTA_Result to the Client side after receiving the result information, and
enter reboot and run the new firmware.

OTA implementation

The above describes the entire OTA interaction process, the following example illustrates the specific data
interaction between Master and Slave.

Note:

* OTA Protocol: Legacy Protocol;
« The PDU length is 16 octets, which does not involve the operation of long DLE packets;
» The Master side enables Firmware compare function.

(1) Check if there’'s any behavior to trigger entering OTA mode. If so, Master enters OTA mode.

(2) To send OTA commands and data to Slave, Master needs to know the Attribute Handle value of current
OTA data Atrribute on Slave side. User can decide to directly use the pre-appointed value or obtain
the Handle value via “Read By Type Request”.

UUID of OTA data in Telink BLE SDK is always 16-byte value as shown below:

#define TELINK_SPP_DATA_OTA {0x12,0x2B, 0x0d, OxOc, Ox0b, Ox0a, Ox09, Ox08, 0x07, 0x06, 0x05, 0x04,
o 0x03,0x02,0x01,0x00}

In “Read By Type Request” from Master, the “"Type” is set as the 16-byte UUID. The Attribute Handle for
the OTA UUID is available from “Read By Type Rsp” responded by Slave. In the figure below, the Attribute
Handle value is shown as "0x0031".

AN-20111000-E3 228 Ver1.2.0

T

Telink
Telink B91 BLE Single Connection SDK Developer Handbook

] TR T Data Header L2CAP Header ATT_Read_By_Type_Req
P LLID NESN 5N MD PDU-Length ||[L2CAP-Length Chanld ||Opcode StartingHandle EndingHandle AttType

L2caP-5 || 2 0 0 0 25 00015 0x0004 | 0x08__ 0x0001 0xFFEF 12 2B 0D OC OB OR 09 08 07 06 05 04 03 02 01 00
T Data Header RSSI

DataT¥pe |1 7D NESW SN MD PDU-Length| O C (aBm) || 73
|| Empry EoU || L 1 1 o 0 oxeFEFDC |0 || o |
1 Data Hieader LZCAP Header ATT_Read_By_Type_Rsp RSSI

DataType || 70 WESW sW MD PDU-Length |L2CAP-Length ChanId |Opcode Length AttData EE (aBm) || FC5

Lacar-s || 2 0 1 0 5 020005 0x0004 [0x09 _ 0x03 31 00 00| ox79893E|_o0 || oK |

(3)

Figure 7.6: Master Obtains OTA Attribute Handle via Read by Type Request

Obtain the current firmware version number of the slave and decide whether to continue the OTA
update (if the version is already the latest, no update is required). This step is for the user to choose
whether to do it or not. The BLE SDK does not provide a specific version number acquisition method,
users can play by themselves. In the current BLE SDK, legacy protocol does not implement version
number transmission. The user can use write cmd or write response to send a request to obtain the
OTA version to the slave through the OTA version cmd, but the slave side only provides a callback
function when receiving the OTA version request, and the user finds a way to set the slave side in
the callback function. The version number is sent to the master (such as manually sending a NOTIFY/
INDICATE data).

Start a timing at the beginning of the OTA, and then continue to check whether the timing exceeds
30 seconds (this is only a reference time, and the actual evaluation will be made after the normal OTA
required by the user test).

If it takes more than 30 seconds to consider the OTA timeout failure, because the slave side will check the
CRC after receiving the OTA data. Once the CRC error or other errors (such as programming flash errors)
occur, the OTA will be considered as a failure and the program will be restarted directly. The layer cannot
ack the master, and the data on the master side has not been sent out, resulting in a timeout.

(5) Read the four bytes of Master flash 0x20018~0x2001b to determine the size of the firmware.

This size is implemented by our compiler. Assuming the size of the firmware is 20k = Ox5000, then
the value of Ox18~0x1b of the firmware is OxO0O005000, so the size of the firmware can be read from
0x20018-~0x2001b.

In the bin file shown in the figure below, the content of 0x18 ~ Ox1b is OxO0000cf94, so the size is 0xcf94 =
53140Bytes, from 0x0000 to Oxcf96.

0 1 2 3 4 5 & 7 8 9 AB | CD EF
00000000 F32Z 2034 1120 5D02 &384 0200 eFO0 €015
00000010 21m8 0000 0000 O0O0O0O0|S4CF _0000J000O0 0000
00000020 4B4E 4C54 0000 3B17 5701 0O8BEO 9381 817D
00000030 S702Z DAEQ S538Z 02ZFD 1681 9702 OO0ED 9382

Figure 7.7: Firmware Sample Starting Part

AN-20111000-E3 229 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

0 1 2 3 4 5 & 7 8 9 AB | CD EF

0 0000 EBO3 00Z8 0000 Z002 0005 ZR01 0000

o 0=45 0A00 0201 0OO0OO0O0 0101 0000 O10Z 0OBZS9

JOCFEOD Z20A1 DAOB 0848 ORO0D 05ZRA 0129 FFFF FFFF
F50 ECGE DDAD

Figure 7.8: Firmware Sample Ending Part

(6) Master sends an OTA start command “0OxffO1” to Slave, so as to inform it to enter OTA mode and wait
for OTA data from Master, as shown below.

Data Type Data Header L2CAP Header ATT_Write_Command CRC RS5I FCS
L LLID NESN 5N MD PDU-Length |(L2CAP-Length ChanId ||Opcode AttHandle ActWValue (dBm)
L2CAP-5 || 2 a a 1 9 0x0005 0x0004 || 0x52 0x0031 01 FF 0x61B875B 0 O |

Figure 7.9: OTA Start Sent From Master

(7) Read 16 bytes of firmware each time starting from Master flash 0x20000, assemble them into OTA
data packet, set corresponding adr_index, calculate CRC value, and push the packet into TX FIFO, until
all data of the firmware are sent to Slave.

OTA data format is used in data transfer (see Figure7 3): 20-byte valid data contains 2-byte adr_index,
16-byte firmware data and 2-byte CRC value to the former 18 bytes.

Note: If firmware data for the final transfer are less than 16 bytes, the remaining bytes should be comple-
mented with "Oxff” and need to be considered for CRC calculation.

Below illustrates how to assemble OTA data.

Data for first transfer: “adr_index” is "Ox00 00", 16-byte data are values of addresses OxO000 ~ OxOO0O0f.
Suppose CRC calculation result for the former 18 bytes is "OxXYZW", the 20-byte data should be:

0x00 0x00 0Oxf3 0x22 (12 bytes not listed)..... 0x60 0x15 OxZW OxXY
Data for second transfer:

0x01 Ox00 Ox21 0xa8(12 bytes not listed)..... 0xO0 0x00 OxJK OxHI
Data for third transfer:

0x02 Ox00 Ox4b Ox4e(12 bytes not listed)..... 0x81 0x7d OxNO OxLM
Data for penultimate transfer:

Oxf8 Ox0c 0x20 0xal(12 bytes not listed)..... Oxff Oxff OxST OxPQ
Data for final transfer:

Oxf9 Ox0c Oxec Ox6e Oxdd Oxa9 Oxff Oxff Oxff Oxff

Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff OXWX OxUV

12 “Oxff” are added to complement 16 bytes.

AN-20111000-E3 230 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Oxec Ox6e 0xdd 0xa9 is the third to sixth, which is the CRC_32 calculation result of the entire firmware bin.
The slave will synchronously calculate the CRC_32 check value of the entire bin received during the OTA
upgrade process, and compare it with Oxec Ox6e Oxdd Oxa9 at the end.

The CRC calculation result for a total of 18 bytes from Oxf9 to Oxff is OXUVWX.

The above data is shown in the figure below:

+ (K, ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2812: 01FF)

+ &, ATT Write Command Packet (00010203-0405-0607-0809-0A0B0COD2E12: 00 00 F3 22 20 34 11 AD 50 0263 8402 00 6F 00 60 15 7B 35)
+ (B, ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2512: 01 00 21 A3 00 00 00 00 00 00 94 CF 00 00 00 00 00 00 &7 BO)
+ (B, ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2612: 02 00 48 4E4C 540000 3B 17570108 ED 938181 7D 74D4)
+ (R, ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0OD2812: 03 00 97 02 DA ED 93 82 02 FD 16 81 97 02 00 ED 93 82 59 5B)
+ (K, ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2512: 04 00 62 FC 7390 0280 99 62 F3 AZ 02 30 73 10 30 00 63 38)

Figure 7.10: Master OTA Datal

+ By ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2612: F3 0C 20 A10A 03 03 45 0A 09 05 2A 01 29 FF FF FF FF AA 24)
+ By ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2612: F9 0C EC 6E DD A9 FF FF FF FF FF FF FF FF FF FF FF FF E3 OF)
+ By ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2612: 02 FF F9 0C 08 F3)

Figure 7.11: Master OTA Data2

(8) After the firmware data is sent, check whether the data of the BLE link layer has been completely sent
(because only when the data of the link layer is acked by the slave, the data is considered to be sent
successfully). If it is completely sent, the master sends an ota_end command to notify the slave that
all data has been sent.

The packet effective bytes of the OTA end are set to 6, the first two are OxffO2, and the middle two bytes
are the maximum adr_index value of the new firmware (this is for the slave to confirm again that the last
or several OTA data is not lost) , The last two bytes are the inverse of the largest adr_index value in the
middle, which is equivalent to a simple check. OTA end does not require CRC check.

Take the bin shown in the above figure as an example, the largest adr_index is OxOcf9, and its inverse value
is Oxf306, and the final OTA end package is shown in the figure above.

(9) Check if link-layer TX FIFO on Master side is empty: If it's empty, it indicates all data and commands
in above steps are sent successfully, i.e. OTA task on Master succeeds.

Please refer to Appendix for CRC_16 calculation function.

As introduced above, Slave can directly invoke the otaWrite and otaRead in OTA Attribute. After Slave
receives write command from Master, it will be parsed and processed automatically in BLE stack by invoking
the otaWrite function.

In the otaWrite function, the 20-byte packet data will be parsed: first judge whether it's OTA CMD or OTA
data, then process correspondingly (respond to OTA cmd; check CRC to OTA data and burn data into specific
addresses of flash).

The OTA related operations on Slave side are shown as below:

(1) OTA_FIRMWARE_VERSION command is received: Master requests to obtain Slave firmware version
number.

AN-20111000-E3 231 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In this BLE SDK, after Slave receives this command, it will only check whether related callback function is
registered and determine whether to trigger the callback function correspondingly.

The interface in ble_ll_ota.h to register this callback function is shown as below:

typedef void (*ota_versionCb_t)(void);
vold blc_ota_registerOtaFirmwareVersionReqCb(ota_versionCb_t cb);

(2) OTA start command is received: Slave enters OTA mode.

If the “bls_ota_reqgisterStartCmdCb” function is used to register the callback function of OTA start, then the
callback function is executed to modify some parameter states after entering OTA mode (e.g. disable PM to
stabilize OTA data transfer).

Slave also starts and maintains a slave_adr_index to record the adr_index of the latest correct OTA data.
The slave_adr_index is used to check whether there’s packet loss in the whole OTA process, and its initial
value is -1. Once packet loss is detected, OTA fails, Slave MCU exits OTA and reboots; since Master cannot
receive any ack from Slave, it will discover OTA failure by software after timeout.

The following interface is used to register the callback function of OTA start:

typedef void (*ota_startCb_t)(void);
void blc_ota_registerOtaStartCmdCb(ota_startCb_t cb);

User needs to reqister this callback function to carry out operations when OTA starts, for example, configure
LED blinking to indicate OTA process.

After Slave receives “OTA start”, it enters OTA and starts a timer (The timeout duration is set as 30s by
default in current SDK). If OTA process is not finished within the duration, it's regarded as OTA failure due to
timeout. User can evaluate firmware size (larger size takes more time) and BLE data bandwidth on Master
(narrow bandwidth will influence OTA speed), and modify this timeout duration accordingly via the variable
as shown below.

ble_sts_t blc_ota_setOtaProcessTimeout(int timeout_second);
ble_sts_t blc_ota_setOtaDataPacketTimeout(int timeout_second);

The unit of parameter timeout_second of the function blc_ota_setOtaProcessTimeout is seconds, the de-
fault is 30, and the range is 5-1000;

The unit of parameter timeout_second of the function blc_ota_setOtaDataPacketTimeout is seconds, the
default is 5, and the range is 1-20;

After initializing the variable, the user can call the following timeout function to perform the timeout pro-
cess.

vold blt_ota_procTimeout(void);

The other is the timeout period of the receive packet. It will be updated every time an OTA data
packet is received. The timeout period is 5s, that is, if the next data is not received within 5s, the
OTA_RF_PACKET_TIMEOUT is considered as a failure.

AN-20111000-E3 232 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(3) Valid OTA data are received (first two bytes are 0~0x1000):

Whenever Slave receives one 20-byte OTA data packet, it will first check if the adr_index equals
slave_adr_index plus 1. If not equal, it indicates packet loss and OTA failure; if equal, the slave_adr_index
value is updated.

Then carry out CRC_16 check to the former 18 bytes. If not matched, OTA fails; if matched, the
16-byte valid data are written into corresponding flash area (ota_program_offset+adr_index16 -~
ota_program_offset+adr_index16 + 15). During flash writing process, if there’s any error, OTA also
fails.

In order to ensure the integrity of the firmware after the OTA is completed, a CRC_32 check will be performed
on the entire firmware at the end, and it will be compared with the check value calculated by the same
method sent by the master. If it is not equal, it means there is a data error in the middle, and the OTA is
considered a failure.

(4) “OTA end” command is received:

Check whether adr_max in OTA end packet and the inverted check value are correct. If yes, the adr_max
can be used to double check whether maximum index value of data received by Slave from Master equals
the adr_max in this packet. If equal, OTA succeeds; if not equal, OTA fails due to packet loss.

After successful OTA, Slave will set the booting flag of the old firmware address in flash as 0, set the booting
flag of the new firmware address in flash as Ox4b, then reboot MCU.

(5) The slave sends the OTA result back to the master:

Once the OTA is started on the slave side, regardless of whether the OTA succeeds or fails, the slave will
finally send the result to the master. The following is an example of the result information sent by the slave
after the OTA is successful (the length is only 3 bytes):

- . .
[ATT Write Command Packet (00010203-0405-0607-0809-0A0B0COD2812: F9 OC EC 6E DD A3 FF FF FF FF FF FF FF FFFFFF FFFFE3DF) |
5 ATT Write Command Packet (00010203-0405-0607-0809-0A0B0C0D2812; 02 FF F9 0C 06 F3) [
B ATT Notification Packet (00010203-0405-0607-0809-0A0B0COD2812: 13 FF 00) l

Figure 7.12: Slave Sends OTA Succuss Result to Master

(6) Slave supplies OTA state callback function:

After Slave starts OTA, MCU will finally reboot when OTA is successful.
If OTA succeeds, Slave will set flag before rebooting so that MCU executes the New_firmware.

If OTA fails, the incorrect new firmware will be erased before rebooting, so that MCU still executes the
Old_firmware.

Before rebooting, user can judge whether the OTA state callback function is registered and determine
whether to trigger it correspondingly.

Corresponding codes are as following:

vold blc_ota_registerOtaResultIndicationCb (ota_resIndicateCb_t cb);

AN-20111000-E3 233 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

After the callback function is set, the enum of the parameter result of the callback function is the same as
the result reported by the OTA. The first O is OTA success, and the rest are different reasons for failure.

OTA upgrade success or failure will trigger the callback function, the actual code can be debugged by the
result of the function to return parameters. When the OTA is unsuccessful, you can read the above result
and stop the MCU with while(1) to understand what causes the OTA failure.

AN-20111000-E3 234 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

8 Key Scan

Telink provides a keyscan architecture based on row/column scan to detect and process key state update
(press/release). User can directly use the demo code, or realize the function by developing his own code.

8.1 Key Matrix

Figure shows a 5*6 Key matrix which supports up to 30 buttons. Five drive pins (RowO~Row4) serve to
output drive level, while six scan pins (CoLO~ColL5) serve to scan for key press in current column.

VCC VCC VC

)

VCC VCC VC

2

10/ 10
K K
Row0 1100 K III
. Rowl 100 K I
Drive T
. Row?2 100 K |||
Pin =
Row3 100 K] It
Row4 100 K III
CoL.O
Col1
Scan
. Col.2
Pin
Col.3
Col4
CoLb

Figure 8.1: Row Column Key Matrix

The Telink EVK board is a 2*2 keyboard matrix. In the actual product application, more keys may be needed,
such as remote control switches, etc. The following is an example of Telink’s demo board providing remote

AN-20111000-E3 235 Ver1.2.0

v Telink
Telink B91 BLE Single Connection SDK Developer Handbook

control. Combined with the above figure, the keyscan related configuration in app_config.h is explained in
detail as follows.

According to the real hardware circuit, on Telink demo board, RowO~Row4 pins are PE2, PB4, PB5, PE1 and
PE4, CoLO~CoL5 pins are PB1, PBO, PA4, PAO, PE6 and PES.

Define drive pin array and scan pin array:

#define KB_DRIVE_PINS
#define KB_SCAN_PINS

{GPIO_PE2, GPIO_PB4, GPIO_PB5, GPIO_PE1, GPIO_PE4}
{GPIO_PB1, GPIO_PBO, GPIO_PA4, GPIO_PAO, GPIO_PE6, GPIO_PE5}

Keyscan adopts analog pull-up/pull-down resistor of GPIO: drive pins use 100K pull-down resistor, and scan
pins use 10K pull-up resistor. When no button is pressed, scan pins act as input GPIOs and read high level
due to 10K pull-up resistor. When key scan starts, drive pins output low level; if low level is detected on
a scan pin, it indicates there’s button pressed in current column (Note: Drive pins are not in float state, if
output is not enabled, scan pins still detect high level due to voltage division of 100K and 10K resistor.)

Define valid voltage level detected on scan pins when drive pins output low level in Row/Column scan:

#define KB_LINE_HIGH_VALID 0

Define pull-up resistor for scan pins and pull-down resistor for drive pins:

#define MATRIX_ROW_PULL
#define MATRIX_COL_PULL

PM_PIN_PULLDOWN_100K
PM_PIN_PULLUP_10K

#define PULL_WAKEUP_SRC_PE2 MATRIX_ROW_PULL
#define PULL_WAKEUP_SRC_PB4 MATRIX_ROW_PULL
#define PULL_WAKEUP_SRC_PB5 MATRIX_ROW_PULL
#define PULL_WAKEUP_SRC_PE1 MATRIX_ROW_PULL
#define PULL_WAKEUP_SRC_PE4 MATRIX_ROW_PULL
#define PULL_WAKEUP_SRC_PB1 MATRIX_COL_PULL
#define PULL_WAKEUP_SRC_PBO MATRIX_COL_PULL
#define PULL_WAKEUP_SRC_PA4 MATRIX_COL_PULL
#define PULL_WAKEUP_SRC_PAO MATRIX_COL_PULL

#define
#define

Since “ie” of general GPIOs is set as O by default in gpio_init, to read level on scan pins, corresponding “ie”

PULL_WAKEUP_SRC_PE6
PULL_WAKEUP_SRC_PE5

should be enabled.

#define
#define
#define
#define
#define
#define

PB1_INPUT_ENABLE
PBO_INPUT_ENABLE
PA4_INPUT_ENABLE
PAO_INPUT_ENABLE
PE6_INPUT_ENABLE
PE5_INPUT_ENABLE

MATRIX_COL_PULL
MATRIX_COL_PULL

N RN R R R R

AN-20111000-E3

236

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

When MCU enters sleep mode, it's needed to configure PAD GPIO wakeup. Set drive pins as high level
wakeup; when there’s button pressed, drive pin reads high level, which is 10/11 VCC. To read level state of
drive pins, corresponding “ie” should be enabled.

#define PE2_INPUT_ENABLE
#define PB4_INPUT ENABLE
#define PB5_INPUT ENABLE
#define PE1_INPUT ENABLE
#define PE4_INPUT ENABLE

N R R kR

8.2 Keyscan and Keymap

8.2.1 Keyscan

After configuration as shown in section 8.1 Key matrix, the function below is invoked in main_loop to imple-
ment keyscan.

u32 kb_scan_key (int numlock_status, int read_key)

numlock_status: Generally set as O when invoked in main_loop. Set as "KB_NUMLOCK_STATUS_POWERON"
only for fast keyscan after wakeup from deepsleep (refer to section 8.4 Deepsleep wake_up fast keyscan,
corresponding to DEEPBACK_FAST_KEYSCAN_ENABLE).

read_key: Buffer processing for key values, generally not used and set as 1 (if it's set as O, key values will
be pushed into buffer and not reported to upper layer).

The return value is used to inform user whether matrix keyboard update is detected by current scan: if yes,
return 1; otherwise return O.

The “kb_scan_key” is invoked in main_loop. As in BLE timing sequence, each main_loop is an adv_interval
or conn_interval. In advertising state (suppose adv_interval is 30ms), key scan is processed once for each
30ms; in connection state (suppose conn_interval is 10ms), key scan is processed once for each 10ms.

In theory, when button states in matrix are different during two adjacent key scans, it's considered as an
update.

In actual code, a debounce filtering processing is enabled: It will be considered as a valid update, only
when button states stay the same during two adjacent key scans, but different with the Iatest stored matrix
keyboard state. “1” will be returned by the function to indicate valid update, matrix keyboard state will
be indicated by the structure “kb_event”, and current button state will be updated to the newest matrix
keyboard state. Corresponding code in keyboard.c is shown as below:

unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);

The newest button state means press or release state set of all buttons in the matrix. When power on,
initial matrix keyboard state shows all buttons are “released” by default, and debounce filtering processing
is enabled. As long as valid update occurs to the button state, *1” will be returned, otherwise 0" will be
returned.

AN-20111000-E3 237 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

For example: press a button, a valid update is returned; release a button, a valid update is returned; press
another button with a button held, a valid update is returned; press the third button with two buttons held,
a valid update is returned; release a button of the two pressed buttons, a valid update is returned

8.2.2 Keymap & kb_event

If 3 valid button state update is detected by invoking the “kb_scan_key”, user can obtain current button
state via a global structure variable “kb_event”.

#define KB_RETURN_KEY MAX 6
typedef struct{

u8 cnt;

u8 ctrl_key;

u8 keycode[KB_RETURN_KEY_MAX];
}kb_data_t;
kb_data_t kb_event;

The “kb_event” consists of 8 bytes:

+ “cnt” serves to indicate valid count number of pressed buttons currently;

« “ctrl_key” is not used generally except for standard USB HID keyboard (user is not allowed to set
keycode in keymap as Oxe0-~0xe7).

+ keycode[6] indicates keycode of up to six pressed buttons can be stored (if more than six buttons are
pressed actually, only the former six can be reflected).

Keycode definition of all buttons in the “app_config.h” is shown as below:

#define KB_MAP_NORMAL {\

VK_B, CR_POWER, VK_NONE, VK_C, CR_HOME, |
VOICE, VK_NONE, VK_NONE, CR_VOL_UP, CR_VOL_DN, |
VK_2, VK_RIGHT, CR_VOL_DN, VK_3, VK_1, |
VK_5, VK_ENTER, CR_VOL_UP, VK_6, VK_4, |
VK_8, VK_DOWN, VK_UP , VK_9, VK_7, |
VK_0, CR_BACK, VK_LEFT, CR_VOL_MUTE, CR_MENU, }

The keymap follows the format of 5*6 matrix structure. The keycode of pressed button can be configured
accordingly, for example, the keycode of the button at the cross of Row0O and CoLO is “VK_B".

In the “kb_scan_key” function, the “kb_event.cnt” will be cleared before each scan, while the array
“kb_event.keycode[]” won’t be cleared automatically. Whenever “1” is returned to indicate valid update,
the “kb_event.cnt” will be used to check current valid count number of pressed buttons.

a) If current kb_event.cnt = O, previous valid matrix state “kb_event.cnt” must be uncertain non-zero
value; the update must be button release, but the number of released button is uncertain. Data in
kb_event.keycode[] (if available) is invalid.

AN-20111000-E3 238 Ver1.2.0

T

Telink
Telink B91 BLE Single Connection SDK Developer Handbook

b)

c)

If current kb_event.cnt = 1, the previous kb_event.cnt indicates button state update. If previous
kb_event.cnt is O, it indicates the update is one button is pressed; if previous kb_event.cnt is 2, it
indicates the update is one of the two pressed buttons is released; if previous kb_event.cnt is 3, it in-
dicates the update is two of the three pressed buttons are released.....kb_event.keycode[O] indicates
the key value of currently pressed button. The subsequent keycodes are negligible.

If current kb_event.cnt = 2, the previous kb_event.cnt indicates button state update. If previous
kb_event.cnt is O, it indicates the update is two buttons are pressed at the same time; if previous
kb_event.cnt is 1, it indicates the update is another button is pressed with one button held; if pre-

vious kb_event.cnt is 3, it indicates the update is one of the three pressed buttons is released......
kb_event.keycode[O] and kb_event.keycode[1] indicate key values of the two pressed buttons cur-

rently. The subsequent keycodes are negligible.

User can manually clear the “kb_event.keycode” before each key scan, so that it can be used to check

whether valid update occurs, as shown in the example below.

In the sample code, when kb_event.keycode[O]is not zero, it's considered a button is pressed, but the code
won’t check further complex cases, such as whether two buttons are pressed at the same time or one of

the two pressed buttons is released.

kb_event.keycode[0] = 0;//clear keycode[O]
int det_key = kb_scan_key (0, 1);
if (det_key)
{
key_not_released = 1;
u8 key® = kb_event.keycode[0];
if (kb_event.cnt == 2) //two key press, do not process
{
}
else if(kb_event.cnt == 1)
{
key_buf[2] = key0;
//send key press
bls_att_pushNotifyData (HID_NORMAL_KB_REPORT_INPUT_DP_H, key_ buf, 8);

}
else //key release
{
key_not_released = 0;
key_buf[2] = 0;
//send key release
bls_att_pushNotifyData (HID_NORMAL_KB_REPORT_INPUT_DP_H, key_buf, 8);
}
}

8.3 Keyscan Flow

When “kb_scan_key” is invoked, a basic keyscan flow is shown as below:

AN-20111000-E3 239

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(1) Initial full scan through the whole matrix.

All drive pins output drive level (0). Meanwhile read all scan pins, check for valid level, and record the column
on which valid level is read. (The scan_pin_need is used to mark valid column number.)

If row-by-row scan is directly adopted without initial full scan through the whole matrix, each time all rows
should be scanned at least, even if no button is pressed. To save scan time, initial full scan through the
whole matrix can be added, thus it will directly exit keyscan if no button press is detected on any column.

The first full scan codes:

scan_pin_need = kb_key_pressed (gpio);

In the “kb_key_pressed” function, all rows output low level, and stabilized level of scan pins will be read after
20us delay. A release_cnt is set as 6; if a detection shows all pressed buttons in the matrix are released,
it won’t consider no button is pressed and stop row-by-row scan immediately, but buffers for six frames.
If six successive detections show buttons are all released, it will stop row-by-row scan. Thus key debounce
processing is realized.

(2) Scan row by row according to full scan result through the whole matrix.

If button press is detected by full scan, row-by-row scan is started: Drive pins (ROWO~ROW4) output valid
drive level row by row; read level on columns, and find the pressed button. Following is related code:

u32 pressed_matrix[ARRAY_SIZE(drive_pins)] = {0};

kb_scan_row (0, gpio);

for (int 1=0; 1<=ARRAY_SIZE(drive_pins); i++) {
u32 r = kb_scan_row (i < ARRAY_SIZE(drive_pins) ? 1 : 0, gpio);
if (1) {

pressed_matrix[i - 1] = r;

The following methods are used to optimize code execution time for row-by-row scan.

« When a row outputs drive level, it's not needed to read level of all columns (CoLO-~CoL5). Since the
scan_pin_need marks valid column number, user can read the marked columns only.

+ After a row outputs drive level, a 20us or so delay is needed to read stabilized level of scan pins, and
a buffer processing is used to utilize the waiting duration.

The array variable “u32 pressed_matrix[5]” (up to 40 columns are supported) is used to store final matrix
keyboard state: pressed_matrix[O] bitO~bit5 mark button state on CoLO~ColL5 crossed with RowO,,
pressed_matrix[4] bitO~bit5 mark button state on CoLO~CoL5 crossed with Row4.

(3) Debounce filtering for pressed_matrix[].

Corresponding codes:

AN-20111000-E3 240 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

unsigned int key_debounce_filter(u32 mtrx_cur[], u32 filt_en);
u32 key_changed = key_debounce_filter(pressed_matrix, (numlock_status &
< KB_NUMLOCK_STATUS_POWERON) ? © : 1);

During fast keyscan after wakeup from deepsleep, "numlock_status” equals "KB_NUMLOCK_STATUS_POWERON";
the “filt_en” is set as O to skip filtering and fast obtain key values.

In other cases, the “filt_en” is set as 1 to enable filtering. Only when pressed_matrix[] stays the same during
two adjacent key scans, but different from the latest valid pressed_matrix[], will the “key_changed” set as
1 to indicate valid update in matrix keyboard.

(4) Buffer processing for pressed_matrix[].

Push pressed_matrix[] into buffer. When the “read_key” in “kb_scan_key (int numlock_status, int read_key)”
is set as 1, the data in the buffer will be read out immediately. When the “read_key” is set as O, the buffer
stores the data without notification to the upper layer; the buffered data won’t be read until the read_key
is 1.

In current SDK, the “read_key” is fixed as 1, i.e. the buffer does not take effect actually.
(5) According to pressed_matrix[], look up the KB_MAP_NORMAL table and return key values.

Corresponding functions are “kb_remap_key_code” and “kb_remap_key_row".

8.4 Repeat Key Processing

When a button is pressed and held, it's needed to enable repeat key function to repeatedly send the key
value with a specific interval.

The “repeat key” function is masked by default. By configuring related macros in the “app_config.h”, this
function can be controlled correspondingly.

#define KB_REPEAT KEY ENABLE 0
#define KB_REPEAT_KEY_INTERVAL_MS 200
#define KB_REPEAT_KEY_NUM 1
#define KB_MAP_REPEAT {VK_ 1, }

(1) KB_REPEAT_KEY_ENABLE

This macro serves to enable or mask the repeat key function. To use this function, first set "KB_REPEAT_KEY_ENABLE”
as 1.

(2) KB_REPEAT_KEY_INTERVAL_MS

This macro serves to set the repeat interval time. For example, if it's set as 200ms, it indicates when a
button is held, kb_key_scan will return an update with the interval of 200ms. Current button state will be
available in kb_event.

(3) KB_REPEAT_KEY_NUM & KB_MAP_REPEAT

AN-20111000-E3 241 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

The two macros serve to define current repeat key values: KB_REPEAT_KEY_NUM specifies the number of
keycodes, while the KB_MAP_REPEAT defines a map to specify all repeat keycodes. Note that the keycodes
in the KB_MAP_REPEAT must be the values in the KB_MAP_NORMAL.

Following example shows a 6*6 matrix keyboard: by configuring the four macros, eight buttons including
UP, DOWN, LEFT, RIGHT, V+, V-, CHN+ and CHN- are set as repeat keys with repeat interval of 100ms, while
other buttons are set as non-repeat keys.

gdefine KB MAF NORMAL {\

i {VE_POWER, VE_LOW_BATT, VE_TV_PLUS, VE_TV_MINUS, VE_IN_OUTPUT, VE_VOL UP,}, \
{VK_VOICE SEARCH, VE_PROGRAM, VK _RETURN, VE_HOME, VE_MENU, VE_EXIT, }, \
{VE_UP, VK _CH UP, VE W _MUTE, VK _LEFT, VK CONFIRM, VK RIGHT, }, \
{VE_VOL DN, VE_DOWN, VK CH DN, VK FAST BACKWARD, VK PLAY PAUSE,VK 1, oA
{VK 2, VK 3, VK 4, VK 5, VK &, VK 7, oA
{VE_9, VKPAD RSTERIX,VE_O, VE_NUMBER, VE_W_SRCH, VE_8,1, }

#define K8 REPFAT KEY ENABLE 1

#define KB REPEAT KEY INTERVAL MS 100

i#define KB REPEAT KEY NUM 8

#define KB _MAP REPEAT { VK_UP, VE_DOWN, VK_LEFT, VE_RIGHT, \

VE_VOL _UP, VK VOL DN, VK CH UP, VK _CH DN, }

Figure 8.2: Repeat Key Application Example

User can search for the four macros in the project to locate the code about repeat key.

8.5 Stuck Key Processing

Stuck key processing is used to save power when one or multiple buttons of a remote control/keyboard is/are
pressed and held for a long time unexpectedly, for example a RC is pressed by a cup or ashtray. If keyscan
detects some button is pressed and held, without the stuck key processing, MCU won’t enter deepsleep or
other low power state since it always considers the button is not released.

Following are two related macros in the app_config.h:

#define STUCK_KEY_PROCESS_ENABLE 0
#define STUCK_KEY ENTERDEEP_TIME 60//in s

By default the stuck key processing function is masked. User can set the "STUCK_KEY_PROCESS_ENABLE"
as 1to enable this function.

The "STUCK_KEY_ENTERDEEP_TIME” serves to set the stuck key time: if it's set as 60s, it indicates when
button state stays fixed for more than 60s with some button held, it’s considered as stuck key, and MCU
will enter deepsleep.

User can search for the macro "STUCK_KEY_PROCESS_ENABLE” to locate related code in the keyboard.c,
as shown below:

#if (STUCK_KEY_PROCESS_ENABLE)
u8 stuckKeyPress[ARRAY_SIZE(drive_pins)];
#endif

AN-20111000-E3 242 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

An u8-type array stuckKeyPress[5] is defined to record row(s) with stuck key in current key matrix. The
array value is obtained in the function “key_debounce_filter”.

Upper-layer processing is shown as below:

kb_event.keycode[0] = 0;
int det_key = kb_scan_key (0, 1);
if (det_key){
if(kb_event.cnt){ //key press
stuckKey_keyPressTime = clock_time() | 1;;

.......

For each button state update, when button press is detected (i.e. kb_event.cnt is non-zero value), the
“stuckKey_keyPressTime” is used to record the time for the latest button press state.

Processing in the "blt_pm_proc” is shown as below:

#if (STUCK_KEY_PROCESS_ENABLE)
if(key_not_released && clock_time_exceed(stuckKey_keyPressTime,
< STUCK_KEY_ENTERDEEP_TIME*1000000)){

u32 pin[] = KB_DRIVE_PINS;

for (u8 1 = 0; 1 < ARRAY_SIZE(pin); 1 ++)

{
extern u8 stuckKeyPress[];
if(stuckKeyPress[i])
continue;
cpu_set_gpio_wakeup (pin[i],0,1);
}
""" if(sendTerminate_before_enterDeep == 1){ //sending Terminate and wait for ack before enter

< deepsleep
if(user_task_flg){ //detect key Press again, can not enter deep now
sendTerminate_before_enterDeep = 0;
bls_11_setAdvEnable(BLC_ADV_ENABLE); //enable adv again

}

else if(sendTerminate_before_enterDeep == 2){ //Terminate 0K
cpu_sleep_wakeup(DEEPSLEEP_MODE, PM_WAKEUP_PAD, 0); //deepSleep
}tendif

Determine whether the time of the most recent key press has exceeded 60s continuously. If it exceeds, it
is considered that the stuck key processing has occurred. According to the stuckKeyPress[] of the bottom
layer, all the row numbers where the stuck key occurs are obtained, and the original high-level PAD wake-up
deepsleep is changed to the low-level PAD wake-up deepsleep.

The reason for the modification is that when the key is pressed, the drive pin on the corresponding line
reads a high level of 10/11 VCC. At this time, it is impossible to enter deepsleep because it is already high.

AN-20111000-E3 243 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

As long as you enter deepsleep, it will immediately Wake up by this high level; after modifying it to low level,
you can enter deepsleep normally, and when the button is released, the level of the drive pin on the row
changes to a low level of 100K pull-down, releasing the button can wake up the entire MCU.

AN-20111000-E3 244 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

9 LED Management

9.1 LED task related functions

Source code about LED management is available in vendor/common/blt_led.c of this BLE SDK for user
reference. User can directly include the “vendor/common/blt_led.h” into his C file.

User needs to invoke the following three functions:

vold device_led_init(u32 gpio,u8 polarity);
int device_led_setup(led_cfg_t led_cfg);
static inline void device_led_process(void);

During initialization, the “device_led_init(u32 gpio,u8 polarity)” is used to set current GPIO and polarity
corresponding to LED. If “polarity” is set as 1, it indicates LED will be turned on when GPIO outputs high
level; if “polarity” is set as O, it indicates LED will be turned on when GPIO outputs low level.

The “device_led_process” function is added at Ul Entry of main_loop. It's used to check whether LED task
is not finished (DEVICE_LED_BUSY). If yes, MCU will carry out corresponding LED task operation.

9.2 LED Task Configuration and Management

9.2.1 LED Event Definition

The following structure serves to define a LED event.

typedef struct{
unsigned short onTime_ms;
unsigned short offTime_ms;
unsigned char repeatCount;
unsigned char priority;

} led_cfg_t;

The unsigned short int type “onTime_ms” and “offTime_ms” specify light on and off time (unit: ms) for
current LED event, respectively. The two variables can reach the maximum value 65535.

The unsigned char type “repeatCount” specifies blinking times (i.e. repeat times for light on and off action
specified by the “onTime_ms” and “offTime_ms”). The variable can reach the maximum value 255.

The “priority” specifies the priority level for current LED event.

To define a LED event when the LED always stays on/off, set the “repeatCount” as 255(0xff), set “on-
Time_ms"/"offTime_ms"” as O or non-zero correspondingly.

LED event examples:

(1) Blink for 3s with 1Hz frequency: keep on for 500ms, stay off for 500ms, and repeat for 3 times.

AN-20111000-E3 245 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

led_cfg_t led_eventl = {500, 500 , 3, 0x00};
(2) Blink for 50s with 4Hz frequency: keep on for 125ms, stay off for 125ms, and repeat for 200 times.
led_cfg t led_event2 = {125, 125 , 200, 0x00};
(3) Always on: onTime_ms is non-zero, offTime_ms is zero, and repeatCount is Oxff.
led_cfg t led_event3d = {100, 0 , Oxff, 0x00};
(4) Always off: onTime_ms is zero, offTime_ms is non-zero, and repeatCount is Oxff.
led_cfg t 1led_eventd = {0, 100, Oxff, 0x00};
(5) Keep on for 3s, and then turn off: onTime_ms is 1000, offTime_ms is O, and repeatCount is Ox3.

led_cfg_ t Tled_event5 = {1000, O, 3, 0x00};

The “device_led_setup” can be invoked to deliver a led_event to LED task management.

device_led_setup(led_eventl);

9.2.2 LED Event Priority

User can define multiple LED events in the SDK, however, only a LED event is allowed to be executed at the
same time.

No task list is set for the simple LED management: When LED is idle, LED will accept any LED event delivered
by invoking the “device_led_setup”. When LED is busy with a LED event (old LED event), if another event
(new LED event) comes, MCU will compare priority level of the two LED events; if the new LED event has
higher priority level, the old LED event will be discarded and MCU starts to execute the new LED event; if
the new LED event has the same or lower priority level, MCU continues executing the old LED event, the
new led event will be discarded (note: it will be completely discarded, and the led event will not be cached
to be processed later).

By defining LED events with different priority levels, user can realize corresponding LED indicating effect.

Since inquiry scheme is used for LED management, MCU should not enter long suspend (e.g. 10ms * 50 =
500ms) with latency enabled and LED task ongoing (DEVICE_LED_BUSY); otherwise LED event with small
onTime_ms value (e.g. 250ms) won’t be responded in time, thus LED blinking effect will be influenced.

#define DEVICE_LED BUSY (device_led.repeatCount)

The corresponding processing is needed to add in blt_pm_proc, as shown below:

AN-20111000-E3 246 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

user_task_flg = scan_pin_need || key_not_released || DEVICE_LED_BUSY;
if(user_task_flg){
bls_pm_setManualLatency(0); // manually disable latency

AN-20111000-E3 247 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

10 Software Timer

Telink BLE SDK supplies source code of blt software timer demo for user reference on timer task. User can
directly use this timer or modify as needed.

Source code are available in “vendor/common/blt_soft_timer.c” and "blt_soft_timer.h”. To use this timer,
the macro below should be set as 1.

#define BLT_SOFTWARE_TIMER_ENABLE ® //enable or disable

Since blt software timer is inquiry timer based on system tick, it cannot reach the accuracy of hardware
timer, and it should be continuously inquired during main_loop. The blt soft timer applies to the use scenarios
with timing value more than 5ms and without high requirement for time error.

Its key feature is: This timer will be inquired during main_loop, and it ensures MCU can wake up in time
from suspend and execute timer task. This design is implemented based on “Timer wakeup by Application
layer” (section 4.5 Timer wakeup by Application Layer).

Current design can run up to four timers, and maximum timer number is modifiable via the macro below:

#define MAX_TIMER_NUM 4 //timer max number

10.1 Timer Initialization
The API below is used for blt software timer initialization:

vold blt_soft_timer_init(void);

Timer initialization only registers “blt_soft_timer_process” as callback function of APP layer wakeup in ad-
vance.

vold blt_soft_timer_init(void){

bls_pm_registerAppWakeupLowPowerCb(blt_soft_timer_process);

10.2 Timer Inquiry Processing
The function “blt_soft_timer_process” serves to implement inquiry processing of blt software timer.

vold blt_soft_timer_process(int type);

On one hand, main_loop should always invoke this function in the location as shown in the figure below.
On the other hand, this function must be registered as callback function of APP layer wakeup in advance.
Whenever MCU is woke up from suspend in advance by timer, this function will be quickly executed to
process timer task.

AN-20111000-E3 248 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

_attribute_ram_code_ void main_loop (void)

{
tick_loop++;

#if (FEATURE_TEST MODE == TEST_USER_BLT_SOFT_TIMER)
blt_soft_timer_process(MAINLOOP_ENTRY);

#endif
blt_sdk_main_loop();

The parameter “type” of the “blt_soft_timer_process” indicates two cases to enter this function: If “type” is
0, it indicates entering this function via inquiry in main_loop; if “type” is 1, it indicates entering this function
when MCU is woke up in advance by timer.

#define MAIN_LOOP_ENTRY 0
#define CALLBACK_ENTRY 1

The implementation of the “blt_soft_timer_process” is rather complex, and its basic principle is shown as
below:

(1) First check whether there is still user-defined timer in current timer table. If not, directly exit the
function and disable timer wakeup of APP layer; if there’s timer task, continue the flow.

if(!blt_timer.currentNum){
bls_pm_setAppWakeupLowPower(0, 0); //disable
return;

(2) Check whether the nearest timer task is reached: if the task is not reached, exit the function; otherwise
continue the flow. Since the design will ensure all timers are time-ordered, herein it’s only needed to
check the nearest timer.

if(!'blt_is_timer_expired(blt_timer.timer[0].t, now)){

return;

(3) Inquire all current timer tasks, and execute corresponding task as long as timer value is reached.

for(int 1=0; i<blt_timer.currentNum; i++){
if(blt_1is_timer_expired(blt_timer.timer[i].t ,now)){ //timer trigger
if(blt_timer.timer[1].cb == NULL){
}
else{
result = blt_timer.timer[1].cb();
if(result < 0){
blt_soft_timer_delete_by_index(i);

AN-20111000-E3 249 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

}
else if(result == 0){
change_flg = 1;
blt_timer.timer[1].t = now + blt_timer.timer[i].1interval;
}
else{ //set new timer interval
change_flg = 1;
blt_timer.timer[i1].interval = result * CLOCK_16M_SYS_TIMER_CLK_1US;
blt_timer.timer[i].t = now + blt_timer.timer[i].1interval;

}

The code above shows processing of timer task function: If the return value of this function is less than O,
this timer task will be deleted and won’t be responded; if the return value is O, the previous timing value
will be retained; if the return value is more than O, this return value will be used as the new timing cycle
(unit: us).

(4) In step 3, if tasks in timer task table change, the previous time sequence may be disturbed, and
re-ordering is needed.

if(change_flg){
blt_soft_timer_sort();

(5) If the nearest timer task will be responded within 3s (it can be changed to a value larger than 3s as
needed) from now, the response time will be set as wakeup time by APP layer in advance; otherwise
APP layer wakeup in advance will be disabled.

if((u32)(blt_timer.timer[0].t - now) < 3000 * CLOCK_16M_SYS_TIMER_CLK_1MS){
bls_pm_setAppWakeupLowPower(blt_timer.timer[0].t, 1);

}
else{

bls_pm_setAppWakeupLowPower (0, 0); //disable
}

10.3 Add Timer Task

The API below serves to add timer task.

typedef int (*blt_timer_callback_t)(void);
int blt_soft_timer_add(blt_timer_callback_t func, u32 interval_us);

AN-20111000-E3 250 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

“func”: timer task function.
“interval_us”: timing value (unit: us).

The int-type return value corresponds to three processing methods:

a) If the return value is less than O, this task will be automatically deleted after execution. This feature
can be used to control the number of timer execution times.

b) If the return value is O, the old interval_us will be used as timing cycle.

c) If the return value is more than 0O, this return value will be used as new timing cycle (unit: us).

int blt_soft_timer_add(blt_timer_callback_t func, u32 interval_us)
{
int i;
u32 now = clock_time();
if(blt_timer.currentNum >= MAX_TIMER_NUM){ //timer full
return 0;
}
else{
blt_timer.timer[blt_timer.currentNum].cb = func;
blt_timer.timer[blt_timer.currentNum].interval = interval_us *
< CLOCK_16M_SYS_TIMER_CLK_1US;
blt_timer.timer[blt_timer.currentNum].t = now +
< blt_timer.timer[blt_timer.currentNum].interval;
blt_timer.currentNum ++;
blt_soft_timer_sort();
bls_pm_setAppWakeupLowPower (blt_timer.timer[0].t, 1);
return 1;

As shown in the implementation code, if timer number exceeds the maximum value, the adding operation
will fail. Whenever a new timer task is added, re-ordering must be implemented to ensure timer tasks are
time-ordered, while the index corresponding to the nearest timer task should be O.

10.4 Delete Timer Task

As introduced above, timer task will be automatically deleted when the return value is less than O. Except
for this case, the API below can be invoked to specify the timer task to be deleted.

int blt_soft_timer_delete(blt_timer_callback_t func);

10.5 Demo

For Demo code of blt soft timer, please refer to “TEST_USER_BLT_SOFT_TIMER” in B91 feature.

AN-20111000-E3 251 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

int gpio_testO(void)

{
DBG_CHN3_TOGGLE;
return 0;
}
int gpilo_testi(void)
{
DBG_CHN4_TOGGLE;
static u8 flg = 0;
flg = !flg;
if(flg){
return 7000;
}
else{
return 17000;
}
}
int gpio_test2(void)
{
DBG_CHN5_TOGGLE;
if(clock_time_exceed(0, 5000000)){
//return -1;
blt_soft_timer_delete(&gpio_test2);
}
return 0;
}
int gpio_test3(void)
{
DBG_CHN6_TOGGLE;
return 0;
}
Initialization:

blt_soft_timer_init();

blt_soft_timer_add(&gpio_testd, 23000);
blt_soft_timer_add(&gpio_testl, 7000);
blt_soft_timer_add(&gpio_test2, 13000);
blt_soft_timer_add(&gpio_test3, 27000);

Four timer tasks are defined with differenet features:
(1) gpio_testO: Toggle once for every 23ms.
(2) gpio_test1: Switch between two timers of 7ms/17ms.

(3) gpio_test2: Delete itself after 5s, which can be implemented by invoking “blt_soft_timer_delete(&gpio_test2)”
or “return -1".

AN-20111000-E3 252 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(4) gpio_test3: Toggle once for every 27ms.

AN-20111000-E3 253 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

11 IR

11.1 PWM Driver

By operating registers, hardware configurations for PWM are very simple. To improve execution efficiency
and save code size, related APIs, implemented via “static inline function”, are defined in the “pwm.h".

11.1.1 PWM ID and Pin

B91 supports up to 12-channel PWM: PWMO ~ PWM5 and PWMO_N ~ PWM5_N.

Six-channel PWM is defined in driver:

typedef enum {
PWMO_ID = 0,
PWM1_1ID,
PWM2_ID,
PWM3_ID,
PWM4_ID,
PWM5_ID,

Ipwm_1id;

Only six channels PWMO~PWMS5 are configured in software, while the other six channels PWMO_N~PWM5_N
are inverted output of PWMO~PWMS5 waveform. For example: PWMO_N is inverted output of PWMO wave-
form. When PWMO is high level, PWMO_N is low level; When PWMO is low level, PWMO_N is high level.
Therefore, as long as PWMO~PWMS5 are configured, PWMO_N~PWM5_N are also configured.

IC pins corresponding to 12-channel PWM are shown as below:

Table 11.1: IC pins corresponding to 12-channel PWM

PWMx Pin PWMx_n Pin

PWMO PB4/PCO/PE3 PWMO_N PDO

PWM1 PB5/PET PWM1_N PDI
PWM2 PB7/PE2 PWM2_N PD2/PE6
PWM3 PB1/PEO PWM3_N PD3/PE7
PWM4 PD7/PE4 PWM4_N PD4
PWM5 PBO/PE5 PWM5_N PD5

The “void pwm_set_pin(pwm_pin_e pin)” serves to set specific pin as PWM function.

“pin”: GPIO pin corresponding to actual PWM channel

AN-20111000-E3 254 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

“func”: Must set as corresponding PWM function, i.e. AS_PWMO ~ AS_PWM5_N in table above, as shown

below.

typedef enum{
PWM_PWM@_PB4 = GPIO_PB4,
PWM_PWM®_PCO = GPIO_PCO,
PWM_PWM®_PE3 = GPIO_PE3,
PWM_PWMO_N_PDO = GPIO_PDO,

PWM_PWM1_PB5 = GPIO_PBS5,
PWM_PWM1_PE1 = GPIO_PE1,
PWM_PWM1_N_PD1 = GPIO_PD1,
PWM_PWM2_PB7 = GPIO_PB7,
PWM_PWM2_PE2 = GPIO_PE2,
PWM_PWM2_N_PD2 = GPIO_PD2,
PWM_PWM2_N_PE6 = GPIO_PES6,
PWM_PWM3_PB1 = GPIO_PB1,
PWM_PWM3_PEO® = GPIO_PEO,
PWM_PWM3_N_PD3 = GPIO_PD3,
PWM_PWM3_N_PE7 = GPIO_PE7,
PWM_PWM4_PD7 = GPIO_PD7,
PWM_PWM4_PE4 = GPIO_PE4,
PWM_PWM4_N_PD4 = GPIO_PDA4,
PWM_PWM5_PBO = GPIO_PBO,
PWM_PWM5_PE5 = GPIO_PES5,
PWM_PWM5_N_PD5 = GPIO_PD5,
}pwm_pin_e;

For example, to use PCO as PWMO:

pwm_set_pin (PWM_PWMO_PCO);

11.1.2 PWM Clock

PWM has 2 clock source, pclk and 32K, as shown below.

AN-20111000-E3 255

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

pwm_32k _chn_en(PW
PC
E pwm_set _cl PW PWMO
CLK3 J PWMO: | Inverter. |
pwm_32k_chn_en(PW
PC
E pwm_set_cl p PWM5
CLK3 ! PWMs. | Ivertere "

Figure 11.1: PWM Clock Source

PWM Clock Source:

pclk

Function: it can be divided, and then the divided clocks are used as the clock source for PWM.
Interface configuration: static inline void pwm_set_clk(unsigned char pwm_clk_div).

Among them: pwm_clk_div = pclk_frequency /pwm_frequency -1 (pwm_clk_div: 0~255).
32K

Function: does not support frequency division, and only supports continuous mode and counting mode.
This configuration is mainly to achieve PWM waveforms in suspend mode.

Interface configuration: static inline void pwm_32k_chn_en(pwm_clk_32k_en_chn_e pwm_32K_en_chn).
Note:

All channels default to the pclk clock source. If you want to use the 32K clock source, call
pwm_32k_chn_en to enable the corresponding channel. The channels that are not enabled still use
the pclk clock source. In fact, due to the higher carrier frequency in IR applications, 32K clock sources
are less likely to be used.

AN-20111000-E3 256 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

11.1.3 PWM Cycle and Duty

A signal frame of PWM consists of two parts, Count status (high level time) and Remaining status (low level

time). The specific waveform of a signal frame is as follows, where tmax is the cycle time:

Remaining status+

< tmax..
Count status+ <
. >
tmnEd

Figure 11.2: PWM Signal Frame

The functions that set the signal frame cycle and duty in the driver all use tcmp and tmax as parameters.

(1) General function interface for setting duty cycle (supports all channels):

static inline void pwm_set_tcmp(pwm_id_e id, unsigned short tcmp);

static inline void pwm_set_tmax(pwm_id_e id, unsigned short tmax);

pwm_set_tcmp:

id: Which PWM channel to choose; tcmp:Set high level duration.

pwm_set_tmax:
id: Which PWM channel to choose; tmax:Set cycle.

Note:

» Set the PWM cycle in the second parameter of the pwm_set_tmax function. The parameter type
is short. The minimum value of tmax is 1 and cannot be O. If it is O, then pwm is not working, so

the value range of tmax is: 1~65535.

+ Set the PWM duty cycle in the second parameter of the pwm_set_tcmp function. The parameter
type is short. The minimum value of tcmp can be 0. When it is O, the pwm waveform is always
low and the maximum value can be It is tmax, and the waveform of pwm is always high at this

time, so the value range of tcmp is: O~tmax.

(2) When using IR FIFO Mode and IR DMA FIFO Mode of PWMO, another function interface will be used.

static inline voild pwm_set_pwm@_tcmp_and_tmax_shadow(unsigned short tmac_tick, unsigned short

< cmp_tick);

AN-20111000-E3 257

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Note:

In the pwm_set_pwmO_tcmp_and_tmax_shadow function, the parameter tmac_tick sets the cycle of
pwmO, the parameter cmp_tick sets the high level duration of pwmO, the value range of tmac_tick:
1~65536, the value range of cmp_tick: O~cycle_tick.

(3) When using PWMOQ'’s counting mode and IR mode, pwmO needs to set the pulse output number func-
tion, the following function interface is used:

static inline void pwm_set_pwmO_pulse_num(unsigned short pulse_num);

pulse_num: pulse number.

(4) When pwmO writes cfg data to fifo, the following function interface is used:

static inline void pwm_set_pwm@_ir_fifo_cfg_data(unsigned short pulse_num, unsigned char
< use_shadow, unsigned char carrier_en);

use_shadow:

1: Use the cycle and duty set under the pwm_set_pwmO_tcmp_and_tmax_shadow function.

0: Use the cycle and duty set under the pwm_set_tmax and pwm_set_tcmp functions.

carrier_en:

1: Output pulse according to the settings of the parameters pulse_num and use_shadow.

0: Output low level, the duration is calculated according to the parameters pulse_num and use_shadow.

For PWMO ~ PWMS5, the hardware will automatically put the high level in the front and the low level in the
back. If you want low level first, there are several ways:

+ Use the corresponding PWMO_N ~ PWM5_N, which is the opposite of PWMO ~ PWM5.

« Use API static inline void pwm_invert_en(pwm_id_e id) to directly invert the waveform of PWMO -~
PWMS.

For example, the current PWM clock is 16MHz, and you need to set a PWMO with a PWM period of 1ms and
a duty cycle of 50%. A frame method is:

pwm_set_tmax (PWMO_ID , 16000)

pwm_set_tcmp (PWMO_ID , 8000)

11.1.4 PWM Revert
The following API serves to invert PWMO~PWM5 waveform.

vold pwm_invert_en (pwm_id id)

The following API serves to invert PWMO_N ~ PWM5_N waveform.

AN-20111000-E3 258 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void pwm_n_invert_en (pwm_id id)

11.1.5 PWM Start and Stop

The following 2 APIs serve to enable/disable specified PWM.
vold pwm_start(pwm_1id id) ;

vold pwm_stop(pwm_id id) ;

11.1.6 PWM Mode

PWM supports 5 modes: Normal mode (Continuous mode), while only PWMO supports Counting mode, IR
mode, IR FIFO mode and IR DMA FIFO mode, defined as following:

typedef enum{

PWM_NORMAL_MODE = 0x00,
PWM_COUNT_MODE = 0x01,
PWM_IR_MODE = 0x03,
PWM_IR_FIFO_MODE = 0x07,
PWM_IR_DMA_FIFO_MODE = OXOF,

}pwm_mode_e;

PWMO supports all 5 modes, Normal mode (Continuous mode), while only PWMO supports Counting mode,
IR mode, IR FIFO mode and IR DMA FIFO mode, PWM1~PWMS5 supports only normal mode.

11.1.7 PWM Pulse Number

The API below serves to set pulse number, i.e. number of Signal Frames, for output waveform of specified
PWM channel.

vold pwm_set_pwm@_pulse_num(unsigned short pulse_num)

This APl is only used for Counting mode, IR mode, IR FIFO mode and IR DMA FIFO mode, but not applies to
Normal mode with continuous pulses.

11.1.8 PWM Interrupt

The interrupt settings supported by PWM are explained as follows (the hardware will not automatically clear
the interrupt flag bit, and the software needs to clear it manually).

AN-20111000-E3 259 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Table 11.2: Interrupt settings supported by PWM

PWM Supported Interrupt

PWMO 1.FLD_PWMO_FRAME_DONE_IRQ: When each signal frame is completed, an
interrupt will be generated. 2.FLD_PWMO_PNUM_IRQ: Every time a pulse group is
sent, an interrupt will be generated. 3.FLD_PWMO_IR_FIFO_IRQ: When the cfg data
in the FIFO is less than (not including equal to) the set value (trigger_level), the
interrupt is entered. 4.FLD_PWMO_IR_DMA_FIFO_IRQ: After the FIFO has executed
the cfg data sent by the DMA, it enters the interrupt

PWM1 FLD_PWM1_FRAME_DONE_IRQ: When each signal frame is completed, an interrupt
will be generated.

PWM2 FLD_PWM2_FRAME_DONE_IRQ: When each signal frame is completed, an interrupt
will be generated.

PWM3 FLD_PWM3_FRAME_DONE_IRQ: When each signal frame is completed, an interrupt
will be generated.

PWM4 FLD_PWM4_FRAME_DONE_IRQ: When each signal frame is completed, an interrupt
will be generated.

PWM5 FLD_PWM5_FRAME_DONE_IRQ: When each signal frame is completed, an interrupt
will be generated.

A pulse group (pluse groups) containing several frames can be configured through the pwm_set_pwmO_pulse_num
function interface:

static inline void pwm_set_pwm@_pulse_num(unsigned short pulse_num);

The value of trigger_levelin IR FIFO mode can be configured through the pwm_set_pwmO_ir_fifo_irq_trig_level
function interface:

static inline void pwm_set_pwm0@_ir_fifo_1irq_trig_level(unsigned char trig_level);

11.1.9 IR DMA FIFO mode

IR DMA FIFO mode is to write configuration data to FIFO through DMA. Each FIFO uses 2 bytes to represent
a PWM waveform. When the DMA data buffer takes effect, the PWM hardware module will sent out PWM
waveform 1, waveform 2 Waveform n in chronological order continuously, when fifo finishes executing the
cfg_data sent by DMA, it triggers the interrupt FLD_PWMO_IR_FIFO_IRQ.

11.1.9.1 Configuration for DMA FIFO

On each DMA FIFO, use 2bytes (16 bits) to configure a PWM waveform. Call the following API to return 2
bytes of DMA FIFO data.

AN-20111000-E3 260 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

unsigned short pwm_cal_pwm@_ir_fifo_cfg_data(unsigned short pulse_num,
unsigned char shadow_en, unsigned char carrier_en)

"W

The API has three parameters: “carrier_en”, “shadow_en” and “pulse_num”. The configured PWM wave-
form is a collection of “pulse_num” PWM signal frames.

BIT(15) determines the format of Signal Frame, the basic unit of the current PWM waveform, corresponding
to the “carrier_en” in the API:

* When “carrier_en” is 1, the high pulse in the Signal Frame is effective;

« When “carrier_en” is O, the signal frame is all O data, and the high pulse is invalid.

“Pulse_num” is the number of Signal Frames in the current PWM waveform.

“Shadow_en” can choose the following two definitions.

typedef enum{
PWM®_PULSE_NORMAL
PWMO_PULSE_SHADOW

}PwmOPulse_SelectDef;

0,
BIT(14),

When “shadow_en” is PWMO_PULSE_NORMAL, the Signal Frame comes from the configuration of
pwm_set_tcmp and pwm_set_tmax; when “shadow_en” is PWMO_PULSE_SHADOW, the Signal Frame
comes from the configuration of pwm_set_pwmO_tcmp_and_tmax_shadow.

The purpose of PWM shadow mode is to add a set of signal frame configuration, thereby adding more
flexibility to the PWM waveform configuration of IR DMA FIFO mode.

11.1.9.2 Set DMA FIFO Buffer

After DMA FIFO buffer is configured, the API below should be invoked to set the starting address of the
buffer to DMA module and the transmission data length. The buffer should be four-byte aligned.

vold pwm_set_dma_buf(dma_chn_e chn,u32 buf_addr,u32 len)

11.1.9.3 Start and Stop for IR DMA FIFO Mode

After DMA FIFO buffer is prepared, the API below should be invoked to start sending PWM waveforms.

vold pwm_ir_dma_mode_start(dma_chn_e chn);

After all PWM waveforms in DMA FIFO buffer are sent, the PWM module will be stopped automatically. The
API below can be invoked to manually stop the PWM module in advance.

AN-20111000-E3 261 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

voild pwm_stop_dma_ir_sending(void);

11.2 IR Demo

W

User can refer to the Ble SDK demo “vendor / B91_feature / feature_ir” and set the macro FEA-
TURE_TEST_MODE in feature_config.h to TEST_IR.

11.2.1 PWM mode selection

As required by IR transmission, PWM output needs to switch at specific time with small error tolerance of
switch time accuracy to avoid incorrect IR.

As described in Link Layer timing sequence (section 3.2.4), Link Layers uses system interrupt to process brx
event. (In the new SDK, adv event is processed in the main_loop and does not occupy system interrupt
time.) When IR is about to switch PWM output soon, if brx event related interrupt comes first and occupies
MCU time, the time to swtich PWM output may be delayed, thus to result in IR error. Therefore IR cannot
use PWM Normal mode.

The B91 family introduces an extra IR DMA FIFO mode. In IR DMA FIFO mode, since FIFO can be defined in
SRAM, more FIFOs are available, which can effectively solve the shortcoming of PWM IR mode above.

IR DMA FIFO mode supports pre-storage of multiple PWM waveforms into SRAM. Once DMA is started, no
software involvement is needed. This can save frequent SW processing time, and avoid PWM waveform
delay caused by simultaneous response to multiple IRQs in interrupt system.

Only PWMO with IR DMA FIFO mode can be used to implement IR. Therefore, in HW design, IR control GPIO
must be PWMO pin or PWMO_n pin.

11.2.2 Demo IR Protocol

The figure below shows demo IR protocol in the SDK.

AN-20111000-E3 262 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

| | |
: 110 mS ! 110 mS [
|
[| |
Start Repeat Repeat
9ms 560uS 560uS 9ms
4. bms 560uS 1690uS
| . I
Logical - wqi» 2250uS
Start : “n” l Logical 1 : Repeat
Data
Red : Start
Data format: Address + Addrss + Command + Command Blue: Data

Green : Repeat

Figure 11.3: Demo IR Protocol

11.2.3 IR Timing Design

The figure below shows basic IR timing abased demo IR protocol and feature of IR DMA FIFO mode.

In IR DMA FIFO mode, a complete task is defined as FifoTask. Herein the processing of IR repeat signal
adopts the method of “add repeat one by one”, i.e. the macro below is defined as 1.

#define ADD_REPEAT_ONE_BY ONE 1
éFifoTaskfdatni FifoTask_idle ; FifoTask repeat | FifoTask repeat
110 nS | 110 mS 110 S
-— T data—{~—— 110mS - T_data —
data repeat repeat repeat
IR d}na fifo done IR dma fifo done IR dma fifo done IR dma fifo done
IR start interrupt interrupt interrupt interrupt

Figure 11.4: IR Timing 1

When a button is pressed to trigger IR transmission, IR is disassembled to FifoTasks as shown in the figure
above.

AN-20111000-E3 263 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

(1) After IR is started, run FifoTask_data to send valid data. The duration of FifoTask_data, marked

as T_data, is not certain due to the uncertainty of data. After FifoTask_data is finished, trigger
IRQ_PWMO_IR_DMA_FIFO_DONE.

(2) Ininterrupt function of IRQ_PWMO_IR_DMA_FIFO_DONE, start FifoTask_idle phase to send signal with-
out carrier and it lasts for a duration of (110ms - T_data). This phase is designed to guarantee the

time point the first FifoTask_repeat is 110ms later after IR is started. After FifoTask_idle is finished,
trigger IRQ_PWMO_IR_DMA_FIFO_DONE.

(3) In interrupt function of IRQ_PWMO_IR_DMA_FIFO_DONE, start the first FifoTask_repeat. Each Fifo-

Task_repeat lasts for 110ms. By adding FifoTask_repeat in corresponding interrupt function, IR repeat
signals can be sent continuously.

(4) The time point to stop IR is not certain, and it depends on the time to release the button. After the APP
layer detects key release, as long as FifoTask_data is correctly completed, IR transmission is finished
by manually stoppng IR DMA FIFO mode.

Following shows some optimization steps for the IR timing design above.

(1) Since FifoTask_repeat timing is fixed, and there are many DMA fifos in IR DMA FIFO mode, multiple
FifoTask_repeat of 110ms can be assembled into one FifoTask_repeat™n, so as to reduce the num-
ber of times to process IRQ_PWMO_IR_DMA_FIFO_DONE in SW. Correponding to the processing of
“ADD_REPEAT_ONE_BY_ONE” macro defined as O, the Demo herein assembles five IR repeat signals
into one FifoTask_repeat*5. User can further optimize it according to the usage of DMA fifos.

(2) Basedonstep 1, combine FifoTask_ilde and the first “FifoTask_repeat*n” to form “FifoTask_idle_repeat*n”.

The figure below shows IR timing after optimization.

\‘x\E}f?Taskidatai FifoTask idle_repeat*n FifoTask repeat#n

3*447 110mS ; 110 mS * n i 110 mS * n
s s s s =
dat @ eecceoe O <] eeccee oy >
ata = = = = =3
() [5] [} [}
= b = = b
L3 BN

/ 1 2,3... n 1 2,3... n

IR start

IR dma fifo done IR dma fifo done

! IR dma fifo done
interrupt interrupt

interrupt

Figure 11.5: IR Timing 2

As per the IR timing design above, corresponding code in SW flow is shown as below:

At IR start, invoke the function “ir_nec_send”, enable FifoTask_data, and use interrupt to control the follow-
ing flow. In the interrupt when FifoTask_data is finished, enable FifoTask_idle. In the interrupt when Fifo-

Task_idle is finished, enable FifoTask_repeat. Before manually stopping IR DMA FIFO mode, FifoTask_repeat
is executed continually.

AN-20111000-E3 264 Ver1.2.0

T

Telink

Telink B91 BLE Single Connection SDK Developer Handbook

void ir_nec_send(u8 addri1, u8 addr2, u8 cmd)

{
if(ir_send_ctrl.last_cmd != cmd)
{
if(ir_sending_check())
{
return;
}
ir_send_ctrl.last_cmd = cmd;
// set waveform input in sequence
T_dmaData_buf.data_num = 0;
//waveform for start bit
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_2nd;
//add data
u32 data = (~cmd)<<24 | cmd<<16 | addr2<<8 | addri;
for(int 1=0;1<32;1++){
if(data & BIT(1)){
//waveform for logic_1
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_2nd;
}
else{
//waveform for logic_0
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_2nd;
}
}
//waveform for stop bit
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_2nd;
T_dmaData_buf.dma_len = T_dmaData_buf.data_num * 2;
ir_send_ctrl.repeat_enable = 1; //need repeat signal
ir_send_ctrl.is_sending = IR_SENDING_DATA;
//dma init

pwm_set_dma_config(PWM_DMA_CHN);

pwm_set_dma_buf(PWM_DMA_CHN, (u32) &T_dmaData_buf ,T_dmaData_buf.dma_len);
pwm_ir_dma_mode_start(PWM_DMA_CHN);
pwm_set_irq_mask(FLD_PWMO_IR_DMA_FIFO_IRQ);
pwm_clr_irq_status(FLD_PWMO_IR_DMA_FIFO_IRQ);

core_interrupt_enable();//

plic_interrupt_enable(IRQ16_PWM);

AN-20111000-E3 265

Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

ir_send_ctrl.sending_start_time = clock_time();

11.2.4 IR Initialization

11.2.4.1 rc_ir_init
IR initialization function is shown as below. Please refer to demo code in the SDK.

voild rc_ir_init(void)

11.2.4.2 IR Hardware Configuration
Following shows the PWM configuration code.

pwm_n_invert_en(PWMO_ID);

pwm_set_clk((unsigned char) (sys_clk.pclk*1000*1000/PWM_CLK_SPEED-1));//use pclk is ok
pwm_set_pin(PWM_PIN);

pwm_set_pwm@_mode(PWM_IR_DMA_FIFO_MODE);

pwm_set_tcmp(PWM_ID, PWM_CARRIER_HIGH_TICK);

pwm_set_tmax(PWM_ID, PWM_CARRIER_CYCLE_TICK);

Following shows the DMA configuration code.

pwm_set_dma_config(PWM_DMA_CHN);
pwm_set_dma_buf(PWM_DMA_CHN, (u32) &T_dmaData_buf ,T_dmaData_buf.dma_len);
pwm_ir_dma_mode_start(PWM_DMA_CHN);

Following shows the interrupt configuration code.

pwm_set_1irq_mask(FLD_PWMO_IR_DMA_FIFO_IRQ);
pwm_clr_irq_status(FLD_PWMO_IR_DMA_FIFO_IRQ);
core_1interrupt_enable();
plic_interrupt_enable(IRQ16_PWM);

The Demo IR carrier frequency is 38K, the cycle is 26.3uS, and the duty is 1/3. Use API pwm_set_tmax and
pwm_set_tcmp and configure the cycle and duty.

pwm_set_tcmp(PWM_ID, PWM_CARRIER_HIGH_TICK);
pwm_set_tmax(PWM_ID, PWM_CARRIER_CYCLE_TICK);

In Demo IR, there are no multiple different carrier frequencies. This 38K carrier is sufficient for all FifoTask
configurations. So there is no need to use PWM shadow mode. An introduction to the model can be found
in section 11.1.9.1.

AN-20111000-E3 266 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

11.2.4.3 IR Variable Initialization

Related variables in the SDK demo includes waveform_start_bit_1st, waveform_start_bit_2nd, and etc.
As introduced in IR timing design, FifoTask_data and FifoTask_repeat should be configured.

Start signal = 9ms carrier signal + 4.5ms low level signal (no carrier). The “pwm_config_dma_fifo_waveform”
is invoked to configure the two corresponding DMA FIFO data.

//start bit, 9000 us carrier, 4500 us low

waveform_start_bit_1st = pwm_cal_pwm0_1ir_fifo_cfg_data(9000 * CLOCK_PWM_CLOCK_1US/
< PWM_CARRIER_CYCLE_TICK, PWMO_PULSE_NORMAL, 1);

waveform_start_bit_2nd = pwm_cal_pwm@_1ir_fifo_cfg _data(4500 * CLOCK_PWM_CLOCK_1US/
& PWM_CARRIER_CYCLE_TICK, PWMO_PULSE_NORMAL, 0);

The method also applies to configure stop signal, repeat signal, data logic “1” signal, and data logic “0”
signal.

11.2.5 FifoTask Configuration

11.2.5.1 FifoTask_data
As per demo IR protocol, to send a cmd (e.g. 7), first send start signal, i.e. 9ms carrier signal + 4.5ms low
level signal (no carrier); then send “address+ ~address+ cmd + ~cmd”. In the demo code, address is 0x88.

When sending the final bit of “~cmd”, logical “0” or logical “1” always contains some non-carrier signals
at the end. If “~cmd” is not followed by any data, there may be a problem on Rx side: Since there’s no
boundary to differentiate carrier, the FW does not know whether the non-carrier signal duration of the final
bit is 560us or 1690us, and fails to recognize whether it’s logical *0” or logical “1”.

To solve this problem, the Data signal should be followed by a “stop” signal which is defined as 560us carrier
signal + 500us non-carrier signal.

Thus, the FifoTask_data mainly contains the three parts below:
(1) start signal: 9ms carrier signal + 4.5ms low level signal (no carrier)
(2) data signal: address+ ~address+ cmd + ~cmd
(3) stop signal: 560us carrier signal + 500us non-carrier signal

According to the above 3 signals, configure the Dma Fifo buffer to start the IR transmission, which is partially
implemented in the ir_nec_send function, where part of the relevant code is as follows.

// set waveform input in sequence
T_dmaData_buf.data_num = 0;
//waveform for start bit
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_start_bit_2nd;

//add data

AN-20111000-E3 267 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

u32 data = (~cmd)<<24 | cmd<<16 | addr2<<8 | addri;
for(int 1=0;1<32;1++){
if(data & BIT(1)){
//waveform for logic_1
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_1_2nd;

}
else{
//waveform for logic_0
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_logic_0_2nd;
}

//waveform for stop bit

T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_1st;
T_dmaData_buf.data[T_dmaData_buf.data_num ++] = waveform_stop_bit_2nd;
T_dmaData_buf.dma_len = T_dmaData_buf.data_num * 2;

11.2.5.2 FifoTask_idle

As introduced in IR timing design, FifoTask_idle lasts for the duration *110mS - T_data”. Record the time
when FifoTask_data starts:

ir_send_ctrl.sending_start_time = clock_time();

Then calculate FifoTask_idle time in the interrupt triggered when FifoTask_data is finished:

110mS - (clock_time() - ir_send_ctrl.sending_start_time)

Demo code:

u32 tick_2_repeat_sysClockTimer16M = 110*CLOCK_16M_SYS_TIMER_CLK_1MS - (clock_time()
< 1ir_send_ctrl.sending_start_time);
u32 tick_2_repeat_sysTimer = (tick_2_repeat_sysClockTimer16M*CLOCK_PWM_CLOCK_1US>>4);

Please pay attention to time unit switch. As introduced in Clock module, Sytem Timer frequency used in
software timer is fixed as 16MHz. Since PWM clock is derived from system clock, user needs to consider the
case with system clock rather than 16MHz (e.qg. 24MHz, 32MHz).

FifoTask_idle does not send PWM waveform, which can be considered to continually send non-carrier signal.
It can be implemented by setting the first parameter “carrier_en” of the API *“pwm_config_dma_fifo_waveform”
as 0.

AN-20111000-E3 268 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

waveform_wait_to_repeat = pwm_config_dma_fifo_waveform(®, PWMO_PULSE_NORMAL,
< tick_2_repeat_sysTimer/PWM_CARRIER_CYCLE_TICK);

11.2.5.3 FifoTask_repeat

As per Demo IR protocol, repeat signal is 9ms carrier signal + 2.25ms non-carrier signal.

Similar to the processing of FifoTask_data, the end of repeat signal should be followed by 560us carrier
signal as stop signal.

As introduced in IR timing design, repeat signal lasts for 110ms, so the duration of non-carrier signal after
the 560us carrier signal should be:

110ms - 9ms - 2.25ms - 560us = 99190us

The code below shows the configuration for a complete repeat signal.

//repeat signal first part, 9000 us carrier, 2250 us low

waveform_repeat_1st = pwm_config_dma_fifo_waveform(1, PWMO_PULSE_NORMAL, 9000 *
< CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

waveform_repeat_2nd = pwm_config_dma_fifo_waveform(0, PWMO_PULSE_NORMAL, 2250 *
< CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

//repeat signal second part, 560 us carrier, 99190 us low

waveform_repeat_3rd = pwm_config_dma_fifo_waveform(1, PWMO_PULSE_NORMAL, 560 *
< CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

waveform_repeat_4th = pwm_config_dma_fifo_waveform(0, PWMO_PULSE_NORMAL, 99190 *
& CLOCK_SYS_CLOCK_1US/PWM_CARRIER_CYCLE_TICK);

T_dmaData_buf.data[T_dmaData_buf.data_num ++]
T_dmaData_buf.data[T_dmaData_buf.data_num ++]
T_dmaData_buf.data[T_dmaData_buf.data_num
T_dmaData_buf.data[T_dmaData_buf.data_num

waveform_repeat_1st;
waveform_repeat_2nd;

waveform_repeat_3rd;

+
+
—
1

waveform_repeat_4th;

+
+
—
1

11.2.5.4 FifoTask_repeat’n and FifoTask_idle_repeat’n

By simple superposition in DMA Fifo buffer, "FifoTask_repeat*n” and “FifoTask_idle_repeat*n” can be imple-
mented on the basis of FifoTask_idle and FifoTask_repeat.

11.2.6 Check IR Busy Status in APP Layer

In the Application layer, user can use the variable “ir_send_ctrl.is_sending” to check whether IR is busy
sending data or repeat signal.

The following shows the determination of whether IR is busy in power management. When IR is busy, MCU
cannot enter suspend.

AN-20111000-E3 269 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

if(ir_send_ctrl.is_sending)
{
bls_pm_setSuspendMask (SUSPEND_DISABLE);

11.3 IR Learn

11.3.1 IR Learn introduction
IR learning is done by using the characteristics of IR tube to transmit and receive IR signals, and using the
amplifier circuit to amplify and convert the received weak signals into digital signals, thus completing the

learning of IR waveforms. After learning, the relevant data is stored in RAM/Flash, and then the learned
waveform is sent out using the transmitting characteristics of the IR tube.

11.3.2 IR Learn hardware principle

The hardware circuit of IR learn is shown as below.

R10

L IFaut

NC
.
R9 . TL_IRin
100
Bl o4
C1815
TL VDD TL IRcontrol
1N4148 47K R12 _NC
TL_VDD——AAA

Figure 11.6: IR Learn hardware circuit

AN-20111000-E3 270 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

When in the IR learning state, IR_OUT and IR_CONTROL pin should be set to GPIO function and pulled low
at the same time, then Q2 and Q3 will be in the cutoff state, IR_IN level is high when there is no waveform,
and then will follow the waveform received by the triode and change: when the input waveform is high,
IR_IN is pulled low, on the contrary IR_IN back to high. IR learning also takes advantage of this feature,
using GPIO low level trigger to complete the learning algorithm, which will be described in detail later. As
shown in the figure below, the transmitter is using NEC format IR, and the waveform of IR_IN is captured
as shown in the figure below.

6257, 1Bms +BZ268. 33ms +62T79. S51lms +6290. BSms +6301. 85ms +6313. 03ms +6324. 20ms

| B IHHRNINIRRRRN RN S/ RS (R0 G

Figure 11.7: IR_IN waveform of NEC protocol

The dark part is the carrier waveform and the white part is the non-carrier waveform. The waveform of
the amplified carrier part is shown in the figure below, which is high when no IR signal is received in front,
and IR_IN is pulled down when a signal is received. The IR_IN low level is 9.35us and the period is 26.4us,
which is converted to a carrier frequency of 37.88kHz. This matches the NEC protocol carrier of 38kHz with
a duty cycle of 1/3.

+OETOSE0. 00Ws +IETOS00, 00ps +OETOQZ0, 00ps +96T0250.00Ws +9GTODE0, 00ps +DETIOL0, 00Ps +OGTI040,00ps +9ETI0TO. 00Ps +OETILO0 OO0ps +98T1130.00Us

IIII|II.IIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|III

I 5 I i e o i R

Figure 11.8: IR_IN waveform of NEC carrier

11.3.3 IR Learn software principle

During IR learning, the chip will set and enable the IR_IN trigger interrupt at falling edge. Every time it
receives an IR carrier waveform from its device, IR_IN will be pulled low and trigger the interrupt. In the
interrupt, the timing, number of waveforms, and carrier period of the carrier and non-carrier waveforms
will be recorded by the algorithm, and the waveforms will be copied and sent out according to the above
information when sending.

The following figure shows the order of recording during interrupt processing, the duration of the carrier/
non-carrier part shown in the previous 1, 2... will be recorded in the buff. At the same time, the duration of a
certain number of single carriers constituting 1is recorded, and the carrier frequency fc of the waveform is
obtained by averaging. When the waveform is sent after the recording is completed, the carrier frequency
fcis fixed with a duty cycle of 1/3, and the time corresponding to 1 and 2 is sent out in the carrier/non-carrier
order to complete the IR learning process.

AN-20111000-E3 271 Ver1.2.0

T

Telink
Telink B91 BLE Single Connection SDK Developer Handbook

e

Figure 11.9: Carrier and non-carrier

11.3.4 IR Learn software description

To quickly complete the IR learning and sending function, the following steps are required.

(1)
(2)

(3)
(4)
(5)

(7)

(9)

Initialize with ir_learn_init(void).

Add the relevant part of the ir_learn_irq_handler(void) interrupt handling function to the interrupt
function.

Add the ir_learn_detect(void) section to the program to determine the learning results.
Modify the relevant macro definitions in rc_ir_learn.h.
Add the ir_learn_start(void) function to the appropriate location in the Ul layer to start learning.

After judging the result by the judgment function set in step 3, use get_ir_learn_state(void) to check
the IR learning status and do Ul layer operations according to the success or failure of learning: if
successful, continue steps 7~9 to finish sending, if failure, you can re-execute step 5 or perform other
custom Ul actions.

After successful learning, the learning result can be sent. The first step of sending is to initialize the
IR transmission, using ir_learn_send_init(void). Be noted that after calling this function IR_OUT will be
changed to PWM output pin, if you want to re-enter the IR learning state, you must re-execute step
1 to re-initialize the pin function.

The second step of sending is to copy the useful parameters of the learning result to a fixed area,
RAM/Flash are suitable, use the ir_learn_copy_result(ir_learn_send_t* send_buffer) function to copy
to the structure defined for sending the IR learning result.

The final step of sending is to call the ir_learn_send(ir_learn_send_t* send_buffer) function to send
the learning results.

At this point, the entire functionality of IR learning has been implemented. In the following section, we will
specify how to add the functions mentioned in the steps, one by one, in the order of the above steps.

11.3.4.1 IR_Learn initialization

When using the IR Learn function, after copying rc_ir_learn.c and rc_ir_learn.h into the project, the first step

is to call the initialization function.

vold ir_learn_init(void)

AN-20111000-E3 272 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

This function finds its entity in rc_ir_learn.c. It first clears the structure used, then sets IR_OUT and
IR_CONTROL to GPIO and outputs O. Then it sets the GPIO interrupt enable and clears the interrupt flag
bit.

11.3.4.2 IR_Learn interrupt handling

Since the IR Learn function is implemented based on interrupts, the second step requires adding interrupt
handling functions to the interrupts. As the protocol stack will be constructed to enter the interrupt several
times, in order to distinguish it is @ GPIO interrupt, the interrupt flag bit will be read first and then recorded
when it is an interrupt generated by GPIO. The implementation code is as follows.

vold ir_learn_1irg_handler(void)

{
gpilo_clr_irq_status(FLD_GPIO_IRQ_CLR);
if ((g_ir_learn_ctrl -> ir_learn_state != IR_LEARN_WAIT_KEY) && (g_ir_learn_ctrl ->
~ 1ir_learn_state != IR_LEARN_BEGIN))
{
return;
}
ir_record(clock_time()); // IR Learning
}

Where ir_record() is the specific learning algorithm, the function pre_attribute_ram_code_ is put into the
ram in order to speed up the learning and avoid errors caused by long execution time.

11.3.4.3 IR_Learn result processing function

The main role of the result processing function is to change the state of IR learning in time according to the
current IR learning situation, and each loop needs to be executed to complete the detection in time. The
function can be called in the main_loop().

void ir_learn_detect(void)

As can be seen from the function entity, when the time after the start of learning exceeds IR_LEARN_
OVERTIME_THRESHOLD, the waveform is still not received and it is a timeout failure; after learning has
started and has received the signal, the set threshold time passed but no new signal received, it is considered
to have completed the learning state, at this time, if the received carrier and non-carrier part exceeds the
set number (default is 15), the learning is considered successful, otherwise it is considered failed.

11.3.4.4 IR_Learn macro definition

To increase extensibility, some macro definitions are added to rc_ir_learn.h.

AN-20111000-E3 273 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define GPIO_IR OUT PWM_PIN // GPIO_PE3
#define GPIO_IR_CONTROL GPIO_PEO
#define GPIO_IR_LEARN_IN GPIO PE1

The first three define the GPIO pins, IN/OUT/CONTROL, which change according to the specific design.

11.3.4.5 IR_Learn start function

The IR Learn start function is called where needed in the Ul layer to start the IR learning process. The
function is as follows.

ir_learn_start();

11.3.4.6 IR_Learn state query

Users can call the status query function to query the learning results, the function is as follows.

unsigned char get_1ir_learn_state(void)

{
if(g_ir_learn_ctrl -> ir_learn_state == IR_LEARN_SUCCESS)
return 0;
else if(g_1ir_learn_ctrl -> ir_learn_state < IR_LEARN_SUCCESS)
return 1;
else
return (g_ir_learn_ctrl -> ir_learn_state);
}

Return value = O: IR learning is successful.

Return value = 1: IR learning is in progress or not started.

Return value > 1: IR learning failed, the return value is the reason for failure, which corresponds to the
reason for failure known in ir_learn_states. The ir_learn_states is defined as follows.

enum {
IR_LEARN_DISABLE = 0x00,
IR_LEARN_WAIT KEY,
IR_LEARN_KEY,
IR_LEARN_BEGIN,
IR_LEARN_SAMPLE_END,
IR_LEARN_SUCCESS,
IR_LEARN_FAIL_FIRST_INTERVAL_TOO_LONG,
IR_LEARN_FAIL_TWO_LONG_NO_CARRIER,
IR_LEARN_FAIL_WAIT_OVER_TIME,
IR_LEARN_FAIL_WAVE_NUM_TOO_FEW,

AN-20111000-E3 274 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

IR_LEARN_FAIL_FLASH_FULL,
IR_LEARN_FAIL,
}ir_learn_states;

11.3.4.7 IR_Learn_Send initialization

After the Ul layer determines that the learning is successful, the send initialization function needs to be
called before sending the learned waveform, and the function is as follows.

void ir_learn_send_init(void)

The initialization function mainly sets PWM-related parameters, interrupt-related parameters, and sets
IR_OUT as the output port of PWM, noting that the IR learning function stops after this function is used, and
the initialization function described in 11.3.4.1 needs to be called again if it needs to be enabled again.

11.3.4.8 IR_Learn result copy function

In the design, there are often cases where several keys need to have IR learning functions, so the Ul layer
wants to be able to copy the learning results to a location in RAM/Flash for later transmission after successful
learning, and to start the learning process for other keys. Therefore, a result copy function is provided to
copy the necessary parameters for sending. The function is as follows.

void ir_learn_copy_result(ir_learn_send_t* send_buffer)

The send_buffer is the structure needed for IR learning to send, which contains the clock_tick value for one
carrier cycle, the total number of carriers and non-carriers (counting from O), and the buffer of carriers and
non-carriers already to be sent.

typedef struct{

unsigned int 1ir_learn_carrier_cycle;

unsigned short ir_learn_wave_num;

unsigned int ir_lenrn_send_buf[MAX_SECTION_NUMBER];
}ir_learn_send_t;

11.3.4.9 IR_Learn send function

After the learning is successful and the pre-send operation is done, the send function can be called to send
the learning result. The function is as follows.

vold ir_learn_send(ir_learn_send_t* send_buffer);

where send_buffer is the structure used in the previous function. The send function does not carry the
repeat function, each call to the function will send the learned waveform, if you need to repeat the user
can use the timer in the Ul layer to design their own repeated calls to the function.

AN-20111000-E3 275 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

11.3.5 IR Learn algorithm details

To facilitate understanding the code, the principle of the IR learning algorithm is explained in detail here.
The following is a simulated waveform, which simulates a complete packet of IR data. The data contains
Start carrier, Start No carrier, bit 1 carrier, bit 1 no carrier, bit O carrier, bit O no carrier, End carrier, End no
carrier.

SN SRSE L 5 6

Start Carrier Start No Carrier bit "1" carrier | bit "1" no carrier | bit "0" carrier | bit "0" End carrier End no carrier

no carrier

Figure 11.10: A frame of IR code

Since IR_IN is set in the IR learning state to wake up on the falling edge of the GPIO, normally every falling
edge goes to an interrupt where we do the recording operation. In the IR learning algorithm, instead of
identifying the waveform to a specific code type, the waveform is recorded with the concept of carrier/
non-carrier. Consecutive carriers are considered as one carrier segment, while two carriers separated by
a long time are considered as non-carriers. Thus the above is considered in the IR learning algorithm as
follows.

SN NSRS L) RS SR

Start Carrier Start No Carrier bit "1" carrier | bit "1" na carrier | bit "0" carrier | bit"0" | End carrier End no carrier
no carrier
carrier or no carrier _ - A ; - no - -
carrier No carrier carrier no carrier carrier . carrier no carner
carrier

Figure 11.11: Carrier and no carrier in IR Learn

Each time the algorithm is executed, the current time curr_trigger_tm_point is recorded, and the
last_trigger_tm_point is subtracted from the last interrupt time to get a time_interval of one cycle. If this
time is relatively small, it is considered to be still in the carrier; if this time exceeds the set threshold, it is
considered to be in the middle of a no carrier segment, and at this time it is in the first waveform of the
new carrier segment: at this time, it is necessary to record the last carrier time and put it into the buffer,
which is the difference between the first interrupt entry time and the Iast interrupt time, as shown below.

AN-20111000-E3 276 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

time interval

JEiSESR L

carrier or no carrier

carrier no carrier carrier
algorithm operation carrier time no carrier time
record in buffer record in buffer
first irq time last irg time now

Figure 11.12: IR learn algorithm

According to this method, let wave_series_cnt increase from O, corresponding to the first carrier
segment, the first non-carrier segment, the second carrier segment, the second non-carrier seg-
ment... At the same time, the calculated time of each segment is stored in the corresponding location
(wave_series_buf[wave_series_cnt]) in wave_series_buf[0], wave_series_buf[1], and wave_series_buf[2].
All the way to the end of the waveform, wave_series_cnt represents the total number of segments, and
wave_series_buf is loaded with the length of each segment.

In addition, during the first N (settable) interrupts, N times are recorded, and the smallest one of them is
taken as the carrier period, which is used when sending after the learning is finished, and the duty cycle is
1/3 (settable) by default.

After the IR learning process is finished, the learning result can be sent. When sending the learning result, it
is also sent according to the concept of carrier and non-carrier. Using PWM DMA_FIFO mode, after putting
the learned carrier frequency, duty cycle, and duration of each segment into DMA buffer, enable DMA,
the chip will automatically send out the learned waveform until all the sending is finished, and generate
FLD_IRQ_PWMO_IR_DMA_FIFO_DONE interrupt.

11.3.6 IR Learn learning parameter adjustment

Some parameters related to IR learning are defined in rc_ir_learn.h. When setting the parameter mode to
USER_DEFINE is selected and set by yourself, it will have different effects on the learning effect, which will
be described in detail here.

#define IR_LEARN_MAX_FREQUENCY 40000
#define IR_LEARN_MIN_FREQUENCY 30000
#define IR_LEARN_CARRIER_MIN_CYCLE 16000000/ IR_LEARN_MAX_FREQUENCY

AN-20111000-E3 277 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define IR_LEARN_CARRIER_MIN_HIGH TICK IR _LEARN_CARRIER_MIN_CYCLE/3
#define IR_LEARN_CARRIER_MAX_CYCLE 16000000/ IR_LEARN_MIN_FREQUENCY
#define IR_LEARN_CARRIER_MAX_HIGH TICK IR_LEARN_CARRIER MAX_CYCLE/3

The above parameters set the frequencies supported by IR learning. The default value is set to 30k~40k. The
following parameters are the maximum and minimum values of the sys_tick value per carrier cycle, default
1/3 duty cycle high level to sys_tick value, calculated from the frequency parameters for later parameter
calculation. Other parameters that affect the learning results are described below, and each parameter is
defined in rc_ir_learn.h using macros.

#define IR_LEARN_INTERVAL_THRESHOLD (IR_LEARN_CARRIER_MAX_CYCLE*3/2)
#define IR_LEARN_END_THRESHOLD (30*SYSTEM_TIMER_ TICK_1MS)

#define IR_LEARN_OVERTIME_THRESHOLD 10000000 // 10s
#define IR_CARR_CHECK_CNT 160

#define CARR_AND_NO_CARR_MIN_NUMBER 15

#define MAX_SECTION_NUMBER 100

(1) IR_LLEARN_INTERVAL_THRESHOLD.

Carrier period threshold, the default value is 1.5 times the IR_LEARN_CARRIER_MAX_CYCLE value, when
the time to enter the interrupt twice is more than this threshold is considered at the carrier side.

(2)IR_LEARN_END_THRESHOLD

IR learning end threshold, when the time to enter interrupt twice exceeds this threshold, or the threshold is
exceeded without entering the next interrupt, the IR learning process is considered to be finished.

(3) IR_LLEARN_OVERTIME_THRESHOLD

Timeout time, after the start of IR learning process, if the threshold value is exceeded and the received
waveform enters interrupt, the learning process is considered to be finished and failed.

(4) IR_CARR_CHECK_CNT

Set the number of packets to be collected to determine the carrier cycle time, the default is set to 10, which
means the smallest of the time_interval of the first 10 interrupts will be taken as the carrier time and used
to calculate the carrier cycle when sending learning results.

(5) CARR_AND_NO_CARR_MIN_NUMBER

The minimum threshold of carrier and non-carrier segments. When the IR learning process is completed,
if the total number of recorded carrier and non-carrier segments is less than this threshold, the entire
waveform is considered not learned and the IR learning fails.

(6) MAX_SECTION_NUMBER

The maximum threshold value of carrier and non-carrier section, which will be used when setting the buffer
size. If setting to 100, the IR learning process will record at most 100 carrier and non-carrier sections; if it
exceeds, the IR learning will be considered failed.

AN-20111000-E3 278 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

11.3.7 IR Learn common issues

During the learning process, sometimes it encounters that the frequency of the waveform sent after suc-
cessful learning changes. The possible cause is that the frequency of the learned waveform is too high,
resulting in the execution of the algorithm in the interrupt for more than the carrier period. This is shown
in the figure below.

Waveform sent

Execute
interrupt J l

t0 2 t4
1 i3

Figure 11.13: IR learn error

Take the IR signal with duty cycle 1/3 and transmitting frequency 38K as an example, one carrier cycle is
about 26.3us, high level accounts for 1/3 about 8.7us. At the moment of tO, the external waveform carrier
end point is pulled low from high, the chip GPIO triggers an interrupt, and the interrupt needs to execute
several instructions in the assembly to save the site to enter the interrupt, after testing at t1 after about
4us to enter the interrupt function to start executing the operation. Due to the long execution time in the
interrupt, the interrupt execution ends at t2, and it also takes about 4us to restore the site. In the process of
restoring the site at t3 moment, as the next falling edge of the transmit waveform arrives, the interrupt flag
bit is cleared at this time and the hardware will trigger the interrupt again. The interrupt has been triggered
again after restoring the site about 4us after t2, so the chip saves the site again to enter the interrupt at t4
after 4us in entering the interrupt for operation, after which the above process will be repeated. As seen by
the waveform executed by the interrupt, its time is completely deformed and the time to enter the interrupt
twice is also larger than the time of one carrier cycle of the original waveform. Since the IR learning is done
exactly according to the time recorded in the interrupt, the abnormal time of entering the interrupt will lead
to abnormal IR learning results.

There are several ways to solve this problem.

One is to put the IR learning algorithm into the ram_code to reduce the execution time, by default this
operation is already performed and does not need to be modified.

The second is to make sure to reduce other processing of interrupts. BLE needs to be disabled in IR learning
because it takes up a lot of time in interrupts during non-IDLE states, and the Ul layer also tries to prohibit
other interrupt sources from causing interrupts during IR learning to prevent exceptions.

AN-20111000-E3 279 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

11.4 Demo description
The feature_IR of the BLE SDK contains the normal IR sending function and IR learning function, and the IR
encoding method used is NEC encoding. The switch between the different modes is shown in the following

code.

void key_change_proc(void)

{
switch(key0)
{
if(switch_key == IR _mode){------
}
else if(switch_key == IR_Learn_mode){-:-
}
else{
}
}
}

Each mode can be switched to a different mode by pressing a key to perform the corresponding initialization
operation, the specific code implementation can be referred to the BLE SDK.

AN-20111000-E3 280 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

12 Feature Demo Introduction

B91_feature_test provides demo codes for some commonly used BLE-related features. Users can refer
to these demos to complete their own function implementation. See code for details. Select the macro
“FEATURE_TEST_MODE" in app_config.h in the B91_feature_test project to switch to the demo of different
feature test.

//power test
#define TEST POWER ADV 10
#define TEST POWER CONN 11

//smp test
#define TEST SMF SECURITY 20 //If testing SECURITY, such as Passkey Entr

//gatt secure test
#define TEST GATT SECURITY 21 //If testing

u

//slave data length exchangs test
$define TEST SDATA LENGTH EXTENSION 22

//other test

#define TEST USER BLT SOFT TIMER 30
#define TEST_WHITELIST 31
//phy test
#define TEST BLE PHY 32 // BQB PHY TEST demo
#define TEST EMI 33 // EMI Test demo
#define TEST EXTENDED ADVERTISING 40 // Extended RDV demo
#define TEST 2M CODED PHY EXT RDV 50 // 2M/Coded PHY used on Extended ADV
#define TEST ZM CODED PHY CONNECTION 60 // 2M/Coded PHY used on Legacy ADV/Ex
#define TEST STUCK KEY 90
#define TEST_AUDIC 91
#define TEST IR g2
#define TEST L2CAP PREPARE WRITE BUFF 93
#define TEST OTA 95
#define TEST_FEATURE_ BACEKUP 200
#define FEATURE TEST_ MODE TEST_FEATURE_BACKUF s TEST_FEATURE_BACKUEF

Figure 12.1: Feature Test Demo

Test methods of each demo are described below.

12.1 Broadcast Power Consumption Test

This item mainly tests the power consumption during broadcasting of different broadcasting parameters.
Users can measure the power consumption with an external multimeter during the test. Need to modify
FEATURE_TEST_MODE to TEST_POWER_ADV in app_config.h.

AN-20111000-E3 281 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define FEATURE_TEST_MODE TEST_POWER_ADV

Modify the broadcast type and broadcast parameters in feature_adv_power.c as required. There are two
types of broadcasts provided in Demo: connectable broadcast and non-connectable broadcast.

12.1.1 Connectable Broadcast Power Consumption Test

In the feature_adv_power.c function feature_adv_power_test_init_normal(), the default test non-
connectable broadcast power consumption needs to be changed from #if O to #if 1, as shown in the
following code.

#if 1 //connectable undirected ADV

The default broadcast data length of Demo is 12 bytes, and users can modify it according to their needs.

//ADV data length: 12 byte
u8 tbl _advData[12] = {0x08, 0x09, 't', 'e', 's', 't', 'a', 'd', 'v',0x02, 0x01, 0x05,};

The Demo provides 1sichannel, 1s3channel, 500ms3channel broadcast parameters, users can select the
corresponding test items according to their needs.

12.1.2 Un-connectable Broadcast Power Consumption Test

In feature_adv_power.c function feature_adv_power_test_init_normal(), the default test is non-connectable
broadcast power consumption.

#1f @ //un-connectable undirected ADV

Demo provides two broadcast data lengths of 16byte and 31byte, which users can choose according to their
needs.

#if 1 //ADV data length: 16 byte
u8 tbl_advData[8] = {
0x0C, 0x09, 't', 'e', 's', 't', 'a', 'd',
IH
#else //ADV data length: max 31 byte
u8 tbl_advData[] = {
Ox1E, Ox09, 't', 'e', 's', 't', 'a', 'd', 'v', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F',
< '0', '"12', '2', '3', '4', '5', '6¢', '7', '8', '9', 'A', 'B', 'C', 'D'
IH
#endif

The Demo provides 1s3channel, 1.5s3channel, and 2s3channel broadcast parameters. Users can select the
corresponding test items according to their needs.

AN-20111000-E3 282 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

12.2 Connection Power Consumption Test

This test item is mainly to test the power consumption when connected with different connection param-
eters, the user can connect an external multimeter to measure the power consumption during the test. In
feature_config.h, you need to modify FEATURE_TEST_MODE to TEST_POWER_CONN.

#define FEATURE_TEST_MODE TEST_POWER_CONN

Users can modify the connection parameters in the task_connect callback function in the fea-
ture_conn_power project directory according to their needs.

void task_connect (u8 e, u8 *p, int n)

{
bls_12cap_requestConnParamUpdate (8, 8, 99, 400); // 1 S

The connection parameters are mainly modified by the bls_I2cap_requestConnParamUpdate function, which
sets a 1s connection interval by default in the demo.

vold bls_l2cap_requestConnParamUpdate (u16 min_interval, ul6 max_interval, ul6 latency, ulé
< timeout)

For a detailed description of this function, users can refer to section 3.3.2.1 Updating Connection Parameters
of the BLE module.

12.3 SMP Test

SMP test mainly tests the process of pairing encryption, mainly divided into the following ways:

(1) LE_Security_Mode_1_Level_1, no authentication and no encryption.
(2) LE_Security_Mode_1_Level_2, unauthenticated paring with encryption.
(3) LE_Security_Mode_1_Level_3, authenticated paring with encryption-legacy.

(4) LE_Security_Mode_1_Level_4, authenticated paring with encryption-sc.

Users need to set FEATURE_TEST_MODE to TEST_SMP_SECURITY in app_config.h.

#define FEATURE_TEST_MODE TEST_SMP_SECURITY

Below is a brief introduction to each pairing mode.

AN-20111000-E3 283 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

12.3.1 LE_Security_Mode_1_Level_1

LE_Security_Mode_1_Level_1 is the simplest pairing method, neither authentication nor encryption. The
user changes the SMP_TEST_MODE of feature_security.c to SMP_TEST_NO_SECURITY.

#define SMP_TEST_MODE SMP_TEST_NO_SECURITY

12.3.2 LE_Security_Mode_1_Level_2
The LE_Security_Mode_1_Level_2 mode is just work, only encryption but not authentication. Just work is
divided into legacy just work and sc just work. The user changes the SMP_TEST_MODE of feature_security.c

to SMP_TEST_LEGACY_PARING_JUST_WORKS or SMP_TEST_SC_PARING_JUST_WORKS as required. Intro-
duced separately below.

12.3.2.1 SMP_TEST_LEGACY_PARING_JUST_WORKS

The user makes the following modifications:

#define SMP_TEST_MODE SMP_TEST_LEGACY_PARING_JUST WORKS

The process is shown as following:

AN-20111000-E3 284 Ver1.2.0

E

%ﬁr} Telink , , ,
b Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master

Adv Data

Conn Req

SMP Pair Feature Exchange

SMP Key Generation

SMP Key Distribution

Link Data

Figure 12.2: Legacy Just Work Process

12.3.2.2 SMP_TEST_SC_PAIRING_JUST_WORKS

The user makes the following modifications:

#define SMP_TEST_MODE SMP_TEST_SC_PAIRING_JUST_WORKS

The process is shown as following:

AN-20111000-E3 285 Ver1.2.0

-

$ Telink , , ,
b2 Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master
Adv Data
o
Conn Req
«
SMP Pair Feature Exchange

SMP Public Key Exchange

SMP Authentication Statel

SMP Authentication State2

SMP Key Distribution

Link Data
Bl P

Figure 12.3: SC Just Work Process

12.3.3 LE_Security_Mode_1_Level_3

LE_Security_Mode_1_Level_3 is both the authentication and encryption Legacy pairing method. According
to the pairing parameter settings, it is divided into OOB, PassKey Entry, and Numeric Comparison. Currently
the demo provides two sample codes for PassKey Entry, namely SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI
and SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI. Users can choose according to their needs. The two
methods are briefly introduced below.

12.3.3.1 SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI

The user needs to modify as follows in feature_security.c:

AN-20111000-E3 286 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define SMP_TEST_MODE SMP_TEST_LEGACY_PASSKEY ENTRY_ SDMI

During the pairing process, the slave side needs to display the key and the master side enters the key. During
initialization, a gap event related to pairing is registered. The pairing information will be notified to the app
layer.

blc_gap_registerHostEventHandler(app_host_event_callback);

blc_gap_setEventMask(GAP_EVT_MASK_SMP_PARING_BEAGIN |\
GAP_EVT_MASK_SMP_PARING_SUCCESS |\
GAP_EVT_MASK_SMP_PARING_FAIL |\
GAP_EVT_MASK_SMP_TK_DISPALY Y
GAP_EVT_MASK_SMP_CONN_ENCRYPTION_DONE);

The user needs to print the current key information when receiving the GAP_EVT_MASK_SMP_TK_DISPLAY
message.

int app_host_event_callback (u32 h, u8 *para, int n)

{
u8 event = h & OxFF;
switch(event)
{
case GAP_EVT_SMP_TK_DISPALY:
{
char pc[7];
u32 pinCode = *(u32*)para;
}
break;
}
}

The process is shown as following:

AN-20111000-E3 287 Ver1.2.0

et Telink B91 BLE Single Connection SDK Developer Handbook
Slave Master
Adv Data
-
Conn Req
-

SMP Pair Feature Exchange

Slave Display Key Master Enter Key
SMP Key Generation

SMP Key Distribution

Link Data

Figure 12.4: Legacy Just Work SDMI Process

12.3.3.2 SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI

The difference from the above is that the key is displayed on the master and the key is entered by the slave.
The user needs to modify the code:

#define SMP_TEST_MODE SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI

The process is shown as following:

AN-20111000-E3 288 Ver1.2.0

et Telink B91 BLE Single Connection SDK Developer Handbook
Slave Master
Adv Data
-
Conn Req

SMP Pair Feature Exchange

| ‘

Slave Input Key Master Display Key

SMP Key Generation

SMP Key Distribution

Link Data

Figure 12.5: Legacy Just Work SIMD Process

12.3.4 LE_Security_Mode_1_Level_4

LE_Security_Mode_1_Level_4 is both an authentication and encryption SC pairing method. According
to the pairing parameter settings, it is divided into OOB, PassKey Entry, and Numeric Compari-
son. Currently the demo provides three sample codes of SC PassKey Entry and SC Numeric Com-
parison, namely SMP_TEST_SC_PASSKEY_ENTRY_SDMI, SMP_TEST_SC_PASSKEY_ENTRY_MDSI and
SMP_TEST_SC_NUMERIC_COMPARISON. Users can choose according to their needs. These methods are
briefly introduced below.

AN-20111000-E3 289 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

12.3.4.1 SMP_TEST_SC_NUMERIC_COMPARISON

The user needs to modify as follows in feature_security.c:

#define SMP_TEST_MODE SMP_TEST_SC_NUMERIC_COMPARISON

This pairing method is numeric comparison, that is, during the pairing process, both the master and slave
will display a six-digit PIN code. If the user compares the numbers for the same, if they are the same, click
to confirm and agree to the pairing. Demo is to send YES or NO in the form of a button. The sample code
is as follows:

if(consumer_key == MKEY_VOL_DN){
blc_smp_setNumericComparisonResult(1);// VES
/*confirmed YES*/

led_onoff(LED_ON_LEVAL);

}

else if(consumer_key == MKEY_VOL_UP){
blc_smp_setNumericComparisonResult(0);// NO
/*confirmed NO*/

led_onoff(LED_ON_LEVAL);

}

The process is shown as following:

AN-20111000-E3 290 Ver1.2.0

-

$ Telink , , ,
b2 Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master

Adv Data

Conn Req

SMP Pair Feature Exchange

Display PIN Code Display PIN Code

SMP Public Key Exchange

SMP Authentication Statel

SMP Authentication State2

SMP Key Distribution

Link Data
-

Figure 12.6: Numeric Comparison Paring

12.3.4.2 SMP_TEST_SC_PASSKEY_ENTRY_SDMI

The user needs to modify as follows in feature_security.c:

#define SMP_TEST_MODE SMP_TEST_SC_PASSKEY_ENTRY_SDMI

During the pairing process, the slave side needs to display the key and the master side enters the key. During
initialization, a gap event related to pairing is registered. The pairing information will be notified to the app
layer.

AN-20111000-E3 291 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

blc_gap_registerHostEventHandler(app_host_event_callback);

blc_gap_setEventMask(GAP_EVT_MASK_SMP_PARING_BEAGIN
GAP_EVT_MASK_SMP_PARING_SUCCESS
GAP_EVT_MASK_SMP_PARING_FAIL
GAP_EVT_MASK_SMP_TK_DISPALY
GAP_EVT_MASK_SMP_CONN_ENCRYPTION_DONE);

— — -

The user needs to print the current key information when receiving the GAP_EVT_MASK_SMP_TK_DISPLAY
message.

int app_host_event_callback (u32 h, u8 *para, int n)

{
u8 event = h & OxFF;
switch(event)
{
case GAP_EVT_SMP_TK_DISPLAY:
{
char pc[7];
u32 pinCode = *(u32*)para;
}
break;
}
}

The process is shown as following:

AN-20111000-E3 292 Ver1.2.0

Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master

Adv Data

Conn Req

SMP Pair Feature Exchange

Display PIN Code Input PIN Code

SMP Public Key Exchange

SMP Authentication Statel

SMP Key Distribution

SMP Authentication State2

Link Data

Figure 12.7: SC SDMI Paring Processing

12.4 GATT Security Test

As known from the BLE module 3.3.3 ATT&GATT chapter, each Attribute in the service list defines read
and write permissions, that is, the pairing mode must reach the corresponding level to read or write. For
example, in the SPP service of Demo:

// client to server RX

{0,ATT_PERMISSIONS_READ,2,sizeof(TelinkSppDataClient2ServerCharval), (u8*)(&my_characterUuiD),

< (u8*)(TelinkSppDataClient2ServerCharVval), 03}, //prop
{0,SPP_C2S_ATT_PERMISSIONS_RDWR,16,sizeof (SppDataClient2ServerData), (u8*)

< (&TelinkSppDataClient2ServerUUID), (u8*)(SppDataClient2ServerData), &module_onReceiveData},

» //value

AN-20111000-E3 293 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

{0,ATT_PERMISSIONS_READ,2,sizeof(TelinkSPPC2SDescriptor), (u8*)&userdesc_UUID, (u8*)
< (&TelinkSPPC2SDescriptor)},

The read and write permissions of the second Attribute are defined as: SPP_C2S_ATT_PERMISSIONS_RDWR.

This read and write permission is up to the user to choose, you can choose one of the following:

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_RDWR

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_ENCRYPT_RDWR
#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_AUTHEN_RDWR
#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_SECURE_CONN_RDWR

No matter which one you choose, the current pairing mode must be higher than or equal to this level of
read and write permissions to read and write services correctly.

The user needs to modify feature_config.h as follows:

#define FEATURE_TEST MODE TEST_GATT_SECURITY

SMP test encryption levels are LE_SECURITY_MODE_1_LEVEL_1, LE_SECURITY_MODE_1_LEVEL_2,
LE_SECURITY_MODE_1_LEVEL_3, LE_SECURITY_MODE_1_LEVEL_4. The user needs to select app_config.h
according to the needs of the corresponding pairing mode.

#define SMP_TEST_MODE LE_SECURITY_MODE_1_LEVEL_3

For example, the current pairing mode is LE_SECURITY_MODE_1_LEVEL_3, that is, there are both authenti-
cation and encryption Legacy pairing modes. So the current read and write permissions can be selected as
follows.

#define SPP_C2S_ATT_PERMISSIONS_RDWR ATT_PERMISSIONS_AUTHEN_RDWR

The process is shown as following:

AN-20111000-E3 294 Ver1.2.0

et Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master

Creat Connection

SDp

< Write CMD
Permission verification
succeeded Notify Data

Permission verification

failed

Figure 12.8: GattSecurity

12.5 DLE Test

The DLE test mainly tests the long package. Demo is divided into master and slave. Users need to com-
pile and burn to two EVB boards respectively. For the code at master end, users can refer to B91 Multi-
Connection SDK handbook. For the corresponding feature_config.h selection at slave end, the code is as
follows:

#define FEATURE_TEST_MODE TEST_SDATA_LENGTH_EXTENSION

After programming, they are reset respectively, and the master’s GPIO_PC6 is triggered to establish a con-
nection at a low level. After the connection is successful, the MTU and DatalLength are exchanged respec-

AN-20111000-E3 295 Ver1.2.0

ff} Telink

tively.

Telink B91 BLE Single Connection SDK Developer Handbook

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, MTU_SIZE_SETTING);
blc_11_exchangeDatalLength(LL_LENGTH_REQ , DLE_TX_SUPPORTED_DATA_LEN);

After the exchange is successful, the slave will send a long packet of data to the master every 3.3s, or the
master will trigger the pairing key GPIO_PC6 every time at a low level, the mater will write a long packet of
data to the slave, and the slave will send the same data to the master after receiving it.

The test process is as follows:

Slave Master

Creat Connection

MTU Exchange

DLE Exchange

Press Paring Key

Write CMD(Long packet)

e
Notify Data{lLong packet)
P
Notify Long Data
| » ! ° P
W
&
Notify Long Data
) yion |

Figure 12.9: DLE Test Process

AN-20111000-E3 296 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

12.6 Soft Timer Test

Please refer to the chapter of Software Timer.

12.7 WhitelList Test

If the whitelist is set, only the devices in the whitelist are allowed to establish connections. The user needs
to modify app_config.h as follows:

#define FEATURE_TEST_MODE TEST WHITELIST

When the slave has no binding information, any other device is allowed to connect. After the connection
is successful, the slave will add the current master’s information to the whitelist, and then only the current
device can connect with the slave.

The test process is as follows:

AN-20111000-E3 297 Ver1.2.0

et Telink B91 BLE Single Connection SDK Developer Handbook

Slave Master

Adv Data

A J

Connect Req

i

Add White List
Information First Connect

Create Connect Success

Connect Req

Verifying the whitelist

information succeed

Create Connect Success

| ReConnect
Verifying the whitelist

information failed

Create Connect Fail

Figure 12.10: Whitelist Test Process

12.8 1M Extended Advertising Test

The 1M Extended advertising demo is mainly to test the extended broadcasting of 1M PHY. You need to
modify FEATURE_TEST_MODE to TEST_EXTENDED_ADVERTISING in app_config.h.

#define FEATURE_TEST_MODE TEST_EXTENDED_ADVERTISING
The relevant codes are in vendor/feature_extend_adv, and the slave demo is provided.

Set the maximum length of broadcast data as follows:

#define APP_ADV_SETS_NUMBER 1 // Number of Supported Advertising Sets

#define APP_MAX_LENGTH_ADV_DATA 1024 // Maximum Advertising Data Length
#define APP_MAX_LENGTH_SCAN_RESPONSE_DATA 31 // Maximum Scan Response Data Length

AN-20111000-E3 298 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In feature_ext_adv_init_normal, different types of extended broadcast packets based on 1M PHY configu-
ration have been reserved.

#1f 1 //Legacy, non_connectable_non_scannable

#elif 0 // Extended, None_Connectable_None_Scannable undirected, without auxiliary packet

#elif 0 // Extended, None_Connectable_None_Scannable directed, without auxiliary packet

#elif 0 // Extended, None_Connectable_None_Scannable undirected, with auxiliary packet

#elif 0 // Extended, None_Connectable_None_Scannable Directed, with auxiliary packet

#elif 0 // Extended, Scannable, Undirected

#elif 0 // Extended, Connectable, Undirected

Users need to use a mobile phone or protocol analysis device that supports the Bluetooth 5 Low Energy
Advertising Extension function to see the extended broadcast data.

12.9 2M/Coded PHY Used on Extended Advertising Test

The 2M/Coded PHY used on Extended advertising demo is mainly to test the extended broadcast-
ing of various combinations of 1M/2M/Coded PHY. You need to modify FEATURE_TEST_MODE to
TEST_2M_CODED_PHY_EXT_ADV in app_config.h.

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY_EXT_ADV

The relevant codes are in vendor/feature_phy_extend_adv, and the slave demo is provided.

Set the maximum length of broadcast data as follows:
#define APP_ADV_SETS_NUMBER 1 // Number of Supported Advertising Sets

#define APP_MAX_LENGTH_ADV_DATA 1024 // Maximum Advertising Data Length
#define APP_MAX_LENGTH_SCAN_RESPONSE_DATA 31 // Maximum Scan Response Data Length

Feature_ext_adv_init_normal has reserved different types of extended broadcast packets based on various
combinations of 1M PHY / Coded PHY(S2) / Coded PHY(S8).

#1f 0 // Extended, None_Connectable_None_Scannable undirected, without auxiliary packet
#if 0 // ADV_EXT_IND: 1M PHY

AN-20111000-E3 299 Ver1.2.0

7 Telink
' Telink B91 BLE Single Connection SDK Developer Handbook

#elif 1 // ADV_EXT_IND: Coded PHY(S2)
#elif 0 // ADV_EXT_IND: Coded PHY(S8)
#endif#

#elif 0 // Extended, None_Connectable_None_Scannable undirected, with auxiliary packet
#if 1 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY
#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY
#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S2)
#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)
#elif 0 // ADV_EXT_IND: Coded PHY(S2); AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY
#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY
#elif 0 // ADV_EXT_IND: Coded PHY(S2); AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY
#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY
#elif 0 // ADV_EXT_IND: Coded PHY(S2); AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S2)
#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)
#endif

#elif 1 // Extended, Scannable, Undirected
#if 1 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY
#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY
#elif 0 // ADV_EXT_IND: 1M PHY; AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)
#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 1M PHY
#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: 2M PHY
#elif 0 // ADV_EXT_IND: Coded PHY(S8); AUX_ADV_IND/AUX_CHAIN_IND: Coded PHY(S8)
#endif

#endif

Users can refer to the demo to combine the types of extended broadcast packages they need.

Users need to use mobile phones or protocol analysis devices that support Bluetooth 5 Low Energy Adver-
tising Extension, Bluetooth 5 Low Energy 2Mbps and Bluetooth 5 Low Energy Coded (Long Range) functions

to see the data broadcast by the above various types of extensions.

Note:

API blc_ll_init2MPhyCodedPhy_feature() is used to enable 2M PHY/Coded PHY.

12.10 2M/Coded PHY used on Legacy advertising and Connection Test

2M/Coded PHY used on Legacy advertising and Connection demo is mainly to test that after establishing a
connection based on Legacy advertising, switch to TM/2M/Coded PHY in the connected state, and change
FEATURE_TEST_MODE to TEST_2M_CODED_PHY_CONNECTION in app_config.h.

#define FEATURE_TEST_MODE TEST_2M_CODED_PHY CONNECTION

The relevant codes are in vendor/feature_phy_conn, and the slave demo is provided. Initially open 2M Phy
and Coded Phy:

AN-20111000-E3 300 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

blc_11_1init2MPhyCodedPhy_feature(); // mandatory for 2M/Coded PHY

After the connection is successful, the mainloop will use the API bic_lI_setPhy() to initiate a PHY change
request in 8 2-second cycle, TM -> Coded PHY(S2) -> 2M -> Coded PHY(S8) -> M.

if(phy_update_test_tick && clock_time_exceed(phy_update_test_tick, 2000000)){
phy_update_test_tick = clock_time() | 1;
int AAA = phy_update_test_seq%4;
iF(AAA == 0){
blc_11_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_CODED, PHY_PREFER_CODED,
< CODED_PHY_PREFER_S2);
}
else if(AAA == 1){
blc_11_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_2M, PHY_PREFER_2M,
< CODED_PHY_PREFER_NONE);
}
else if(AAA == 2){
blc_11_setPhy(BLS_CONN_HANDLE, PHY_TRX_PREFER, PHY_PREFER_CODED, PHY_PREFER_CODED,
< CODED_PHY_PREFER_S8);
}
else{
blc_11_setPhy(BLS_CONN_HANDLE, PHY_ TRX_PREFER, PHY_ PREFER_1M, PHY_PREFER_1M,
< CODED_PHY_PREFER_NONE);

}
phy_update_test_seq ++;

Peer Master Device can use B91 Multi-Connection SDK Demo “B91 master kma dongle”, but also need to
use API blc_lI_init2MPhyCodedPhy_feature() to open 2M Phy and Coded Phy.

Users can also choose to use other manufacturers’ Master devices or mobile phones that support Bluetooth
5 Low Energy 2Mbps and Bluetooth 5 Low Energy Coded (Long Range) functions.

12.11 CSA #2 Test

CSA #2 demo mainly uses Channel Selection Algorithm #2 (Channel Selection Algorithm #2) for frequency
hopping when testing the connection state. You need to modify FEATURE_TEST_MODE to TEST_CSA2 in
app_config.h.

#define FEATURE_TEST_MODE TEST_CSA2

The relevant codes are all in vendor/feature_csa2, and the slave demo is provided.

Initial CSA #2:

AN-20111000-E3 301 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

blc_11_1initChannelSelectionAlgorithm_2_feature()

After enabling CSA #2, the ChSel field in the broadcast packet of Slave has been set to 1. If the CONNECT_IND
PDU of the Peer Master Device has also set the ChSel field to 1, the channel selection algorithm #2 is used
after the connection is successful. Otherwise, channel selection algorithm #1 should be used.

Peer Master Device can use B91 Multi-Connection SDK Demo "B91 master kma dongle”, but also need to
use API blc_ll_initChannelSelectionAlgorithm_2_feature() to open CSA #2.

Users can also choose to use Master devices or mobile phones from other manufacturers that support
Bluetooth 5 Low Energy CSA #2.

AN-20111000-E3 302 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

13 Other Modules

13.1 24MHz Crystal External Capacitor

Refer to the position C1/C4 of the 24MHz crystal matching capacitor in the figure below.

The SDK defaults to use B91 internal capacitance (that is, the cap corresponding to ana_8a<5:0>) as the
matching capacitance of the 24MHz crystal oscillator. At this time, C1/C4 does not need to be soldered. The
advantage of using this solution is that the capacitance can be measured and adjusted on the Telink fixture
to make the frequency value of the final application product reach the best.

Crystal

1 C4
C NC
1
-|IiZ Y1 9
3

il Y

D4MHz-12pF-+/-20pgpy

0k

TL XC1

Figure 13.1: 24MCrystalSchematics

If you need to use an external welding capacitor as the matching capacitor (C1/C4 welding capacitor) of the
24MHz crystal oscillator, just call the following API at the beginning of the main function (must be before
the cpu_wakeup_init function):

static inline void blc_app_setExternalCrystalCapEnable(u8 en)
{

blt_miscParam.ext_cap_en = en;
analog_write_reg8(0x8a,analog_read_reg8(0x8a)|0x80);//close internal cap

As long as the API is called before cpu_wakeup_init, the SDK will automatically handle all the settings,
including disabling the internal matching capacitor, no longer reading the frequency bias correction value,
etc.

AN-20111000-E3 303 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

13.2 32KHz Clock Source Selection

At present, the SDK uses the 32KHz RC oscillator circuit inside the MCU by default, referred to as 32k RC.
The error of 32k RC is relatively large, so for applications with long suspend or deep retention time, the
time accuracy will be worse. At present, the maximum long connection supported by 32k RC by default
cannot exceed 3s (the current SDK has the same limitation for external 32KHz crystals). Once exceeding
this time, ble_timing will have errors, resulting in inaccurate packet receiving time points, prone to receiving
and sending packets retry, increased power consumption, and even disconnection.

If users need to achieve lower connection power consumption, including more accurate clock timing in low-
power sleep situations, they can choose to use an external 32KHz crystal, referred to as 32k Pad, which is
currently supported by the SDK.

The user only needs to call one of the following API at the beginning of the main function (must be before
the cpu_wakeup_init function):

vold blc_pm_select_internal_32k_crystal(void);
vold blc_pm_select_external_32k_crystal(void);

They are the APIs for selecting 32k RC and 32k Pad respectively. The SDK calls blc_pm_select_internal_32k_crystal
selected 32k RC by default, if you need to use 32k Pad, just replace it with blc_pm_select_external_32k_crystal.

13.3 Software PA

If you need to use RF PA, please refer to drivers/B91/ext_driver/software_pa.c and software_pa.h.

First enable the following macro, which is disabled by default.

#ifndef PA_ENABLE
#define PA_ENABLE 0
#endif

During system initialization, call PA initialization.

vold rf_pa_init(void);

Referring to the code implementation, inside this initialization, PA_TXEN_PIN and PA_RXEN_PIN are set to
GPIO output mode and the initial state is output O. The GPIOs corresponding to the TX and RX PAs need to
be defined by the user.

#ifndef PA_TXEN_PIN
#define PA_TXEN_PIN GPIO_PB2
#endif

#ifndef PA_RXEN_PIN
#define PA_RXEN_PIN GPIO_PB3
#endif

AN-20111000-E3 304 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

In addition, reqgister void app_rf_pa_handler(int type) as a callback handling function for PA. Referring to
the implementation of this function, it actually handles the following 3 PA states: PA off, TX PA on, and RX
PA on.

#define PA_TYPE_OFF (0]
#define PA_TYPE_TX_ON 1
#define PA_TYPE_RX_ON 2

User only needs to call rf_pa_init above, app_rf_pa_handler is registered to the underlying callback, and
BLE will automatically call app_rf_pa_handler’s processing when it is in various states.

13.4 PhyTest

PhyTest, the PHY test, refers to the test of the BLE controller RF performance.

Please refer to "Core_v5.0” (Vol 2/Part E/7.8.28~7.8.30) and “Core_v5.0" (Vol 6/Part F “Direct Test Mode”)
for more details.

13.4.1 PhyTest API

The source code of PhyTest is packed in the library file, providing the relevant API for users to use, please
refer to the stack/ble/controller/phy/phy_test.h file.

void blc_phy_initPhyTest_module(void);

ble_sts_t blc_phy_setPhyTestEnable (u8 en);
bool blc_phy_isPhyTestEnable(void);

//user for PhyTest 2 wire uart mode
int blc_phyTest_2wire_rxUartCb (void);
int blc_phyTest_2wire_txUartCb (void);
// user for PhyTest 2 wire hci mode
int blc_phyTest_hci_rxUartCb (void);

When initializing, call blc_phy_initPhyTest_module to set up the PhyTest module.

After the application layer triggers PhyTest, blc_phy_setPhyTestEnable(1) is called to enable PhyTest
mode.

The initialization in the SDK demo “B91_feature_test” triggers phytest directly to start.

PhyTest is a special mode, and it is mutually exclusive with the normal BLE function. Once entering PhyTest
mode, broadcast and connection are not available. Therefore, PhyTest cannot be triggered when running
normal BLE functions.

After PhyTest ends, either reboot directly or call blc_phy_setPhyTestEnable (0), at which point the MCU will
automatically reboot.

AN-20111000-E3 305 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Use blc_phy_isPhyTestEnable to determine whether the current PhyTest is triggered, you can see that the
code uses this API to achieve low-power management and PhyTest mode can not enter low-power.

When PhyTest uses uart two-wire mode (PHYTEST_MODE_THROUGH_2_WIRE_UART), the initialization is
set as follows.

blc_register_hci_handler (blc_phyTest_2wire_rxUartCb, blc_phyTest_ 2wire_txUartCb);

The blc_phyTest_2wire_rxUartCb implements the parsing and execution of the cmd sent by the master
computer, and blc_phyTest_2wire_txUartCb implements the feedback of the corresponding results and data
to the master computer.

When PhyTest uses uart two-wire mode (PHYTEST_MODE_OVER_HCI_WITH_UART), the initialization is set
as follows.

blc_register_hci_handler (blc_phyTest_hci_rxUartCb, blc_phyTest_2wire_txUartCb);

The blc_phyTest_hci_rxUartCb implements the parsing and execution of the cmd sent from the master
computer, blc_ phyTest_2wire_txUartCb implements the feedback of the corresponding results and data to
the master computer.

13.4.2 PhyTest demo

13.4.2.1 Demo: B91_feature_test

In app_config.h of the SDK demo “B91_feature_test”, change the test mode to "TEST_BLE_PHY", as fol-
lows.

#define FEATURE_TEST MODE TEST_BLE_PHY

According to the physical interface and test command format, PhyTest can be divided into three test modes,
as shown below, “PHYTEST_MODE_DISABLE” means PhyTest is disabled.

#ifndef PHYTEST_MODE_DISABLE
#define PHYTEST_MODE_DISABLE o
#endif

#ifndef PHYTEST_MODE_THROUGH_2_WIRE_UART
#define PHYTEST_MODE_THROUGH_2_WIRE_UART 1
#endif

#ifndef PHYTEST_MODE_OVER_HCI_WITH_USB
#define PHYTEST_MODE_OVER_HCI_WITH_USB 2

#endif

#ifndef PHYTEST_MODE_OVER_HCI_WITH_UART

AN-20111000-E3 306 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

#define PHYTEST_MODE_OVER_HCI_WITH_UART 3
#endif

Select test mode of PhyTest:

#if (FEATURE_TEST MODE == TEST_BLE_PHY)
#define BLE_PHYTEST_MODE PHYTEST_MODE_THROUGH_2_WIRE_UART
#endif

The following is defined as the uart two-line model.

#define BLE_PHYTEST MODE PHYTEST_MODE_THROUGH_2_WIRE_UART

The following is defined as HCI mode UART interface (hardware interface is uart) phytest.

#define BLE_PHYTEST_MODE PHYTEST_MODE_OVER_HCI_WITH_UART

HCl mode USB interface, temporarily not supported.

According to the above definition, the bin file generated by compiling B91_feature_test can pass the test
directly. User can study the implementation of the code and master the use of the relevant interface.

13.4.2.2 PhyTest parameter adjustment

If the PhyTest fails, the parameters available for adjustment are the length of rf packet preamble, etc.

The adjustment of rf packet preamble can be done by writing the core_402 register. The B91_feature_test
demo shows the adjustment of rf packet preamble directly during initialization.

blc_phy_initPhyTest_module();
blc_phy_setPhyTestEnable(BLC_PHYTEST_ENABLE);
blc_phy_preamble_length_set(11);

13.5 EMI

13.5.1 EMI Test

EMI Test needs to call rf related interfaces when testing, such as rf_set_power_level (), these operation
interfaces are packed into the library, you can see the API declaration in rf.h.

EMI Test has four test modes: carrier only mode (single carrier mode), continue mode (transmit mode with
data on the carrier, continuous transmission), RX mode, three TX burst mode (different types of packet
payload sent). The following definitions are shown.

AN-20111000-E3 307 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

test_list_t ate_list[] = {
{0x01,emicarrieronly},
{0x02,emi_con_prbs9},
{0x03,emirx},
{0x04,emitxprbs9},
{0x05,emitx55},
{0x06,emitx0f},
{0x07,emi_con_tx55},
{0x08,emi_con_tx0f}

13.5.1.1 EMI initialization setting

(1) Before conducting EMI tests, you first need to call the rf_drv_ble_init() function to complete the rf
initialization.

voild rf_drv_ble_1init(void);

(2) After setting up the rf initialization, you need to call the emi_init() function, which will initialize the
master computer interface commands.

rf_access_code_comm(EMI_ACCESS_CODE); // access code
write_sram8(TX_PACKET_MODE_ADDR,g_tx_cnt); // tx_cnt
write_sram8(RUN_STATUE_ADDR,g_run); // run
write_sram8(TEST_COMMAND_ADDR,g_cmd_now); // cnd
write_sram8(POWER_ADDR,g_power_level); // power
write_sram8(CHANNEL_ADDR,g_chn); // chn
write_sram8(RF_MODE_ADDR,g_mode); // mode
write_sram8(CD_MODE_HOPPING_CHN,g_hop); // hop
write_sram8(RSSI_ADDR,0); // rssi
write_sram32(RX_PACKET_NUM_ADDR,0); // rx_packet_num

(3) Call emi_serviceloop () in the main_loop to poll the test items.

13.5.1.2 Power level and Channel
During the test, you can set the power of the sending packet and the channel of the sending packet by
configuring rf power level and rf channel.
+ RF Power: you can set different power values according to rf_power_level_e rf_power_Level_list[30].
* RF Channel: set the frequency value equal to (2400+chn) MHz.

When setting the power level, it should be noted that the transmit power is based on the actual value,
because the output power will be slightly different for different boards or different antenna matching values.
The user can set the power level by calling the following 2 functions.

AN-20111000-E3 308 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

vold rf_emi_tx_single_tone(rf_power_level_e power_level,signed char rf_chn); //adjust the power
< level and channel under single carrier and continuous packet sending mode

vold rf_emi_tx_burst_setup(rf_mode_e rf_mode,rf_power_level_e power_level,signed char

< rf_chn,unsigned char pkt_type);//tx burst mode to adjust the power level and channel

< settings

where the parameter power_level can be set according to the enumeration type rf_power_level_e. Among
them, the parameter rf_chn can be set referring to RF_channel, parameter pkt_type O for the sending
packet payload for PRBS9, 1 for 00001111b, 2 for 10101010b.

13.5.1.3 EMI Carrier Only

Carrier mode is EMI Test single carrier transmit mode, the user can directly call emicarrieronly () function,
no need of other settings.

vold emicarrieronly(rf_mode_e rf_mode,unsigned char pwr,signed char rf_chn)

where the parameter rf_mode_e is defined as an enumeration in rf.h. The parameter pwr and the parameter
rf_chn can be set according to the setting method described earlier.

13.5.1.4 emi_con_prbs9

The continue mode is 3 mode of transmitting data with continuous modulation on the EMI Test carrier, where
the data on the carrier is updated by the rf_continue_mode_run () function to ensure that the data on the
carrier is a series of random numbers.

The user can enter continue mode by calling the emi_con_prbs9 () function directly, no other settings are
needed.

When setting the continue mode, the emi_con_prbs9 () function calls the rf_emi_tx_continue_setup
() function to complete the continue mode settings such as rf_mode, power level, chn, etc. The
rf_continue_mode_run() function will also be called to update the data on the carrier.

void emi_con_prbs9(rf_mode_e rf_mode,unsigned char pwr,signed char rf_chn)

The parameters rf_mode, pwr, or power level, and rf_chn can be set by referring to the previous introduc-
tion.

13.5.1.5 EMI TX Burst
Tx Burst mode is able to send three types of packets: PRBS9 packet payload, 00001111b packet payload,
10101010b packet payload. User can select different tx modes by cmd.

The user can directly call one of the functions emitxprbs9(), emitx55(), emitx0f() to enter TX Burst mode
without any other settings.

AN-20111000-E3 309 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

void emitxprbs9(rf_mode_e rf_mode,unsigned char pwr,signed char rf_chn);
vold emitx55(rf_mode_e rf_mode,unsigned char pwr,signed char rf_chn);
void emitx0f(rf_mode_e rf_mode,unsigned char pwr,signed char rf_chn);

where parameters rf_mode, pwr and parameter rf_chn can be set by referring to the previous introduction.

The emitxprbs9(), emitx55(), and emitxOf() functions all call the rf_emi_tx_brust_setup function to
complete the tx burst initialization settings, and after doing the TX initialization, combine it with the
rf_emi_tx_brust_loop() function to trigger the packet sending, as well as update the payload content.

vold rf_emi_tx_burst_setup(rf_mode_e rf_mode,rf_power_level_e power_level,signed char
~ rf_chn,unsigned char pkt_type)

where parameters rf_mode, power level and parameter rf_chn can be set by referring to the previous in-
troduction. The parameter pkt_type O is the sending packet payload for PRBS9, 1is 00001111b, and 2 is
10101010b.

13.5.1.6 EMI RX

Enter rx mode by calling emirx(), call rf_emi_rx_loop() in main_loop() to poll the RX for received data, and
perform quantity and RSSI statistics on the received RX data.

voild emirx(rf_mode_e rf_mode,unsigned char pwr,signed char rf_chn);
void rf_emi_rx_loop(void);

where parameters rf_mode, pwr and parameter rf_chn can be set by referring to the previous introduction.
Note:

For the introduction of each mode and function, users can also refer to the emi chapter in the Telink
Driver SDK Developer Handbook, available from the telink website or by contacting telink technical
support.

13.5.1.7 Master computer configuration parameter settings

Run:
No. Description
0] Default
1 Start test
Cmd:

AN-20111000-E3 310 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

No. Description

1 CarrierOnly

2 ContinuePRBS9
3 RX

4 TXBurst(PRBS9)
5 TXBurst(0x55)
6 TXBurst(0x0f)

Power and channel are introduced in previous sections.

Mode:

No. Description
0 Ble_2M

1 Ble_1M

2 zigbee250k
3 ble125K

4 ble500K

5 reserved

The default power-up state for these parameters is (mode=1; power=0; channel=2; cmd=1), that is, trans-
mitting a single carrier at 9.11dbm transmit power in ble_1M mode, 2402MHz.

Note:

For parameter configuration related users can also refer to the document “Telink SoC EMI Test User
Guide”, which can be obtained from the Telink website or by contacting telink technical support.

13.5.2 EMI Test Tool
Feature_emi in BLE SDK is used to generate the required EMI test signals, this sample should be used with

“EMI_Tool” and “Non_Signaling_Test_Tool”. For tools and usage, users can get them from Telink’s website
or by contacting telink technical support.

13.6 JTAG Usage

In order to be able to use the JTAG module, it is necessary to ensure that the following conditions are met
before use:

AN-20111000-E3 3N Ver1.2.0

ot i
$ Telink , , ,
b2 Telink B91 BLE Single Connection SDK Developer Handbook

» The four GPIOs of JTAG need to be set to enable mode.

+ If the chip is in low power mode, the chip must exit the low power mode before using JTAG.

« If the JTAG mode cannot be used normally because there are programs in the FLASH, you need to use
the Telink BDT tool to erase the FLASH before use.

Figure 13.2: JTAG connection instructions

13.6.1 Diagnostic Report

(1) Select “Diagnostic report” in Target Manager.

ﬂTarﬂet Ma@er:LocalT i3 N 0= Dutline} = 0

| ERNES ¥

[T]

3¢ Running Target
v ¢ Targets
ADP-AE350-D25F-EAGLE-0106

| Diagnostic report

| L T LV T L T 9

Figure 13.3: Target Manager

(2) Select “V5 core”, do not check “SDP (2wires)”, our JTAG does not support 2-wire mode temporarily,
input O for “Address”.

AN-20111000-E3 312 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

Test Memory Access (Optional) X

Specify the ISA version of the CPU core

w3 core(for example, N6/N7/N8/N9/N10/N13/N15)
@ V5 core(for example, N22/N25/NX25/A25/AX25)

ICE: AICE-MINI+ v
[]1SDP (2wires)
Misc Argument: v

Enter a writable address

Address: 0 v

Figure 13.4: Diagnostic report option

(3) Click “OK", a Diagnostic report will be generated.

ICE Diagnostic Report X
HLOTEU! QLS = UX4UUUUoCs N
core(: mnvec=0x200000
core0: pc = 0x9270
core0: debug_buffer size=0x8
REG_SMU=0x0 00000
Testing memory write from addr = 0x0, size:4 words
Testing memory read addr = 0x0, size:4 words
Testing reset_and_halt_one_hart
Hart 0 pc = 0x200000
write 4 words from memory:0x0 to get dmi_busy delay count
Fhkhkhhhibdbibbhitdt
Diagnostic Report
Fhkhkhhhibdbibbhitdt
{PASS) check changing the JTAG frequency ...
{PASS) check JTAG/DTM connectivity ...
(PASS) check that Debug Module {(DM) is operational ...
(PASS) check reset-and-debug ...
1(PASS) check accessing memory through CPU ...
Fhkhkhhhibdbibbhitdt
o W
3 Copy to Clipboard Close
3

Figure 13.5: Diagnostic report

AN-20111000-E3 313 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

13.6.2 Target Configuration

(1) Right click on the project folder and select “Target Configuration”.

-+ [BIWIILW] JCLLIIIH:I
= Target Configuration
| Flash Burner Ctrl+

Figure 13.6: Target Configuration Option

(2) Make sure "SDP (2wires)” is not checked.

T o

Target Configuration - - -
» Resource
Builders
4 C/C++ Build Configuration: |Debug_Dema [Active] v] lManage Configu
Build Variables
Environment
Logging Apply to All Configurations.
Settings Chip Profile
dagget Configuration ADP-AE350-D25F-EAGLE-0106 E

Toal Chain Editor
» CfC++ General
Project References Target Settings

Run/Debug Settings Connection Configuration

© Simulator [SID ~| ©ICE [ICE ~|

ICE Detection

Use | AICE-MINI+ = | []SDP (2wires)

Arguments Settings

ICE Misc Arguments

Clean and Rebuild Project
[[]Clean project
[] Build project

? oK] [Cancel

Figure 13.7: Target Configuration

AN-20111000-E3 314 Ver1.2.0

vl Telink
; Telink B91 BLE Single Connection SDK Developer Handbook

13.6.3 Flash Programming

”

Right click on the project folder and select “Flash Burner”.

- o JCLLIIIHD
® Target Configuration
& Flash Burner Ctrl+

Figure 13.8: Flash Burner Option

(1) Select “SPI_burn.exe” in the IDE installation directory.
(2) Select the bin file to download.

(3) Check “Target management”.

(4) Do not check “Target Burn”.

|u

(5) Check “Verification”, if you need to erase FLASH before burning, you can check “erase al

H u Flash Programming Wizard = X

Flashing Driver {.9

Program flash memory of the target.

Flash Driver
[EoTe-1:le1, Ml D\ AndeSight\instal\flash\SPI burn.exe

|Workspace... | File System... |Variables...

Flash Image

Location: |D:\AndeSight3_Workspace\telink_b91m_ble_single_connection_sdk\B91_ble_sdk\B91_ble_sample\output\B31_ble_sample.bin
=

|Workspace...| |File System... |Variables...

Programming Start Address:

Connection Setting

[] Target managemgt

Host: Burner port: 9900

Target Burn
[J Enable target burn
Location: D:\AndeSight\install\flash\target_bin\target_SPI_v5_32.bin

el L

Workspace... |File System... | Variables...

Driver Arguments

Target board: v | Flash Controller Address: l:|

Unlock [JLock After Programming [] Reset and Run

[Verification []Erase All =
Ak I = ‘
9 |

Logging

Figure 13.9: Flash Programming

(6) Click “Burn” to download the bin file, if “Verify sucess” appears, it means the burning is successful.

AN-20111000-E3 315 Ver1.2.0

T Telink

Telink B91 BLE Single Connection SDK Developer Handbook

verify success.
Flash burning done.

Delete the image copy C:\Users\Admin\.burning

exitvValue: 0
Spend time: 15s

13.6.4 Application Debug

Figure 13.10: Verify sucess

(1) Right click on the project folder and select "Debug As -> Debug Configurations”.

RuUrn As

Debug As
Profile As
Compare With

Reactara fram | nral Hictane

T = =
1 Application Program
i 2 MCU Program

WW N

Debug Configurations...

Figure 13.11: Debug Configurations option

(2) Right click "MCU Program”, select “new”, and create a Debug Configuration.

ﬂ Debug Configurations

Create. manage. and run configurations

2% B2
type filter text
Application Program
~ ¥ MCU Program
#k b91m_ble_single_conn_sdk B91_ble_sample
#: Multi-Core Application Program
" Multi-Core MCU Program
“a Target Monitor

Filter matched 6 of 9 items

@

Name: |b91 m_ble_single_conn_sdk B91_ble_sample

[5] Main| % Debugger | & Startup|.;° Tracer |- Source| [0l Common| # Exception Handling

Project:
|b91 m_ble_single_conn_sdk Browse...
Program:
|B917b|eisample\B917b|eisample.elf

Variables... | | Search Project... Browse...
[JRTOS Awareness Debugging: ${AUTO} Browse...
Target Management Service
[]Flash Programming Before Debugging

A
Revert Apply

Figure 13.12: New Debug Configurations option

(3) Check “"Reset and Hold” in Startup, then click *Apply” and “Debug”.

Close

AN-20111000-E3

316

Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

| bug Config ons V X

_| Create, manage, and run configurations

7T

T EX| B

| Name: |b91m_b|e_single conn_sdk B91_ble_sample

type filter text |_1 Main | 35 Debugg_%r =% Star‘tup=,4’Tracer:E Source | T Common | # Exception Handling|
#% Application Program e

ization Commands] 2
v & MCU Prcgram- Reset and Hold
b91m_ble single_conn_sdk B31_ble_sample

e
Multi-Core Application Program 2

“: Multi-Core MCU Program
“a Target Monitor

2. Binary File Options

=TT

[JLoad binary file
Workspace... |File System...

3. Runtime Options
< []set program counter at (hex):
P []set breakpoint at:

[]Resume 3 &
d |

Filter matched 6 of 9 items Revert Apply

il 4

Ul D TS mTards T 55 =m T

Figure 13.13: Debug Configurations Startup

(4) After clicking “Apply”, the IDE will automatically call up the debug view, and you can see “Variables”,
“Expressions” and other content in the toolbar.

“Variables”: Lists stack area related variable information, highlighting changes to variable values when the
program stops abruptly.

“Expressions”: Global variables are listed, changed parts are highlighted in yellow.

) o a } - . '
(%0807 DE @i~ o- . 5 i neeers | | BED@
45 Debug &2 IDB ig] | N4 I i= ¥ =0 Ew ' |Expressions | &2 0 Memory = 0O
4 9518 Debug_Dema.lst [MCU Program] o = | L] &l f'f“ Iﬁ| et =
4 [Pracess E‘ Expression Type Value
4 o Thread #1 (Suspended : Breakpoint) L4 (4= debug_test volatile u8 Oxlb

= main_loop() at app.c:64 0x200007ec
= main() at main.c:56 0x200007ec

[app.c &2 [£] main.c = B8

// main loop fl

s Add new expression

_loop (void)
printf(" Hello werld! \n");

gpio_toggle(LED1|LED2|LED3|LED4);

delay_ms(588); |
debug_test++;

Figure 13.14: Debug perspective

13.7 Version Function

Users can obtain the current SDK version information through the following functions:

AN-20111000-E3 317 Ver1.2.0

. Telink
Telink B91 BLE Single Connection SDK Developer Handbook

unsigned char blc_get_sdk_version(unsigned char *pbuf,unsigned char number);

The parameter “pbuf” is a pointer to the location where the version information is stored, and the parameter
“number” is the length of the version information, which should be between 5 and 16, and currently only 5
bytes are used to represent the version information. The return value of the function is O for success and 1
for failure. For example, if the data obtained after calling the blc_get_sdk_version function is {3,4,0,0,1},
it means that the current SDK version is 3.4.0.0 patch 1.

AN-20111000-E3 318 Ver1.2.0

vl Telink
Telink B91 BLE Single Connection SDK Developer Handbook

14 GPIO Simulate UART_TX Printing Method

In order to facilitate the user to print information during debugging, B91 supports gpio simulated print-
ing printf(const char *fmt, ...), array_printf(unsigned char*data, unsigned int len), the relevant information
needs to be defined in app_config.h as follows:

#ifndef UART_PRINT_DEBUG_ENABLE
#define UART_PRINT_DEBUG_ENABLE 1
#endif

//1/7/7//7////////////////// PRINT DEBUG INFO ///////////////////////////////////
#if (UART_PRINT_DEBUG_ENABLE)

#define PRINT_BAUD_RATE 115200
#define DEBUG_INFO_TX_PIN GPIO_PAO
#define PULL_WAKEUP_SRC_PA® PM_PIN_PULLUP_10K
#define PAO_OUTPUT_ENABLE 1
#define PAO_DATA_OUT 1 //must
#endif

The default baud rate here is 115200, TX_PIN is GPIO_PAO, and users can change the baud rate and TX_PIN
according to their actual needs.

If the user wants to use a higher baud rate (greater than 115200, the highest support 1M), you need to
increase cclk, at least change it to 24MHz and above, change cclk in app_config.h:

/117717777/7777/7// Clock //////////7///7/////////7/////////
/**

* @brief MCU system clock

*/

#define CLOCK_SYS_CLOCK_HZ 24000000

AN-20111000-E3 319 Ver1.2.0

v Telink

Telink B91 BLE Single Connection SDK Developer Handbook

15 Appendix

15.1 crc16 Algorithm

unsigned short crc16 (unsigned char *pD, int len)
{

static unsigned short poly[2]={0, 0xa001};
unsigned short crc = Oxffff;

unsigned char ds;

int 1,3;

for(j=len; j>0; j--)

{
unsigned char ds = *pD++;
for(1=0; 1<8; i1++)

{

crc = (crc >> 1) »~ poly[(crc ~ ds) & 1];

ds = ds >> 1;

return crc;

}

AN-20111000-E3 320

Ver1.2.0

	Revision History
	1 SDK Overview
	1.1 Software architecture
	1.1.1 main.c
	1.1.2 app_config.h
	1.1.3 application file
	1.1.4 BLE stack entry

	1.2 Software Bootloader
	1.3 Demo Codes
	1.3.1 BLE Slave Demo
	1.3.2 Feature Demo

	1.4 Project Configuration
	1.4.1 Tool Setting
	1.4.2 Build Steps
	1.4.3 Build Artifact

	2 MCU Basic Modules
	2.1 MCU Address Space
	2.1.1 MCU Address Space Allocation
	2.1.2 SRAM Space Allocation
	2.1.2.1 SRAM and Firmware Space
	2.1.2.2 objdump File Analysis Demo

	2.1.3 MCU Address Space Access
	2.1.3.1 Peripheral Space R/W Operation
	2.1.3.2 Flash Space Operation

	2.1.4 SDK Flash Space Allocation

	2.2 Clock Module
	2.2.1 Clock Overview
	2.2.2 System Timer Usage

	2.3 Interrupt Nesting
	2.3.1 Interrupt Nesting Overview
	2.3.2 Interrupt Nesting Application
	2.3.2.1 App Normal Interrupt
	2.3.2.2 App High-priority Interrupt

	3 BLE Module
	3.1 BLE SDK Software Architecture
	3.1.1 Standard BLE SDK Architecture
	3.1.2 Telink BLE SDK Architecture
	3.1.2.1 Telink BLE Slave

	3.2 BLE Controller
	3.2.1 BLE Controller Introduction
	3.2.2 Link Layer State Machine
	3.2.3 Link Layer State Machine Combined Application
	3.2.3.1 Link Layer State Machine Initialization
	3.2.3.2 Idle + Advertising
	3.2.3.3 Idle + Advertising + ConnSlaveRole

	3.2.4 Link Layer Timing Sequence
	3.2.4.1 Timing Sequence in Idle State
	3.2.4.2 Timing Sequence in Advertising State
	3.2.4.3 Timing Sequence in Scanning State
	3.2.4.4 Timing Sequence in Initiating State
	3.2.4.5 Timing Sequence in Conn State Slave Role

	3.2.5 Link Layer State Machine Extension
	3.2.5.1 ADVERTISING_IN_CONN_SLAVE_ROLE
	3.2.5.2 ADVERTISING_IN_CONN_SLAVE_ROLE
	3.2.5.3 SCAN_IN_CONN_SLAVE_ROLE

	3.2.6 Link Layer TX fifo & RX fifo
	3.2.6.1 Link Layer RX fifo Introduction
	3.2.6.2 Link Layer TX fifo Introduction

	3.2.7 Controller Event
	3.2.7.1 Controller HCI Event
	3.2.7.2 HCI event
	3.2.7.3 HCI LE event
	3.2.7.4 Telink Defined Event

	3.2.8 Data Length Extension
	3.2.9 Controller API
	3.2.9.1 Controller API Introduction
	3.2.9.2 API Return Type ble_sts_t
	3.2.9.3 MAC address initialization
	3.2.9.4 Link Layer state machine initialization
	3.2.9.5 bls_ll_setAdvData
	3.2.9.6 bls_ll_setScanRspData
	3.2.9.7 bls_ll_continue_adv_after_scan_req
	3.2.9.8 bls_ll_setAdvParam
	3.2.9.9 bls_ll_setAdvEnable
	3.2.9.10 bls_ll_setAdvDuration
	3.2.9.11 blc_ll_setAdvCustomedChannel
	3.2.9.12 rf_set_power_level_index
	3.2.9.13 bls_ll_terminateConnection
	3.2.9.14 Get Connection Parameters
	3.2.9.15 blc_ll_getCurrentState
	3.2.9.16 blc_ll_getLatestAvgRSSI
	3.2.9.17 Whitelist & Resolvinglist

	3.2.10 Coded PHY/2M PHY
	3.2.10.1 Coded PHY/2M PHY Introduction
	3.2.10.2 Coded PHY/2M PHY Demo Introduction
	3.2.10.3 Coded PHY/2M PHY API Introduction

	3.2.11 Channel Selection Algorithm #2
	3.2.12 Extended Advertising
	3.2.12.1 Extended Advertising Introduction
	3.2.12.2 Extended Advertising Demo Setup
	3.2.12.3 Extended Advertising Related API

	3.3 BLE Host
	3.3.1 BLE Host Introduction
	3.3.2 L2CAP
	3.3.2.1 Slave Requests for Connection Parameter Update

	3.3.3 ATT & GATT
	3.3.3.1 GATT basic unit Attribute
	3.3.3.2 Attribute and ATT Table
	3.3.3.3 Attribute PDU and GATT API
	3.3.3.4 GATT Service Security

	3.3.4 SMP
	3.3.4.1 SMP Security Level
	3.3.4.2 SMP Parameter Configuration
	3.3.4.3 SMP Security Request Configuration
	3.3.4.4 SMP Bonding info

	3.3.5 GAP
	3.3.5.1 GAP Initialization
	3.3.5.2 GAP Event

	4 Low Power Management (PM)
	4.1 Low Power Driver
	4.1.1 Low Power Mode
	4.1.2 Low Power Wake-up Source
	4.1.3 Sleep and Wake-up from Low Power Mode
	4.1.4 Low Power Wake-up Procedure
	4.1.5 API pm_is_MCU_deepRetentionWakeup

	4.2 BLE Low Power Management
	4.2.1 BLE PM Initialization
	4.2.2 BLE PM for Link Layer
	4.2.3 BLE PM Variables
	4.2.4 API bls_pm_setSuspendMask
	4.2.5 API bls_pm_setWakeupSource
	4.2.6 API blc_pm_setDeepsleepRetentionType
	4.2.7 API cpu_long_sleep_wakeup_32k_rc
	4.2.8 PM software processing flow
	4.2.8.1 blt_sdk_main_loop
	4.2.8.2 blt_brx_sleep

	4.2.9 Analysis of deepsleep retention
	4.2.9.1 API blc_pm_setDeepsleepRetentionThreshold
	4.2.9.2 blc_pm_setDeepsleepRetentionEarlyWakeupTiming
	4.2.9.3 Optimization and measurement of T_init

	4.2.10 Connection Latency
	4.2.10.1 Sleep timing with non-zero connection latency
	4.2.10.2 latency_use calculation

	4.2.11 API bls_pm_getSystemWakeupTick

	4.3 Issues in GPIO Wake-up
	4.4 BLE System Low Power Management
	4.5 Timer Wake-up by Application Layer

	5 Low Battery Detect
	5.1 The importance of low battery detect
	5.2 The implementation of low battery detect
	5.2.1 Notes on low battery detect
	5.2.1.1 GPIO input channel recommended
	5.2.1.2 Differential mode only
	5.2.1.3 Need to switch different ADC tasks

	5.2.2 Stand-alone use of low battery detect
	5.2.2.1 Low battery detect initialization
	5.2.2.2 Low battery detect processing
	5.2.2.3 Low voltage alarm

	5.2.3 Low battery detect and Amic Audio

	6 Audio
	6.1 Initialization
	6.1.1 AMIC and Low Power Detect
	6.1.2 AMIC Initialization
	6.1.3 DMIC Initialization

	6.2 Audio Data Processing
	6.2.1 Audio Data Volume and RF Transfer
	6.2.2 Audio Data Compression

	6.3 Compression and Decompression Algorithm
	6.4 Audio data processing flow
	6.4.1 TL_AUDIO_RCU_ADPCM_GATT_GOOGLE
	6.4.1.1 Initialization
	6.4.1.2 Voice data transmission
	6.4.1.3 TL_AUDIO_RCU_ADPCM_HID_DONGLE_TO_STB

	6.4.2 TL_AUDIO_RCU_SBC_HID_DONGLE_TO_STB

	7 OTA
	7.1 Flash Architecture and OTA Procedure
	7.1.1 FLASH Storage Architecture
	7.1.2 OTA Update Procedure
	7.1.3 Modify FW Size and Booting Address

	7.2 RF Data Processing for OTA Mode
	7.2.1 OTA Processing in Attribute Table
	7.2.2 OTA Protocol
	7.2.3 RF Transfer Processing on Master Side

	8 Key Scan
	8.1 Key Matrix
	8.2 Keyscan and Keymap
	8.2.1 Keyscan
	8.2.2 Keymap & kb_event

	8.3 Keyscan Flow
	8.4 Repeat Key Processing
	8.5 Stuck Key Processing

	9 LED Management
	9.1 LED task related functions
	9.2 LED Task Configuration and Management
	9.2.1 LED Event Definition
	9.2.2 LED Event Priority

	10 Software Timer
	10.1 Timer Initialization
	10.2 Timer Inquiry Processing
	10.3 Add Timer Task
	10.4 Delete Timer Task
	10.5 Demo

	11 IR
	11.1 PWM Driver
	11.1.1 PWM ID and Pin
	11.1.2 PWM Clock
	11.1.3 PWM Cycle and Duty
	11.1.4 PWM Revert
	11.1.5 PWM Start and Stop
	11.1.6 PWM Mode
	11.1.7 PWM Pulse Number
	11.1.8 PWM Interrupt
	11.1.9 IR DMA FIFO mode
	11.1.9.1 Configuration for DMA FIFO
	11.1.9.2 Set DMA FIFO Buffer
	11.1.9.3 Start and Stop for IR DMA FIFO Mode

	11.2 IR Demo
	11.2.1 PWM mode selection
	11.2.2 Demo IR Protocol
	11.2.3 IR Timing Design
	11.2.4 IR Initialization
	11.2.4.1 rc_ir_init
	11.2.4.2 IR Hardware Configuration
	11.2.4.3 IR Variable Initialization

	11.2.5 FifoTask Configuration
	11.2.5.1 FifoTask_data
	11.2.5.2 FifoTask_idle
	11.2.5.3 FifoTask_repeat
	11.2.5.4 FifoTask_repeat*n and FifoTask_idle_repeat*n

	11.2.6 Check IR Busy Status in APP Layer

	11.3 IR Learn
	11.3.1 IR Learn introduction
	11.3.2 IR Learn hardware principle
	11.3.3 IR Learn software principle
	11.3.4 IR Learn software description
	11.3.4.1 IR_Learn initialization
	11.3.4.2 IR_Learn interrupt handling
	11.3.4.3 IR_Learn result processing function
	11.3.4.4 IR_Learn macro definition
	11.3.4.5 IR_Learn start function
	11.3.4.6 IR_Learn state query
	11.3.4.7 IR_Learn_Send initialization
	11.3.4.8 IR_Learn result copy function
	11.3.4.9 IR_Learn send function

	11.3.5 IR Learn algorithm details
	11.3.6 IR Learn learning parameter adjustment
	11.3.7 IR Learn common issues

	11.4 Demo description

	12 Feature Demo Introduction
	12.1 Broadcast Power Consumption Test
	12.1.1 Connectable Broadcast Power Consumption Test
	12.1.2 Un-connectable Broadcast Power Consumption Test

	12.2 Connection Power Consumption Test
	12.3 SMP Test
	12.3.1 LE_Security_Mode_1_Level_1
	12.3.2 LE_Security_Mode_1_Level_2
	12.3.2.1 SMP_TEST_LEGACY_PARING_JUST_WORKS
	12.3.2.2 SMP_TEST_SC_PAIRING_JUST_WORKS

	12.3.3 LE_Security_Mode_1_Level_3
	12.3.3.1 SMP_TEST_LEGACY_PASSKEY_ENTRY_SDMI
	12.3.3.2 SMP_TEST_LEGACY_PASSKEY_ENTRY_MDSI

	12.3.4 LE_Security_Mode_1_Level_4
	12.3.4.1 SMP_TEST_SC_NUMERIC_COMPARISON
	12.3.4.2 SMP_TEST_SC_PASSKEY_ENTRY_SDMI

	12.4 GATT Security Test
	12.5 DLE Test
	12.6 Soft Timer Test
	12.7 WhiteList Test
	12.8 1M Extended Advertising Test
	12.9 2M/Coded PHY Used on Extended Advertising Test
	12.10 2M/Coded PHY used on Legacy advertising and Connection Test
	12.11 CSA #2 Test

	13 Other Modules
	13.1 24MHz Crystal External Capacitor
	13.2 32KHz Clock Source Selection
	13.3 Software PA
	13.4 PhyTest
	13.4.1 PhyTest API
	13.4.2 PhyTest demo
	13.4.2.1 Demo: B91_feature_test
	13.4.2.2 PhyTest parameter adjustment

	13.5 EMI
	13.5.1 EMI Test
	13.5.1.1 EMI initialization setting
	13.5.1.2 Power level and Channel
	13.5.1.3 EMI Carrier Only
	13.5.1.4 emi_con_prbs9
	13.5.1.5 EMI TX Burst
	13.5.1.6 EMI RX
	13.5.1.7 Master computer configuration parameter settings

	13.5.2 EMI Test Tool

	13.6 JTAG Usage
	13.6.1 Diagnostic Report
	13.6.2 Target Configuration
	13.6.3 Flash Programming
	13.6.4 Application Debug

	13.7 Version Function

	14 GPIO Simulate UART_TX Printing Method
	15 Appendix
	15.1 crc16 Algorithm

